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ON THE EXTRACTION TECHNIQUE
IN BOUNDARY INTEGRAL EQUATIONS
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Abstract. In this paper we develop and analyze a bootstrapping algorithm
for the extraction of potentials and arbitrary derivatives of the Cauchy data
of regular three–dimensional second order elliptic boundary value problems in
connection with corresponding boundary integral equations. The method rests
on the derivatives of the generalized Green’s representation formula, which are
expressed in terms of singular boundary integrals as Hadamard’s finite parts.
Their regularization, together with asymptotic pseudohomogeneous kernel ex-
pansions, yields a constructive method for obtaining generalized jump rela-
tions. These expansions are obtained via composition of Taylor expansions of
the local surface representation, the density functions, differential operators
and the fundamental solution of the original problem, together with the use
of local polar coordinates in the parameter domain. For boundary integral
equations obtained by the direct method, this method allows the recursive
numerical extraction of potentials and their derivatives near and up to the
boundary surface.

1. Introduction

The evaluation of layer potentials and also their derivatives near the supporting
surface Γ ⊂ Rd , d = 2 or 3, has attracted attention in boundary element compu-
tations recently (see e.g., [8, 10, 11, 12, 20]). If the point of interest x is sufficiently
distant from Γ, the evaluation does not cause any difficulties due to the smoothness
of the kernels. In contrast, if x is very close to Γ, severe numerical difficulties arise
due to the oscillatory nature of the kernels, related to the so–called jump relations
satisfied by the potentials at Γ. Much effort was spent on numerical techniques
to cope with this problem. Such techniques have limited success if the analytic
jump relations of the potentials are ignored. To illustrate this, consider the dou-
ble layer potential of the density χ[−1,1]2(y) as a function of the observation point
x = (0, 0, ε):

Wχ(x)=

1∫
−1

1∫
−1

n(y) · (x− y)
|x− y|3 dy1dy2 = 2π sign ε− 8 arcsin

(
ε
√

2
2
√

1 + ε2

)
.(1.1)
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92 C. SCHWAB AND W. L. WENDLAND

Figure 1. log10 (relative error) versus N1/3

Figure 1 shows the relative quadrature error for ε = 10−j , j = 0, . . . , 6, of an
advanced quadrature scheme applied to (1.1) (see [33] for details).

The degeneracy for small ε is clearly visible and even more pronounced for less
sophisticated quadrature schemes.

In this paper, we propose a different, analytical approach: Since the potentials
used in the reduction to the boundary Γ are analytic on either side of Γ and admit
analytic extensions through Γ (provided Γ and the data are analytic), they admit
Taylor expansions about a point x0 ∈ Γ. To illustrate our approach, consider the
classical potential problem

∆U = 0 in Ωc,
∂U

∂n
= ψ on Γ, U(x) = O

(
1
|x|
)

for |x| → ∞ .

(1.2)

Here and in what follows, Ω ⊂ Rd denotes a bounded, simply connected strong
Lipschitz domain [30] with piecewise analytic boundary Γ. For d = 3, Γ is a
finite union of analytic surface pieces Γj , and it is locally the graph of a Lipschitz–
continuous function (precluding slits and cusps). For d = 2, the Γj are analytic
arcs, correspondingly. We denote by

Γ̃ :=
⋃

Γj , S := Γ \ Γ̃

the sets of smooth, i.e., analytic, and singular boundary points, respectively. For
every x ∈ Γ̃, nx = n(x) will denote the exterior unit normal vector. The complement
Rd\Ω of Ω will be denoted by Ωc. Then nx always points into Ωc.

The classical direct reduction method of (1.2) to the boundary Γ is based on the
representation formula

U(x) = WU(x)− V
∂U

∂n
for x ∈ Ωc .(1.3)

Here V,W are the single and double layer potentials of classical potential theory,
respectively. For x → x′ ∈ Γ̃, (1.3) and the jump relations yield the boundary
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ON THE EXTRACTION TECHNIQUE IN BOUNDARY INTEGRAL EQUATIONS 93

integral equation

Aϕ =
(

1
2
I −K

)
ϕ = −V ψ at x′ ∈ Γ(1.4)

for the unknown Cauchy datum ϕ := U|Γ . Here, for d = 3,

V ψ(x) =
1
4π

∫
y∈Γ

ψ(y)
|x− y|dsy for x ∈ Γ(1.5)

is the single layer potential operator and

Kϕ =
1
4π

∫
y∈Γ

(x− y) · ny

|x− y|3 ϕ(y)dsy for x ∈ Γ̃(1.6)

is the double layer potential at the points of Γ̃, which is to be modified appropriately
at x ∈ S.

Once we solve the classical boundary integral equation (1.4) for ϕ, the Cauchy
data ϕ and ψ are inserted into (1.3) and U(x) is known for all x ∈ Ωc. Moreover,
if ψ is analytic on Γ̃, so is ϕ (see e.g., [29]) and, hence, also U(x) at x ∈ Ωc ∪ Γ̃.
Therefore, for x sufficiently close to Γ̃, there exists the nearest point x0 ∈ Γ̃ and we
may write

U(x) = U(x0) + |x− x0|∂U
∂n

+
1
2
|x− x0|2 ∂

2U

∂n2
(x0) +O(|x − x0|3) .(1.7)

The Taylor series corresponding to (1.7) converges for x sufficiently close to x0 in
case of analytic data due to the analyticity of U(x), and represents the solution
U for x ∈ Ωc ∪ Γ̃.1 Using (1.7) yields approximations to U(x) which improve as
x→ x0, in contrast to numerical evaluations of the representation formula (1.2).

The difficulty in using (1.7) is how to get
∂kU

∂nk
(x0) for k ≥ 1. In our specific

problem (1.2), the boundary datum
∂U

∂n
(x0) = ψ(x0) is available, but not the

higher order derivatives. To provide a stable algorithm by finding such derivatives
from numerical solutions of the integral equation (1.4) is the purpose of the present
paper.

Let us explain our approach for the special boundary value problem (1.2) for
d = 3. To this end, we need some standard background from the calculus of
surfaces.

For the two–dimensional case d = 2 the whole approach can rather easily be
specified, correspondingly.

We call an open surface piece Γj ⊂ R3 analytic if it has a real analytic parametric
representation χj : R2 → R3 of

Γj = χj (Vj) ,(1.8)

with a bounded, polygonal parameter domain Vj ⊂ R2, and χj is analytic on V j ,
i.e., it does not exhibit singularities on ∂Vj . Hence χj can be extended analytically
to some open neighborhood of V j in R2. Throughout, x, y will denote points in Rd

1Note carefully that the Taylor series about x0 allows us to extend U to certain points x ∈ Ω.
However, this extension does not coincide with the solution of (1.2) in Ω, nor with (1.3) for x ∈ Ω.
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94 C. SCHWAB AND W. L. WENDLAND

for d = 3, i.e., x = (x1, x2, x3)> etc., and for x, y ∈ Γj their local coordinates will
be denoted by u and v, respectively, i.e.,

x = χj(u1, u2) ∈ Γj , y = χj(v1, v2) ∈ Γj .(1.9)

If no ambiguity arises or if we prove statements that do not depend on the particular
surface piece, we omit the subscript j. Partial derivatives with respect to local
coordinates will be written in tensor notation, i.e.,

∂χ

∂vν
= χ|ν ,

∂2χ

∂vν ∂v%
= χ|ν%, etc., ν, % = 1, 2 .

We will assume that χj is regular, i.e.,

|χj|1 × χj|2| 6= 0 for all u ∈ V j(1.10)

and the mapping χj : Vj → Γj is invertible. Then, for y ∈ Γj , the surface measure
is given by

dsy =
√
γ dv with γ = |χ|1|2 |χ|2|2 − (χ|1 · χ|2)2,(1.11)

and the metric tensor is γν% = χ|ν · χ|% and its inverse ((γιν)) = ((γν%))−1.
The exterior unit normal vector to Γ at x ∈ Γj is given by

n(x) := |χj|1 × χj|2|−1 (χj|1 × χj|2).(1.12)

We now construct an extension of χj so that a whole tubular neighborhood of Γj

in R3 is mapped bijectively to the cylinder Vj × (−ε, ε) with appropriately chosen
ε > 0.

Proposition 1.1. For every Γj ⊂ Γ there exists εj > 0 such that the open set

U(Γj) := {y ∈ R3| y = χj(v1, v2) + v3n(v1, v2), (v1, v2) ∈ Vj ⊂ R2, |v3| < εj}
(1.13)

is diffeomorphic to

V(Vj) := {v ∈ R3| (v1, v2) ∈ Vj , |v3| < εj} .
The diffeomorphism

Φj : V(Vj) → U(Γj)
in (1.13) is analytic, bijective, and extends χj in the sense that Φj |v3=0= χj(v1, v2).
Moreover, Φj is regular on V(Vj).

Proof. We omit the subscript j in this proof. Since the Jacobian of Φ at v ∈ V is

|DΦ(v)| = γ(v)(1− 2v3H(v1, v2) + v2
3G(v1, v2))2,

where H and G are the mean and the Gaussian curvatures, respectively, by the
implicit function theorem there exists 0 < ε0 = minx∈Γj

{H −√H2 −G}/|G| such
that Φ is bijective, analytic, and extends χ for |v3| < ε ≤ ε0.

The main tool in deriving formulae for the normal derivatives
∂kU

∂nk
(x0) is to

express them by tangential derivatives of ψ and ϕ by using the differential equation
∆U = 0 in Ωc ∪ Γ̃. For instance, in the tubular neighbourhood U(Γj), the Laplace
equation reads

∆U(x0) =
∂2U

∂n2
(x0)− 2H(x0)

∂U

∂n
(x0) + ∆ΓU(x0) = 0,(1.14)
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where

∆ΓU =
1√
γ

∑ ∂

∂vι

(√
γγιν ∂

∂vν

)(
U ◦ χ(v)

)
(1.15)

denotes the Laplace–Beltrami operator on Γ. This yields, in our case,

∂2U

∂n2
(x0) = 2H(x0)ψ(x0)−∆Γϕ(x0) .(1.16)

Thus, since ϕ is known as the solution of (1.4), its derivatives could be obtained
directly and the Taylor formula (1.7) is, in principle, available.

