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Abstract. Let K be a field and S = K[x1, . . . , xn] be a polynomial ring over

K. We discuss the behaviour of the extremal Betti numbers of the class of

squarefree strongly stable ideals. More precisely, we give a numerical charac-

terization of the possible extremal Betti numbers (values as well as positions)

of such a class of squarefree monomial ideals.

Mathematics Subject Classification (2020): 05E40, 13B25, 13D02, 16W50,

68W30

Keywords: Graded ideal, squarefree monomial ideal, minimal graded resolu-

tion

1. Introduction

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables

with coefficients in K. A squarefree monomial ideal of S is a monomial ideal

generated by squarefree monomials. Such ideals are also known as Stanley–Reisner

ideals, and quotients by them are called Stanley–Reisner rings. The combinatorial

nature of these algebraic objects comes from their close connections to simplicial

topology. Many authors have studied the class of squarefree monomial ideals from

the viewpoint of commutative algebra and combinatorics (see, for example [2,3,6,

18], and the references therein).

Let I be a graded ideal of S. A graded Betti number βk,k+`(I) 6= 0 is called

extremal if βi, i+j(I) = 0 for all i ≥ k, j ≥ `, (i, j) 6= (k, `) [4]. The pair (k, `)

is called a corner of I. If βki,ki+`i(I) (i = 1, . . . , r) are extremal Betti numbers

of a graded ideal I, then the set Corn(I) = {(k1, `1), (k2, `2), . . . , (kr, `r)} will be

called the corner sequence of I [7, Definition 4.1]. In the Macaulay or CoCoA

Betti diagram of I, the graded Betti number βi,j(I) is plotted in column i and

row j − i. Using such a notation, a graded Betti number βk,k+`(I) is extremal if

it is the only entry in the quadrant where it is the northwest corner. Projective

dimension measures the column index of the easternmost extremal Betti number,

whereas regularity measures the row index of the southernmost extremal Betti
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number. Indeed, the extremal Betti numbers are a generalization of such meaningful

algebraic invariants.

For a monomial ideal I of S, let as denote by G(I) the unique minimal set of

monomial generators of I and for a monomial 1 6= u ∈ S, let us define supp(u) =

{i : xi divides u}. A monomial ideal I of S is strongly stable if for all u ∈ G(I)

one has (xju)/xi ∈ I for all i ∈ supp(u) and all j < i [14,16]; whereas a squarefree

monomial ideal I of S is squarefree strongly stable if for all u ∈ G(I) one has

(xju)/xi ∈ I for all i ∈ supp(u) and all j < i, j /∈ supp(u) [2,16].

Assume that the characteristic of the base field K is zero. If I is a graded ideal of

S, then the generic initial ideal Gin(I), with respect to the reverse lexicographical

order on S induced by x1 > · · · > xn, is a strongly stable ideal of S (see, for

instance, [13,16]). If I is squarefree, then Gin(I) is not in general squarefree. In

[3], the authors have introduced a certain operator σ which transforms Gin(I) to

a squarefree monomial ideal of S. Such an ideal, denoted by Gin(I)σ, is squarefree

strongly stable [3, Lemma 1.2.]. On the other hand, [3, Theorem 2.4.] assures that

if I is a squarefree ideal then the extremal Betti numbers are preserved when we

pass from I to Gin(I)σ. Hence, if one wants to study the extremal Betti numbers of

squarefree monomial ideals in a polynomial ring S = K[x1, . . . , xn] with char(K) =

0, it is not restrictive to consider the behavior of such extremal Betti numbers for

the class of squarefree strongly stable ideals.

In this paper, we are interested to the study of the extremal Betti numbers of

the class of squarefree strongly stable ideals of S.

The first result on the behavior of the extremal Betti numbers of such a class

of squarefree monomial ideals can be found in [12, Propostion 4.1]. More precisely,

the authors in [12] gave a criterion to determine whether a graded Betti number is

extremal: let I be a squarefree strongly stable ideal of S. βk, k+`(I) is an extremal

Betti number if and only if k + ` = max{max(u) : u ∈ G(I)`} and max(u) <

k + j, for all j > ` and for all u ∈ G(I)j (Characterization 2.6); G(I)` is the set

of monomials u of G(I) such that deg u = `. They did not give any numerical

charaterization of the possible extremal Betti numbers of such a class of ideals.

Later, such a criterion was generalized to the class of squarefree strongly stable

submodules of a finitely generated graded free S–module with a homogeneous basis

in [10, Theorem 4.3]. Moreover, a criterion for determining their positions and their

number was also given in [10, Section 5]. Such a criterion will be an important tool

for the development of this article.
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Differently from the non–squarefree case, not much is known about the numerical

characterization of the possible extremal Betti numbers (values and positions) of

the class of squarefree strongly stable ideals. Indeed, many authors have faced and

solved such a question for the class of strongly stable ideals in S ([1,7,8,9,11,12,17]).

