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Abstract

This paper has been motivated by general considerations on the topic
of Risk Measures, which essentially are convex monotone maps de�ned on
spaces of random variables, possibly with the so-called Fatou property.

We show �rst that the celebrated Namioka-Klee theorem for linear,
positive functionals holds also for convex monotone maps � on Frechet
lattices.

It is well-known among the specialists that the Fatou property for risk
measures on L1 enables a simpli�ed dual representation, via probability
measures only. The Fatou property in a general framework of lattices is
nothing but the lower order semicontinuity property for �. Our second
goal is thus to prove that a similar simpli�ed dual representation holds
also for order lower semicontinuous, convex and monotone functionals �
de�ned on more general spaces X (locally convex Frechet lattices). To this
end, we identify a link between the topology and the order structure in X
- the C-property - that enables the simpli�ed representation. One main
application of these results leads to the study of convex risk measures
de�ned on Orlicz spaces and of their dual representation.
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Department at Princeton University. The second author would like to thank
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1 Introduction

The analysis in this paper was triggered by recent developments in the the-
ory of Risk Measures in Mathematical Finance. Convex risk measures were
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independently introduced by [FS02] and [FR02] as generalization of the con-
cept of a coherent risk measure developed in [ADEH99]. Consider a space of
�nancial positions X (real-valued, measurable functions on a �xed measurable
space (
;F)) containing the constants. A convex risk measure on X is a map
� : X ! (�1;+1] with the following properties:

1. �(0) = 0 (so � is proper, i.e. it does not coincide with +1)

2. monotonocity: if X;Y 2 X ; X � Y , then �(X) � �(Y )

3. convexity: if � 2 [0; 1], then �(�X + (1� �)Y ) � ��(X) + (1� �)�(Y ) for
any X;Y 2 X

4. cash additivity: if m 2 R then �(X +m) = �(X)�m for any X 2 X

When � is also positive homogeneous, i.e.

5. �(�X) = ��(X) for all � � 0

the risk measure is called coherent.

If X is also topological space (as it is always the case in the applications), it is
of course useful to have a result on the degree of smoothness of the risk measure
�. Strangely enough, when this paper was �rst written to our knowledge there
was yet no general result. This is exactly the message of the extended Namioka-
Klee Theorem, stated below in Theorem 1. The (topological vector) space of
positions X however must have some other properties, i.e. it must be a Frechet
lattice.
Recall that a topological vector space (X ; �) is a Frechet lattice if:

� its topology � is induced by a complete distance d

� X is a lattice, that is it has an order structure (X ;�) and each pair
X1; X2 2 X has a supremum X1 _X2 in X

� X is locally solid, that is the origin 0 has a fundamental system of solid
neighborhoods (a neighborhood U of 0 is solid if for any X 2 U , Y 2
X ; jY j � jXj ) Y 2 U where jXj = X _ (�X)).

Note that a Frechet lattice is not necessarily locally convex. Examples of
common Frechet lattices are the spaces Lp on a probability space (
;F ; P ), for
p 2 [0; 1) (with the natural, a.s. pointwise order). When p � 1, Lp is also
Frechet lattice, but with an extra property. The topology is induced by the
Lp-norm (and thus the space becomes locally convex). Moreover, the norm has
a monotonicity property: jXj � jY j ) kXkp � kY kp. So Lp; p 2 [1;+1] is in
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fact a Banach lattice. Other Banach lattices important for our applications
belong to the family of Orlicz spaces - denoted with L	 for a Young function 	
- which are described in details in Section 5.
Finally, we present the abstract statement of the extended Namioka-Klee

Theorem, proved in Section 2 (where there is also an extensive comparison with
the existing literature, as we discovered that there are a couple of recent, very
similar results). The Theorem is stated for convex, monotone increasing maps
�, not necessarily cash additive. But a similar result clearly holds for monotone
decreasing maps. Dom(�) indicates here and in the rest of the paper the subset
of X where � is �nite. The topological dual space is denoted by X 0 and the set
X 0
+ indicates the convex cone of those functionals Y in X 0 that are positive, i.e.
hY;Xi � 0 for all X 2 X ; X � 0. The symbol h; i indicates the bilinear form
for the duality (X ;X 0). The map �� : X 0 ! (�1;+1] is the convex conjugate
of �, also known as Fenchel transform, and it is de�ned as

��(Y ) = sup
X2X

fhY;Xi � �(X)g:

Theorem 1 (Extended Namioka-Klee) Any proper convex and monotone
increasing functional � : X ! (�1;+1] on a Frechet lattice (X ; �) is continu-
ous and subdi¤erentiable on int(Dom(�)) (the interior of Dom(�)). Moreover,
it admits a dual representation as

�(X) = max
Y 2X 0

+

fhY;Xi � ��(Y )g 8X 2 int(Dom(�)): (1)

To give an idea about the genesis of the second and most innovative part of
the paper, let us go back to the �nancial setup and let us focus �rst on the case
L1. A risk measure � on L1 has the pleasant property of being always �nite-
valued, thanks to the boundedness of its elements and to the monotonicity and
cash additivity property. The theorem above ensures that � is continuous and
subdi¤erentiable on the entire L1. This implies the existence of a well-known
dual representation for � over L1, namely

�(X) = max
Q2M1;f (P )

fEQ[�X]� ��(Q)g (2)

where:
a) M1;f (P ) indicates the set of positive, �nitely additive measures Q on

(
;F) that are absolutely continuous w.r. to P and are normalized (Q(I
) = 1);
b) �� is the convex conjugate of � and should be interpreted as a penalty

functional.
These results are known and proved e.g. [FS04, Theorem 4.12]), where

subdi¤erentiability is proved by hand for the speci�c case study L1.
Now, let us recall the de�nition of the Fatou property for risk measures (see

e.g. [De00] or Section 4, [FS04], in the case L1):
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De�nition 2 (Fatou property) A risk measure � : Lp ! R[f1g, p 2
[1;1]; has the Fatou property (F.P.) if given any sequence fXngn dominated
in Lp and converging P�a.s. to X we have:

�(X) � lim inf
n!1

�(Xn):

This property enables a simpli�ed dual representation of �. Instead of the
�nitely additive measures M1;f (P ), if a convex risk measure � : L1 ! R has
the F.P. one can write

�(X) = sup
Q probability; Q�P

fEQ[�X]� ��(Q)g; (3)

so the supremum can be taken only over probabilities, the ��additive elements
ofM1;f , see [FS04, Theorem 4.26]. There is a price to pay: the above supremum
may not be attained over probability measures, but only onM1;f .
What can be said about the representation problem of a convex risk measures

de�ned on subspaces of L0 ?
The spaces Lp are typical examples of spaces of �nancial positions in the

applications (see for example, [FR02], [FS07], [RK08]). Moreover, in [BF08] it
is shown that Orlicz spaces that can be associated with a utility function are the
right framework for the utility maximization problems which commonly arises
in �nancial problems. Motivated by this idea, in the �rst version of this paper1 ,
we initiated the study of risk measures de�ned on Orlicz spaces L	 and more
generally on Frechet lattices. Independently, in [CL07] convex risk measures
were de�ned on the Morse subspace M	 of the Orlicz space L	. As we shall
see in Section 5 some of the �ndings in [CL07] are special case our results, while
other properties do not hold in the general case, essentially because the topology
on the (whole) Orlicz space L	 is not order continuous.
Our generalization of the representation in (3) and its various implications
will be stated for maps �, de�ned of general Frechet lattice, that are convex,
monotone and increasing, not necessarily translation invariant. This latter im-
plies that the set of dual variables over which the supremum - or the maximum
- is taken will not be normalized in general.
To begin with, let us recall a few notions about Riesz spaces, i.e. linear spaces

that are lattices (see also Section 3). The �rst is that of order convergence. A
generalized sequence, or net, (X�)� in a Riesz space R is order convergent to
some X 2 R, notation X�

o! X; if there is a net (Z�)� in R satisfying

Z� # 0 and jX� �Xj � Z� for each � (4)

