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Abstract We study properties of weight extraction methods for pairwise comparison
matrices that minimize suitable measures of inconsistency, ‘average error gravity’
measures, including one that leads to the geometric row means. The measures share
essential global properties with the AHP inconsistency measure. By embedding the
geometric mean in a larger class of methods we shed light on the choice between it
and its traditional AHP competitor, the principal right eigenvector. We also suggest
how to assess the extent of inconsistency by developing an alternative to the Random
Consistency Index, which is not based on random comparison matrices, but based on
judgemental error distributions. We define and discuss natural invariance requirements
and show that the minimizers of average error gravity generally satisfy them, except
a requirement regarding the order in which matrices and weights are synthesized.
Only the geometric row mean satisfies this requirement also. For weight extraction we
recommend the geometric mean.

Keywords AHP · Positive reciprocal matrix · Principal right eigenvector ·
Geometric mean · Functional equations · Invariance · Synthesizing

1 Introduction

In many multi-criteria decision problems people have found it very useful to impose
a hierarchy on clusters of the aspects or dimensions of the problem, and to deter-
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104 T. K. Dijkstra

mine the relative importances clusterwise. Saaty is an outspoken proponent of
this approach, which he helped develop in a sequence of publications. See e.g.
Saaty (1980, 2005, 2006) for extensive discussions. When combined with a partic-
ular method for the determination of weights,the principal right eigenvector of the
comparison matrix (more below), the approach is known as the Analytic Hierarchy
Proces (AHP). The AHP has been applied in an impressively large variety of situations,
and has been the subject of numerous publications and dissertations.1

The heart of the AHP consists of the construction of pairwise comparison matrices.
With a pairwise comparison matrix for n items the decision maker indicates how
much more important (or how much more suitable, or how much better qualified, or
or how much more likely, or whatever the basic comparison mode is) item i is then
item j . The decision maker is explicitly required to make more pairwise comparisons
then absolutely necessary. Although in principle n − 1 comparisons would suffice,
1
2 n (n − 1) are required: the comparison of item 1 to items 2, 3, . . . , n, of item 2 to
items 3, 4,…, n, up to and including item n − 1 to item n. The redundancy yields
in practice useful information, given the observed difficulty in generating completely
consistent value comparisons. The relative importance as expressed in words is trans-
lated into numbers, using scales that appear to work well in practice (although other
scales have been proposed and applied as well, this is not the topic of the present
paper): 1 for equal importance, 3 for moderate importance, 5 for strong, 7 for very
strong and 9 for extreme importance; integers in between can be used for refinements,
and reciprocals for the inverse judgements. The result is a positive reciprocal n by n
matrix A = (

ai j
)

with ones on the diagonal and a ji = 1/ai j . Now if for each i, j,
and k it is the case that aik · akj = ai j the matrix is called consistent: if i is twice as
important as k, which on its turn is three times as important as j , item i is presumably
six times as important as j , et cetera.

When there exists a positive n-vectorw, the priority or weight vector, such that for
all indices ai j = wi ÷ w j then the matrix is trivially consistent. (The weight vector
is unique apart from a normalization; we will usually impose that the product of its
elements equals one). Conversely, consistency entails the existence of a weight vector:
if gi is the geometric mean of the i th-row of A we have

gn
i = ai1 · ai2 · · · ain = (ai j · a j1

) · (ai j · a j2
) · · · (ai j · a jn

) = an
i j · gn

j (1)

and so ai j = gi ÷ g j and therefore w = g with the right normalization automatically
since the product of all elements of a positive reciprocal matrix is trivially 1.

Many methods will yield the weight vector in the consistent case. They include
taking simply the row sums, but the principal right eigenvector will do as well. For
the practically more relevant case, where A is inconsistent, Saaty proposes to always
let the latter represent the weights. In fact, in Saaty (2005, section 2–4), he claims
that the principal right eigenvector is the only plausible candidate for representing

1 See e.g. for an overview http://en.wikipedia.org/wiki/Talk:Analytic_Hierarchy_Process#Practical
_Examples and for an elaborate example see: http://en.wikipedia.org/wiki/Talk:Analytic_Hierarchy
_Process/Example_Leader.
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priorities derived from a positive reciprocal near consistent pairwise comparison
matrix (bold in the original). It is fair to say that this has been a very controversial posi-
tion, see e.g. Saaty (1980, 2005, 2006) and its many references, further Lootsma (1999),
Barzilai and Golany (1994), Barzilai (1997), et cetera for some lively discussions. The
present paper is yet another contribution, attempting to help settle the matter by defin-
ing a suitable class of inconsistency measures and imposing reasonable invariance
properties.

Saaty’s main argument (Saaty 2005, section 2–4) appears to be the following. For
a fixed item i and a fixed integer k the product ai,t1 · at1,t2 · · · atk−1, j where the t ’s are
arbitrary choices from {1, 2, . . . , n} , is a k-step estimate of the dominance of item i
over item j . It would equal ai j in case of consistency. The products are summed across
all choices of t , yielding the ‘dominance of i over j along paths of length k’. Sum-
ming across j ∈ {1, 2, . . . , n} yields the ‘dominance of i along paths of length k’.
Dividing the result for fixed item i by the sum of the dominances along paths of length
k of all items, gives the corresponding relative dominance of item i along paths of
length k. The limit of this ratio as k → ∞ is the i-th component of the principal right
eigenvector, normalized to add up to one.

However, to see this result as proof of the ‘plausibility’ of the eigenvector approach
requires one to accept the additive averaging of products as the most ‘natural’ opera-
tion. If instead one would take the multiplicative mean of the products, Saaty’s process
would lead to the geometric row mean of A:

∏

j

⎛

⎝
∏

t1

∏

t2

· · ·
∏

tk−2

∏

tk−1

ai,t1 · at1,t2 · · · atk−2,tk−1 · atk−1, j

⎞

⎠

=
∏

j

⎛

⎝
∏

t1

∏

t2

· · ·
∏

tk−2

(
ai,t1 · at1,t2 · · · atk−3,tk−2

)n · gn
tk−2

÷ gn
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⎞

⎠

=
∏

j

⎛

⎝
∏

t1

∏

t2

· · ·
∏

tk−3

(
ai,t1 · at1,t2 · · · atk−5,tk−4

)n2 · gn2

tk−3
÷ gn2

j

⎞

⎠

= · · · =
∏

j

(
gnk−1

i ÷ gnk−1

j

)

= gnk

i (2)

using
∏

i gn
i = ∏

i, j ai j = 1 repeatedly and the fact that the geometric column
mean is one over the corresponding geometric row mean. So the geometric mean of
the daunting product of nk terms is just gi . We do not have to introduce ‘relative
dominance’ and no limiting process is necessary, since the result is valid for every
value of k.