In practical computations, however, (1.4) can only be solved by some approxima-
tion method like, e.g., boundary elements, and differentiation of the approximate
solution ϕappr is infeasible due to loss of accuracy (more precisely, derivatives of
ϕappr converge at a reduced rate; the reduction being proportional to the order of
the derivative). Therefore, the viability of the approach depends on our ability to
compute numerical approximations of tangential derivatives ∂νϕ = ϕ|ν of ϕ which
exhibit the same accuracy as ϕappr . To this end, we derive a hierarchy of boundary
integral equations for ϕ|ν by differentiating (1.4). This yields for |ν| = 1:

Aϕ|ν = −V ψ|ν −A(ν)ϕ− V(ν)ψ,(1.17)

where
A(ν) = [∂ν , A] := ∂νA−A∂ν ,

V(ν) = [∂ν , V ] := (∂νV − V ∂ν)
(1.18)

are the commutators. Note that (1.17) is an integral equation for ϕ|ν with the
same operator A as in (1.4) but with a modified right–hand side. The viability
of this approach depends on the properties and computability of the commutators
A(ν) and V(ν). Both commutators define pseudo–differential operators on Γj of the
same orders as A and V (here 0 and −1), respectively. In addition, we show that,
in local coordinates, A(ν) and V(ν) can always be decomposed into commutators
of differential operators whose kernels can be explicitly computed. For instance, if
d = 3, we have

V(ν)ψ(x) =
1
4π

∫
Γ

{
(y − x) · (χ|ν(y)− χ|ν(x))

|x− y|3 +
1

|x− y|(log
√
γ)|ν

}
ψ(y)dsy

(1.19)

and V(ν) is again a weakly singular integral operator. Relations analogous to (1.17)
for |ν| > 1 are obtained in the same manner but with corresponding higher order
commutators. For the second derivatives of ϕ, needed in (1.16), differentiation of
(1.17) leads to the equation

Aϕ|νµ = −V ψ|νµ − V(µ)ψ|ν − V(ν)ψ|µ − [∂µ, V(ν)]ψ

−A(ν)ϕ|µ −A(µ)ϕ|ν − [∂µ, A(ν)]ϕ .
(1.20)

Note that the right–hand side is given in terms of derivatives of ϕ not exceeding
the order one and commutators of A and V the orders of which do not exceed the
respective orders. Clearly, the datum ψ in (1.20), i.e., in (1.2), needs to be given
sufficiently smooth. The equations (1.4), (1.17) and (1.20) can be solved recursively
for all the second derivatives ϕ|νµ

. Numerical approximations of these derivatives
can be computed provided the discretization of A and its inversion is available and
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96 C. SCHWAB AND W. L. WENDLAND

the commutators are known. For higher order derivatives, equations analogous to
(1.20) will be obtained. In all cases, the operator on the left–hand side is A.

In the remainder of this paper we present the procedure for second order strongly
elliptic systems generalizing (1.16), and also prove a general representation of the
commutators in local coordinates which allows their explicit calculation.

Finally we address the rate of convergence of arbitrary derivatives, including the
normal derivatives obtained from boundary element discretizations of the boundary
integral equations like (1.4), (1.17) and (1.20).

The outline of the paper is as follows: In Section 2 we introduce the class of
boundary value problems and reductions to the boundary integral equations to be
considered. In Section 3 we derive the recurrence of boundary integral equations for
arbitrary derivatives and give the formula for the calculation of the commutators.
Finally, in Section 4 we address the boundary element discretization of the boundary
integral equations for the higher derivatives of the solution, and obtain rates of
convergence. An extraction technique for the computation of pointwise derivatives
is also analyzed.

Although the method is analyzed here for smooth Γ, it can also be applied to
piecewise smooth Γ provided x0 has an open neighbourhood where Γ still is smooth.
However, the commutator formula needs to be modified at corners and edges; we
leave these modifications to future work.

The whole technique is presented for d = 3. The corresponding two–dimensional
case where Γ consists of a closed curve can be derived from our presentation by
corresponding modifications, and is presented in [32].

2. Boundary value problems and reductions to the boundary in R3

In this section we will discuss the solution of elliptic boundary value problems by
equivalent boundary integral equations following the approach in [6] (see also [17],
and for special cases [9]). For simplicity, we confine ourselves to elliptic systems of
second order in variational form: Given f ∈ L2(Ω), find U ∈ H1(Ω) such that

LU = f in Ω.(2.1)

Here

L = −
3∑

j,k=1

DjajkDk + c ,(2.2)

Dj =
∂

∂xj
, and the coefficients ajk and c are real and analytic N × N matrix

functions of x ∈ Ω which satisfy

ajk(x) = a>kj(x), c(x) = c>(x)

(i.e., L is formally selfadjoint). General boundary conditions, including Dirichlet
and Neumann conditions, are as follows:

Let P ∈ C∞(Γ,CN×N) be a family of orthogonal projectors with constant rank,
i.e., P 2 = P = P

>
. Then require the boundary conditions

R(γ0U, γ1U) := Pγ0U + (I − P )γ1U = ψ,(2.3)
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where, for U ∈ C1(Ω),

γ1U =
3∑

j,k=1

njajkDkU |Γ̃(2.4)

denotes the conormal derivative corresponding to L. By Hk(Ω,CN ) with k ∈ N0

we denote the usual Sobolev spaces. The spaces with noninteger k > 0 are defined
by interpolation (see for example [25]). The boundary spaces Hs(Γ,CN ) with
0 < s < 1 are invariantly defined via a partition of unity on Γ and the local
Lipschitz maps describing Γ [30]. For −1 < s < 0, we define Hs(Γ,CN ) via the
L2–duality on Γ. We further note that the trace operator γ0 is continuous [4], i.e.,

γ0 : Hs(Ω,CN ) → Hs−1/2(Γ,CN ) with 1/2 < s ≤ 3/2 .(2.5)

We shall not indicate spaces of vector–valued functions explicitly when it will be
clear from the context. Likewise, Hk(Ω,CN ) will be denoted by Hk(Ω), etc.

For (2.1), (2.3) we have the first Green’s formula

〈γ1U, γ0Y 〉Γ = B(U, Y )−
∫
Ω

Ȳ > LUdx with Y ∈ H1(Ω) , U ∈ HL(Ω),

(2.6)

where the sesquilinear form B(·, ·) : H1(Ω)×H1(Ω) → C is given by

B(U, Y ) =
∫

Ω


3∑

j,k=1

Dj Ȳ
>ajkDkU + Ȳ >c U

 dx(2.7)

and

HL(Ω) := {U |‖LU‖L2(Ω) <∞} ∩H1(Ω)

equipped with the graph–norm ‖U‖HL(Ω) = ‖U‖H1(Ω) + ‖LU‖L2(Ω).
The bracket 〈·, ·〉Γ in (2.6) is an extension of the boundary integral

∫
Γ

γ1U
>γ0Ȳ dsy

by continuity from smooth U, Y to U ∈ HL(Ω), Y ∈ H1(Ω). Since the trace map
is surjective, (2.6) defines γ1U for all U ∈ HL(Ω) as a continuous, linear functional
on H1/2(Γ). Thus γ1U ∈ H−1/2(Γ); and γ1 : HL(Ω) → H−1/2(Γ) is continuous.
Analogously we extend the classical second Green’s formula∫

Ω

{
Ȳ >LU − U>LȲ } dx = 〈γ0U, γ1Y 〉Γ − 〈γ1U, γ0Y 〉Γ(2.8)

from U, Y ∈ H2(Ω) to U, Y ∈ HL(Ω).
To give the weak formulation of the boundary value problems (2.3), we denote by

RD and RN the finite–dimensional linear spaces of solutions to the corresponding
homogeneous adjoint boundary value problem. Then the weak formulation of the
boundary value problem (2.3) reads:

Given ψ with Pψ ∈ H1/2(Γ) and (I−P )ψ ∈ H−1/2(Γ), and f ∈ L2(Ω) satisfying

∫
r>fdx = 〈Pψ, Pγ1r〉 − 〈(1− P )ψ, (1 − P )γ0r〉Γ for all r ∈ R ,

(2.9)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



98 C. SCHWAB AND W. L. WENDLAND

find U ∈ H1(Ω)/R such that Pγ0U = Pψ on Γ and

B(U, Y ) =
∫
Ω

Y
>
fdx+ 〈(1 − P )ψY, (1− P )γ0〉Γ for all Y ∈ 0H

1(Ω) .

(2.10)

Here,
H1

0 (Ω) ⊆ 0H
1(Ω) := {U ∈ H1(Ω) |Pγ0U = 0} ⊆ H1(Ω) .

Note that for the Dirichlet problem P = 1 and 0H
1(Ω) = H1

0 (Ω), whereas for
the Neumann problem P = 0 and 0H

1(Ω) = H1(Ω).
We assume that the differential operator L is strongly elliptic, i.e., it satisfies

inf
x∈Ω

d∑
j,k=1

ζ>ajk(x)ξjξkζ ≥ Λ0|ξ|2|ζ|2

for ζ ∈ CN and ξ = (ξ1, · · · , ξd) ∈ Rd .

(2.11)

Finally, we assume that the G̊arding inequality is valid on the whole space H1(Ω),
i.e., that there exists a positive constant Λ so that

Re: B(U,U) ≥ Λ‖U‖2H1(Ω) − C(U,U) for all U ∈ H1(Ω)
(2.12)

where C is a compact sesquilinear form onH1(Ω)×H1(Ω). For the characterization
of such sytems see [30, Theorems 7.5. and 7.6]. Then the boundary value problem
(2.1), (2.3) admits under assumption (2.9) a unique weak solution U ∈ H1(Ω)/R
satisfying (2.10).

Let us give two examples.
Example 1: Time harmonic heat transfer in Ω. Here

L = −div(A grad)− ω2,(2.13)

where the matrix A ∈ R3×3 is symmetric and positive definite. The corresponding
conormal derivative operator (2.4) can be written as

γ1U = n>A5 U |Γ.(2.14)

Example 2: Time–harmonic vibrations in a linear elastic body Ω. For linear
isotropic elasticity,

L = −µ4−(λ+ µ)grad div− ω2(2.15)

is the Lamé operator, where

γ1U = 2µ
∂U

∂n
+ λ(divU)n+ µn× curlU |Γ(2.16)

is the traction operator. λ and µ are the Lamé constants. For the stationary
problem, i.e., (2.3) and ω = 0, we have {0} ⊆ R ⊆ span{~a+B∧~x}, where B = −B>
is any real skew–symmetric matrix and ~a is an arbitrary constant vector. Thus,
dimR ≤ d+ d(d− 1)/2.