1Presented by the second author at the Workshop on Risk Measures, University of Evry,
France, July 6-7 2006 and at the Conference on Risk Measures and Robust Control in Finance,
The Bendheim Center, Princeton University, October 6-7, 2006.
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(Z� # 0 means that (Z�)� is monotone decreasing and its in�mum is 0).
A functional f : R ! R de�ned on R is order continuous if

X�
o! X ) f(X�)! f(X);

and a topology � on R is order continuous if

X�
o! 0) X�

�! 0:

These de�nitions readily imply that if the topology � is order continuous
then

f is (topologically) continuous) f is order continuous.

We denote with (X�
n ) the cone of order continuous linear functionals on X .

By the classic Namioka Theorem, see Section 2., (X�
n )+coincides with X 0

+, the
positive elements of topological dual space X 0. We recall that in a Banach lattice
X the norm topology is order continuous if and only if X�

n = X 0 and that the
following three classes of spaces all have order continuous norm: (a) Lp when
p 2 [1;+1); (b) M	 when 	 is a �nite valued Young function; (c) L	 when 	
is a Young function satisfying the �2 condition (in this case L	 =M	).
The above implication, together with Theorem 1, readily imply the following

Corollary 3 If Frechet lattice (X ; �) has an order continuous topology and � :
X ! R is convex and monotone (increasing), � is already order continuous on
X . Thus it admits a dual representation as

�(X) = max
Y 2(X�

n )+
fhY;Xi � ��(Y )g ; X 2 X ; (5)

where (X�
n )+ = X 0

+.

a) In the speci�c case X = Lp; p 2 [1;+1) the representation above becomes

�(X) = max
Y 2(Lq)+

fE[Y X]� ��(Y )g ; X 2 Lp;

b) In the speci�c case X =M	 and 	 is a �nite valued Young function, the
representation above becomes

�(X) = max
Y 2(L	� )+

fE[Y X]� ��(Y )g ; X 2M	; (6)

where 	� is the conjugate function of 	.

However, the order continuity of a topology is a strong assumption, which
is not satis�ed by e.g. L1, or by L	 for general Young functions 	 or by other
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Frechet lattices, as shown in Section 5. Moreover, in general (X�
n )+ is only a

subspace of X 0
+. This is exactly what happens with L

1:

((L1)�n )+ = L
1
+ and (L

1)0+ = L
1
+ � S+;

where S are the purely �nitely additive measures.
It is then natural to investigate whether � admits a representation on (X�

n )+
under conditions, linking topology and order structure, less restrictive than the
order continuity of the topology � .
As we shall see in Remark 17, when X = Lp, p 2 [0;1], the Fatou property

coincides with order lower semicontinuity, which is the appropriate concept in
the present general setting.

De�nition 4 A functional � : R ! (�1;+1] de�ned on a Riesz space R is
order lower semicontinuous if X�

o! X implies �(X) � lim inf �(X�).

From now on, local convexity is needed and in what follows the Frechet lattice
X is also supposed locally convex.

As a consequence of the Hahn-Banach theorem in any locally convex Frechet
lattice if the proper, increasing convex map � : X ! (�1;+1] is also �(X ;X�

n )

lower semicontinuous then

�(X) = sup
Y 2(X�

n )+

fhY;Xi � ��(Y )g ; X 2 X ; (7)

where �� is the convex conjugate of �. Therefore �, as the pointwise supremum
of a family of order continuous functionals, is also order lower semicontinuous
One could then conjecture that the converse always holds true i.e. any

order lower semicontinuous � on any locally convex Frechet lattice admits a
representation in terms of (X�

n )+; as in (7) or, in lucky cases, (5).
The conjecture is not true in general, see Example 6 at the end of this

Introduction. Proposition 24 contains the main result of the paper, that is
there exists an additional assumption "à la Komlós", linking the topology �
and the order structure, that enables the representation over (X�

n )+.

De�nition 5 (C-property) A linear topology � on a Riesz space has the C-
property2 if X�

�! X implies the existence of a subsequence (X�n)n and convex
combinations Zn 2 conv(X�n ; � � � ) such that Zn

o! X.

This property is quite reasonable, all the details are in Section 4. In particu-
lar, whenever a locally convex Frechet lattice (X ; �) can be embedded in L1 with
a linear lattice embedding, then all the topologies: � , �(X ;X 0) and �(X ;X�

n )

2The "C" stands for "convex combinations"...
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have the C-property. A relevant example of spaces with an associated collection
of topologies (norm, weak and �(X ;X�

n )) satisfying the C-property is the family
of Orlicz spaces (Section 5.1).

In the case X = L1 , it is well known that the sup in (7) in general is
not a max, but the sup is attained under some stronger continuity condition.
In the general case, in Lemma 27 we show that for a �nite valued convex in-
creasing map which is order upper semicontinuous the sup in (7) is indeed a max.

Finally, in Section 5.2 we analyze convex risk measures de�ned on Orlicz
spaces and with values in R [ f+1g. This new setup allows for an extension
of the known dual representation on L1: We further provide some new results
on the convex risk measures associated to utility functions, as in the case of the
entropic risk measure.

Example 6 (When the C-property fails) When the �(X ;X�
n )- topology does

not satisfy the C-property, there may be order l.s.c. convex functionals (even � -
continuous!) that are not �(X ;X�

n )- l.s.c.
Take X = C([0; 1]), the Banach lattice of the continuous functions on [0; 1]

with the supremum norm and the pointwise order. The dual X 0 consists of
the Borel signed measures on [0; 1] and it is known (see e.g. [Za83, Example
87.5]) that there is no non zero order-continuous functional in X 0. The topology
�(X ;X�

n ) = �(X ; f0g) is therefore the indiscrete one and clearly it doesn�t have
the C-property.
Consider then the convex, increasing �best case�functional

�(X) = max
t2[0;1]

X(t)

which is �nite valued, so that the extended Namioka-Klee Theorem implies that
� is norm continuous and subdi¤erentiable and it admits a representation on
X 0
+ as

�(X) = max
Y 2X 0

+

fhY;Xi � ��(Y )g

But it evidently does not admit a representation on (X�
n )+ = f0g because it is

not constant.
To show that � is order-l.s.c. let X�

o! X and suppose by contradiction that
there exists a subnet (X�� )� (as a subnet, still order convergent to X) such that
�(X) > lim� �(X�� ). Let t

� 2 argmax(X). Then

�(X�� ) � X�� (t�)

and evidently

X(t�) = �(X) > lim
�
�(X�� ) � lim sup

�
X�� (t

�);
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which contradicts pointwise convergence.

2 The Extended Namioka Theorem

The following is the statement of the well-known Namioka-Klee Theorem in the
case of linear functionals '.