In Saaty (2005, section 5–13) a related argument for the principal right eigen-
vector is offered: if one uses w to weight the judgements in each row of A and
then takes the sum, one should recover the weights back proportionately. This is
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clearly the defining property of an eigenvector. But again, if instead of adding the
ai j · w j ’s we multiply them, we find that g is the unique fixed point of the equations∏

j ai j · w j = wn
i , i = 1, 2, . . . , n:

∏

j

ai j · g j = gn
i . (3)

The approaches just described generate weights without an explicit minimi-
zation of an inconsistency measure. Saaty, see below, derived such a measure
by noting that a positive reciprocal matrix is consistent if and only if its larg-
est eigenvalue equals the number of items to be compared. However, choos-
ing weights that minimize Saaty’s induced inconsistency measure does not as a
rule (re-)produce the eigenvector. We would suggest instead to consistently inte-
grate the choice of weights and the inconsistency measure. It is well-known that
the geometric row mean optimizes a suitable inconsistency measure. We will
introduce a family of reasonable measures, all sharing essential global proper-
ties with Saaty’s measure, and use invariance considerations to help select ‘the
favourite’.

An outline of the paper is as follows. In Sect. 2 we continue to review and discuss
important aspects of the AHP. Saaty introduced perturbations (or ‘errors’ as we will
call them) relative to a weight vector, and an inconsistency measure as a function
of the perturbations. The average value of Saaty’s inconsistency measure for random
positive reciprocal comparison matrices is recommended in the AHP approach as a
basis for judging whether the observed inconsistency is too large. We argue instead
for the use of an appropriate error distribution. We also offer a statistical motivation
for the geometric row mean.

In Sect. 3 we will embed Saaty’s inconsistency measure in a suitable class of
inconsistency measures, defined basically as averages of the errors mapped on an
‘error gravity scale’. The geometric row mean is generated by minimization of one of
them. We note a few useful consequences related to the assessment of the extent of
inconsistency, and how and where to adjust the comparison matrix. We also establish
that minimization of Saaty’s inconsistency measure yields the principal right eigen-
vector only when its elementwise reciprocal is the principal left eigenvector. The first
non-trivial case, with n = 3, is analyzed in some detail: here all weight extraction
methods concur.

In Sect. 4 we discuss some invariance and consistency requirements whose natu-
ralness appears hard to argue against. Some have to do with scale-inversion, others
with synthesizing judgements and the order in which operations are performed. We
characterize reasonable synthesization methods by the requirement that the synthesis
of consistent judgements ought to be consistent as well. All methods based on mini-
mization of the average error gravity have the specified invariance properties except
the property that the order in which the synthesis of judgements and the extraction of
weights is performed is irrelevant. Only the geometric mean has it also. Except for
n = 3 (and trivially n = 2) the principal right eigenvector method shares neither of
the invariances. Section 5 concludes.
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2 Some preparatory discussions

2.1 Saaty’s AHP: the inconsistency measure

Saaty (1980, p. 180) defines perturbations, or errors, εi j relative to a weight vector w
by εi j := ai j · (w j ÷ wi

)
. So ai j , with ai j = (wi ÷ w j

) · εi j , is treated as a multipli-
cative perturbation of a ratio of weights. We have of course ε j i = 1 ÷ εi j . The errors
all equal one if and only if the matrix A is consistent. Saaty noted (on the same page)
that if the errors are evaluated at the principal right eigenvector, then one can write for
the largest eigenvalue λmax of A:

μ := λmax − n

n − 1
=
∑

i< j

[
1

2

(
εi j + 1

εi j

)
− 1

]
÷
(

1

2
n(n − 1)

)
. (4)

Since f (x) := 1
2 (x + 1

x ) − 1 is strictly convex on the set of positive reals with
f (x) ≥ f (1) = 0, μ is nonnegative and zero only when all errors equal one. Equiv-
alently, the matrix A is consistent if and only if λmax = n. Saaty proposed to use μ as
the measure of inconsistency.

In order to judge when for a given matrix the inconsistency is too large to be
tolerated, Saaty suggests to use μ’s average value for randomly generated positive
reciprocal matrices of the same order. The entries of the random matrices are usually
independent random drawings from:

{1/9, 1/8, . . . , 1/3, 1/2, 1, 2, 3, . . . , 8, 9}

Note that the average will change with the generating set. A bit of an industry arose
in an attempt to estimate the average μ as accurately as possible, see e.g. Alonso and
Lamata (2006) for an overview. Since the matrices are generated without any concern
for consistency, it is suggested (Saaty 2005, section 1–9;1994, section 1–7) as a rule
of thumb to accept the inconsistency when the observed μ is smaller than one tenth
of the estimated average value (with some variations for n = 3 or 4 ), and to take
action otherwise. Incidentally, it can be shown with some straightforward but tedious
algebra that when the εi j ’s in μ are evaluated not at the principal right eigenvector but
instead at the geometric row mean, μ’s expected value for random positive reciprocal
matrices can be given exactly:

E (μ) = E
(

a1− 2
n

)
·
(

E
(

a
1
n

))2(n−2) − 1, (5)

where a is a positive random variable2 with the property that a and 1/a have
the same distribution, as e.g. for a random drawing with equal probabilities from
{1/9, 1/8, . . . , 1/3, 1/2, 1, 2, 3, . . . , 8, 9} . For the latter case the numbers are close

2 Bold symbols will represent random variables. Ordinary symbols will stand for values, realizations,
numbers.
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Table 1 Expected value for μ as evaluated at the geometric mean and the principal right eigenvector,
respectively

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(μ)geometric .52 .87 1.08 1.22 1.32 1.39 1.44 1.48

E(μ)Saaty .52 .89 1.11 1.25 1.35 1.40 1.45 1.49

to those obtained (Saaty 2005, section 1–9) by averagingμ for 50,000 random positive
reciprocal matrices, evaluated at the principal right eigenvector, as shown in Table 1.

For n = 3 the numbers are exactly the same, since the principal right eigenvector
is the geometric row mean, see also Sect. 3.2. The table shows that minimization of
the expression for μ as a function of w will in general not produce the principal right
eigenvector. In fact, for n = 4, . . . , 10 the geometric row mean will have a better,
but not necessarily optimal fit either, in the majority of the cases (this is based on a
simulation with 40,000 random positive reciprocal matrices; for n = 7 the geometric
row mean is better than the principal right eigenvector in 70% of the cases; the larger
n the lower this percentage: for n = 10 it is 57%).