Due to the Poincaré and Korn inequalities, the bilinear forms (2.7) for both ex-
amples (2.13) and (2.15) satisfy a G̊arding inequality (2.12) on H1(Ω), respectively.

Together with (2.1), (2.3) we will also consider the exterior boundary value prob-
lems, where (2.1) is required in Ωc, and ψ is given on Γ. In this case, we assume in
addition that the weak solution satisfies appropriate growth conditions at infinity
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which ensure uniqueness, and also that the second Green’s formula holds on Ωc in
the form (2.8). More detailed discussion of the admissible exterior problems can be
found in [5].

Remark 2.1. Assuming Green’s formula (2.8) also in Ωc (see [5], [6]) will be suffi-
cient for the derivations in Section 6 [5]; but we emphasize that usually (2.8) holds
in the exterior only with certain additional functionals of U and V supported at
infinity (see [16], and for radiation conditions [38]).

We collect the regularity properties of the weak solutions U for both the interior
and exterior problems, and recall to this end

Γ̃ :=
⋃

Γj , S := Γ \ Γ̃ .(2.17)

Then, by standard elliptic regularity theory (see, e.g., [30] or [25]), we have

Proposition 2.2. Assume f ∈ C∞(Ω) and that in (2.3) we have Dirichlet data
Pψ = % ∈ Hs−1/2

loc (Γj) ∩H1/2(Γ) and Neumann data (I−P )ψ = σ ∈ Hs−3/2
loc (Γj) ∩

H−1/2(Γ) for all j and with s ≥ 1 satisfying (2.9). Then the weak solution U of
(2.1), (2.3) satisfies U ∈ Hs(Ω \ Ū) for every open, d–dimensional neighborhood U
of S in Rd. If, in particular, % and σ are in C∞(Γ̃), we have U ∈ C∞(Ω̄ \ U).

A stronger result is due to C.B. Morrey [29, Chap. 6.7].

Proposition 2.3. Assume that % and σ in (2.3) are analytic on each surface piece
Γj and are globally in H1/2(Γ) or H−1/2(Γ), respectively, and satisfy (2.9). Then
the solution U of (2.1), (2.3) is analytic in Ω̄ \U , where U is any open, non–empty
neighborhood of S in Rd.

Remark 2.4. Under the assumptions of Proposition 2.3, U admits an analytic con-
tinuation beyond the boundary surface Γj into the exterior of Ω. Consequently,
also the Cauchy data γ0U and γ1U can be extended analytically beyond Γ\U . In
the sequel, these extensions will also be denoted by γ0U and γ1U .

We describe, following [3, 4, 6, 17], boundary integral equation formulations of
the boundary value problems (2.2), (2.3) via the so–called “direct method”. The
derivation of boundary integral equations of the first kind which are equivalent to
the weak form of the boundary value problem and their subsequent finite element
discretization goes back to [14, 31]. We assume for simplicity that f = 0 in (2.1).
If this is not the case, a particular solution can be constructed by means of a
Newtonian potential with a fundamental solution G(x, y−x) of L defined as usual.

Definition 2.5. A (matrix) function G(x, y − x) : Rd ×Rd\{x = y} → CN×N is a
fundamental solution of L, if

L(Dy)G(x, y − x) = δ(y − x) I(2.18)

in the sense of distributions.

In the subseqent sections we need the following properties of the fundamental
solution of L.

Definition 2.6 (Pseudohomogeneous functions). A function K(z) defined on
Rd\{0} is homogeneous of degree a ∈ R, if K(tz) = taK(z) for all z 6= 0, t > 0. We
call K pseudohomogeneous of degree a, and write K ∈ ψh(a), if

K(z) = Ka(z) + log(|z|)Qa(z),(2.19)
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100 C. SCHWAB AND W. L. WENDLAND

where Ka admits an asymptotic expansion

Ka(z) ∼
∑
j≥0

Kaj(z) =
∑
j≥0

|z|a+jKaj(z/|z|)(2.20)

with respect to homogeneous functions Kaj , and where Qa is a homogeneous poly-
nomial of degree a− d if a− d ∈ N0; and Qa = 0 otherwise. Matrix functions are
pseudohomogeneous of degree a if all component functions are.

Proposition 2.7. 1◦.The fundamental solution G(x, y−x) in (2.18) is of the form
G(x, y−x) = K(x, x−y), where K(x, z) : Ω×R3 → CN×N is a pseudohomogeneous
kernel of degree −1 in z for every x ∈ Ω and depends analytically on z on the unit
sphere |z| = 1. For every |z| = 1, it is an analytic function of x ∈ Ω.

2◦. Qa = 0 in (2.19) for our second order systems in R3.
3◦ If the coefficients of L in (2.1) are constant, K is independent of x.
4◦. If c = 0 in (2.2), then K is homogeneous of degree −1.

For a proof, see for example [19, Chapter III]. Note that for d = 2 one has
Qa 6= 0.
Example 3: For L = −∆− ω2 in R3 and ω ∈ C, we have

G(x, y − x) =
e−iω|x−y|

4π|x− y| .(2.21)

Example 4: For the three–dimensional Lamé operator in (2.17) with ω = 0, the
fundamental solution in R3 is the matrix function

G(x, y − x)=
λ+ 3µ

8πµ(λ+ 2µ)

{
1

|x− y| I +
λ+ µ

λ+ 3µ
(x− y)(x− y)>

|x− y|3
}
.(2.22)

In the general situation, if both Cauchy data

ψ = Pγ0U + (I − P )γ1U,

ϕ = (I − P )γ0U + Pγ1U
(2.23)

are known, then we have(
γ0U

γ1U

)
= M

(
ψ

ϕ

)
:=
(

P (I − P )
(I − P ) P

)(
ψ

ϕ

)
,(2.24)

and the solution of (2.1), (2.3) is given by the representation formula

U(x) =
∫

y∈Γ

{( yγ0G)(x, y − x)γ1U − (yγ1G)>(x, y − x)γ0U(y)} dsy for x ∈ Ω,

(2.25)

where yγj denotes the boundary operator γj applied to G as a function of y (at
fixed x). Applying xγ0, xγ1 to (2.25) and utilizing the (two sided) jump relations
for the single and double layer potentials (see, for example, [4, 3, 6, 17]), we find
the boundary integral relations

γ0U(x) = (
1
2
I −K) γ0U(x) + (V γ1U)(x) for x ∈ Γ̃ ,(2.26)

γ1U(x) = (Dγ0U)(x) + (
1
2
I +K ′)γ1U(x) for x ∈ Γ̃ .(2.27)
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Here, for x on the boundary Γ̃, the boundary integral operators are defined by

(V σ)(x) =
∫
Γ

{yγ0G(x, y − x)σ(y)} dsy ,(2.28)

(K%)(x) =
∫
Γ

{yγ1G(x, y − x)> %(y)} dsy ,(2.29)

(K ′σ)(x) =
∫
Γ

{xγ1G(x, y − x)> σ(y)} dsy ,(2.30)

(D%)(x) = −xγ1

∫
Γ

{yγ1G(x, y − x) %(y)} dsy ,(2.31)

where, in general, the integrals are understood as an improper weakly singular
integral in (2.28), as Cauchy principal value integrals in (2.29), (2.30) and as
Hadamard’s finite part integral in (2.31) [34].

Inserting (2.23) and (2.24), in view of the boundary conditions (2.3), we obtain
two boundary integral equations for the second Cauchy datum ϕ, namely

PV (Pϕ) + (I − P )( 1
2I +K ′)(Pϕ) + (I − P )D((I − P )ϕ)

+ P (1
2I −K)((I − P )ϕ)

= ψ − P (1
2I −K)Pψ − PV (I − P )ψ − (I − P )DPψ

− (I − P )(1
2I +K ′)(I − P )ψ,

(2.32)

which is a boundary integral equation of the first kind; and

ϕ− (I − P )(1
2I −K)(I − P )ϕ− (I − P )V Pϕ− PD(I − P )ϕ− (1

2I +K ′)Pϕ
= (I − P )( 1

2I −K)Pψ + (I − P )V (I − P )ψ − PDPψ + P (1
2I +K ′)(I − P )ψ,

(2.33)

which is a boundary integral equation of the second kind.

Remark 2.8. The integral relations (2.26), (2.27) must be modified at corner points
x ∈ S; it is well known that on S the factors 1/2 are to be replaced by certain
geometry–dependent quantities (see [2, 13] and [39], for example).

Remark 2.9. In fact, for smooth Γ ∈ C∞, the operators V, D, K, K ′ are classical
pseudo–differential operators of integer order.

Proposition 2.10. [4]. Let |s| ≤ 1/2. Then the operators in (2.28)–(2.31) are
continuous mappings in scales of Sobolev spaces on Γ. More precisely,

V : H−1/2+s(Γ) → H1/2+s(Γ) , D : H1/2+s(Γ) → H−1/2+s(Γ) ,
K : H1/2+s(Γ) → H1/2+s(Γ) , K ′ : H−1/2+s(Γ) → H−1/2+s(Γ) ,

(2.34)

continuously.

This proposition motivates the weak or variational form of the boundary integral
equations. If we denote the parts of the non-given Cauchy data by

σ := Pϕ = Pγ1U, % := (1− P )ϕ = (1− P )γ0U(2.35)

then the weak form of the integral equations of the first kind reads:
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Find (σ, %) ∈ PH−1/2(Γ)× (1− P )H1/2(Γ) such that

〈σ̃, V σ〉Γ − 〈σ̃,K%〉Γ = 〈σ̃, {(1
2I +K)Pϕ− V (1− P )ψ}〉Γ(2.36)

and

〈%̃, K ′σ〉Γ + 〈%̃, D%〉Γ = 〈%̃, {(1
2I −K ′)(I − P )ψ −DPψ}〉Γ(2.37)

for all (σ̃, %̃) ∈ PH−1/2(Γ)× (1− P )H1/2(Γ) .