Theorem 7 (Namioka-Klee) Any linear and positive functional ' : X ! R
on a Frechet lattice X is continuous (see [Na57]).

In order to provide a technically straightforward, but quite relevant, extension
of Namioka-Klee Theorem to convex functionals �; the positivity assumption

0 � Y ) 0 � '(Y )

has to be replaced with the requirement that � is monotone increasing

X � Y ) �(X) � �(Y )

Monotonicity and positivity are equivalent for linear functionals, but it is straight-
forward to see that for convex � monotonicity implies positivity (assuming
�(0) = 0). And it is easy to produce a positive but non-monotone convex
map by taking �(X) = jXj on X = R.
So, while on one hand one relaxes the linearity assumption, on the other

hand a stronger link with the order structure is required.
The properties in the next Lemma are straightforward consequences of the

de�nitions.

Lemma 8 Let R be a Riesz space and let � : R ! (�1;+1] be convex,
increasing and �(0) = 0: Then:

i- � (�X) � �� (X) ; 8� 2 [0; 1]; 8X 2 R;

ii- �� (X) � �(�X); 8� 2 (�1; 0] [ [1 +1); 8X 2 R;

iii- j�(X)j � �(jXj) 8X 2 R:

Proof of Theorem 1. Step 1: Continuity. The proof of Namioka-Klee
Theorem (see e.g. [ABo05, Theorem 9.6]) can be adapted, in a straightforward
manner, to deal with the current weaker assumptions. We repeat the argument
so that the paper is self- contained.
W.l.o.g. it can be assumed that the interior of Dom(�), int(Dom(�)), is not
empty that 0 2 int(Dom(�)) and �(0) = 0: Let Br be the centered open ball
of radius r > 0 in a metric that generates � . Take any sequence fXngn such
that Xn

�! 0: Fix r small enough, so that B2r � int(Dom(�)). Then pick a
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countable base fVngn of solid neighborhoods of zero satisfying V1+V1 � Br and
Vn+1 + Vn+1 � Vn for each n: Then Vn+1 � Vn � Br for each n: By passing to
a subsequence of Xn, one can suppose Xn 2 1

nVn for each n. Set Yn =
nP
i=1

ijXij

and note that Yn � Yn+1 and njXnj � Yn. In addition

Yn+p � Yn =
n+pX
i=n+1

ijXij 2 Vn+1 + Vn+2 + :::+ Vn+p � Vn:

Therefore Yn 2 Br for each n and fYngn is a Cauchy sequence, so Yn
�! Y for

some Y in X . Since Yn 2 Br, Y 2 Br � B2r � int(Dom(�)), �(Y ) is �nite.
This Y is an upper bound for the sequence (actually, supn Yn = Y ). In fact, �x
any n: Since Ym�Yn 2 X+ for each m � n; the sequence fYm � Yn : m � ng in
X+ satis�es

Ym � Yn
�! Y � Yn, as m!1:

Since X+ is � -closed ([ABo05, Theorem 8.43 - 1]), Y � Yn 2 X+ for each n:
Hence Yn � Y for each n: From Lemma 8, j�(Xn)j � �(jXnj) � 1

n�(njXnj): By
monotonicity of � we derive

j�(Xn)j �
1

n
�(njXnj) �

1

n
�(Yn) �

1

n
�(Y )! 0

which shows that � is continuous at zero and therefore � is continuous on the
whole int(Dom(�)) ([ABo05, Theorem 5.43]).
Step 2: Subdi¤erentiability. For all X� 2 int(Dom(�)) we must exhibit a

subgradient Y � 2 X 0, i.e. a Y � such that

�(X)� �(X�) � hY �; X �X�i for all X 2 X : (8)

To this end, again w.l.o.g. we can suppose X� = 0 2 int(Dom(�)) and �(0) = 0.
Then, the directional derivative functional D in 0

D(X) := lim
t#0

�(tX)

t

satis�es D � � thanks to Lemma 8. It is �nite valued and convex and thus
the �rst part of this proof implies that it is continuous. By the Hahn-Banach
Theorem (see e.g. [ABo05, Theorem 5.53]) there exists a linear functional Y �

which satis�es hY �; Xi � D(X) on X whence Y � is a continuous subgradient
for � at 0.
Step 3: Representation. Fix any X� 2 int(Dom(�)). It is an exercise to show

that � increasing implies �� is �nite at most over X 0
+. Fix any subgradient Y

�

(which is then positive) of � at X�. Reshu­ ing eq. (8), this means

hY �; X�i � �(X�) = max
X2X

fhY �; Xi � �(X)g = ��(Y �)
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where the last equality follows from the de�nition of ��. This chain of equalities
in turn implies that �(X�) = hY �; X�i � ��(Y �) = maxY 2X 0fhY;X�i � ��(Y )g
as the inequality �(X�) � hY;X�i���(Y ) automatically holds for any Y 2 X 0.

Remark 9 In [CL07] there is a formula identical to (1) for � de�ned on Banach
lattices.

Corollary 10 Every �nite-valued convex and monotone functional on a Ba-
nach lattice is norm-continuous and subdi¤erentiable.

Corollary 11 If a Frechet lattice X supports a non-constant convex monotone
map �, then necessarily X 0 6= f0g.

As a generic Frechet lattice X is not necessarily locally convex, it may hap-
pen that the topological dual X 0 is very poor or even f0g : This is the case,
for example, of the spaces Lp(
;F ; �), p 2 (0; 1); when � is a nonatomic mea-
sure (see [ABo05, Theorem 13.31]) and of the space L0(
;F ; �), when � is
a nonatomic �nite measure ( [ABo05, Theorem 13.41] ). Therefore, the only
convex monotone �s on these spaces are the constants.

2.1 The current literature

Surprisingly enough given their importance in the applications, it seems that
results on continuity and subdi¤erentiability for convex monotone maps have
appeared only very recently in the literature.
After �nishing the �rst version of the paper, which did not contain the

subdi¤erentiability additional result, we came to know that in the recent articles
[MMR] and [RS06] there are statements very close to those of Theorem 1.
To start, in [MMR] it is shown that:

if L is an ordered Banach space, with L+ closed and such that L = L+ � L+
then any convex monotone � : U ! R de�ned on an open set U of L is
continuous.

These hypotheses are stronger than ours on the topological part as L must
be a Banach space, but milder on the order part. In fact, their conditions: the
positive cone L+ is closed and generating L = L+ � L+ are always satis�ed in
a Frechet lattice. Note that nothing is said about subdi¤erentiability.

On the contrary, in [RS06] the authors were the �rst to prove subdi¤eren-
tiability of convex monotone maps �, but with the stronger assumption that �
is de�ned on a Banach lattice L:
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If L is a Banach lattice, � : L! R is proper, convex and monotone, then it is
continuous and subdi¤erentiable on the interior of the proper domain.

The line of their proof is the following. For any �xed X� 2 int(Dom(�)),
�rst one exhibits a positive subgradient, which is then continuous by classic
Namioka-Klee theorem. This implies lower semicontinuity of � at X�, which in
turn implies continuity.
Inspired by this work we also prove subdi¤erentiability of �, in the case of

Frechet lattices. However, we reverse the order, since �rst one proves continuity
of � on int(Dom(�)) and then subdi¤erentiability (this latter in the same way
as done by [RS06]). This is only a matter of taste and it would not be di¢ cult
to extend the results in [RS06] with the same line of reasoning from Banach
to Frechet lattices. The only interesting aspect in proving �rst continuity is
that one realizes that the same proof of "classic" Namioka for linear positive
functionals still holds, basically unchanged, for convex monotone maps.
The interested reader is also referred to [CL07] for further developments.