A result useful for suggesting which entry of the matrix A at hand to change is the
derivative of λmax with respect to ai j , see Saaty (2005, p. 30):

∂λmax/∂ai j = vi · w j − a2
j i · v j · wi (6)

where v is the left principal eigenvector, and w the right principal eigenvector; v is
normalized such that v�w = 1. The result is a consequence of ∂λ/∂A = v ·w� for a
non-repeated eigenvalue λ of an arbitrary matrix A with corresponding left and right
eigenvector v and w resp., see Neudecker (1967).

2.2 Random errors instead of random matrices

In the previous section we considered Saaty’s suggestion to average the value of a par-
ticular inconsistency measure across arbitrary (positive reciprocal) matrices, in order
to assess the seriousness of the inconsistency as measured for the matrix at hand.
Random matrices generated without any concern for consistency are however rarely
‘acceptable’, in the sense that Saaty’s consistency measure is less than one tenth of the
average μ: about one out of five for n = 3 and an estimated fourteen (14) out of ten
million (107) for n = 7, see Bozóki and Lewis (2005, p. 257). If the entries of A can
be any positive real number, the set of consistent matrices has measure zero. So it is
difficult to see what relevance arbitrary matrices have for the matrix at hand. Perhaps
it is more relevant to know the typical size of the ( judgemental) errors in the actual
construction of pairwise comparison matrices. However we do not know of any studies
in which error distributions are reported and analyzed. In a sense this is not surprising:
errors one is aware of cease to exist, presumably, the moment they are detected. And
also, in empirical, statistical studies errors are never observed directly, but they are
always defined and constructed relative to a model. Granted this, it could still be a
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On the extraction of weights from pairwise comparison matrices 109

useful idea to collect systematically error distributions as induced by real world pair-
wise comparison matrices, whose inconsistency is deemed acceptable by the decision
makers who constructed the matrices. The errors could be defined with respect to any
scale and any weight extraction method the decision maker is comfortable with.

Alternatively, following statistical practice we could ‘invent’ a distribution, based
on pragmatic and ‘reasonable’ considerations only. In this spirit one could impose the
condition, using ε as a generic symbol for an error in A, that ε and 1/ε have the same
distribution. After all, there is no reason to suppose that errors above the diagonal
behave any different from errors below the diagonal. An immediate consequence is
that median(ε) = 1. More generally, δ := log (ε) must have a distribution symmetri-
cally around zero. There is no lack of choice here, but invoking the maximum entropy
principle, we could reduce the choice to two candidates: the Laplace- distribution, or
the Gaussian distribution. The latter maximizes the entropy for densities with a finite
variance and the real line as support, the former does the same but requires only the
existence of the mean (see Kagan et al. 1973, section 13.2). So we could take:

p (δ) = 1

σ
√

2π
exp

(
−1

2

δ2

σ 2

)
or p (δ) = 1

σ
√

2
exp

(

−
√

2

σ
|δ|
)

(7)

where σ is the standard deviation. One way to get an order of magnitude for σ is to
argue that errors out of the range (1/2, 2) are large and therefore exceptional. This
is supported partly by anecdotal evidence (the author was employed at a company
where more or less routinely comparison matrices are constructed in order to get
reasonable weights in certain selection problems). We could translate this into the
requirement that σ must be such that prob(ε ≥ 2) = .025 or .05 say, which again is
not unreasonable in the light of anecdotal evidence. If we let the probability be α, then
σ = log

( 1
2

)÷	−1 (α) in case we work with the Gaussian distribution, otherwise we
have σ = √

2 log (2)÷ log (1 ÷ 2α). The numbers are not that different for α = .025
or .05. We obtain for Gauss .3536 and .4214 and for Laplace .3272 and .4257 respec-
tively. Of course, the lower the frequency of large errors, the smaller the standard
deviation. The expected value of μ for random errors is for either distribution

E (μ) = E (ε)− 1 = E (exp (δ))− 1 ∼= 1

2
σ 2 (8)

(for the normal it is exactly exp
( 1

2σ
2
)−1). So depending on the plausibility or perhaps

desirability of errors within the range (1/2, 2) the average μ is roughly .06 or .09.
These correspond with ‘certainty equivalent’ errors of roughly 1.4 and 1.5 resp., where
a certainty equivalent error solves 1

2 (ε + 1/ε)−1 = 1
2σ

2 for ε. The numbers obtained
are independent of the choice of the scale for the pairwise comparisons. Clearly, when
we require that the observedμ is less than the average(s) just specified, we will be more
demanding than Saaty.3 It may be advisable to estimate quantiles of the distribution

3 In Saaty (1980, p. 180–181), Saaty writes εi j = 1 + δi j and argues that for an unbiased judge δi j would
tend to be symmetrically distributed about zero in the interval (−1, 1) .This would lead to the approximation
that μ is half the variance of δi j . To my knowledge these ideas were not followed up.
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F of μ, perhaps F−1 (.75) , F−1 (.90), and F−1(.95), to help judge the acceptabil-
ity of its size, but this requires assumptions concerning the joint distribution of the
errors, which we sofar have avoided to make (we required until now identical marginal
distributions only).

One final statistical note: if we assume that the joint distribution of the δi j ’s is
symmetrical in the sense that for their joint density p we have

p
(
δ12, δ13, . . . , δn−1,n

) = p
(±δ12,±δ13, . . . ,±δn−1,n

)
(9)

for every sequence of plusses and minusses, then in particular each
∑

j δi j is also
symmetrically distributed with respect to the origin, and therefore

∏
j εi j has a unit

median. Now:

log(ai j ) = log(wi )− log(w j )+ log(εi j ) (10)

and so

log

⎛

⎝
∏

j

ai j

⎞

⎠ = log
(
wn

i

)+ 0 + log

⎛

⎝
∏

j

εi j

⎞

⎠ . (11)

If we again follow statistical practice and construct errors such that their sample median
equals the population median:

∏
j εi j = 1, our implied estimate forwi equals gi . Inde-

pendence of the errors and identical distributions are not required, a certain symmetry
is sufficient (and the condition as specified is sufficient, not necessary).