Remark 2.11. The integral equations are understood in the distributional sense on
Γ; 〈·, ·〉Γ denotes the H−1/2(Γ)×H1/2(Γ) or H1/2(Γ) ×H−1/2(Γ) duality pairing,
respectively.

The boundary integral equations of the second kind (2.33) read:
Find (σ, %) ∈ PH−1/2(Γ)× (I − P )H1/2(Γ) satisfying

1
2%+

(
(I − P )K

)
%−
(
(I − P )V

)
σ = (I − P )

(
V (I − P )ψ − (I − P )KPψ

)(2.38)

and
1
2σ − (PK ′)σ − PD% = P

(
(1
2I +K ′)(I − P )ψ +DPψ

)
.(2.39)

Remark 2.12. The integral operators K and K ′ in the equations of the second kind
(2.38) and (2.39) have, in general, Cauchy singular kernels and have served for a
long time for solving the corresponding boundary value problems. The correspond-
ing weak formulation, however, should use the H1/2(Γ)–scalar product for (2.38)
and the H−1/2(Γ)–scalar product for (2.39). Instead, Galerkin methods for these
equations are based on the L2–scalar product for both equations (2.38) and (2.39).

The next result shows that (2.36), (2.37) and (2.38), (2.39) are well posed and
uniquely solvable.

Proposition 2.13 ([4, 3, 6, 17]). Assume that f = 0 in (2.1). Then the integral
equations (2.36), (2.37) and the boundary value problems (2.1), (2.2), respectively,
are equivalent in the sense that for every given ψ ∈ PH1/2(Γ)× (I − P )H−1/2(Γ)
satisfying (2.9) and a corresponding solution U of the boundary value problem,
σ = Pγ1U , % = (I −P )γ0U satisfy the boundary integral equations (2.36), (2.37).
Conversely, if (σ, %) is a solution of (2.36), (2.37), then U obtained from the rep-
resentation formula (2.25) is a weak solution of (2.1).

An analogous statement holds for (2.38) and (2.39) and also for the exterior
boundary value problems.

3. Derivatives of the solution and Cauchy data on Γ

Our purpose is the evaluation of the representation formula (2.25) and its deriva-
tives on and near to the boundary surface Γ by means of the Taylor formula (1.7).
This will be done by utilizing the homogeneous differential equation LU = 0, valid
up to the analytic boundary part Γ̃ as in the introduction. The strong ellipticity
(2.11) allows us to express the higher order normal derivatives of U at x0 ∈ Γ̃ in
terms of tangential and subordinate lower normal derivatives, thereby establishing
a recursive algorithm which is Cauchy’s method for solving the analytic Cauchy
problem. However, the tangential derivatives of the Cauchy data at x0 are required
here.
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Once more, boundary integral equations for these tangential derivatives are ob-
tained by differentiating the boundary integral equations (2.36), (2.37) or (2.38),
(2.39). Finally, we obtain a general result on the calculation of the commutators
arising in this context.

3.1. Conversion of normal into tangential derivatives. In order to convert
normal into tangential derivatives of the Cauchy data we observe that from (2.4)
we have

γ1U = P0∂nU +Q1γ0U,(3.1)

where

P0 =
d∑

j,`=1

njaj`n` and Q1γ0U =
d∑

j,`=1

d−1∑
ν,ι=1

njaj`
∂χ`

∂vν
γνι ∂γ0U

∂vι
.

Here, P0 is a matrix function which is C∞ or even analytic on Γ̃ and invertible
in the tubular neighborhood U(Γj), due to the strong ellipticity condition (2.11);
and Q1 is there a tangential operator of order 1 with smooth, respectively analytic
coefficients.

Theorem 3.1. Let k ≥ 0 be an integer, and let U satisfy LU = 0 in Ω ∪ Γ̃ with
Cauchy data γ0U , γ1U analytic or sufficiently differentiable on Γ̃. Then any tan-
gential derivative ∂α of arbitrary order |α| of ∂k

nU at x0 ∈ Γ̃ can be expressed
exclusively by tangential derivatives of the Cauchy data γ0U and γ1U in x0.

Proof. The proof is by induction and corresponds to Cauchy’s algorithm for solving
the Cauchy problem.

For k = 0, the assertion is obvious.
For k = 1, we differentiate

∂nU = P−1
0 (γ1U −Q1γ0U)

tangentially. Then the Leibniz formula and smoothness of P−1
0 yield the assertion.

For k = 2 we use the differential equation in the tubular neighbourhood of U(Γj)
introduced in Proposition 1.1; i.e.,

0 = LU = −
d∑

j,k=1

Djajk(x)DkU + cU = −P0∂
2
nU − P1∂nU − P2U .(3.2)

Here, Pi are tangential differential operators of order i with coefficients which are
analytic in U(Γj) given by L and the geometry of Γj. (The explicit formulae are
presented in the Appendix.) From (3.1) and (3.2) we find on Γ̃

∂2
nU = −P−1

0 {P1P−1
0 (γ1U −Q1γ0U) + P2γ0U} .(3.3)

Differentiating (3.3) tangentially and using the Leibniz rule proves the assertion.
For the induction step, fix K > 2 and assume that the theorem holds for 0 ≤

k ≤ K − 1. Apply ∂K−2
n to (3.2), i.e.,

∂K
n U = −∂K−2

n P−1
0 {P1∂nU + P2U}

= −
K−2∑
`=0

(
K−2

`

)
(∂`

nP−1
0 )∂K−2−`

n {P1∂nU + P2U} .
(3.4)
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Since

∂K−2−`
n Pi =

K−2−`∑
t=0

Pi,t∂
t
n,

where Pi,t are tangential differential operators of orders ≤ i = 1, 2, we obtain

∂K
n U = −

K−2∑
`=0

(
K−2

`

)
(∂`

nP−1
0 )

K−2−`∑
t=0

{P1,t∂
t+1
n U + P2,t∂

t
nU} ,(3.5)

where the highest order of normal derivatives on the right–hand side is K − 1.
Further tangential differentiation of (3.5) and the Leibniz rule together with the
induction assumption yield the proposed representation of ∂α∂K

n U by a linear com-
bination of ∂βγ1U and ∂µγ0U for |β| ≤ |α|+K − 1 and |µ| ≤ |α|+K.

3.2. Boundary integral equations for tangential derivatives of the Cauchy
data.

Lemma 3.2. Let A be a classical pseudo–differential operator of integer order a
on Γ ⊂ R3. Then

∂k
1∂

`
2Aϕ =

k∑
i=0

∑̀
j=0

(
k
i

)(
`
j

)
A(i,j)(∂

k−i
1 ∂`−j

2 ϕ),(3.6)

where the commutators A(i,j) are defined recursively by

A(0,0) := A ,

A(i+1,j) := ∂1A(i,j) −A(i,j)∂1 ,

A(i,j+1) = ∂2A(i,j) −A(i,j)∂2 .

(3.7)

Every A(i,j) is a classical pseudo–differential operator of order a on Γ.

Clearly, for d = 2, i.e., Γ ⊂ R2, these formulae simplify accordingly.

Proof. The representation (3.6) follows from the definition (3.7) of the commutators
and the binomial formula by elementary induction. Also recursively, from (3.7)
follows the assertion on the order a with [37, Corollary 4.2], since the differential
operators are scalar operators.

This lemma will now be applied to the boundary integral equations (2.36), (2.37),
respectively (2.38), (2.39), which we write in the generic form

Aϕ = Fψ(3.8)

for the missing Cauchy datum ϕ. We now assume that the integral operator A in
(3.8) is injective. Generically (but not always), this is the case when the original
boundary value problem (2.1), (2.3) is uniquely solvable. For the equations of the
first kind (2.36) and (2.37), the G̊arding inequality (2.12) in the domain together
with its variant for the exterior domain implies the G̊arding inequality

Re〈ϕ,Aϕ〉 ≥ Λ1‖ϕ‖20 − ReC(ϕ, ϕ) for all ϕ ∈ H0(3.9)

(see [6, Theorem 3.9]), where

Ht := PH−1/2+t(Γ)× (I − P )H1/2+t(Γ)(3.10)

equipped with the norm

‖ϕ‖t = ‖(σ, %)‖t := ‖σ‖H−1/2+t(Γ) + ‖%‖H1/2+t(Γ)(3.11)
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Figure 2. Dependency graph

and where C(·, ·) : H0 × H0 → C is a compact sesquilinear form. For ϕ = (σ, %)
and ϕ̃ = (σ̃, %̃) ∈ H0, the pairing 〈ϕ̃, ϕ〉 is defined by

〈ϕ̃, ϕ〉 := 〈σ̃, %〉Γ + 〈%̃, σ〉Γ .(3.12)

For the equations of the second kind (2.38), (2.39) we consider 〈·, ·〉 to be the
L2–scalar product and take Ht := Ht(Γ). In this case we assume (3.9) to hold,
which must be verified for the particular problem at hand. (For details we refer to
[40].)

In practice, either type of integral equations can be used for solving the boundary
value problem and as the basic formulation for its numerical solution.

To obtain a boundary integral equation for tangential derivatives of ϕ, we dif-
ferentiate both sides of (3.8) and regroup terms. The boundary integral equation
for ∂αϕ := ∂k

1∂
`
2ϕ with α = (k, `) reads

A∂αϕ = F∂αψ +
∑

0<β≤α

(
α
β

) {
F(β)∂

α−βψ −A(β)∂
α−βϕ

}
,(3.13)

where α = (k, `), β = (i, j) ,
(
α
β

)
=
(
k
i

)(
`
j

)
and 0 < β ≤ α means (1 ≤ i + j) ∧ (0 ≤

i ≤ k) ∧ (0 ≤ j ≤ `).
Note particularly, that the integral operator A in (3.13) is the same as in (3.8).

Therefore, any available discretization of (3.8) can readily be used to solve (3.13).
Recursive use of (3.13) allows the computation of ∂αϕ for any α = (k, `) ∈ N2

0. To
see this, consider the dependency graph in Figure 2.

Each derivative corresponds to a grid point in the k–`–plane. For fixed (k, `)
corresponding to • in the figure, all derivatives in the shaded region are generally
needed. Starting with (0, 0), i.e., equation (3.8), compute ϕ; then a boot–strapping
procedure with rectangles of increasing size allows us to reach any α = (k, `).