3 On order lower semicontinuity in Riesz spaces

Let us recall some basic facts about Riesz spaces. The same notation � is used
for the order relations in R, in (�1;+1] and for the direction of index sets of
nets, as the meaning will be clear from the context.
A subset A of a Riesz space R is order bounded if there exists X1 2 R and

X2 2 R such that X2 � X � X1 for all X 2 A: A net (X�)� in R is increasing ;
written X� "; if � � � implies X� � X�. A net (X�)� in R is increasing to
some X 2 R; written X� " X; if X� " and sup�X� = X: A subset A of R is
order closed if X� 2 A and X�

o! X implies X 2 A: The space R is order com-
plete when each order bounded subset A has a supremum (least upper bound)
and an in�mum (largest lower bound).
Recall ([ABo05, Th. 8.15]) that the lattice operations are order continu-

ous. In addition ([ABo05, Th 8.16]), if a net (X�)� is order bounded and
R is order complete, then lim inf�X� , sup� inf���X� and lim sup�X� ,
inf� sup���X� are well de�ned, and

X�
o! X i¤X = lim inf

�
X� = lim sup

�
X�:

The next Lemma is an immediate consequence of the facts and de�nitions
above and of (4).

Lemma 12 Let R be a Riesz space.
(i) Let X�

o! X. Then there exists �� such that (X�)���� is order bounded,
i.e. the net is de�nitely order bounded. In case the index set of the net has a
minimum then (X�)� is order bounded.

11



(ii) Let R be order-complete and let X�
o! X. If Y� , (inf���X�) ^ X,

then Y� " X:

Example 13 (Order convergence in Lp) In Lp spaces, p 2 [0;1]; the no-
tion of order is the very familiar pointwise one, i.e. Y � X i¤ Y (!) � X(!)

P -a.e. As Lp is order separable, see the next section, sequences can be used
instead of nets to characterize order convergence. A sequence (Xn)n in L

p is
order bounded i¤ it is dominated in Lp (i.e. there exists a Y 2 Lp+ such that
jXnj � Y ). The order convergence in the Lp case is just dominated pointwise
convergence:

Xn
o! X , Xn

P�a:e:�! X and (Xn)n is dominated in L
p (9)

Therefore, the Lp-norm topologies are order continuous for all p < +1, as the
above equivalence implies that Lebesgue dominated convergence theorem can be

applied to conclude Xn
o! X ) Xn

Lp! X.

3.1 Equivalent formulations of order l.s.c.

De�nition 14 A functional � : R ! (�1;+1] de�ned on a Riesz space R

(a) is continuous from below if X�"X ) �(X�) " �(X)

(a�) is ��continuous from below if Xn " X ) �(Xn) " �(X)

(b) is order lower semicontinuous if X�
o! X ) �(X) � lim inf �(X�)

(b�) is ��order lower semicontinuous if

Xn
o! X ) �(X) � lim inf �(Xn): (10)

Note that the pointwise supremum of a family of order l.s.c. functionals is
order l.s.c.
As shown in the next Lemma, if � is increasing and R possesses more struc-

ture then the conditions (a); (a�); (b); (b�) are all equivalent. The order separa-
bility of R (any subset A which admits a supremum in R contains a countable
subset with the same supremum) allows to formulate the order-l.s.c. property
with sequences instead of nets (i.e. (b), (b�)).

Lemma 15 Let R be an order complete Riesz space and � : R ! (�1;+1]
be increasing. Then: (a), (b); (a�), (b�); (a)) (a�); (b)) (b�):

If in addition R is order separable then (a); (a�); (b); (b�) are all equivalent.

12



Proof. (a)) (b): Let X�
o! X and set Y� = (inf���X�) ^X. By Lemma

12 (ii), Y� " X and so �(X)
(a)
= lim�(Y�)

(mon)

� lim inf �(X�):

(b)) (a). Since X� " X implies X�
o! X; we get: �(X)

(b)

� lim�(X�)
(mon)

�
�(X):

(a�) , (b�) follows in the same way as (a) , (b); while (a) ) (a�) and
(b)) (b�) are obvious.
To show the last sentence it is su¢ cient to prove e.g. (a�) ) (a). For any

net X� " X we can �nd a countable subnet X�n such that X�n " X. Hence

�(X)
(a�)
= lim

n
�(X�n) � lim�(X�)

(mon)

� �(X):

Remark 16 (On order separability) A su¢ cient condition for R to be or-
der separable is that, for every principal ideal RX , there exists a positive linear
functional on R which is strictly positive on RX (see [Za83, Theorem 84.4]).
All Banach lattices with order continuous norm verify this condition, as

shown in [ABu85, Theorem 12.14].
Another su¢ cient condition for order separability is the existence of a linear

functional on R which is strictly positive on the entire R. This implies that all
the Orlicz Banach lattices L	 = L	(
;F ; P ) (and henceforth all the Lp spaces,
p 2 [1;1]) are order separable (and order complete as well). See Section 5.1.

Remark 17 (On the Fatou Property) From (9), De�nition (2) and De�-
nition (14), we immediate see that when R = Lp, p 2 [0;1], order lower
semicontinuity coincides with the Fatou Property.

Remark 18 (On decreasing functional) Analogous considerations hold for
decreasing functionals: if R is an order complete and order separable Riesz
space and if � is decreasing, then the conditions: (b); (b�); continuity from
above [i.e.: X� # X ) �(X�) " �(X)] and ��continuity from above [i.e.:
Xn # X ) �(Xn) " �(X)] are all equivalent. These equivalent formulations will
be used to study some properties of convex risk measures in Section 5.2.

3.2 The order continuous dual X�
n

Given a Frechet lattice X , the space of order bounded linear functionals X�

(those which carry order bounded subset of X to order bounded sets of R)
coincides with the topological dual X 0. This is a consequence of Namioka-Klee
Theorem 7. From the general theory (see [Za83]) on the decomposition of X�

X 0 = X� = X�
n �X�

s

13



where X�
n is the order closed ideal (band) of X� of all the order continuous

linear functionals on X and it is called the order continuous dual of X . The
space of singular functionals X�

s is de�ned as the band disjoint complement of
X�
n in X�: Examples of this decomposition are given in Section 5. The main
goal of the next Section is to provide some criteria that guarantee the C-property
of the topology �(X ;X�

n ).

4 On the C-property

The C-property is veri�ed by the strong topology of all Frechet lattices without
passing to convex combinations, as shown below.

Lemma 19 Let (X ; �) be a Frechet lattice. If (Xn)n � -converges to X, then
there exists a subsequence which is order convergent.

Proof. Call d a complete distance that induces � , which is also absolute,
i.e. d(X; 0) = d(jXj; 0). Suppose d(Xn; X) ! 0 and select a subsequence such
that

P
k�0 d(Xnk ; X) =

P
k�0 d(Xnk �X; 0) < +1.