More precisely, the authors of the previous papers have examined the following

problem:

Problem 1.1. Given two positive integers n, r, 1 ≤ r ≤ n − 1, r pairs of positive

integers (k1, `1), . . ., (kr, `r) such that n − 1 ≥ k1 > k2 > · · · > kr ≥ 1 and

1 ≤ `1 < `2 < · · · < `r and r positive integers a1, . . . , ar, under which conditions

does there exist a graded ideal I of S = K[x1, . . . , xn] such that βk1,k1+`1(I) = a1,

. . ., βkr,kr+`r (I) = ar are its extremal Betti numbers?

Positive answers to Problem 1.1 can be found in [7, Propositions 2.5, 3.5, Theo-

rem 3.7], [11, Theorem 3.1] and [17, Theorem 3.7] when K is a field of characteristic

0 (see also [1, Proposition 3.1, Theorem 3.2]). More specifically, in all the previous

cited papers, numerical characterizations of the possible extremal Betti numbers of

a graded ideal I of initial degree ≥ 2 of a standard graded polynomial ring over

a field of characteristic 0 have been given. As we have just underlined, in such

a case the generic initial ideal of a graded ideal in S (with respect to the reverse

lexicographical order on S) is strongly stable and since the extremal Betti numbers

are preserved by passing from the graded ideal to its generic ideal [4], the prob-

lem is equivalent to the characterization of the possible extremal Betti numbers

of a strongly stable ideal of S. Moreover, in [1] a CoCoA package for computing

the smallest strongly stable ideal of S to face Problem 1.1 has been developed. In

particular, the package is able to determine all the possible r-tuples of positive in-

tegers (a1, . . . , ar) for which such an ideal does exist. Finally, a complete answer to

such a problem reformulated in terms of graded submodules of a finitely generated

graded free S–module has been stated in [7, Theorem 4.6], [8, Theorem 4.6] and [9,

Theorem 1].

The purpose of this paper is to numerically characterize the possible extremal

Betti numbers of squarefree monomial ideals of a standard graded polynomial ring S

over a field of characteristic 0. Our techniques involve overall tools from enumerative

combinatorics.

The plan of the paper is as follows. In Section 2, some notions that will be used

throughout the paper are recalled. In Section 3, firstly we identify the admissible

corner sequences of a squarefree strongly stable ideal for n = 2, 3, 4. Then, we deter-

mine the maximal number of corners allowed for a squarefree strongly stable ideal
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I of S with a corner in its initial degree (Propositions 3.7, 3.9). Moreover, given

n − `1 (n ≥ 5) pairs of positive integers (k1, `1), (k2, `2), . . . , (kn−`1 , `n−`1), with

1 ≤ kn−`1 < kn−`1−1 < · · · < k1 ≤ n − 3 and 3 ≤ `1 < `2 < · · · < `n−`1 ≤ n − 1,

we determine the conditions under which there exists a squarefree lex ideal (Def-

inition 2.3) I of K[x1, . . . , xn] of initial degree `1 having βki,ki+`i(I), i = 1, . . . , r,

as extremal Betti numbers (Theorem 3.13). A complete description of the minimal

system of monomial generators of I is given. Squarefree lex ideals are a subclass of

the class of squarefree strongly stable ideals [2]. Finally, in Section 4, we face the

squarefree version of Problem 1.1, i.e., the following problem: Given three positive

integers n ≥ 4, `1 ≥ 2 and 1 ≤ r ≤ n− `1, r pairs of positive integers (k1, `1), . . .,

(kr, `r) such that n − 3 ≥ k1 > k2 > · · · > kr ≥ 2 and 2 ≤ `1 < `2 < · · · < `r,

ki + `i ≤ n (i = 1, . . . , r), and r positive integers a1, . . . , ar, under which condi-

tions does there exist a squarefree monomial ideal I of S = K[x1, . . . , xn] such that

βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar are its extremal Betti numbers? We solve

such a problem when char(K) = 0 (Theorem 4.14). In such a case, the question

is equivalent to the characterization of the possible extremal Betti numbers of a

squarefree strongly stable ideal of S as we have pointed out. The idea behind The-

orem 4.14 is to establish the bounds for the integers ai (i = 1, . . . , r), starting with

ar and then arriving to a1, by computing the cardinality of suitable sets of mono-

mials. The key result in this Section is Theorem 4.4. Let (k, `) be a pair of positive

integers and let As(k, `) be the set of all squarefree monomials u of S of degree `

and such that max(u) = k+`, with max(u) = max{i : xi divides u}, ordered by the

squarefree lex order ≥slex defined in Section 2. If u ∈ As(k, `), Theorem 4.4 shows

a method for determining the cardinality of the set of all squarefree monomials

w ∈ As(k, `) such that w ≥slex u. We provide some examples illustrating the main

obstructions to the issue. All the examples are constructed by means of Macaulay2

packages [15], some of which were developed by the authors of this article.