3 A general class of inconsistency measures

3.1 ‘Error gravity’ functions defined and first consequences

Suppose for a real function f defined on (0,∞) with f (1) = 0 and other properties
to be imposed later, we take

Δ := 1

n (n − 1)

∑

i

∑

j

f
(
εi j
)

(12)

as a measure of inconsistency. Using ε j i = 1/εi j we can also write, with
m := 1

2 n (n − 1),

Δ = 1

m

∑

i< j

1

2

(
f
(
εi j
)+ f

(
1/εi j

))
(13)

It is clear that we may assume that f (x) = f (1/x), because if not, f̃ (x) :=
1
2 ( f (x)+ f (1/x)) does have this property and substituting f̃ for f yields the same
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value for Δ. So we will take

Δ := 1

m

∑

i< j

f
(
εi j
)

(14)

with f (x) = f (1/x). The previous section afforded an example with f (x) =
1
2 (x + 1/x)− 1. This function decreases on (0, 1) and increases on (1,∞) . Its abso-
lute minimum, zero, is attained uniquely at x = 1. Other examples with the very
same properties are f (x) = 1

2 (log(x))2 or f (x) = 1
4 (1 − x)2 + 1

4 (1 − 1/x)2,
and f (x) = 1

2

(
xr + x−r

) − 1 for any real number r ≥ 1. Any convex combina-
tion of the given examples is another example. For all functions specified we have
f (1) = f ′ (1) = 0, and f ′′ (1) = 1. Now every real-valued f defined on R+ with
f (x) = f (1/x) can be written as g (log (x)) for a real-valued function g defined
on R with g (y) = g (−y) for every real y. We will take g strictly convex, and at
least twice continuously differentiable everywhere, with a unique minimum of zero
at y = 0. A harmless normalization is g′′ (0) = 1 so that f ′′ (1) = 1. The (convex)
set of functions f called error gravity functions as generated by all possible choices
of g will induce our set of inconsistency measures. A bit more explicitly:

Definition A mapping f : R+ −→ [0,∞) is called an error gravity function when
f (.) = g (log (.)) for a g : R −→ [0,∞) which is strictly convex, at least twice
continuously differentiable everywhere, as well as symmetrical with respect to zero.
The mapping g is normalized such that g (0) = 0 and g′′ (0) = 1.

Typically, f will be quasi-convex (:all level sets are convex) but the examples given
except 1

2 (log(x))2 are strictly convex also. For x close to 1 all error gravity func-
tions with a third derivative will be close to one another: repeatedly differentiating
f (x) = f (1/x) yields f ′′′ (1) = −3 · f ′′ (1) = −3 (higher order derivatives if they
exist are free) and so

f (x) = 1

2
(x − 1)2 − 1

2
(x − 1)3 + O

(
(x − 1)4

)
. (15)

In particular this entails that E f (ε) = E f (exp (δ)) = 1
2σ

2 + O
(
σ 4
)
, so all suffi-

ciently smooth inconsistency measures can plausibly be judged on the same basis.
We propose to extract weights from A by minimizing the average error gravity

Δ as a function of w, subject to a convenient normalization like
∏

j w j = 1. Dif-
ferentiating the Lagrangian L := Δ(w) − λ · c (w) , where c (w) is the normalizing
constraint, with respect to w j yields ∂L

∂w j
= ∂Δ

∂w j
− λ · ∂c

∂w j
= 0. Since Δ is such that

multiplication of w by any non-zero scalar does not change it, the optimal λ must
be zero.4 So the optimal weights make the first-order derivatives of Δ with respect
to the weights zero. With some algebra, using the implication of f (x) = f (1/x)

4 Euler tells us that the property of Δ just referred to, homogeneity of degree zero, implies that
∑

i wi ·
∂Δ/∂wi = 0, from which λ = 0 easily follows.
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112 T. K. Dijkstra

that x · f ′ (x) = − (1/x) · f ′ (1/x) we obtain that the optimal weights satisfy:

∑

j

f ′ (εk j
) · εk j = 0 for k = 1, 2, . . . , n. (16)

or equivalently,

∑

i

f ′ (εik) · εik = 0 for k = 1, 2, . . . , n. (17)

For the special case of Saaty’s error gravity function f (x) = 1
2 (x + 1/x) − 1 this

entails that the kth column sum,
∑

j ε jk must equal the kth row sum
∑

j εk j . To spell
out: we must have

⎛

⎝
∑

j

ak j · w j

⎞

⎠ · (1/wk) =
⎛

⎝
∑

j

a jk · (1/w j
)
⎞

⎠ · wk . (18)

So whenw is the principal right eigenvector the left hand side equals λmax and we can
write:

∑

j

a jk · (1/w j
) = λmax · (1/wk) (19)

Consequently, the principal right eigenvector minimizes Saaty’s inconsistency mea-
sure only when

(
1./w�) := (1/w1, 1/w2, . . . , 1/wn) is the principal left eigenvector.

We will see below that this is the case for any positive reciprocal 3 × 3 matrix A, but
the table in Sect. 2.1 already showed that for n ≥ 4 and inconsistent A this will happen
only exceptionally. In fact Saaty (1980, p. 192) conjectured that it will never happen
when A with n ≥ 4 is inconsistent. But (see Sect. 4.1) there are positive reciprocal
matrices structured in a very special way where it does happen. For these matrices, as
well as for all 3 × 3 matrices, the principal right eigenvector and the geometric row
mean are identical.

For f (x) = 1
2 (log (x))2 we get the well-known result that

∑
j log

(
εi j
) = 0

must be zero, or
∏

j εi j = 1 and woptimal = g. Clearly, the expected value of the

inconsistency measure for random errors equals 1
2 E
(
δ2) = 1

2σ
2, and certainty equiv-

alent errors which solve 1
2 (log (ε))2 = 1

2σ
2 are simply exp (σ ) . If we are willing

to assume that the errors are not only identically distributed, but also Gaussian as
well as independent, then quantiles of the inconsistency measure can be derived via a
χ2 (m)-distribution.

For random positive reciprocal matrices, where the upper diagonal entries are inde-
pendent copies of a, a positive random variable with the property that a and 1/a have
the same distribution, the average inconsistency measure can be shown to equal:

(1 − 2/n) · E

(
1

2
(log (a))2

)
(20)
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With a uniformly distributed on {1/9, 1/8, . . . , 1/3, 1/2, 1, 2, 3, . . . 8, 9} the expected
value of 1

2 (log (a))2 equals 1.3791. If one feels that random matrices are relevant for
judging the size of the observed inconsistency, as in the AHP-approach, one could
take one tenth of the average inconsistency measure as a critical boundary.
We close this section with the fact that at the optimal w

∂Δ/∂ai j = 1

m
f ′ (εi j

) · εi j ÷ ai j. (21)

This is useful for suggesting where to adjust the matrix when one wants to decrease the
inconsistency. For f (x) = 1

2 (x + 1/x)−1 this yields: ∂Δ/∂ai j = 1
2m

(
εi j −ε j i

)÷ai j

and for f (x) = 1
2 (log (x))2 we get ∂Δ/∂ai j = 1

m log
(
εi j
)÷ ai j .