In the two–dimensional case d = 2, all the indices α, β in (3.13) are only scalar
indices.

Remark 3.3. The integral operators in (3.8) and (3.13) must, for computational
purposes, generally be written in the local coordinates of the charts χj which are
assumed to form a piecewise C∞–atlas or sufficiently differentiable atlas of Γ; see
also Remark 3.7, below.
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3.3. Calculation of the commutators. As mentioned in Lemma 3.2, all the
commutators in (3.13) are classical pseudo–differential operators whose orders are
equal to those of A and F , respectively.

Since A and F were obtained by boundary reduction, these operators admit
in each chart the representation with “finite part”, Cauchy singular and weakly
singular integrals in connection with non–integrable kernels in the boundary integral
operators (see [34]).

Definition 3.4. Let ε → A(ε) denote a complex–valued function which is con-
tinuous on (0, ε0) for some ε0 > 0 and admits an asymptotic expansion of the
form

A(ε) = A0 +A1 log ε+
m∑

j=2

Ajε
−j+1 + o(1)(3.14)

as ε → 0, where Aj ∈ C. Then A0 is called the finite part of A(ε), and we write
A0 = p.f. A(ε).

The finite part in (3.14) is well–defined, since

C0 + C1 log ε+
m∑

j=2

Cjε
−j+1 = o(1)

as ε → 0 implies that C0 = C1 = . . . = Cm = 0. For a detailed treatment of the
finite part concept in conjunction with two–dimensional area and surface integrals
with non–integrable kernels, we refer to [34]. There one can also find the behaviour
of finite part integrals under the substitution of variables.

Since A and F are matrices of classical pseudo–differential operators, their entries
Bn in local coordinates on Γj have the form

Bnϕ = ℘nϕ+ p.f.
∫
Vj

K̃n(u, v − u)ϕ(v)dv for ϕ∈C∞0 (Γj),(3.15)

where

℘nϕ =
∑
|α|≤n

bα(u)∂αϕ(u) .(3.16)

The subscript n denotes the order of Bn, and ℘n ≡ 0 if n < 0. Our aim is a
representation of the commutator of Bn with tangential differentiation. Since, for
℘n, the commutators

∂α℘nϕ− ℘n∂
αϕ for |α| = 1

can be computed in the usual fashion, we consider only the integral operator in
(3.15). Our main result is as follows.

Theorem 3.5. Let ϕ ∈ C∞0 (Γj), and let ∂λ be any tangential differential operator
of order |λ| = 1. Then, in the local coordinates induced by the chart χj, we have

[∂λ, Bn]ϕ(u) = [∂λ, ℘n]ϕ(u) + p. f.
∫
Vj

(
∂λ

uK̃n(u, t)
)∣∣∣

t=v−u
ϕ(v)dv .(3.17)
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Proof. The kernel function K̃n(u, t) with t = v − u is C∞ with respect to u for all
t 6= 0 and is pseudohomogeneous in t of order −n− 2. In particular, for any L ≥ 0,

K̃n(u, t) =
∑

0≤j≤L

k̃n−j(u, t) + K̃n−L−1(u, t)(3.18)

with
k̃n−j(u, t) = r−2−n+j f̃n−j(u,Θ)

and
K̃n−L−1(u, t) = O(rL−n−1) uniformly in u,

where t = r(cos Θ, sin Θ)>. Here, for d = 3, logarithmic terms are absent since here
we consider only boundary integral equations for second order elliptic boundary
value problems in R3. In what follows we choose L > n.

Due to (3.18) we will show (3.17) separately for the remainder K̃n−L−1(u, t) and
the homogeneous terms k̃n−j .

For K̃n−L−1(u, t) we use that ∂λ
uK̃K−L−1(u, v − u) is only weakly singular and,

hence, integrable. Therefore,

∂λ
u

∫
Vj

K̃n−L−1(u, v − u)ϕ(v)dv =
∫
Vj

(
∂λ

uK̃n−L−1(u, v − u)
)
ϕ(v)dv .(3.19)

Now we use the elementary property

∂λ
u

(
K̃n−L−1(u, v − u)

)
= (∂λ

uK̃n−L−1(u, t))|t=v−u
− ∂λ

v K̃n−L−1(u, v − u) ,

(3.20)

insert it into (3.18) and integrate the last term in the resulting integral by parts.
Since ϕ ∈ C∞0 (Vj), the corresponding line integral vanishes, and (3.18) with (3.20)
yields the assertion (3.17) for K̃K−L−1.

For the remaining terms choose R > 0 such that the ball BR(u) := {v | |v− u| ≤
R} satisfies BR(u) ⊂ V ; and choose an associated cut–off function χ ∈ C∞0 (Br(u))
with χ(v) ≡ 1 for |v − u| ≤ R/2. Note, however, that χ does not depend on u. Set

w := χϕ ∈ C∞0
(
BR(u)

)
; ϕ = w + (1 − χ)ϕ .(3.21)

Now consider the term

k̃n−j(u, t) = r−2−n+jfn−j(u,Θ) ,

where Θ =
v − u

r
, r = |v − u|. The corresponding operator is given by

Bn−jϕ = Bn−jw +Bn−j(1− χ)ϕ ,

Bn−jw(u) =
∫

r≤R

fn−j(u,Θ)
rn+2−j

w(v) −
∑

0≤|β|≤n−j

(v − u)β

β!

(
∂β

uw(u)
) dv

+
∑

0≤|β|≤n−j

cβ(u)∂βw(u),(3.22)

and

Bn−j(1− χ)ϕ(u) =
∫

supp((1−χ)ϕ)

k̃n−j(u, v − u)
(
(1 − χ)ϕ(v)

)
dv .(3.23)
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Since the integrand in (3.23) is C∞0 , we find, analogously to (3.20), that

∂λ
uBn−j(1− χ)ϕ(x) =

∫
supp((1−χ)ϕ)

(
∂λ

u k̃n−j(u, t)
)∣∣∣

t=v−u

(
(1− χ)ϕ(v)

)
dv

−
∫

supp((1−χ)ϕ)

(
∂λ

v k̃n−j(u, v − u)
)(

(1 − χ)ϕ(v)
)
dv .

(3.24)

Integrating the last term again by parts, one gets

[∂λ, Bn−j((1 − χ)ϕ)] =
∫
V

(
∂λ

u k̃n−j(u, t)
)∣∣∣

t=v−u

(
(1 − χ)ϕ

)
dv .(3.25)

It remains to analyze (3.22). First, note that

cβ(u) = p. f.
∫

BR

fn−j(u; Θ)
rn+2−j

(v − u)β

β!
dv

=

2π∫
ϑ=0

fn−j(u; (cosϑ, sinϑ))
β!

πβ(ϑ)dϑ ×
{

lnR if j + |β| = n ,
Rj+|β|−n

j+|β|−n else,
(3.26)

and

πβ(ϑ) = (cosϑ, sinϑ)β := cosβ1 ϑ sinβ2 ϑ with β ∈ N2
0 .

Differentiating (3.22), we get for |λ| = 1

∂λBn−jw(u) = ∂λ

∫
r≤R

1
r
H(u, v)dv

+
∑

0≤|β|≤n−j

{(
∂λcβ(u)

)
∂βw(u) + cβ(u)∂λ+βw(u)

}
(3.27)

with

H(u, v) = fn−j(u,Θ)r−n+j−1

w(v) −
∑

0≤|β|≤n−j

(v − u)β

β!
∂βw(u)

 .

Since H is bounded, the integral in (3.27) is weakly singular. Using the rule of
differentiation for weakly singular integrals (see [27, Section 8]), we find that, for
every 0 < ε < R,

∂λ

∫
ε≤r≤R

1
r
H(u, v)dv =

∫
ε≤r≤R

∂λ
u

(
1
r
H(u, v)

)
dv −

∫
|v−u|=ε

H(u, v)(v − u)λε−2ds .

(3.28)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE EXTRACTION TECHNIQUE IN BOUNDARY INTEGRAL EQUATIONS 109

We calculate

∂λ
u

(
1
r
H(u, v)

)
=

(
∂λ

ufn−j(u,Φ)
)∣∣∣

Φ=Θ
r−n+j−2{· · · }

+
(
∂λ

u

fn−j(s,Θ)
rn−j+2

)∣∣∣∣
s=u

{· · · }

+
fn−j(u,Θ)
rn−j+2

∑
1≤|β|≤n−j

(β · λ) (v − u)β−λ

β!
∂βw(u)(3.29)

− fn−j(u,Θ)
rn−j+2

∑
1≤|β|≤n−j

(v − u)β

β!
∂β+λw(u) .

Since Θ = 1
r (v − u) and r = |v − u|, one has

∂λ
u

fn−j(s,Θ)
rn−j+2

= −∂λ
v

fn−j(s,Θ)
rn−j+2

.(3.30)

We use (3.30) in the second term of (3.29) and integrate the corresponding integral
by parts to obtain

∫
ε<r≤R

(
∂λ

u

fn−j(s,Θ)
rn−j+2

)∣∣∣∣
s=u

{· · · }dv

=
∫

ε<r≤R

fn−j(s,Θ)
rn−j+2

∂λ
v {· · · }dv +

∫
|v−u|=ε

H(u, v)(v − u)λε−2ds,

(3.31)

since suppw ⊂ BR(u). Inserting (3.29) into (3.28) and using (3.31), we get

∂λ

∫
ε<r≤R

1
r
H(u, v)dv =

∫
ε<r≤R

(
∂λ

ufn−j(u,Φ)
)∣∣∣

Φ=Θ
r−n+j−2{· · · }dv

+
∫

ε<r≤R

fn−j(s,Θ)
rn−j+2

∂λ
vw(v)−

∑
|β|≤n−j

(v − u)β

β!
∂β+λ

n w(u)

 dv .

(3.32)

Since the integrals in (3.32) are weakly singular, they depend on ε continuously and
(3.32) holds for ε = 0, too. Inserting (3.32) in (3.27), we find that

∂λBn−jw(u) =
(
Bn−j∂

λw(u)
)

+
∑

|β|≤n−j

(
∂λcβ(u)

)
∂βw(u)

+
∫

ε<r≤R

(
∂λ

ufn−j(u,Φ)
)∣∣∣

Φ=Θ
r−n+j−2

w(v)−
∑

|β|≤n−j

(v − u)β

β!
∂β+λ

u w(u)

 dv .