2. Preliminaries and notation

Let us consider the polynomial ring S = K[x1, . . . , xn] as an N-graded ring

where deg xi = 1, i = 1, . . . , n. A monomial ideal I of S is an ideal generated by

monomials. If I is a monomial ideal of S, we denote by G(I) the unique minimal

set of monomial generators of I, by G(I)` the set of monomials u of G(I) such that

deg u = `, and by G(I)≥` the set of monomials u of G(I) such that deg u ≥ `. If

I = ⊕j≥0Ij is a graded ideal of the polynomial ring S, we denote by indegI the

initial degree of I, i.e., the minimum j such that Ij 6= 0.
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For a monomial 1 6= u ∈ S, we set

supp(u) = {i : xi divides u},

and we write

max(u) = max{i : i ∈ supp(u)}, min(u) = min{i : i ∈ supp(u)}.

Moreover, we set max(1) = min(1) = 0.

A monomial m ∈ S is called a squarefree monomial if m = xi1xi2 · · ·xid with

1 ≤ i1 < i2 < · · · < id ≤ n. If T is a subset of S, we denote by Mond(T ) the set of

monomials of degree d in T and by Monsd(T ) the set of all squarefree monomials of

degree d in T .

A monomial ideal I is a squarefree monomial ideal if I is a monomial ideal of S

generated by squarefree monomials.

Definition 2.1. Let I be a squarefree monomial ideal of S. I is called a squarefree

stable ideal if for all u ∈ G(I) one has (xju)/xmax(u) ∈ I for all j < max(u), j /∈
supp(u).

I is called a squarefree strongly stable ideal if for all u ∈ G(I) one has (xju)/xi ∈ I
for all i ∈ supp(u) and all j < i, j /∈ supp(u).

Remark 2.2. Let T be a set of squarefree monomials in S of degree d. T will

be called a squarefree stable set if for all u ∈ T one has (xju)/xmax(u) ∈ T for all

j < max(u), j /∈ supp(u). T will be called a squarefree strongly stable set if for all

u ∈ T one has (xju)/xi ∈ T for all i ∈ supp(u) and all j < i, j /∈ supp(u).

Hence, a squarefree monomial ideal I of S is squarefree (strongly) stable if Monsd(I)

is a squarefree (strongly) stable set, for all d.

For every 1 ≤ d ≤ n, we can order Monsd(S) with the squarefree lexicographic

order ≥slex [2]. More precisely, let

u = xi1xi2 · · ·xid , v = xj1xj2 · · ·xjd ,

with 1 ≤ i1 < i2 < · · · < id ≤ n, 1 ≤ j1 < j2 < · · · < jd ≤ n, be squarefree

monomials of degree d in S, then

u >slex v if i1 = j1, . . . , is−1 = js−1 and is < js, (1)

for some 1 ≤ s ≤ d.

A nonempty set L ⊆ Monsd(S) is called a squarefree lexsegment set of degree d

if for u ∈ L, v ∈ Monsd(S) such that v >slex u, then v ∈ L.
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Definition 2.3. Let I be a squarefree monomial ideal of S. I is a squarefree

lexsegment ideal of S if for all squarefree monomials u ∈ I and all squarefree

monomials v of the same degree with v >slex u, it follows that v ∈ I.

Example 2.4. Let S = K[x1, x2, x3, x4, x5]. The ideal I = (x1x2x3, x1x2x4,

x1x2x5, x1x3x4, x2x3x4x5) is a squarefree lexsegment ideal of S.

For any graded ideal I of S, there is a minimal graded free S-resolution [5]

F. : 0→ Fs → · · · → F1 → F0 → I → 0,

where Fi = ⊕j∈ZS(−j)βi,j . The integers βi,j = βi,j(I) = dimK Tori(K, I)j are

called the graded Betti numbers of I.

Definition 2.5. [4] A graded Betti number βk,k+`(I) 6= 0 is called extremal if

βi, i+j(I) = 0 for all i ≥ k, j ≥ `, (i, j) 6= (k, `).

The pair (k, `) is called a corner of I.

If I is a squarefree stable ideal, there exists a formula to compute the graded

Betti numbers of I ([2]):

βk, k+`(I) =
∑

u∈G(I)`

(
max(u)− `

k

)
. (2)

Because of relation (2), next characterization holds true [10,12].

Characterization 2.6. Let I be a squarefree stable ideal of S. βk, k+`(I) is an

extremal Betti number if and only if k + ` = max{max(u) : u ∈ G(I)`} and

max(u) < k + j, for all j > ` and for all u ∈ G(I)j.