Set Y =
P

k�0 jXnk � Xj. By completeness of d, Y 2 X . Now, if Yk :=P
h�k jXnh � Xj then clearly Yk # and Yk

�! 0 so by [ABo05, Theorem 8.43]
Yk # 0. As

jXnk �Xj � Yk
one deduces that Xnk order converges to X.

We will be mainly concerned with the C-property of weak topologies in
locally convex Frechet lattice. This is the reason why the most to hope for is
to extract an order convergent subsequence of convex combinations from a
topologically convergent net, e.g. exactly the C-property.

Lemma 20 Let (X ; �) be a locally convex Frechet lattice. Then the �(X ;X 0)

topology veri�es the C-property.

Proof. Let W� !W in the weak topology. By Hahn-Banach Theorem, W
belongs to the � -closure of conv(W�; � � � ) for all � and as the topology � is �rst
countable there exists a subsequence (�n)n and a sequence Yn 2 conv(W�n ; :::)

which converges to W in the � topology. Lemma 19 ensures that we can extract
a subsequence (Ynk)k that order converges to W .

Remark 21 The local convexity assumption cannot be dropped in the statement
of the previous Lemma. An immediate counterexample is given by the Frechet
lattice L0, since when P has no atoms (L0)0 = f0g. So, the weak topology
�(L0; (L0)0) is the indiscrete one and doesn�t satisfy the C-property.

14



However, even under the local convexity assumption, the C-property is not
preserved if one keeps weakening the topology, from �(X ;X 0) to �(X ;X�

n ). An
extreme situation is the one already encountered in Example 6 where the Banach
lattice X = C([0; 1]) has dual X 0 consisting of the signed measures � of �nite
variation on [0; 1], but no � is order continuous apart from the null measure.
So the following Lemma may be helpful.

Lemma 22 Let (L; �L); (X ; �) be locally convex Frechet lattices and suppose
there exists a linear, injective lattice morphism

(X ; �) i! (L; �L)

such that
fY � i j Y 2 L0g � X�

n : (11)

Then �(X ;X�
n ) veri�es the C-property.

Proof. We specify that by "linear, injective lattice morphism" i we mean
that i is linear, injective, topologically continuous and preserves the lattice struc-
ture. Note that X needs not to be homeomorphic to i(X ).
Let (X�)� be a net such that X�

�(X ;X�
n )�! X. The condition (11) implies

that W� := i(X�) converges to W := i(X) in the �(L;L0)-topology. Applying
the same argument and using the same notations of the proof of Lemma 20,
there exists (Ynk)k converging in order to W in L and so the inverse image
Zk = i

�1(Ynk) veri�es Zk 2 conv(X�nk ; � � � ) and Zk
o! X.

Condition (11) is evidently satis�ed in case L0 = L�n , which is equivalent to
the assumption that �L is order continuous. If this holds, essentially the above
Lemma applies to any locally convex Frechet lattice X that can be identi�ed
with a sublattice of L, so the order structure is identical of that of L, but with
possibly �ner topology than the one inherited from L. This is the content of
the next Corollary, that will be applied for the Orlicz Banach lattice L	.

Corollary 23 Any locally convex Frechet lattice X of random variables that can
be injected into L1 by a linear lattice morphism has � , �(X ;X 0) and �(X ;X�

n )

topologies with the C-property.

4.1 The C-property in the representation of convex and
monotone functionals

We present the result on the equivalence between the �(X ;X�
n )�l.s.c. property

for convex functionals on locally convex Frechet lattices and the order-l.s.c.
property, under the assumption that the topology �(X ;X�

n ) has the C-property.
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Proposition 24 Let (X ; �) be a locally convex Frechet lattice and consider the
following conditions for a proper, convex functional � : X ! (�1;+1]:

1. � is �(X ;X�
n )�l.s.c.

2. � admits the representation

�(X) = sup
Y 2X�

n

fhY;Xi � ��(Y )g ; X 2 X ; (12)

3. � is order l.s.c.

Then 1) ) 2) ) 3). If �(X ;X�
n ) has the C-property, the three conditions

are equivalent.
If � is in addition monotone increasing, the conclusions are identical and in

the representation (12) X�
n can be replaced by (X�

n )+.

Proof. 1)) 2) follows from (X ; �(X ;X�
n ))

0 = X�
n and from Fenchel-Moreau

Theorem (see e.g. [BR83, Chap I]); 2)) 3) Since � is the pointwise supremum
of a family of order continuous functionals, it is also order l.s.c. Suppose now
that �(X ;X�

n ) has the C-property and that 3) holds. To prove 1) we show that
for any real k the sublevel

Ak = fX 2 X j �(X) � kg

is �(X ;X�
n )�closed. Suppose that X� 2 Ak and X�

�(X ;X�
n )! X: By the C-

property, there exists Yn 2 conv(X�n ; � � � ) such that Yn
o! X: The convexity of

� implies that �(Yn) � k for each n. From order l.s.c. of �

�(X) � lim inf �(Yn) � k

so that X 2 Ak.

Remark 25 Note that the C-property could have been stated with order con-
verging subnets of convex combinations instead of subsequences (as in fact it
was in the �rst version of the present paper). However the current presentation
is given with subsequences as the applications rely only on Corollary 23, which
in turn is based on Lemma 20.

A natural question is whether the sup in formula (12) is attained when �
is �nite valued. In general, the answer is no, as shown in the example below,
where the max is attained over X 0

+ thanks to (1) but not over (X�
n )+.

Example 26 Consider the classic counterexample [FS04, Example 4.36] trans-
lated in the language of monotone increasing maps, that is take � : L1 ! R,
�(X) = ess supX. This map is convex, increasing, positively homogeneous and
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order l.s.c. on L1. For later use, observe also that it is not order u.s.c. From
(12), taking into account the "cash additivity" property �(X+c) = �(X)+c; c 2
R,

�(X) = sup
fQ probab. ;Q�Pg

EQ[X]; (13)

Similarly, from (1) and the good properties of �,

�(X) = max
Q2M1;f (P )

EQ[X]

which is exactly the representation in (2) with zero penalty function. If X is
selected so that its ess-sup is not attained, the sup in (13) cannot be a maximum.
We will consider a similar case in the Example 5.3.

If � is �nite valued and order u.s.c., then interestingly enough � admits a
representation as in (12) with the supremum replaced by a maximum, without
the C-property requirement.

Lemma 27 Let (X ; �) be a locally convex Frechet lattice and � : X ! R be a
convex increasing map. If � is order u.s.c. then

�(X) = max
Y 2(X�

n )+
fhY;Xi � ��(Y )g ; X 2 X ;

and thus a fortiori � is order continuous.

Proof. From (1),

�(X) = max
Y 2X 0

+

fhY;Xi � ��(Y )g � sup
Y 2(X�

n )+

fhY;Xi � ��(Y )g

We now prove that any Y attaining the max on X 0
+ is order continuous. In

fact, suppose by contradiction that the max is attained on a positive, non order
continuous Y0. Then, there exists Z�

o! 0 such that lim sup�hY0; Z�i > 0 and

�(X) = fhY0; Xi���(Y0)g < lim sup
�

fhY0; X+Z�i���(Y0)g � lim sup
�

�(X+Z�)

which is a contradiction with order u.s.c. of �.