(3.33)
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Note that from (3.27) we have

∂λcβ(u) =

2π∫
0

(
∂λ

ufn−j(u,Φ)
)∣∣∣

Φ=Θ(ϑ)

πβ(ϑ)
β!

dϑ×
{

lnR if j + |β| = n,
Rj+|β|−n

j+|β|−n else,

= p. f.
∫

0<r≤R

(
∂λ

ufn−j(u,Φ)
)∣∣∣

Φ=Θ
r−n+j−2 (v − u)β

β!
dv ,

which gives in (3.29) the desired equation for the special operator in (3.22) with
(3.26). Hence,

DλBn−jw(u) = Bn−jD
λw(u) + p. f.

∫
Vj

(
Dλ

ufn−j(u, ϕ)
)
|ϕ=Θ

r−n+j−2w(v)dv .

(3.34)

Summing (3.34) and (3.23) over 0 ≤ j ≤ L, adding it to (3.20) and referring to
(3.18) completes the proof.

Corollary 3.6. Let T ⊂⊂ Vj be some compact, simply connected and piecewise

smoothly bounded subregion of Vj with u ∈ ◦
T , and let ϕ ∈ C∞(χj(T )). Let ∂λ be

any differential operator of order |λ| = 1, λ = (λ1, λ2) with λk ∈ {0, 1} , k = 1, 2.
Then for the operator

BnTϕ = ℘nϕ+ p. f.
∫
T

K̃n(u, v − u)ϕ(v)dv(3.35)

we have the commutator property

[∂λ, BnT ]ϕ(u) = [∂λ, ℘n]ϕ(u) + p. f.
∫
T

(
∂λ

uK̃n(u, t)
)∣∣∣

t=v−u
ϕ(v)dv

−
∮

v∈∂T

K̃n(u, v − u)ϕ(v)
(
ñ(v) · λ

)
dγ .

(3.36)

Here γ denotes the parameter of arc–length on ∂T , and ñ(v) the exterior two–
dimensional normal vector of ∂T .

Proof. For the proof we write ϕ(u) = w(u) + ϕ1(u) as in (3.21) and get (with
ϕ1 = (1− χ)ϕ as in (3.24))

∂λ
nBnTϕ1 =

∫
supp(ϕ1)∩T

(
∂λ

uK̃n(u, t)
)∣∣∣

t=v−u
ϕ1(v)dv

−
∫

supp(ϕ1)∩T

(
∂λ

v K̃n(u, v − u)
)
ϕ1(v)dv .

Integration by parts of the last term yields (3.36) for ϕ = ϕ1, since ϕ1 is identically
zero in BR/2(u). For w ∈ C∞0 (T ) we apply Theorem 3.5, which completes the
proof.
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Remark 3.7. So far we have considered only the three–dimensional case. All as-
sertions, however, have exact analogues in two dimensions where Γ is a piecewise
C∞–curve.

The details for the two–dimensional case can be found in [32].

Example 5: As an example for the application of the commutator formula (3.17)
consider the single layer potential

V ϕ =


− 1

2π

∫
Γ

ln |x− y|ϕ(y)dsy in R2,

1
4π

∫
Γ

|x− y|−1ϕ(y)dsy in R3.
(3.37)

Here we have, of course, ℘n ≡ 0 since n = −1.
The commutators are as follows:
In 2–D:

V(1)ϕ =
[
d

ds
, V

]
ϕ =

1
2π

∫
Γ

(y − x) · (χ′(y)− χ′(x))
|y − x|2 ϕ(y)dsy,(3.38)

where χ′ denotes the tangential vector defined by the derivative to s, the parameter
of the arc length on Γ.

In 3–D for |λ| = 1:

V(λ)ϕ = [∂λ, V ]ϕ

=
1
4π

∫
Γ

{
(y − x) · (χ|λ(y)− χ|λ(x)

)
|y − x|3 +

1
|x− y| (log

√
γ)|λ

}
ϕ(y)dsy .

(3.39)

4. Numerical approximation of the derivatives

In the present section we analyze Galerkin discretizations for the system of
boundary integral equations (3.13). The basic idea is that any stable discretization
of the original equation (3.8) is also applicable to the system (3.13), since the latter
is triangular. This yields numerical approximations and corresponding error esti-
mates for the differentiated Cauchy data ∂αϕ. We consider only Galerkin schemes
based on h–refinements on the boundary Γ. It should be clear, however, that all
the arguments carry over to more general Galerkin–Petrov projection schemes (as
e.g., least squares methods, Nyström methods and collocation methods) as well as
to more general approximation schemes such as p- and hp-versions of the BEM.

The error estimates are obtained in the usual scales of Sobolev norms. To exploit
the Taylor formula (1.7), however, pointwise approximations of ∂αϕ are needed. To
this end, we use an extraction formula based on the Riesz potentials and present
corresponding pointwise error estimates.

4.1. Galerkin schemes for tangential derivatives. As usual, a Galerkin ap-
proximation of (3.8) reads: Find ϕh ∈ Hh such that

〈ϕ̃h, Aϕh〉Γ = 〈ϕ̃h, Fψ〉Γ for all ϕ̃h ∈ Hh .(4.1)

HereHh is a family of finite–dimensional subspaces of PH−1/2(Γ)×(1−P )H1/2(Γ)
providing the approximation property

inf
ϕ̃h∈Hh

‖ϕ− ϕ̃h‖Ht ≤ chτ−t‖ϕ‖Hτ for t ≤ τ .(4.2)
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For example, for the integral equations of the first kind (2.36) and (2.37) we select

Hh = PSd,r
h × (1 − P )Sd+1,r+1

h ,(4.3)

where Sd,r
h with t ≤ r < d denotes a family of finite elements on the boundary in

the sence of Babuška and Aziz [1]; then τ ≤ d+ 1
2 in (4.2).

For the integral equations of the second kind (2.38) and (2.39) we may select
Hh := Sd,r

h ⊂ H0 = L2(Γ); then τ ≤ d in (4.2).
As is well known, the G̊arding inequality (3.9) and injectivity of A provide quasi–

optimal asymptotic convergence, i.e.,

‖ϕ− ϕh‖t ≤ chτ−t‖ϕ‖τ(4.4)

for −d− 1
2 ≤ t ≤ 0 ≤ τ ≤ d+ 1

2 in case of equations of the first kind (2.36), (2.37)
and for −d ≤ t ≤ 0 ≤ τ ≤ d in case of equations of the second kind (2.38), (2.39)
(see [15]).

To approximate the derivative ∂αϕ of the Cauchy data ϕ for a given α = (k, `),
we introduce the vector ~ϕ = {∂δϕ} of partial derivatives of orders δ = (i, j) , 0 ≤
i ≤ k ∧ 0 ≤ j ≤ `. We order the components of ~ϕ according to ascending orders
i+j. This is a partial ordering, denoted by δm with m = 1, . . . , M = (k+1)(`+1).
Then (3.13) can be written as

A∂δmϕ+
∑

0<β≤δm

(
δm
β

)
A(β)∂

δm−βϕ = ∂δm(Fψ), m = 1, . . . ,M,(4.5)

or as a triangular system of equations

A~ϕ = ~f := (∂δmFψ)M
m=1(4.6)

with the diagonal Amm = A.

Lemma 4.1. There exists a positive diagonal constant matrix Θ ∈ RM ×RM such
that

Re〈ΘA~ϕ, ~ϕ〉 ≥ Λ0‖~ϕ‖2(H0)M − Re C(~ϕ, ~ϕ) for all ~ϕ ∈ (H0)M ,(4.7)

where Λ0 > 0 and C : (H0)M × (H0)M → C is a compact sesquilinear form.

The duality pairing in (4.7) is the natural extension of 〈·, ·〉 to the vector case.

Proof. The proof is by induction with respect to M . The case M = 1 corresponds
to one equation and (3.9). Now assume that (4.7) holds for some M0 ≥ 1, i.e.,

Re〈ΘM0AM0 ~ϕ0, ~ϕ0〉M0 ≥ ΛM0‖~ϕ0‖2(H0)M0 − Re CM0(~ϕ0, ~ϕ0) for all ~ϕ0 ∈ (H0)M0 .

Then, for M = M0 + 1 we write

Θ =
(

ΘM0 0
0 ϑ

)
, A =

( AM0 0
Ã A

)
, ~ϕ =

(
~ϕ0

ϕ

)
.

Here Ã =
((

δM

δj

))
A(δM−ϑj))

>
j=1,... ,M0

are the commutators in (4.5) for m = M =
M0 + 1. Hence,

Re〈ΘA~ϕ, ~ϕ〉 ≥ ΛM0‖~ϕ0‖2(H0)M0 + ϑΛ1‖ϕ‖2H0

− Re CM0(~ϕ0, ~ϕ0)− Re ϑC1(ϕ, ϕ) − ϑK‖~ϕ0‖(H0)M0 ‖ϕ‖H0 ,
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where K depends on the norms of Ã but is independent of ϑ > 0. Applying
Cauchy’s inequality yields

−ϑK‖~ϕ0‖(H0)M0 ‖ϕ‖H0 ≥ −1
2
ΛM0‖~ϕ0‖2(H0)M0 −

1
2
Λ−1

M0
ϑ2K2‖ϕ‖2H0 .

Selecting ϑ = Λ1ΛM0/K
2 > 0 completes the proof.

If we apply the Galerkin method (4.1) to (4.6), i.e., we perform the boot–
strapping algorithm for the evaluation of ∂αϕ in combination with the approxi-
mation procedure, then it is equivalent to: Find ~ϕh ∈ (Hh)M such that

〈 ~̃ϕh,A~ϕh〉 = 〈 ~̃ϕh,
~f〉 for all ~̃ϕh ∈ (Hh)M .(4.8)

Because of (4.7), this method converges asymptotically of optimal order (4.4):

Proposition 4.2. For every M and sufficiently small h, (4.8) admits unique solu-
tions ~ϕh = (ϕ(δj)

h )M
j=1 which satisfy

‖∂δjϕ− ϕ
(δj)
h ‖Ht ≤ c(j)hτ−t‖ϕ‖Hτ+|δj| for j = 1, . . . ,M .(4.9)

Here τ and t are as in (4.4).