As a consequence of such a characterization, one has that if I is a squarefree

stable ideal of S and βk, k+`(I) is an extremal Betti number of I, then

βk, k+`(I) = |{u ∈ G(I)` : max(u) = k + `}|. (3)

Moreover, setting ` = max{j : G(I)j 6= ∅}, m = max{max(u) : u ∈ G(I)}, then

βm−`,m is the unique extremal Betti number of I if and only if

m = max{max(u) : u ∈ G(I)`},

and max(w) < m, for all w ∈ G(I)j with j < `.

Remark 2.7. If I is a squarefree stable monomial ideal of S and βk,k+`(I) is an

extremal Betti number of I, then from Characterization 2.6, we have the following

bound:

1 ≤ βk,k+`(I) ≤
(
k + `− 1

`− 1

)
. (4)
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In fact, there exist exactly
(
k+`−1
`−1

)
squarefree monomials of degree ` in S with

max(u) = k + `.

Now, let (k1, `1), . . . , (kr, `r) (n − 1 ≥ k1 > k2 > · · · > kr ≥ 1, 1 ≤ `1 < `2 <

· · · < `r) be corners of a graded ideal I, according to [7], the following notions can

be introduced:

Corn(I) = {(k1, `1), . . . , (kr, `r)}, a(I) = (βk1,k1+`1(I), . . . , βkr,kr+`r (I)).

Corn(I) is called the corner sequence of I, and a(I) the corner values sequence of

I.

If I is a squarefree ideal of S, then ki + `i ≤ n, for all i = 1, . . . , r.

Example 2.8. Let S = K[x1, x2, x3, x4, x5, x6] and let

I = (x1x2, x1x3, x1x4, x1x5, x2x3x4, x2x3x5, x2x3x6, x2x4x5, x2x4x6, x3x4x5x6)

be a squarefree strongly stable ideal of S. The extremal Betti numbers of I are

β3,6(I) = 2, β2,6(I) = 1, as the Betti table of I shows:

0 1 2 3

2 : 4 6 4 1

3 : 5 11 8 2

4 : 1 2 1 −

Hence, the corner sequence and the corner values sequence of I are

Corn(I) = {(3, 3), (2, 4)}, and a(I) = (2, 1),

respectively.

We close this Section with some notations from [10, Section 5] that will be useful

in the sequel.

Let I be a squarefree stable ideal of S. If I is generated in one degree `, then I has

a unique extremal Betti number βm−`,m(I), where m = max{max(u) : u ∈ G(I)}.
Assume I to be generated in degrees 1 ≤ `1 < `2 < · · · < `t ≤ n, and denote by

[t] the set {1, . . . , t}.
Setting

m`j = max{max(u) : u ∈ G(I)`j},

for j = 1, . . . , t, let us consider the following sequence of non negative integers

associated to I:

ds(I) = (m`1 − `1,m`2 − `2, . . . ,m`t − `t). (5)

Such a sequence is called the degree-sequence of I.
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One can observe that, if

m`1 − `1 > m`2 − `2 > · · · > m`t − `t, (6)

then, from Characterization 2.6, βm`i
−`i,m`i

(I) is an extremal Betti number of I,

for i = 1, . . . , t. If (6) does not hold, one can construct a suitable subsequence of

the degree-sequence ds(I), say

d̂s(I) = (m`i1
− `i1 ,m`i2

− `i2 , . . . ,m`iq
− `iq ), (7)

with `1 ≤ `i1 < `i2 < · · · < `iq = `t, and such that, for j = 1, . . . , q, βm`ij
−`ij ,m`ij

(I)

is an extremal Betti number of I.

The integer q ≤ t, denoted by dl(I), and called the degree-length of I, gives the

number of the extremal Betti numbers of the squarefree stable ideal I.

For more details on this subject see [10].

3. Extremal Betti numbers of squarefree strongly stable ideals

In this Section, we examine the extremal Betti numbers of squarefree strongly

stable ideals in S = K[x1, . . . , xn]. More precisely, we identify the admissible corner

sequence of a squarefree strongly stable ideal in S.

From now on, we assume Mon`
s(S) to be endowed with the squarefree lex order

>slex induced by x1 > x2 > · · · > xn.

At first, we analyze the simple cases occurring when n = 2, 3.

Case 1. Let n = 2 and S = K[x1, x2]. A squarefree strongly stable ideal I of S

can have at most one corner. More precisely, Corn(I) = {(1, 1)} with a(I) = (1),

i.e., I = (x1, x2).

Case 2. Let n = 3 and S = K[x1, x2, x3]. Also in such a case, a squarefree strongly

stable ideal I of S can have at most one corner (k, `), k + ` ≤ 3. Indeed, the only

situations that may occur are listed in Table 1.

Corners Corner values Squarefree strongly stable ideal

Corn(I) = {(2, 1)} a(I) = (1) I = (x1, x2, x3)

Corn(I) = {(1, 1)} a(I) = (1) I = (x1, x2)

Corn(I) = {(1, 2)} a(I) = (1) I = (x1x2, x1x3)

Corn(I) = {(1, 2)} a(I) = (2) I = (x1x2, x1x3, x2x3)

Table 1. Corner sequences for n = 3.

