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ON THE EXTENSIONS TO THE BIDUAL OF A

MAXIMAL MONOTONE OPERATOR

JEAN-PIERRE GOSSEZ

Abstract. An example is given which shows that a maximal monotone

operator from a Banach space X to its dual X* may have several extensions

into a maximal monotone operator from A"** to X*.

Introduction. Let A" be a real Banach space with dual X* and let T: X

-* 2 be a maximal monotone operator. Identifying as usual A" to a subspace

of X , we look at T as a monotone operator from X to 2 ; by Zorn's

lemma, this operator can be extended into a maximal monotone operator from

X** to 2 . We are interested here in the question whether this extension is

unique.

There are a number of cases where it is so.

Denote by T: X** —> 2X the (monotone) operator whose graph is the

closure of the graph of T with respect to the weakest topology on J** X X*

which is stronger than o(X**,X*) X o(X*,X**) and such that (x**,x*)

-> (x**,x*y is upper semicontinuous. Since any maximal monotone exten-

sion of T to X** contains T, we see that if T is maximal monotone, then T

has a unique maximal monotone extension to A1**. An operator T such that

T is maximal monotone is called of dense type (a terminology slightly different

from that of [2]). This kind of condition arises in the study of monotone

operators in nonreflexive Banach spaces (cf. [2], [1], [7]). It is known, for

instance, that the subdifferential of a convex function or the monotone

operator associated with a saddle function are of dense type (cf. [6], [2], [5],

[4]).
On the other hand, there are maximal monotone operators which are not of

dense type but which have a unique maximal monotone extension to the

bidual (cf. the example in [3]: the uniqueness assertion is contained in

Proposition 1 of [3] and the fact that the operator considered there is not of

dense type follows easily from relation (1) of [3]).

It is our purpose in this note to construct a maximal monotone operator

which admits several (actually an infinity) maximal monotone extensions to

the bidual. Our construction is based on a refinement of the method used in

[3].
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68 J.-P. GOSSEZ

Example. Let A : I -* /°° be the bounded linear operator defined by

(0 (Ax)(n) =   2   x(m)K(m,n)
m=\

for x = (x(\), x(2),... ) E /', where the infinite matrix K is constructed in the

following way: take a bounded sequence (rx,r2,... ) of real numbers in which

each number —n~  (n = 1,2,... ) appears infinitely many times and write

(2) K =

'I '2      '3

—/j      0       r2     >3

-r-.

'2      0      r3

-r3    —r3    0

The corresponding operator A is then antisymmetric (i.e. A E -A*) and thus

(maximal) monotone.

Proposition. There are infinitely many maximal monotone operators B: (/°°)

-* 2    which extend A.

Let us say that two points (x**,x*) and (y**,y*) in A** X A* are

monotonely related if <x** - y**,x* - v*> > 0 and that a point (x**,x*)

is monotonely related to a subset of A** X X* if it is monotonely related to

each point of this subset. Clearly, by Zorn's lemma, the proposition will be

proved if we exhibit an infinite number of points in (/°° ) X /°° such that each

of them is monotonely related to the graph of A but any two of them are not

monotonely related.

Lemma 1 (cf. [3]). Let A: X —> X* be a bounded linear antisymmetric operator.

Then (x** ,x*) is monotonely related to the graph of A if and only if x*

= -A*x** and(x**,x*) > 0.

Proof. Let (x**,x*) verify <x** - y,x* - Ay) > 0 for all y E X. Then

(x**,x*)>(y,x*) + (x**,Ay)

for all v E A, which implies <x**,x*> > 0 and x* = -A*x**. The con-

verse implication is proved by direct calculation.    Q.E.D.