5 Orlicz spaces and applications to Risk Mea-
sures

5.1 Orlicz spaces have the C-property

The following Orlicz spaces and the Lp spaces; p 2 [0;+1]; are de�ned on the
same probability space (
;F ; P ).
A Young function 	 is an even, convex function 	 : R ! R [ f+1g with

the properties:
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1. 	(0) = 0;

2. 	(1) = +1;

3. 	 < +1 in a neighborhood of 0.

Note that 	 may jump to +1 outside of a bounded neighborhood of 0. In
case 	 is �nite valued however, it is also continuous by convexity.
The Orlicz space L	 is then de�ned as

L	 = fX 2 L0 j 9� > 0E[	(�X)] < +1g:

It is a Banach space with the Luxemburg (or gauge) norm

N	(X) = inf

�
c > 0 j E

�
	

�
X

c

��
� 1

�
:

With the usual pointwise lattice operations, L	 is also a Banach lattice, as the
norm satis�es the monotonicity condition

jY j � jXj ) N	(Y ) � N	(X):

Since 	 is bounded in a neighborhood of 0 and it is convex and goes to +1
when jxj ! 1, it is rather easy to prove that

L1
i!L	 i!L1 (14)

with linear, injective lattice morphisms (the inclusions i). The dual (L	)0 admits
the general decomposition in order continuous band and singular band

(L	)0 = (L	)�n � (L	)�s (15)

and (L	)�n can be identi�ed with the Orlicz space L
	�
where

	�(y) = sup
x2R

fyx�	(x)g

is the Young function conjugate of 	. The examples below illustrate di¤erent
cases and show that the Lp are in fact particular Orlicz spaces.

1. Suppose p 2 (1;+1) and 	 = 	p where

	p(x) =
jxjp
p

then L	p = Lp. Since this space has an order continuous topology, the
dual consists only of order continuous functionals. As (	p)� = 	q with
q = p

p�1 , one recovers the classic

(Lp)0 = Lq:
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2. 	 = 	1, where

	1(x) =

�
0 if jxj � 1
+1 otherwise

Then the associated Orlicz space L	1 is exactly L1 and as (	1)�(y) =
jyj, L(	1)

�
= L1.

The decomposition of the dual provided in (15) is nothing but the Yosida-
Hewitt decomposition (L1)0 = L1� (L1)�s and the singular band (L1)�s
consists of the purely �nitely additive measures.

3. 	e(x) = ejxj� 1 is a genuine example of Young function which induces an
Orlicz space di¤erent from the Lp. L	e is the space of random variables
with some �nite exponential moment, i.e.

L	e = fX 2 L0 j 9� > 0 s.t. E[e�jXj] < +1g:

Analogously to what happens for L1, this space has a topology which is
not order continuous. Thus the dual has the full general decomposition
(15), with non-null singular band, as

(L	e)0 = L(	e)
�
� (L	e)�s

where the conjugate (	e)� is given by the function�
jyj(ln jyj � 1) + 1 if jyj > 1

0 otherwise

which will be indicated with b�. As better explained below, since b� doesn�t
grow too fast the Orlicz Lb� displays a behavior similar to that of the
Lp; 1 � p < +1, in the sense that its topology is order continuous. Then,
its dual (Lb�)0 coincides with Lb�� = L	e . The consequence is that the
topology induced on L	e by the order continuous functionals, �(L	e ; L

b�),
is nothing but the weak* topology on L	e .

As anticipated in the examples above, when 	 veri�es a slow- growth con-
dition, known in the literature as �2 condition (see e.g. [RR91]):

9t� > 0;9K > 0 s.t. 	(2t) � K	(t) for all t > t�

then (L	)0 = (L	)�n = L
	�
, that is the norm-topology on L	 is order contin-

uous. So by Lemmata 19 and 20 the norm topology and the weak topology
�(L	; (L	)0) = �(L	; L	

�
) have the C-property.

In general, by (14) and Corollary 23, the following topologies on L	 all
have the C-property: (a) the norm topology, (b) the weak topology, (c) the
�(L	; L	

�
)-topology.
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We remark that when it is 	� that satis�es the �2 condition, as in example
3 above, then the dual space of L	

�
coincides with L	. Therefore in this case

the topology �(L	; L	
�
) is nothing but the weak* topology on L	 and it has the

C-property.

One may also consider the Morse subspace M	 of the Orlicz space L	:

M	 =
�
X 2 L	 j E[	(kX)] < +1 8k > 0

	
: (16)

When 	 is �nite-valued, M	 is a norm closed band of L	 and its dual (M	)0 =

L	
�
, so �(M	; L	

�
) has the C-property too.

In the context of expected utility maximization, the spaces M	 were �rst
used in [B07]. They are the object of study in [CL07] and applied to risk mea-
sures. In [CL07] it has also been shown that a risk measure de�ned on M	

has non empty topological interior if and only if it is �nite valued. As the dual
of the Morse space M	 can be identi�ed with a space of functions, the Orlicz
L	

�
, these spaces are easier to handle than the whole L	. In particular, since

M	 has order continuous norm, the dual representation (6) follows immediately
from the Extended Namioka Klee Theorem 1.
In [BF08] and in [BFG07] it has been shown that the full duality (Lbu; (Lbu)0)

can also be successfully employed to cover new cases in the applications to ex-
pected utility maximization and indi¤erence pricing. In fact the Orlicz space
Lbu, de�ned by the Young function bu(x) = �u(�jxj) + u(0) associated to the
utility function u; is the natural environment for such investigation. And the
results on the indi¤erence price for claims in the general Lbu obtained in [BFG07]
show that in the general setup the result by [CL07] fails: a convex risk measure
on Lbu can have non empty topological interior without being �nite valued every-
where. For other examples of this situation self-contained in the present paper,
see the next Section 5.2 where there are some other interesting applications of
the full duality to risk measures.

5.2 New insights on the downside risk and risk measures
associated to a utility function u

We assume that the investment possibilities at a certain date in the future are
modelled by elements X of L0. As straightforward consequences of Proposition
24 we have the following representations of decreasing functionals de�ned on
subspaces of L0:

Corollary 28 Let (X ; �) be a locally convex Frechet lattice contained in L0: If
� : X ! (�1;+1] is a proper convex order l.s.c. decreasing functional and
�(X ;X�

n ) has the C-property, then � admits the representation

�(X) = sup
Y 2(X�

n )+

fhY;�Xi � ��(�Y )g ; X 2 X : (17)
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If in addition � satis�es the cash additivity property

�(X + c) = �(X)� c; 8c 2 R 8X 2 X ; (18)

then
�(X) = sup

Y 2(X�
n )+ ; hY;1i=1

fhY;�Xi � ��(�Y )g ; X 2 X : (19)

If in addition � is positively homogeneous, then there exists a convex subset
C � fY 2 (X�

n )+ j hY; 1i = 1g such that

�(X) = sup
Y 2C

hY;�Xi:

Let us consider an agent, whose preferences on the investments X can be
represented via expected utility. We assume that the utility function

� u : R ! R is increasing and concave (though not necessarily strictly
concave) and satis�es limx!�1 u(x) = �1.