4.2. Point value extraction for tangential derivatives. For the numerical
evaluation of the Taylor expansion (1.7) we require normal derivatives of orders
up to K of the Cauchy data at x0 ∈ Γ. They can be expressed exclusively in
terms of the tangential derivatives ∂δjϕ(x0) of orders |δj | ≤ K by Theorem 3.1.
The tangential derivatives are approximated by ϕ

(δj)
h obtained from the Galerkin

scheme (4.8).
Rather than evaluating ϕ(δj)

h (x0) directly from the Galerkin approximation ϕ(δj)
h ,

we calculate point values by averaging. We depart from the identity

(−∆v)kGk(r) = δ(v − u),(4.10)

where

Gk(r) =
(−1)k

π4k
(
(k − 1)!

)2 r2(k−1) ln r2(4.11)

is the fundamental solution of the polyharmonic operator (−∆)k , k = 1, 2, . . . , in
R2 (see [36, p. 288]) . This yields for any f ∈ C∞0 (R2) the identities

f(u) = (−1)k

∫
R2

(∆k
vf)(v)Gk(|v − u|)dv

= (−1)k−1

∫
R2

∇v(∆k−1
v f)(v) · ∇vGk(|v − u|)dv .

(4.12)

Both relations can be written as

f(u) =
∫
R2

P̃`(∂v)f(v)G̃`(v − u)dv(4.13)

for any ` ∈ N, where G̃2k = Gk and G̃2k−1 = ∇vGk, k ∈ N, and where P̃` is
the operator in the parametric plane defined in (4.12). We observe that G̃`(z) ∈
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H`−1−ε
loc (R2) for every ε > 0. We will use formula (4.13) with f(v) = ζ(v−u)∂αϕ(v),

where ζ ∈ C∞0 (R2) is a suitable cut–off function with ζ(0) = 1. With

P̃ι(∂v)
(
ζ(v − u)f(v)

)
=

∑
0≤|β|≤ι

dβ(v − u)∂βf(v)(4.14)

the extraction formula (4.13) takes the form

∂αϕ(u) =
∑

0≤|β|≤ι

∫
R2

dβ(v − u)(∂α+βϕ(v))G̃ι(v − u)dv .(4.15)

Using here on the right–hand side the approximations ϕ(α+β)
h obtained from the

boot–strapping procedure (4.8), we recover the pointwise approximations

∂αϕ(u) ∼ ϕ̂
(α)
h (u) :=

∑
0≤|β|≤ι

∫
R2

dβ(v − u)ϕ(α+β)
h (v)G̃ι(v − u)dv .(4.16)

For the corresponding error we have

Theorem 4.3. For the extracted derivatives ϕ̂(α)
h in (4.16) we have the error esti-

mate

|∂αϕ(u)− ϕ̂
(α)
h (u)| ≤ chτ+t‖ϕ‖Hτ+|α|+ι(4.17)

where ι > κ
2 + 1 and

0 ≤ t ≤ min{d+
κ

2
, ι− 1− κ

2
− ε} , 0 ≤ τ ≤ κ

2
+ d,

where κ = 0 for equations of the second kind, κ = 1 for equations of the first kind,
and ε > 0 is arbitrary.

Note that the choice ι = d + 2 + κ ensures the maximum rate of convergence
for the extracted derivatives in (4.16), whereas ι = d + 1 + κ implies an order
O(h2d+1−ε).

Proof of Theorem 4.3: Subtracting (4.15) from (4.16), we estimate

|∂αϕ(u)− ϕ̂
(α)
h (u)| ≤

∑
0≤|β|≤ι

‖dβ‖L∞ ‖∂(α+β)ϕ− ϕ
(α+β)
h ‖H−t(B+u) ‖G̃ι‖Ht(B) .

Since G̃ι ∈ Hι−1−ε
loc (R2), we must have t ≤ ι − 1 − ε for some ε > 0 for both types

of integral equations. We discuss the cases now separately.

Case 1: Equation of the second kind. Here Ht = Ht in (4.9), i.e., (4.2) gives

‖∂(α+β)ϕ− ϕ̂
(α+β)
h ‖H−t(B+u) ≤ chτ+t‖ϕ‖Hτ+|α|+|β|

for 0 ≤ t ≤ d, 0 ≤ τ ≤ d, i.e., 0 ≤ t ≤ min(d, ι− 1− ε). This is (4.17) with κ = 0.
Case 2: Equation of the first kind. The Galerkin solution ϕh = (σh, ρh) ∈ Hh

satisfies, according to (4.2),

‖∂(α+β)σ − σ̂
(α+β)
h ‖H−t′ (B+u) ≤ chτ ′+t′(‖σ‖Hτ′+|α|+|β| + ‖ρ‖Hτ′+|α|+|β|+1),

where 1
2 ≤ t′ ≤ d+ 1, − 1

2 ≤ τ ′ ≤ d, and

‖∂(α+β)ρ− ρ̂
(α+β)
h ‖H−t′′ (B+u) ≤ chτ ′′+t′′(‖ρ‖Hτ′′+|α|+|β| + ‖σ‖Hτ′′+|α|+|β|−1),

where − 1
2 ≤ t′′ ≤ d, 1

2 ≤ τ ′′ ≤ d+ 1. Therefore

‖∂(α+β)σ − σ̂
(α+β)
h ‖H−t′ (B+u) ≤ chτ ′+t′‖ϕ‖Hτ′+ 1

2+|α|+|β| ,
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‖∂(α+β)ρ− ρ̂
(α+β)
h ‖H−t′′ (B+u) ≤ chτ ′′+t′′‖ϕ‖Hτ′′− 1

2 +|α|+|β| ,

where the indices must satisfy
1
2 ≤ t′ ≤ d+ 1, − 1

2 ≤ τ ′ ≤ d, t′ ≤ ι− 1− ε ,

− 1
2 ≤ t′′ ≤ d, 1

2 ≤ τ ′′ ≤ d+ 1, t′′ ≤ ι− 1− ε .

Selecting here τ ′ + 1
2 = τ ′′ − 1

2 = τ , we find that

0 ≤ τ ≤ d+
1
2
.

Selecting further t′ − 1
2 = t′′ + 1

2 = t, we find that t must satisfy

0 ≤ t ≤ d+
1
2
.

Moreover, we get from Gι ∈ Hι−1−ε for any ε > 0 the conditions

t′ = t+
1
2
≤ ι− 1− ε ∧ t′′ = t− 1

2
≤ ι− 1− ε,

i.e.,

0 ≤ t ≤ min{d+
1
2
, ι− 3

2
− ε}

where ε > 0 is arbitrarily small, which is the assertion (4.17) with κ = 1. 2

Remark 4.4 (on first kind equations). For P = 1 we have Hτ = Hτ− 1
2 (weakly

singular equations) and

0 ≤ τ ≤ d+
1
2

and 0 ≤ t ≤ min{d+
1
2
, ι− 3

2
− ε} .

For P = 0 we have Hτ = Hτ+ 1
2 (hypersingular equation) and

0 ≤ τ ≤ d+ 1
2 and 0 ≤ t ≤ min{d+ 1

2 , ι− 1
2 − ε} .

We see that the choices ι = d + 2 for the weakly singular and ι = d + 1 for the
hypersingular equation and τ = d + 1

2 provides the convergence rate h2d+1−ε for
the extracted data. This is almost optimal. The ε > 0 can be removed and the
optimal rate h2d+1 achieved with the choices ι = d+ 3 and ι = d+ 2, respectively.
In practice, this difference will hardly be noticable and may not be worth the extra
term in (4.16) corresponding to ι = d+ 2.

4.3. Error Estimates near Γ. We use Theorem 4.3 to analyze the error in the
truncated Taylor expansion

U(x) =
M∑

k=0

(−1)k εk

k!
(∂k

nU)(x0) +O(εM+1)

of the potential U(x) at x = x0 − εn(x0), when replacing (∂k
nU)(x0) by the ap-

proximations (∂̂k
nU)k(x0) obtained with the postprocessed tangential derivatives

ϕ̂
(α)
h (x0), i.e.,

ÛM
h (x) :=

M∑
k=1

(−1)k εk

k!
ϕ̂

(α)
h (x0) .
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Theorem 4.5. Assume that Γ is smooth. For the approximate potential ÛM
h (x) at

x = x0 − εn(x0), we have the error estimate

|U(x) − ÛM
h (x)| ≤ C(ht+τ‖ϕ‖Hτ+M+ι(Γ) + εM+1[‖ϕ‖HM+2+δ(Γ) + ‖ψ‖HM+2+δ(Γ)]) .

Here δ > 0 is arbitrary and C depends on Ω, δ,M, d and

0 ≤ τ ≤ d+
κ

2
, 0 ≤ t ≤ min{d+

κ

2
, ι− 1− κ

2
− δ} ,

with κ as in Theorem 4.3.

Proof. Inspecting the proof of Theorem 3.1, we get with (2.24)

∂k
hU(x0) = P1,k(∂)(γ0U)(x0) + P2,k−1(∂)(γ1U)(x0)(4.18)

= P1,k(∂)[Pψ + (I − P )ϕ] + P2,k−1[(I − P )ψ + Pϕ](4.19)

=
∑
|α|≤k

c1α(∂αϕ)(x0) +
∑
|α|≤k

c2α(∂αψ)(x0) .(4.20)

Since ψ is given explicitly, we have with Theorem 4.3 the error estimate

|∂k
hU(x)− (∂̂k

hU)h(x0)| =
∣∣∣ ∑
|α|≤k

c1α [(∂αϕ)(x0)− ϕ̂
(α)
h (x0)]

∣∣∣
≤ C ·

∑
|α|≤k

|(∂αϕ)(x0)− ϕ̂
(α)
h (x0)|

≤ cht+τ
∑
|α|≤k

‖ϕ‖Hτ+|α|+ι ≤ cht+τ‖ϕ‖Hτ+k+ι .