3.2 A special case: n = 3. All methods concur

Consider an arbitrary positive reciprocal 3 × 3 matrix A:

A :=
⎡

⎣
1 a b
1/a 1 c
1/b 1/c 1

⎤

⎦ (22)

where a, b and c are any positive real numbers. A is consistent if and only if a · c = b.
Take any error gravity function f and define

Δ := 1

3
· f

(
a
w2

w1

)
+ 1

3
· f

(
b
w3

w1

)
+ 1

3
· f

(
c
w3

w2

)
. (23)

Since f (x) = g (log (x)) with g strictly convex and symmetric about zero we can
write:

Δ= 1

3
· g

(
log

(
a
w2

w1

))
+ 1

3
· g

(
log

(
1/

(
b
w3

w1

)))
+ 1

3
· g

(
log

(
c
w3

w2

))
(24)

which is at least as large as

g

(
1

3
log

(
a
w2

w1

)
+ 1

3
log

(
1/

(
b
w3

w1

))
+ 1

3
log

(
c
w3

w2

))

= g

(
1

3
log
(ac

b

))
= f

((ac

b

) 1
3
)
, (25)

with equality only when:

a
w2

w1
= 1/

(
b
w3

w1

)
= c

w3

w2
. (26)
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Solving the latter equation yields w1 = (ab)
1
3 , w2 = (c/a)

1
3 and w3 = (bc)− 1

3 . In
other words, the geometric row mean g is the optimalw for every suitable function f .
In fact more is true: g is also the principal right eigenvector, and 1./g is the principal
left eigenvector.5 The remainder of this section contains a simple proof.6

First, it is easily verified that A · g = λ1 · g and
(
1./g�) · A = λ1 · (1./g�) where

λ1 := 1 + t + (1/t) with t := ( ac
b

) 1
3 . It remains to show that λ1 = λmax. Observe

that λ1 ≥ 3, and λ1 = 3 if and only if t = 1 (or A is consistent). The characteristic
polynomial of A equals

c (λ) := −λ3 + 3λ2 + |A| with |A| := t3 + t−3 − 2. (27)

The determinant |A| is nonnegative and zero only when t = 1. In the latter case
c (λ) has one root equal to 3 and two roots equal to 0. For |A| > 0 we can factor
out (λ− λ1) leaving the quadratic polynomial −λ2 + (3 − λ1) λ+ (3 − λ1) λ1. Since
now λ1 > 3 this polynomial has two complex roots with the same modulus equal

to
√

1
2λ1 (λ1 − 3), which is definitely smaller than λ1. And so we do indeed have

λ1 = λmax.

4 Some consistency requirements and invariance properties

4.1 Independence-of-scale-inversion

The decision maker is asked to specify for each entry (i, j) of A how much more
important, or qualified or suitable or whatever, the first item i is than the second
item j. To the decision maker, the information supplied for each entry (i, j) is exactly
equivalent to the statement expressing conversely how much more important item j is
then item i . The information contained in A is equivalent to the information contained
in A�.The preferences or judgements are the same, only the encoding is different.
As Barzilai (1997, p. 1228) argues, this means that the output should be equivalent.
So for w as a function of A one should have w (1./A) = 1./w (A) where 1./x takes
the reciprocal of a matrix x elementwise. In other words, if the best approximation
of A is w · (1./w�) then the transpose of the latter is the best approximation of the
transpose of A. Barzilai (1997, p. 1228) call this the independence-of-scale-inversion
property. He states that the geometric mean does have this property, as opposed to
the principal right eigenvector. We have just seen that for n = 3 both methods yield
identical results, and there are larger special matrices, see below, for which this is also
true, but generally ‘one over the principal right eigenvector’ is not the principal left
eigenvector. So Saaty’s approach does not satisfy the independence-of-scale-inversion
property.

5 Saaty (1980, p. 191) showed by other means than we will employ that one over the principal right eigen-
vector is the principal left eigenvector for n = 3. Apparently, but we do not know that for sure, the link
with the geometric means was not observed.
6 A reviewer kindly pointed out that Tuma (1987) has a proof as well.
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We would like to point out that the optimizers of the inconsistency measures we
defined all have the desired property: f (x) = f (1/x) entails that

f

((
A�)

i j
· w j/wi

)
= f (1/

(
a ji · w j/wi

)
) = f

(
ai j · (1/w j

)
/ (1/wi )

)
, (28)

so when w minimizes Δ for A, then 1./w minimizes Δ for 1./A. An immediate cor-
ollary is that there is no Δ whose minimizer is the principal right eigenvector for all
positive reciprocal matrices. This is not to say that Saaty’s weight vector does not
minimize any metric. Fichtner (1984) developed a metric δ (A, B), where A and B
are positive reciprocal matrices, with just that property: a (conditional) term involving
the largest eigenvalues of A and B (which is zero if and only if the matrices are both
consistent or equal) plus the Euclidean distance between their principal right eigen-
vectors. Minimization of this metric for consistent matrices B yields Saaty’s weight
vector. However, since the principal right eigenvectors in this metric can be replaced
by weight vectors (of the same type) that will reproduce A and B in case of consistency,
the approach is not a justification of the eigenvector method per se.

An example of a 5 × 5 matrix where all methods discussed sofar yield the same
result, is based on a matrix used by Bozóki (2008, p. 356) for unrelated purposes. We
generalize slightly, by making the matrix A dependent on two positive real valued
parameters a and b:

A =

⎡

⎢⎢⎢
⎢
⎣

1 a b 1/b 1/a
1/a 1 a b 1/b
1/b 1/a 1 a b
b 1/b 1/a 1 a
a b 1/b 1/a 1

⎤

⎥⎥⎥
⎥
⎦

(29)

Bozóki used a = 6 and b = 1. Clearly, the matrix is purposely constructed for numer-
ical testing, it is rather unusual as a pairwise comparison matrix. If it were a legitimate
comparison matrix, one would suspect the decision maker who created it, to be in
a ‘mental tie’. We observe that all row products equal one. Moreover, the row sums
and the column sums are all equal to 1 + a + 1/a + b + 1/b. So this is an eigen-
value, the largest one in fact, which exceeds 5 always unless a = b = 1. Therefore
(1, 1, 1, 1, 1)� is the principal right eigenvector and the principal left eigenvector,
the latter being trivially equal to one over the former. We can prove7 that optimiz-
ing any inconsistency measure Δ yields the same wopt = (1, 1, 1, 1, 1)�. This result
seems eminently reasonable given the presumed confused state the decision maker
is in. Larger matrices with similar properties are easily constructed, but we have no
systematic way of characterizing them. We suspect that they have measure zero in the
space of all positive reciprocal matrices.