Without loss of generality, suppose

u(0) = 0:

The goal is that of describing a natural framework associated to the expected
utility of the agent, i.e. to the functional

E[u(X)];

to the related downside risk

�(X) := E[�u(X)]

and to some associated convex risk measures. As it is not required that u is
strictly concave, u can be identically 0 on R+ and in this case � is nothing but
the so-called shortfall risk ([FS04]).
It turns out that a good setup is that of an Orlicz spaces duality induced by

the functional itself. As shown in [B07] and [BF08] the function

bu(x) = �u(�jxj)
is a Young function and de�nes the Orlicz space Lbu associated to u: Call

�(y) = sup
x2R

fu(x)� xyg

the convex conjugate of u. Since bu is �nite on R, then, as observed right after
the de�nition (16), M bu is a norm-closed band of Lbu and its dual is Lb�.
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It is clear that there must be a link between � and b�, the Young function
conjugate to bu. In fact

b�(y) = � 0 if jyj � �
�(jyj) if jyj > �

where � � 0 is the right derivative of bu at 0, namely � = D+bu(0) = D�u(0).
If u is di¤erentiable, note that � = u0(0) and it is the unique solution of the
equation �0(y) = 0. To �x the ideas, consider the following examples.

1. Fix 
 > 0 and take

u
(x) = �e�
x + 1 (20)

whence cu
(x) = e
jxj � 1 and
�
(y) =

y



ln
y



� y



+ 1

and b�(y) = (j y
 j ln j y
 j � j y
 j+ 1)Ifj y
 j�1g. It is not di¢ cult to see that the
associated Orlicz spaces do not depend on 
 (in the sense that they are
physically the same and changing 
 amounts to a dilation of the Luxem-
burg norm) and therefore, as pointed out in Section 4.1 Example 3,

Lcu
 = nX 2 L0 j 9� > 0 s.t. E[e�jXj] < +1
o
;

Mcu
 = nX 2 L0 j 8� > 0 E
h
e�jXj

i
< +1

o
;

L
c�
 = �Y 2 L0 j E � (jY j ln jY j )IfjY j>1g� < +1	 and

(Lbu)0 = Lb� � (Lbu)�s :
2. Let u be the quadratic-�at utility, i.e.

u(x) =

(
�x2

2 if x � 0
0 if x � 0

(21)

In this case, bu(x) = x2

2 = b�(x), and all the spaces Lbu;M bu; Lb� are equal
and coincide (modulo an isomorphism) with L2.

Let us recall that the Orlicz class of Lbu is de�ned as
Lbu = fX 2 L0 j E[bu(X)] < +1g

and it is a convex subset (not necessarily closed) of Lbu.
The following Lemma is a nice consequence of the right choice of the spaces.

22



Lemma 29 The downside risk � : Lbu ! (�1;+1], �(X) = E[�u(X)], is a
well-de�ned, proper, convex and monotone decreasing functional which is order
l.s.c. In addition,

Dom(�) = fX 2 Lbu j X� 2 Lbug
and

int(Dom(�)) = fX 2 Lbu j 9� > 0 (1 + �)X� 2 Lbug �M bu: (22)

Moreover, � admits the representation:

�(X) = sup
Y 2Lb�

+

fE[�XY ]� E[�(Y )]g: (23)

Proof. If X 2 Lbu, then by Jensen�s inequality
E[�u(X)] � �u(E[X]) > �1 (24)

since E[X] 2 R from (14) and u < +1 on R. So the de�nition is well-posed and
� is clearly convex and monotone decreasing. To prove the characterization of
Dom(�), simply note that

X 2 Dom(�) i¤ E[u(X)] > �1 i¤ E[u(�X�)] > �1 i¤ E[bu(X�)] < +1

where the second equivalence above is due to the fact that E[u(X+)] is always
�nite as

u(0) � u(x+) � ax+ + b

for some a; b 2 R, so that u(0) � E[u(X+)] � aE[X+] + b < +1.

To prove (22), if X 2 int(Dom(�)) then clearly for some � > 0 E[�u(X �
�X�)] is �nite, that is E[bu((1 + �)X�)] is �nite.
Conversely, suppose (1+ �)X� 2 Lbu. Then, (1+ �)X 2 Dom(�) and for any

Z with Luxemburg norm Nbu(Z) < �
1+� , X + Z 2 Dom(�). In fact:

E[�u(X + Z)] = E
h
�u

�
1
1+� ((1 + �)X) + Z

�i
�

1
1+�E[�u((1 + �)X)] +

�
1+�E

�
�u

�
1+�
� Z

��
< +1

since 1+�
� Z has Luxemburg norm less than 1 and thus

E

�
�u

�
1 + �

�
Z

��
� E

�
�u

�
�1 + �

�
Z�
��

= E

�bu�1 + �
�
Z�
��

� 1

Thanks to Remark 18, in order to show that � is order l.s.c. one just needs
to check whether � is �-continuous from above. But this is an immediate conse-
quence of the monotone convergence theorem and (24). Finally, the �(Lbu; Lb�)
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topology has the C-property so the representation (17) on the order continuous
dual Lb� applies

�(X) = sup
Y 2Lb�

+

fE[�Y X]���(�Y )g:

By Kozek�s results [Koz79] (or directly by hand), ��, the convex conjugate of
�,

��(Y ) = sup
X2LbufE[Y X]��(X)g

veri�es
��(�Y ) = E[�(Y )]; if Y 2 Lb�: (25)

Clearly � satis�es all the requirements of a convex risk measure but cash
additivity.

As shown in [BK06] in the L1 case, the greatest convex risk measure smaller
than a convex functional � : L1 ! R can be constructed by taking the inf-
convolution ���worst of � with �worst = �L1+ , which is the risk measure associ-
ated to the acceptance set L1+ . Then the penalty function of �worst is equal to
0 onM1;f (P ), and is equal to 1 outsideM1;f (P ). Since the penalty function
of ���worst is the sum of the penalty function of � and of �worst; the represen-
tation of ���worst will have the same penalty function of �; but the supremum
in such representation is restricted to the set M1;f (P ); i.e. to those positive
elements in the dual space that are also normalized. The same conclusion holds
in our setting, as shown in the following result.

Proposition 30 The map �u : L
bu ! (�1;+1] de�ned by

�u(X) = sup
Q�P; dQdP 2L

b�
+

�
EQ[�X]� E[�

�
dQ

dP

�
]

�
(26)

is a well-de�ned order l.s.c. convex risk measure and it is the greatest order l.s.c.
convex risk measure smaller than � and hence �u = ���Lbu

+
: Moreover, the sup

in (26) can equivalently be computed on the set
n
Q probab.; Q� P j E[�

�
dQ
dP

�
] < +1

o
:

Proof. It is clear that �u is an order l.s.c convex risk measure. From (23) we
also have: �u � �:We need only to prove that if e� : Lbu ! (�1;+1] is an order
l.s.c. convex risk measure such that e� � �; then e� � �u. Let e�(Y ) = e��(�Y )
be the penalty function associated with e� in the representation (19)

e�(X) = sup
Y 2Lb�

+;E[Y ]=1

fE[�XY ]� e�(Y )g:
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By cash additivity, e�(X +�(X)) = e�(X)��(X) � 0, for all X 2 Lbu, so that
e�(X +�(X)) = sup

Y 2Lb�
+;E[Y ]=1

fE[�Y X]��(X)� e�(Y )g � 0:
This implies that, if Y 2 Lb�+; E[Y ] = 1;

e�(Y ) � E[�Y X]��(X) for all X 2 Lbu
and, by (25),

e�(Y ) � sup
X2Lbu fE[�Y X]��(X)]g = �

�(�Y ) = E[�(Y )]:

Therefore,

e�(X) = sup
Y 2Lb�

+;E[Y ]=1

fE[�Y X]�e�(Y )g � sup
Y 2Lb�

+;E[Y ]=1

fE[�Y X]�E[�(Y )] = �u(X):

Since the integrability condition E[�(Y )] < +1 on Y � 0 is more severe than
the requirement Y 2 Lb�+, the last sentence is obvious.
To any utility function satisfying our assumptions, one can also associate

the map �u : L
bu ! (�1;+1] de�ned by:

�u(X) = inf fc 2 R j X + c 2 Aug ; (27)

where the set Au is de�ned as

Au :=
n
X 2 Lbu j E[u(X)] � u(0) = 0o = nX 2 Lbu j �(X) � 0o

Lemma 31 Au has the properties:

1. it is convex;

2. if X 2 Au and Z 2 Lbu; Z � X, then Z 2 Au;
3. inffc 2 R j c 2 Aug > �1;

4. for any X 2 Au and Z 2 Lbu, the set ft 2 [0; 1] j (1 � t)X + tZ 2 Aug is
closed in [0; 1].