Such easy cases allow us to yield the next result.
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Proposition 3.1. Let S = K[x1, . . . , xn], n ≥ 2. If I is a squarefree strongly

stable ideal of S with (k, 1) ∈ Corn(I), then |Corn(I)| = 1. More precisely, I =

(x1, x2, . . . , xk+1).

Proof. First of all one can observe that G(I)1 = {x1, . . . , xk+1}. If G(I)≥2 6= ∅,
then there exists a monomial u ∈ G(I) of degree ` ≥ 2 such that max(u) ≥ k + 2.

A contradiction, since (k, 1) is a corner of I. �

Now, let us consider the case n = 4.

Case 3. Let n = 4 and S = K[x1, x2, x3, x4]. Assume I to be a squarefree strongly

stable ideal S of initial degree ≥ 2 (Proposition 3.1). Since a pair (k, `) ∈ Corn(I)

must satisfy the inequality k + ` ≤ 4, the situations that can occur in such a case

are described in Table 2.

Corners Corner values Squarefree strongly stable ideal

Corn(I) = {(2, 2), (1, 3)} a(I) =(1,1) I = (x1x2, x1x3, x1x4, x2x3x4)

Corn(I) = {(1, 2)} a(I) = (1) I = (x1x2, x1x3)

Corn(I) = {(1, 2)} a(I) = (2) I = (x1x2, x1x3, x2x3)

Corn(I) = {(2, 2)} a(I) = (1) I = (x1x2, x1x3, x1x4)

Corn(I) = {(2, 2)} a(I) = (2) I = (x1x2, x1x3, x1x4, x2x3, x2x4)

Corn(I) = {(2, 2)} a(I) = (3) I = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4)

Corn(I) = {(1, 3)} a(I) = (1) I = (x1x2x3, x1x2x4)

Corn(I) = {(1, 3)} a(I) = (2) I = (x1x2x3, x1x2x4, x1x3x4)

Corn(I) = {(1, 3)} a(I) = (3) I = (x1x2x3, x1x2x4, x1x3x4, x2x3x4)

Table 2. Corner sequences for n = 4.

Remark 3.2. All the squarefree strongly stable ideals described in Tables 1 and

2 are the smallest strongly stable ideals with the given data, with respect to the

inclusion relation.

Let T be a subset of Monsd(S), d < n. The set of squarefree monomials of degree

d+ 1 of S

Shad(T ) = {xiu : u ∈ T, i /∈ supp(u), i = 1, . . . , n}

is called the squarefree shadow of T . Moreover, we define the i-th squarefree shadow

recursively by Shadi(T ) = Shad(Shadi−1(T )), i ≥ 1, with Shad0(T ) = T .

Next notion will be crucial for the further developments in this paper.
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Definition 3.3. Let u = xi1 · · ·xiq be a squarefree monomial of S of degree q < n.

We say that u has a j -gap if ij+1− ij > 1 for some 1 ≤ j < q. The positive integer

ij+1 − ij − 1 will be called the width of the j -gap.

The j -gap of a squarefree monomial u = xi1 · · ·xiq ∈ S will be denoted by

j -gap(u), whereas its width will be denoted by wd(j -gap(u)). Moreover, we define

Gap(u) := {j ∈ [q] : there exists a j -gap(u)}.

Definition 3.4. A squarefree monomial u = xi1 · · ·xiq of S will be said gap–free

if Gap(u) = ∅.

Example 3.5. Let S = K[x1, . . . , x11]. The monomial u = x1x3x4x6x10 ∈ S

has three gaps. Indeed, Gap(u) = {1, 3, 4}, 1 -gap(u), 3 -gap(u) have both width

equal to 1 and 4 -gap(u) has width equal to 3; on the contrary, the monomial

v = x2x3x4x5x6 ∈ S is gap–free.

Lemma 3.6. Let u = xi1 · · ·xiq be a squarefree monomial of degree q < n − 1 of

S. Assume u has a gap whose width is ≥ 2, or u has at least two gaps.

Then there exist at least two squarefree monomials v, w ∈ S of degree q + 1 with

v >slex w, max(v) = max(w) = n and such that

(i) v is a multiple of u;

(ii) w is not a multiple of u.

Proof. If max(u) < n, we can choose v = uxn = xi1 · · ·xiqxn. Setting t =

max Gap(v), the greatest squarefree monomial following v in the squarefree lex

order is

ṽ = xi1 · · ·xit−1
xit+1 · · ·xit+q−t+2.

If it + q − t + 2 = n, we choose w = ṽ, otherwise, if it + q − t + 2 < n, we choose

w = xi1 · · ·xit−1xit+1 · · ·xit+q−t+1xn. Finally, v >slex w, u | v and u - w. Note that

t ≤ q.
Now, assume max(u) = n. If t = max Gap(u), let

v = xi1 · · ·xitxit+1−1xit+1
· · ·xiq−1

xiq = xi1 · · ·xitxit+1−1xit+1
· · ·xiq−1

xn.