7 Write Δ as two averages, one containing a and weights only, the other b and weights only. Use f (x) =
g (log (x)) with g (.) strictly convex and symmetrical, to deduce that the averages always exceed f (a) and
f (b) respectively, unless the errors in A corresponding with a are equal and similarly for b. With some
algebra this yields that all optimal weights are 1.
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It is not clear yet to what extent the results concerning the equality of the AHP
method and our alternatives can be generalized. It seems that whenever all Δ’s yield
the same result, the AHP concurs and the principal left and right eigenvectors are
inversely related, and conversely, when the latter is true, allΔ’s concur. This is some-
thing we hope to sort out in the future.

We close this section with a small but interesting detour. Bozóki (2008) designed a
special, global optimization method, that transforms the least squares problem of min-
imizing the Frobenius norm of the difference between A andw · (1./w�), into finding
the roots of multivariate polynomials. It can handle arbitrary matrices up to size 8 × 8
but computing time (as of 20088) can be an issue for n = 7 or 8. He finds for a = 6
and b = 1 rather startling results: the problem has 5 local as well as 5 global mini-
mizers. The local minima are the same, as are the global minima of course. The latter
are a mere 0.001% smaller than the former. Nevertheless, the sets of minimizers are
rather different. Each set of five can be obtained by rotating clockwise any one of the
solutions. And although (1, 1, 1, 1, 1)� is a critical point, it is not a (local) minimizer
but a saddlepoint 9 with a function value about 1.6% higher than the global minimum.
Given the rotational symmetry of the solutions we necessarily have that (1, 1, 1, 1, 1)�
is the geometric mean of the sets of minimizers separately and jointly, if normalized to
have a product equal to one. Also, (1/5, 1/5, 1/5, 1/5, 1/5) is the additive mean for
the same sets normalized to add up to one. So, our solution is the barycenter of rather
conflicting solutions to the least squares problem. We refer to Bozóki (2003, 2008);
Bozóki and Lewis (2005) for an in-depth analysis of the numerical issues surrounding
the minimization of the Frobenius norm of the difference between A andw · (1./w�),
and for the design of appropriate algorithms.

4.2 Synthesizing judgements

Suppose there are two experts whose pairwise comparison matrices for the same
problem are A and B respectively, and it is desired to synthesize their judgements. We
want a matrix C , say, that can reasonably be said to be a proper compromise between
A and B. It is simplest and hardly unreasonable when we synthesize elementwise with
the same function:

C = � (A, B) := (σ (ai j , bi j
))
. (30)

Here the synthesizing function σ : R+ × R+ −→ R+ will have to be continuous
(in at least one point), and we impose σ (a, a) = a for all real, positive a. The first
condition is an extremely mild regularity condition, ensuring uniqueness of the type of
solutions of a certain functional equation to be specified shortly. The second condition
says simply that when the experts agree about every judgement, so A = B, then their

8 The computing time is inversely proportional to the capacity of processors, so in 2011 it is a third to a
quarter of the time required in 2008; personal communication by Dr. S. Bozóki, 10-5-2011.
9 Personal communication by Dr. S. Bozóki, 9-11-2009. I am grateful for his willingness to test
(1, 1, 1, 1, 1) using his software.
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compromise shares their opinions: C = A = B. Thirdly, if the experts disagree we
will want

ci j ∈ [min
(
ai j , bi j

)
,max

(
ai j , bi j

)]
. (31)

As a fourth and final condition we impose that C is consistent whenever A and B are.
This is perhaps relatively contentious when compared with the other demands. It is
offered with some confidence though because arguments to the contrary seem hard to
find. So we want

σ
(
aik, bik

) · σ (akj , bkj
) = σ

(
ai j , bi j

)
(32)

whenever aik · akj = ai j and bik · bkj = bi j . We can write this for positive values of
xi and yi as the functional equation

σ (x1, y1) · σ (x2, y2) = σ (x1 · x2, y1 · y2) . (33)

With σ̃ := log (σ ) and x̃i := log (xi ) , ỹi := log(yi ) we have the well-known (multi-
place) functional Cauchy equation:

σ̃ (̃x1, ỹ1)+ σ̃ (̃x2, ỹ2) = σ̃ (̃x1 + x̃2, ỹ1 + ỹ2) (34)

whose solutions are all of the form σ̃ (̃x, ỹ ) = θ1 · x̃ + θ2 · ỹ for real numbers θ1 and
θ2, see Aczél and Dhombres (1991, section 4.1). In terms of the original variables and
function we have σ (a, b) = aθ1 · bθ2 , in fact:

σ (a, b) = aθ · b1−θ (35)

with θ ∈ [0, 1] because σ (a, a) = a and because of the compromise nature of
C : σ (a, b) ∈ [min (a, b) ,max (a, b)] .

We conclude that the ‘only reasonable’ way to synthesize judgements, such that
synthesized values are consistent whenever the underlying judgements are, is by using
(weighted) geometric means.

The parameter θ could be just 1
2 or it could reflect competence, experience, political

clout or otherwise. Since σ is necessarily concave in the judgements, highly diverse
opinions will tend to be assigned a compromise value in the neighborhood of 1.

Suppose now that we have two weight vectors v and w for the same problem,
and it is desired to define a suitable compromise between the two. It seems rea-
sonable to demand for the synthesizer of the weights that σ (w3, v3) /σ (w2, v2) =
σ (w2, v2) /σ (w1, v1) whenever w3/w2 = w2/w1 and v3/v2 = v2/v1. In other
words, the synthesized values ought to honour the proportionalities. We propose in
fact the following functional equation:

σ (λx, μy) = σ (x, y) · R (λ, μ) (36)
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where both σ and R are functions from R+ × R+ in R+ with σ (x, x) = x for all x .
Of course, it is basically the same functional equation as before: with x = y = 1 we
get σ (λ, μ) = σ (1, 1) · R(λ, μ) and so we necessarily have R ≡ σ . All solutions
continuous in at least one point are the weighted geometric means.

It is somewhat remarkable that the AHP-approach advocates the same device, for
pairwise comparisons as well as for weights. See e.g. Saaty (1980, 2005, 2006). The
motivation is different though: Aczél and Saaty (1983), for the geometric mean, and
Aczél and Alsina (1986) for the weighted version, basically adopt the axioms that
lead to the quasiarithmetic means, and then add homogeneity and a ‘reciprocal prop-
erty’. The latter means that σ (1/a, 1/b) = 1/σ (a, b) and it is clearly related to the
independence-of-scale-inversion. Our motivation in terms of consistency is linked in
a direct way to the context in which the synthesizing is to take place. But whatever
the motivation, the outcome is the same: the AHP also effectively requires consistent
inputs to be transformed into consistent output.