Proof. We only prove item 4, as the others are simple consequences of the
properties of u. Fix any X 2 Au and call � = ft 2 [0; 1] j (1� t)X + tZ 2 Aug.
For any cluster point t� of �, there exists a sequence (tn)n 2 �; tn ! t�. But
then, (1� tn)X + tnZ order converges to (1� t�)X + t�Z. From Lemma 29, �
is order l.s.c., so �((1� t�)X + t�Z) � lim infn�((1� tn)X + tnZ) � 0 which
means t� 2 �.
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Proposition 32 �u : L
bu ! (�1;+1] is a well-de�ned order l.s.c. convex risk

measure that admits the representation:

�u(X) = sup
Q�P; dQdP 2L

b�
+

fEQ[�X]� �(Q)g; (28)

where
�(Q) = sup

X2Au

fEQ[�X]g: (29)

Moreover, A�u :=
�
X 2 Lbu j �u(X) � 0	, the acceptance set of �u, satis�es

A�u = Au;

and, as a consequence, if e� : Lbu ! R [ f+1g is an order l.s.c. convex risk
measure such that e� � �; then e� � �u.
Proof. The facts that �u is a convex risk measure and that its acceptance set

A�u coincides with Au are consequences of the above Lemma and Propositions
2,4 in [FS02]. Now, since � is order l.s.c., Au is order closed, so that the
acceptance set of �u is order-closed. And since �(L

bu; Lb�) has the C-property
the acceptance set A�u = Au is �(Lbu; Lb�)-closed. Hence, by a classic result, as
its sublevels are �(Lbu; Lb�)-closed, �u is �(Lbu; Lb�)-l.s.c. But this implies that it
is also �u order l.s.c. by the �rst part of the statement in Proposition 24. Then,
the representation (19) on the order continuous dual Lb� applies:

�u(X) = sup
Q�P; dQdP 2L

b�
+

fEQ[�X]� �(Q)g; X 2 Lbu;
�(Q) , ��u(�Q) = sup

X2Lbu fEQ[�X]� �u(X)g

It is straightforward to see that the penalty functional � admits the represen-
tation

�(Q) = sup
X2A�u

EQ[�X]

If e� : Lbu ! (�1;+1] is an order l.s.c. convex risk measure such that e� � �
then Ae� = �X 2 Lbu j e�(X) � 0	 � Au = A�u , and this implies e� � �u:
Remark 33 Obviously, �u � �u; but �u = �u if and only if �u � � which in
general is not true. Note that the inequality �u � � would imply: �(X +

�(X)) � �(X + �u(X)) � 0 (this latter inequality follows from X + �u(X) 2
A�u = Au)), but in general �(X + �(X)) � 0 does not hold. So, �u and �u
may be di¤erent (see the Subsection 5.3 below). In Subsection 5.4 there is a case
where �u = �u.
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5.3 Quadratic-�at utility

If u is the quadratic-�at utility function (21), then �u and �u are di¤erent.
Indeed, Lbu = L2 and

�(X) =
1

2
E[(X�)2] = sup

Y 2L2+

�
E[�Y X]� 1

2
E[Y 2]

�
; X 2 L2;

�u(X) = sup
dQ
dP 2L2+

(
EQ[�X]�

1

2
E

"�
dQ

dP

�2#)
; X 2 L2:

Since Au =
�
X 2 L2 j �(X) � 0

	
= L2+, we have:

�u(X) = inf fc 2 R j X + c � 0g = �worst(X) := �ess inf(X):

The dual representation in (28) becomes

�u(X) = sup
Q�P; dQdP 2L2+

EQ[�X]

since, from (29), the penalty term is given by

�(Q) = sup
X2L2;�(X)�0

EQ[�X] = 0; if
dQ

dP
2 L2+:

Note also that

�u(X) = sup
Q�P; dQdP 2L2+

EQ[�X] = sup
Q�P; dQdP 2L2+

EQ[X
�] � E[(X�)2]

E[X�]

and if 0 < E[X�] < 2, �u(X) > �(X). Moreover, �u is not even �nite-
valued. Therefore, while � and �u are �nite valued and thus continuous and
subdi¤erentiable on L2, Dom(�u) has empty interior thanks to the cited result
of [CL07] for risk measures on Morse subspaces (here, Lbu =M bu = L2).
5.4 Exponential utility

Let u(x) = �e�x + 1 be the exponential utility function considered in (20).
W.l.o.g. we set 
 = 1: Then,

�(X) = E[e�X ]� 1, X 2 Lbu;
and �(y) = y ln y � y + 1: From the de�nition (27) we have

�u(X) = inf
�
c 2 R j E[e�X�c � 1] � 0]

	
= lnE[e�X ];

with the convention lnE[e�X ] = +1 if E[e�X ] = +1. Clearly �u(X) =
lnE[e�X ] � E[e�X ]� 1 = �(X) and therefore, in this case, �u = �u: So, from
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(26) we recover the entropic risk measure together with its dual variational
identity

lnE[e�X ] = sup
Q�P; dQdP 2L

b�
+

�
EQ[�X]� E

�
�

�
dQ

dP

���

= sup
Q�P; dQdP 2L

b�
+

�
EQ[�X]� EQ

�
ln

�
dQ

dP

���
; X 2 Lbu:

The novelty here is that the space where this representation holds is Lbu, natu-
rally induced by u and not an arbitrarily selected subspace of L0 (traditionally,
the entropic risk measure is de�ned on L1 and the formula above is provided for
X 2 L1 � Lbu, see [FS04] and the remarks below). And �u is a genuine example
of a risk measure on the general Orlicz space Lbu which is not �nite valued every-
where and still has domain with no empty interior: as Dom(�u) = Dom(�), the
interior of the domain has been computed in (22).
To conclude, let us focus on the restriction of �u = �u to the subspace M

bu.
Corollary 34 The restriction �u of �u to the subspace M

bu is a well-de�ned
norm continuous (hence order continuous) convex risk measure �u : M bu ! R
that admits the representation

�u(X) = max
Q�P; dQdP 2L

b�
+

�
EQ[�X]� E

�
�

�
dQ

dP

���
; X 2M bu:

We thus recover the representation formulae provided by [CL07] on Morse
subspaces and the formula with the max for the entropic risk measure on L1 �
M bu.
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