Furthermore, if p = max Gap(v), then the greatest squarefree monomial following

v in the squarefree lex order is

ṽ = xi1 · · ·xip−1
xip+1 · · ·xip+q−p+2.

Hence, if ip + q − p+ 2 = n, we choose w = ṽ, otherwise, if ip + q − p+ 2 < n, we

choose w = xi1 · · ·xip−1xip+1 · · ·xip+q−p+1xn.
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Note that the assumption on the gaps of the squarefree monomial u assures us

that we can construct both the monomials v and w. �

Next results easily follow.

Proposition 3.7. Let I be a squarefree strongly stable ideal of S = K[x1, . . . , xn],

n ≥ 4, with initial degree 2 and with a corner in degree 2. Then

(1) I has at most n− 2 corners for n = 4;

(2) I has at most n− 3 corners for n ≥ 5.

Proof. (1) It follows from Case 3.

(2) Let n ≥ 5. An admissible degree–sequence of I is the following one:

ds(I) = (n− 2, n− 3, · · · , n− (n− 2) = 2).

Indeed, setting w1 = x1xn, since 1 -gap(w1) has width n − 2, then Lemma 3.6

assures that there exist at least n − 4 squarefree monomials w2, . . . , wn−3 in S of

degrees 3, . . . , n−2, respectively, with max(wi) = n, and n−4 squarefree monomials

v2, . . . , vn−3 of degrees 3, . . . , n − 2, respectively, with max(vi) = n and such that

vi >slex wi, wi−1 | vi, vi - wi, for i = 2, . . . , n− 3. Using the same techniques as in

Lemma 3.6, one can easily verify that wi - wi+1 (i = 1, . . . , n− 4).

w1 v2

w2 v3

w3 v4

w4 v5

w5 v6

w6 v7

. . .

The monomials wi (i = 1, . . . , n− 3) will be called basic monomials.

Next tables list the basic monomials for n = 5, . . . , 9. For n ≥ 10, the construc-

tion of such elements proceeds smoothly.
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n = 5

vi wi

x1x5

x1x4x5 x2x3x5

x2x3x4x5 −

n = 6

vi wi

x1x6

x1x5x6 x2x3x6

x2x3x5x6 x2x4x5x6

x2x3x4x5x6 −

n = 7

vi wi

x1x7

x1x6x7 x2x3x7

x2x3x6x7 x2x4x5x7

x2x4x5x6x7 x3x4x5x6x7

n = 8

vi wi

x1x8

x1x7x8 x2x3x8

x2x3x7x8 x2x4x5x8

x2x4x5x7x8 x2x4x6x7x8

x2x4x5x6x7x8 x3x4x5x6x7x8

n = 9

vi wi

x1x9

x1x8x9 x2x3x9

x2x3x8x9 x2x4x5x9

x2x4x5x8x9 x2x4x6x7x9

x2x4x6x7x8x9 x2x5x6x7x8x9

x2x4x5x6x7x8x9 x3x4x5x6x7x8x9

Note that the construction of the basic elements ends up as soon as one gets a

gap–free monomial. �

Example 3.8. Let S = K[x1, x2, x3, x4, x5, x6, x7, x8], and let

I = (x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x1x8, x2x3x4, x2x3x5, x2x3x6, x2x3x7,

x2x3x8, x2x4x5x6, x2x4x5x7, x2x4x5x8, x2x4x6x7x8, x3x4x5x6x7x8)

be a squarefree strongly stable ideal of S. The degree-sequence of I is

ds(I) = (m2 − 2,m3 − 3,m4 − 4,m5 − 5,m6 − 6) = (6, 5, 4, 3, 2).
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I has initial degree 2 and dl(I) = 5. The extremal Betti numbers of I are

β8−2,8(I) = β8−3,8(I) = β8−4,8(I) = β8−5,8(I) = β8−6,8(I) = 1, as the Betti table

of I shows:
0 1 2 3 4 5 6

2 : 7 21 35 35 21 7 1

3 : 5 15 20 15 6 1 −
4 : 3 9 10 5 1 − −
5 : 1 3 3 1 − − −
6 : 1 2 1 − − − −

Proposition 3.9. Let n ≥ 5 and let I be a squarefree strongly stable ideal of

S = K[x1, . . . , xn] with initial degree ` ≥ 3 and with a corner in degree `. Then I

has at most n− ` corners.