Using the Taylor formula

U(x) =
M∑

k=0

(−1)k εk

k!
(∂k

nU)(x0) +O(εM+1)

and the corresponding approximation

ÛM
h (x) :=

M∑
k=0

(−1)k εk

k!
(̂∂k

nU)(x0),

we find the error estimate

|U(x)− ÛM
h (x)| ≤

M∑
k=0

εk

k!
|∂k

nU(x0)− (̂∂k
nU)(x0)|+ O(εM+1)

≤ c
M∑

k=0

M∑
|α|≤k

|(∂αϕ)(x0)− ϕ̂
(α)
h (x0)|+O(εM+1)

≤ cht+τ‖ϕ‖Hτ+M+ι +O(εM+1).

The remainder O(εM+1) is equal to

CM εM+1(∂M+1
n U)(ζ), ζ ∈ (x0, x0 − εn(x0)) .
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Using the embedding theorem, we get, using LU = 0 in Ω and the smoothness
of Γ, that

|(∂M+1
n U)(ζ)| ≤ cδ(Ω) ‖U‖

HM+1+ 3
2+δ(Ω)

≤ cδ(Ω) ‖γ0U‖HM+2+δ(Γ)

≤ cδ(Ω) ‖Pψ + (I − P )ϕ‖HM+2+δ(Γ)

≤ cδ(Ω) (‖ψ‖HM+2+δ(Γ) + ‖ϕ‖HM+2+δ(Γ)) ,

which completes the proof.

Remark 4.6. In the previous theorem, we assumed that Γ is smooth. The result
holds, however, also in the case of piecewise smooth Γ, if x0 is sufficiently far away
from the set S of edges and vertices.

5. A numerical example

The following two–dimensional example is due to H. Schulz and can be found in
more detail in [32]. Consider the interior Dirichlet problem with the Laplacian,

∆U = 0 in Ω = {x |x2
1 + 4x2

2 < 0.36}, U|Γ = ψ = log |x− y|,
(5.1)

where Γ : χ(t) = (0.6 cos t, 0.3 sin t) , t ∈ [0, 2π], and y = y0 + δn(y0), y0 = χ(3π/4),
δ = 0.4.

The boundary integral equations of the first kind for ϕ = ∂U
∂n |Γ and its tangential

derivative ϕ′ := dϕ
ds =

•
ϕ | •χ |−1, where d/dt =

•
, read

Aϕ := − 1
2π

2π∫
0

ln |x− χ(t)|ϕ(t)| •χ |dt(5.2)

= f(t) := 0.3 cos t+
1
2π

2π∫
0

n(t) · (χ(t)− x)
|χ(t)− x|2 0.3 cos t| •χ |dt

and

Aϕ′ = − 1
2π

2π∫
0

ln |x− χ(t)| •ϕ (t)dt =
•
f | •χ |−1 − V(1)ϕ(5.3)

with V(1) given by (3.38). The system (5.2), (5.3) is numerically solved by Galerkin’s
method on the family of regular partitions and grids with h = 2π/N forN = 2` with
` = 4, . . . , 8 and with piecewise constant periodic functions S1,0

h ([0, 2π]). Table 1
shows the L2–error of ϕh, ϕ

(1)
h and of the recovered ϕ̂h (with ι = 1) for successively

refined uniform meshes, together with the convergence rates α. In Figure 3 we
see the different behaviour of the pointwise errors of a): direct evaluation of the
representation formula

Uh(x) := − 1
2π

2π∫
0

ln |x− χ(t)|ϕh |
•
χ |dt+

1
4π

2π∫
0

n(t) · (χ(t)− x)
|χ(t)− x|2 x1(t)|

•
χ |dt

(5.4)
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Table 1. L2–errors of ϕh, ϕ
(1)
h , ϕ̂h.

N ‖ϕ− ϕh‖L2(Γ) α ‖∂sϕ− ϕ
(1)
h ‖L2(Γ) α ‖ϕ− ϕ̂h‖L2(Γ) α

8 0.724432 0.634889 0.162597
16 0.338135 1.1 0.833876 0.5 0.032748 2.3
32 0.167685 1.0 0.941592 0.9 0.006806 2.2
64 0.083584 1.0 0.468299 1.0 0.001583 2.1

128 0.041751 1.0 0.233676 1.0 0.000389 2.0
256 0.020869 1.0 0.116770 1.0 0.000097 2.0

Figure 3. Errors of Uh(x) and Ûh(x) at x = (0.6− ε, 0) versus ε

with various numbers of quadrature points (broken lines) and b): of the Taylor
approximation

Ûh(x) = ψ(x0)− εϕ̂h(x0) + ε2(κϕ̂h(x0)− ψ̈(x0))(5.5)

for points x = (0.6 − ε, 0) with ε ∈ [10−8, 10−1] and x0 = (0.6, 0) where N = 64.
Here κ is the curvature of Γ.

The solid line in Figure 3 shows that the error |Ûh(x0−εn(x0))−U(x0−εn(x0))|
exhibits two different asymptotic behaviours - namely O(ε3) first and, for small
ε, O(ε). From the Taylor expansion

U(x) = ψ(x0)− εϕ(x0) + ε2 (κϕ− ψ̈)(x0) +O(ε3)

we expect O(ε3) behaviour. Note, however, that the computed approximation (5.5)
uses the extracted values ϕ̂h(x0) rather than ϕ(x0). For small ε, therefore, the error
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|ϕ(x0)− ϕ̂h(x0)|ε dominates, as we see in Figure 3. The crossover point from O(ε3)
to O(ε) behaviour is determined by the accuracy of ϕ̂h(x0), the superconvergent,
extracted point value of the Cauchy datum ϕ. We also note that the approximations
Uh(x) obtained by quadrature evaluation of the representation formula (5.4) are
clearly inferior at points close to Γ, even if many quadrature points are used.

6. Appendix. The representation of second order elliptic systems

in tubular coordinates [17, Chapter 3]

For the local surface representation of Γj ⊂ R3, we have in addition to (1.8) –
(1.12) the well–known Weingarten formulae for the curvatures (see e.g., [24, Chap.
III, 11.7]):

Lλν := χ|λν · n , Lµ
λ :=

2∑
ν=1

Lλνγ
νµ forλ, µ = 1, 2 ;(6.1)

n|λ = −
2∑

µ=1

Lµ
λχ|µ , K = det ((Lµ

λ)) , 2HLνµ −Kγνµ =
2∑

λ=1

LνλK
λ
µ .(6.2)

For the diffeomorphism defined in (1.13), we have the following representations of
the Riemann fundamental tensor:

gjk :=
∂y

∂vj
· ∂y
∂vk

for j, k = 1, 2, 3 ;(6.3)

gνλ = (1− v2
3K)γνλ − 2v3(1− v3H)Lνλ for λ, ν = 1, 2 ;

g3λ = 0 for λ = 1, 2 and g33 = 1 .
(6.4)

If Φ is differentiable, then

∂
(
Φ ◦ y(v)

)
∂v3

= ∂nΦ = ∇Φ · n in U .(6.5)

The Christoffel symbols

Gr
jk :=

∂2y

∂vj∂vk
·

3∑
`=1

∂y

∂v`
g`r, where ((g`r)) = ((gjk))−1 ,(6.6)

satisfy in U :

G3
νµ = (1− 2v3H)Lνµ + v3Kγνµ and G3

3λ = G3
λ3 = 0 for ν, µ, λ = 1, 2 ;(

G1
3λ

G2
3λ

)
= −

(
L1

λ

L2
λ

)
−

∞∑
`=1

v`
3

(
L1

1L
1
2

L2
1L

2
2

)`(
L1

λ

L2
λ

)
;

G%
λµ =

2∑
α=1

χ|α − v3

2∑
β=1

Lβ
αχ|β

 ·
χ|λµ − v3

2∑
β=1

Lβ
λχ|βµ

 gα%

for λ, µ, % = 1, 2 ;

Gr
33 = 0 for r = 1, 2, 3 .

(6.7)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 C. SCHWAB AND W. L. WENDLAND

The local representation of the operator LU reads

LU ≡
∑
j,k

∂

∂xj

(
ajk(x)

∂U

∂xk

)
+ cU =

{
P2 + P1

∂

∂n
+ P0

(
∂

∂n

)2
}
U,

where, in U ,

P0 =
3∑

j,k=1

njajknk ,

P1 =
2∑

λ=1

 3∑
j,k=1

ajk

2∑
ν=1

yj|νnkg
νλ

 ∂

∂vλ

+

(
2
√
γ√
g
(v3K −H)−

2∑
κ=1

Gκ
κ3

)
3∑

j,k=1

njajknk

−
3∑

j,k=1

2∑
%,λ,ν=1

ajkyj|%Lν
λχk|νg%λ

+
3∑

j,k=1

∂ajk

∂v3
njnk +

3∑
j,k,`=1

2∑
%,ν=1

∂ajk

∂x`
y`|%yj|νnkg

%ν ,

P2 =
2∑

κ,λ=1

1√
g

∂

∂vκ

√g
3∑

j,k=1

2∑
µ,ν=1

ajkyj|νyk|µgνκgµλ

 ∂

∂vλ

+
2∑

λ=1


3∑

j,k=1

ajknj

(
2∑

µ=1

[
2
√
γ√
g

(v3K −H)yk|µ

−
2∑

ν=1

(χk|νLν
µ + yk|νGν

µ3)

]
gµλ −

2∑
µ,ν=1

yk|νgµνGλ
µ3

)

+
2∑

µ=1

 3∑
j,k=1

∂ajk

∂v3
nj

 gµν

 ∂

∂vλ
+ c .
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numerique d’un problème exterieur dans R3, Revue Franc. Automatique Inf. Rech. Opera-
tionelle 3 (1973) 105-129. MR 54:11992

[32] H. Schulz, Ch. Schwab and W.L. Wendland: An extraction technique for BEM.
In: Lecture Notes on Numerical Fluid Mechanics, Vol. 54 (W. Hackbusch &
G. Wittum, eds.), Vieweg Verlag (1996), pp. 219-231.

[33] C. Schwab: Variable order composite quadrature of singular and nearly singular integrals.
Computing 53 (1994) 173–194. MR 96a:65035

[34] C. Schwab and W. L. Wendland: Kernel properties and representations of boundary integral
operators, Mathematische Nachrichten 156 (1992) 187–218. MR 94g:65135

[35] C. Schwab and W. L. Wendland: On numerical cubatures of singular surface integrals in
boundary element methods, Numerische Mathematik 62 (1992) 343–369. MR 93h:65035
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