4.3 Synthesizing ratios or weights, the order of things

Barzilai and Golany (1994) observed, as no doubt did many others, that the geomet-

ric row mean of Aθ ◦ B1−θ :=
(

aθi j · b1−θ
i j

)
, the synthesis of a pair of conformable

positive reciprocal matrices A and B is just gθa ◦ g1−θ
b :=

(
gθa,i · g1−θ

b,i

)
, the synthesis

of the corresponding geometric row means. This entails that whether we synthesize
the ratios first and then extract the weightvector, or extract the weightvectors from both
matrices and then synthesize them, we obtain exactly the same result. The question
arises whether this invariance property applies to more methods (it does not apply to
the principal right eigenvector). For the class of inconsistency measures we introduced
in Sect. 3.1 we have that:

Δ
(

Aθ ◦ B1−θ , woptimal

)
≤ Δ

(
Aθ ◦ B1−θ , wθa ◦ w1−θ

b

)

≤ θ ·Δ(A, wa)+ (1 − θ) ·Δ(B, wb) (37)

wherewa andwb minimize the inconsistency measures for A and B respectively. The
first inequality is by definition, the second is a consequence of our assumption that
f (x) = g (log (x)) with g (.) strictly convex, or equivalently, f (exp (x)) is strictly
convex in x and

Δ
(

Aθ ◦ B1−θ , wθa ◦ w1−θ
b

)

= 1

m

∑

i< j

f
(
exp

[
θ · log

(
ai j · (wa, j/wa,i

))+ (1 − θ) · log(bi j · (wb, j/wb,i
)])

And the conclusion follows. So synthesizing wa and wb is for general f a step
in the right direction towards the best weights for the synthesis of A and B. For
f (x) = 1

2 (log (x))2 the stepsize is precisely right. We will show that this character-
izes the geometric mean by proving the following proposition:
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Proposition Let wa := arg minw
(

1
m

∑
i< j f

(
εi j (A, w)

))
and similarly for wb for

two conformable positive reciprocal matrices A and B, and the function f belongs
to the class of error gravity functions.

If wθa ◦ w1−θ
b = arg minw

(
1
m

∑
i< j f

(
εi j
(

Aθ ◦ B1−θ , w
)))

then f (x) = 1
2 (log (x))2.

Proof In terms of the first order conditions,
∑

j f ′ (εa,k j
) · εa,k j = 0 and

∑
j f ′ (εb,k j

) · εb,k j = 0 entail that

∑

j

f ′ (εθa,k j · ε1−θ
b,k j

)
· εθa,k j · ε1−θ

b,k j = 0. (38)

Or in a more simple notation, for positive x and y values:
∑

j f ′ (x j
) · x j = 0 and

∑
j f ′ (y j

) · y j = 0 entail that

∑

j

f ′ (xθj · y1−θ
j

)
· xθj · y1−θ

j = 0. (39)

Now f is an error gravity function so f (exp (u)) is strictly convex in u. Its first deriv-
ative h (u) := f ′ (exp (u)) · exp (u) has itself therefore a first derivative that is strictly
positive everywhere and so h (.) is invertible. We also have h (0) = 0 and h′ (0) = 1.
With the substitutions x j = exp

(
u j
)

and y j = exp
(
v j
)

our implication reads:
∑

j

h
(
u j
) = 0 &

∑

j

h
(
v j
) = 0 ⇒

∑

j

h
(
θ · u j + (1 − θ) · v j

) = 0 (40)

Define H (u) := ∑
j h
(
u j
)
. By inserting v = 0 in the implication we find that

H (θ · u) = 0 whenever H (u) = 0. Differentiating H (θ · u) with respect to θ yields
H (θ · u) = H (0)+ θ · ∇H (0) · u + o (θ), where H (0) = 0 and the gradient of H
evaluated at zero, ∇H (0), equals (1, 1, . . . , 1) . So 0 = ∇H (0) · u + o (θ) /θ where
the last term tends to zero when θ does. Therefore ∇H (0) · u = 0 for all u satisfying
H (u) = 0. Since h (.) is invertible with inverse k (.), say, this functional equation
is equivalent to

∑
j k
(
u j
) = 0 for

∑
j u j = 0. Any solution of this well-known

equation, see Aczél (2006, p. 47), is linear and therefore h (.) is linear. Retracing our
steps leads in terms of x to: f ′ (x) = c · log (x)÷ x for a constant c, which is solved
uniquely by f (x) = 1

2 (log (x))2 (taking the normalization into account). ��

4.4 Consistent extraction of weights in a hierarchy

It happens frequently in practice that many more aspects are relevant for the choice or
the ranking of objects than can be reliably compared pairwise. As Saaty has pointed
out repeatedly, decision makers can handle 7 ± 2 aspects relatively confidently, but
higher numbers can pose a real challenge. In many cases the aspects can be arranged
more or less naturally in a hierarchy, as layers of a pyramid. The more tangible aspects
are lined up at the lowest layer, the base. The concepts in each layer except the base
represent effectively a partition of the aspects or concepts of the layer directly below it.
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The number of concepts at the various layers is kept small to facilitate pairwise com-
parisons. So instead of one large matrix many smaller matrices are constructed, each
allowing the extraction of relative weights. The absolute weights at each layer are
then defined by the product of the relative weights along the direct path from the
aspects or concepts to the pinnacle of the pyramid. Basically, the pairwise compari-
sons between aspects of different ‘blocks’ at the same layer are dealt with indirectly
by the inter-block comparisons performed on a higher layer. The final result is a com-
plete ‘super-matrix’ of pairwise comparisons for all (basic) aspects. It would present
a somewhat problematic choice when the weights extracted from this super-matrix
induce a (substantially) different super-matrix. This cannot happen though for any of
the Δ-minimization methods. We will demonstrate that for a simple two-layer pyra-
mid, extension to more blocks and more layers is not difficult.

So consider a positive reciprocal n1 × n1-matrix A with a vector of geometric row
means ga and a positive reciprocal n2 × n2-matrix B with a vector of geometric row
means gb.Assume that at the next higher layer or level the ‘A-concept’ has been com-
pared with the ‘B-concept’, with ensuing weights (geometric row means as well) θa

and θb respectively. The standard normalization is imposed, so the product of weights
per group equals one, in particular θa ·θb = 1. The implicit comparison between aspect
i of A with aspect j of B is θa · ga,i ÷ (θb · gb, j

)
.We can collect these in a matrix C ,

say, and get the following super-matrix:

[
A C
1./C� B

]
. (41)

Now if we take the geometric mean of the i th-row of [A,C] we get:

⎧
⎨

⎩

j=n1∏

j=1

ai j ·
k=n2∏

k=1

(
θa · ga,i

)÷ (θb · gb,k
)
⎫
⎬

⎭

1/(n1+n2)

=
{

gn1+n2
a,i · θn2

a ÷ θ
n2
b

}1/(n1+n2)