Proof. Using the same reasoning as in Proposition 3.7, an admissible degree–

sequence of I is the following one:

ds(I) = (n− `, n− (`+ 1), · · · , n− (n− 1) = 1),

with dl(I) = n− `.
Next tables show the basic monomials for n = 5, . . . , 8 and ` = 3. For n ≥ 8

(` = 3), the construction of such elements proceeds smoothly.

n = 5

vi wi

x1x2x5

x1x2x4x5 x1x3x4x5

x1x2x3x4x5 −

n = 6

vi wi

x1x2x6

x1x2x5x6 x1x3x4x6

x1x3x4x5x6 x2x3x4x5x6

x1x2x3x4x5x6 −

Also in this case, the construction of the basic elements ends up as soon as one

gets a gap–free monomial. �

Example 3.10. Let S = K[x1, x2, x3, x4, x5, x6, x7, x8] and let

I = (x1x2x3, x1x2x4, x1x2x5, x1x2x6, x1x2x7, x1x2x8, x1x3x4x5, x1x3x4x6,

x1x3x4x7, x1x3x4x8, x1x3x5x6x7, x1x3x5x6x8, x1x4x5x6x7x8,

x2x3x4x5x6x7x8)
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H

n = 7

vi wi

x1x2x7

x1x2x6x7 x1x3x4x7

x1x3x4x6x7 x1x3x5x6x7

x1x3x4x5x6x7 x2x3x4x5x6x7

n = 8

vi wi

x1x2x8

x1x2x7x8 x1x3x4x8

x1x3x4x7x8 x1x3x5x6x8

x1x3x5x6x7x8 x1x4x5x6x7x8

x1x3x4x5x6x7x8 x2x3x4x5x6x7x8

be a squarefree strongly stable ideal of S initial degree 3. The degree-sequence of I

is

ds(I) = (m2 − 3,m3 − 4,m4 − 5,m5 − 6,m6 − 7) = (5, 4, 3, 2, 1).

The extremal Betti numbers of I are β8−3,8(I) = β8−4,8(I) = β8−5,8(I) = β8−6,8(I)

= β8−7,8(I) = 1, as the Betti table of I shows

0 1 2 3 4 5

3 : 6 15 20 15 6 1

4 : 4 10 10 5 1 −
5 : 2 5 4 1 − −
6 : 1 2 1 − − −
7 : 1 1 − − − −

The next example considers a squarefree monomial ideal I of S without a corner

in its initial degree, and shows the construction of a squarefree monomial ideal J

of S with a corner in its initial degree and with the same extremal Betti numbers

(positions and values) of I.

Example 3.11. Consider the following monomial ideal I of S = K[x1, . . . , x5]:

I = (x1x2, x1x3x4, x1x3x5, x2x3x4x5).

I is squarefree strongly stable of initial degree 2 and with Corn(I) = {(2, 3), (1, 4)}.
From the Betti table of I, one can note that there is no corner in its initial degree:
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0 1 2

2 : 1 − −
3 : 2 3 1

4 : 1 1 −

Figure 1. Betti Table of I

Furthermore, we can construct a squarefree strongly stable ideal J in S with

initial degree 3 and Corn(J) = {(2, 3), (1, 4)}. It is

J = (x1x2x3, x1x2x4, x1x2x5, x1x3x4x5).

Note that J is the smallest squarefree strongly stable ideal of S with corner

sequence {(2, 3), (1, 4)}:

0 1 2

3 : 3 3 1

4 : 1 1 −

Figure 2. Betti Table of J

Remark 3.12. It is worthy to point out that a squarefree strongly stable ideal I

of S = K[x1, . . . , xn] (n ≥ 5) of initial degree ` ≥ 2 with a corner in degree ` and

such that

ds(I) = (n− 2, n− 3, . . . , 2), for ` = 2,

ds(I) = (n− `, n− `− 1, . . . , 1), for ` ≥ 3

is a squarefree lex ideal of S.

Hence, one can observe that a squarefree lex ideal of the polynomial ring S of

initial degree ` ≥ 2 and with a corner in degree ` can have at most n − ` corners

unlike the non–squarefree case. Indeed, a lex ideal I of a polynomial ring can have

at most 2 corners [11, Theorem 3.2] (see also [12, Proposition 2.1]).

For u, v ∈ Monsd(S), u ≥slex v, let us define the following set of squarefree

monomials:

L(u, v) = {z ∈ Monsd(S) : u ≥slex z ≥slex v}.
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Theorem 3.13. Let n ≥ 5 and `1 ≥ 3 two integers. Given n− `1 pairs of positive

integers

(k1, `1), (k2, `2), . . . , (kn−`1 , `n−`1), (8)

with 1 ≤ kn−`1 < kn−`1−1 < · · · < k1 ≤ n−3 and 3 ≤ `1 < `2 < · · · < `n−`1 ≤ n−1,

then there exists a squarefree lex ideal I of S of initial degree `1 and with the pairs

in (8) as corners if and only if ki + `i = n, for i = 1, . . . , n− `1.

Proof. Set S = K[x1, . . . , xn]. If there exists a squarefree lex ideal I of S of initial

degree `1 and with the pairs in (8) as corners, then Proposition 3.9 forces that

ki + `i = n, for i = 1, . . . , n− `1.