Let ßN denote the Stone-Cech compactification of N; then /°° can be

identified to the space C(ßN) of the continuous real-valued functions on /?N

and (I00)* to the space ?)tt(/JN) of the Radon measures on /?N. Given a

bounded infinite matrix K, we consider for m E N the function K(m, •) on N

and extend it continuously on /?N; let K(m,a) denote the value of this

extension at a E ßN. Then we consider for a E /?N the function K(-, a) on N

and extend it continuously on ySN;  let K(b,a) denote the value of this
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extension at b E /?N. If K is antisymmetric, then the extended matrix K(b, a)

verifies K(m,a) = —K(a,m) for a E ySN and m E N, but is generally not

antisymmetric on ßN X ySN, as is illustrated by the following simple example

(cf. [3]):

(3) K(m,n) = 0 if m = n,    -1 if n > m,    +1 if n < m;

this example also gives some feeling for formula (5) below.

We will assume below that

(4) for any a E /?N\N, K(m,a) converges as m -> oo;

this means that for any a G /?N\N, K(b, a) as a function of b is constant on

/?N\N. This condition is satisfied by the matrices (2) and (3).

Lemma 2. Let A: I  —> /°° be a bounded linear antisymmetric operator with an

associated matrix K satisfying (4). Then

(5) </x,-A*ix) = -K¿8N\N) • J^n K(b,a)dp(a)

for all ß E M(ßN), where b in the right-hand side is arbitrary in /?N\N.

Proof. First we deduce from (1) that

(6) (Ax)(a) =   5   x(m)K(m,a)
m=\

for x E I and a E ßN. Indeed, if n¡ G N is a generalized sequence converg-

ing to a, then K(-, n¡) remains bounded in l°° and converges componentwise to

K(-,a); consequently K(-,n¡) converges to K(-,a) in z"30,^/00,/ ), and (6)

follows from (1). Now we have

(7) (A*li)(m)=fßNK(m,a)dli(a)

for u G 91t(y3N) and m G N. Indeed, for any y E /',

<y,A*ti) = <Mv> = fßN [ /N y(m)K(m,a)dv(m)^ d^a)

where v denotes the counting measure on N; equality (7) then follows from

Fubini's theorem. Under assumption (4), we have

(8) (A*ß)(b)=fßNK(b,a)dli(a)

for ft G 9H(/?N) and b E /?N. Indeed (7) gives

(A*pi)(m) = /n K(m,a)d¡x(a) + J^ K(m,á)d¡i(a);

by an argument similar to the preceding one involving a(/°°, /' ), we can pass
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to the limit in the first integral, and by Lebesgue's theorem, using assumption

(4), we can pass to the limit in the second integral. Finally, for ju E 9lt(/}N),

we have

(fr-Sp) = - J^ [ J^ K(b,a)dlx(a)\idli(b);

writing each integral in the right-hand side as the sum of an integral over N

and an integral over j8N\N, using the antisymmetry of K and Fubini's

theorem, we obtain (5).    Q.E.D.

Proof of the Proposition. From the choice of K (cf. (2)), we can find a

sequence an in /?N\N such that K(b,a„) = -/T2 for b E /}N\N. (Recall that

when a E /?N\N, K(b,a) as a function of b is constant on y3N\N.) Let

f-n = n^a where Sa denotes the Dirac measure at the point an. Using Lemma

1, we see that each (nn,—A*fin) is monotonely related to the graph of A since,

by Lemma 2,

<it„,-^Vfl> = -n ■ (-n~2) ■ n > 0.

But if n ¥" m, then (nn, — A*¡in) and (¡xm, -A*ßm) are not monotonely related

since, by Lemma 2,

= — (n — m) • (—n~   ■ n + m~   ■ m) < 0,

which concludes the proof.    Q.E.D.

Remark. In the situation of the above Proposition, there are infinitely many

linear maximal monotone operators B: D(B) C (/°°) -* /°° which extend A.

This follows easily from our construction and from the following two simple

facts: (a) in a dual pair (E,F), let T: D(T) C E -> F be a linear monotone

operator and let (e,f ) E E X F be monotonely related to the graph of T, with

e E D(T); then the linear extension of T to vct[D(T),e]:

T(x + \e) = T(x) + A/   for x E D(T) and A E R,

is still monotone; (b) let T: D(T) C E -» F be a linear monotone operator

with a a(E,F) dense domain; if T is maximal among all linear monotone

operators, then T is maximal monotone.
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