= ga,i · θ2n2/(n1+n2)
a (42)

So the best consistent approximation of A is the same as before. And similarly for B
since we get gb, j · θ2n1/(n1+n2)

b , when we take the geometric mean of the jth-row of[
1./C�, B

]
.The explicit comparison between aspect i of A with aspect j of B is now:

ga,i · θ2n2/(n1+n2)
a ÷

(
gb, j · θ2n1/(n1+n2)

b

)
= θa · ga,i ÷ (θb · gb, j

)
(43)

as determined implicitly before. In other words, the weights extracted from the super-
matrix are fully consistent with the weights used in its construction. We note that since
C is of rank 1 all extraction methods based on optimization of a suitableΔ will share
the invariance with the geometric row mean: we can minimize Δ by minimization of
the terms related to A and to B separately, which yields wa and wb, and then rescale
them in order to reproduce C exactly.
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If the same invariance were to be valid for the principal right eigenvector, then[
φ (θa) · e�

a , ψ (θb) · e�
b

]
where ea and eb are the relevant eigenvectors of A and B

respectively, would have to be the transpose of the principal right eigenvector of the
super-matrix.10 Here the real-valued functions φ (.) andψ (.) defined on positive reals
are such that

φ (θa)÷ ψ (θb) = θa ÷ θb. (44)

Postmultiplication by the candidate eigenvector yields the transpose of

[(
λa,max + n2

) · φ (θa) · e�
a ,
(
λb,max + n1

) · ψ (θb) · e�
b

]
(45)

in an obvious notation. Clearly, we have invariance only if λa,max differs from n1 by
exactly the same positive amount that λb,max differs from n2. This is only accidentally
so, e.g. when A and B are both consistent.

5 Conclusion

In this paper we introduced and analyzed a class of inconsistency measures for positive
reciprocal matrices. Our purpose was to contribute to the discussion concerning the
choice of proper methods for the extraction of weights, a discussion which is largely
dominated by two classical contenders, the AHP with the principal right eigenvector
and the geometric row mean. Using global properties of the function used by Saaty for
measuring inconsistency we developed a class of functions, all suitable for the same
purpose. We offered some suggestions as to how to assess the size of the inconsis-
tency. More importantly we showed that optimizers of all members of the class of error
gravity measures share relatively desirable and reasonable invariance properties, like
invariance-of-scale-inversion and the consistent extraction of weights in hierarchies.
We also showed that when matrices are synthesized in a natural way, in general the
geometric mean is uniquely invariant with respect to the order in which operations
are performed. For the first non-trivial situation, with three aspects or items, we dem-
onstrated that all methods proposed including the AHP, yield the same results. But
for more aspects or items the AHP does not possess the invariances discussed, except
accidentally, and when it does (for the examples analyzed), all other contenders yield
the same result.

We refer to Lootsma (1999), Barzilai (1997), Barzilai and Golany (1994) e.g. for
additional invariance properties of the geometric row mean approach, emphasizing
that the order in which operations can be carried out is not relevant for the outcome
when the order has no intrinsic value or logic. Barzilai in particular is an outspoken
proponent of the geometric row mean approach. In fact, in Barzilai (1997) he intro-
duced two requirements for weight extraction methods, called ‘axioms’, that ought
to settle the matter once and for all: the first axiom stipulates that when applied to a

10 We do not need new symbols for θa and θb, because for only two aspects the geometric row mean and
the principal right eigenvector are identical.
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consistent matrix, the ensuing weight vector ought to be the true one, and the second
axiom demands essentially that each individual weight is a function of the entries in
the corresponding row of the pairwise comparison matrix only. Barzilai shows that the
only extraction method satisfying these axioms is the geometric row mean. Although
sympathetic to the conclusion, we are somewhat uncomfortable with its premise. The
second axiom effectively forbids the use of any method that requires a renormalization
of its output (to ensure that the product of the weights equals one), even when the ensu-
ing consistent approximation is perfect. Since the product of all elements of a positive
reciprocal matrix is trivially 1 and therefore the product of the geometric row means is
that also, the second axiom appears to capitalize rather heavy on a normalization for
which no substantive arguments (not that we know of anyway) are supplied. Although
we do grant that in a hierarchy of matrices the normalization is rather sensible, as the
analysis in the previous section substantiates.

Additional, interesting results are obtained by Blanquero et al. (2006), adopting
an approach rather different from ours.Whereas we define a one-dimensional incon-
sistency measure, to be minimized, they look at the n2 − n dimensional vector of
discrepancies

(|ai j − (wi/w j
) |)i �= j for a given choice of w, and ask whether it is

possible to replace w by a vector whose discrepancies are not larger, and strictly
smaller for at least one index. It turns out that when w is the geometric row mean this
is never possible: a diminishing of the discrepancies somewhere is inevitably paid for
by deteriorations elsewhere. In the parlance of multicriteria optimization the geomet-
ric row mean is efficient. They show that the principal right eigenvector does not share
this property, although the example given is certainly not dramatic.

We close this section with some ‘personal comments’. It is inevitable that value
judgements and esthetic considerations enter discussions about the choice of ‘proper’
weight extraction methods for inconsistent comparison matrices. Words like ‘plausi-
ble’, ‘natural’, ‘invariant’, ‘suitable’ et cetera all have rather positive connotations and
rhetorical value and are freely employed by all involved in the discussion. We did not
refrain from their use either. Our personal bias will be clear: we think that the geo-
metric row mean is a robust and dependable workhorse for use in decision problems
with multiplicative input. Invariance with respect to the order of operations, where the
particular order is not carried by substantive considerations, the naturalness (here we
go again) of the approach from a statistical point of view, as well as its easy calcula-
tions, are all strong arguments in its favor. This is absolutely not meant to deny that
other methods have merit, or that research in e.g. the really baffling intricacies of the
least squares method is very valuable. But from a practitioner’s perspective it appears
that the geometric row mean, possibly supplemented with a robustness analysis of its
outcome, will do an acceptable job.

Finally, we iterate our call for a deeper analyses of ‘real life measurement errors’
as measured in substantial and realistic decision problems. It would be very valu-
able to know to what extent the ‘errors’ materially depend on the context, the scale
(the numerical code for relative value statements, such as Saaty’s, or Lootsma’s power
scale11 or any other alternative), or the extraction method. We may or may not find that

11 Lootsma (1999) chapter 4 e.g.

123



On the extraction of weights from pairwise comparison matrices 123

a scale fixed for all applications is too rigid, meaning that occasionally inconsistencies
can be induced which are unnecessarily ‘large’. This will be very useful information
too. In short, we will welcome anything that helps define a standard distribution of
‘acceptable’ errors on a solid empirical basis.
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