Conversely, assume there exist n− `1 pairs of positive integers

(k1, `1), (k2, `2), . . . , (kn−`1 , `n−`1), (9)

with 1 ≤ kn−`1 < kn−`1−1 < · · · < k1 ≤ n − 3, 3 ≤ `1 < `2 < · · · < `n−`1 ≤ n − 1

and ki + `i = n, for i = 1, . . . , n− `1.

We prove that there exists a squarefree lex ideal I of S generated in degrees

`1, `2, . . . , `n−`1 with Corn(I) = {(k1, `1), . . . , (kn−`1 , `n−`1)}.
Setting s = max{i : `1 + 2i− 3 ≤ n− 2}, the required monomial ideal I can be

constructed as follows.

Step 1. For i = 1, . . . , s, let

- G(I)`1 = L (u1, v1), with u1 = x1x2 · · ·x`1 and v1 = x1x2 · · ·x`1−1xn;

- G(I)`i = G(I)`1+i−1 = L (ui, vi), with

ui = x1x2 · · ·x`1−2
i−2∏
j=0

x`1+2jx`1+2(i−2)+1x`1+2(i−2)+2

= x1x2 · · ·x`1−2
i−2∏
j=0

x`1+2jx`1+2i−3x`1+2i−2

and

vi = x1 · · ·x`1−2
i−2∏
j=0

x`1+2jx`1+2(i−2)+1xn = x1 · · ·x`1−2
i−2∏
j=0

x`1+2jx`1+2i−3xn.

Step 2. Let us consider the squarefree monomial

vs = x1x2 · · ·x`1−2
s−2∏
j=0

x`1+2jx`1+2s−3xn.



184 LUCA AMATA AND MARILENA CRUPI

Since, `1 + 2s− 3 ≤ n− 2, the smallest monomial belonging to the Shad(G(I)`s) is

ws+1 = x1x2 · · ·x`1−2
s−2∏
j=0

x`1+2jx`1+2s−3xn−1xn.

We distinguish two cases: `1 + 2s− 3 = n− 2, and `1 + 2s− 3 < n− 2.

Claim 1. If `1 + 2s− 3 < n− 2, then `1 + 2s− 3 = n− 3.

Indeed, by the meaning of s, `1 + 2(s+ 1)− 3 ≥ n− 1. Hence, `1 + 2s− 3 ≥ n− 3

and

n− 3 ≤ `1 + 2s− 3 < n− 2

and consequently `1 + 2s− 3 = n− 3. The claim follows.

Let us consider `1 + 2s− 3 = `1 + 2(s− 2) + 1 = n− 2. In such a case,

ws+1 = x1 · · ·x`1−2
s−2∏
j=0

x`1+2jx`1+2(s−2)+1xn−1xn

= x1 · · ·x`1−2
s−3∏
j=0

x`1+2jxn−3xn−2xn−1xn.

Hence, the greatest squarefree monomial of S following ws+1 is

us+1 = x1x2 · · ·x`1−2
s−4∏
j=0

x`1+2jx`1+2(s−3)+1x`1+2(s−3)+2 · · ·x`1+2(s−3)+5.

Note that max(us+1) = `1+2(s−3)+5 = `1+2s−3+2 = n−2+2 = n, whereupon

we choose

G(I)`s+1
= {us+1}.

The smallest squarefree monomial belonging to Shad(G(I)`s+1
) is

ws+2 = x1x2 · · ·x`1−2
s−4∏
j=0

x`1+2jx`1+2(s−3)x`1+2(s−3)+1x`1+2(s−3)+2 · · ·x`1+2(s−3)+5

= x1x2 · · ·x`1−2
s−4∏
j=0

x`1+2jxn−5xn−4xn−3xn−2xn−1xn.

Therefore, the greatest squarefree monomial of S following ws+2 is

us+2 = x1x2 · · ·x`1−2
s−5∏
j=0

x`1+2jx`1+2(s−4)+1x`1+2(s−4)+2 · · ·x`1+2(s−4)+7.

Note that max(us+2) = `1 + 2(s− 4) + 7 = `1 + 2s− 3 + 2 = n− 2 + 2 = n. Thus,

we choose

G(I)`s+2 = {us+2},
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and so on. In general,

G(I)`s+q
= {us+q},

with

us+q = x1x2 · · ·x`1−2
s−2−(q+1)∏

j=0

x`1+2jx`1+2(s−2−q)+1x`1+2(s−2−q)+2 · · ·x`1+2(s−2−q)+2q+3,

for q = 1, . . . , t, where t is the positive integer such that s − 2 − (t + 1) = 0. It is

easy to verify that max(us+q) = n.

Claim 2. s+ t = n− `1 − 2.

Since, max(us+t) = n, and t+ 1 = s− 2 (t = s− 3), then

n = `1 + 2(s− 2− t) + 2t+ 3 = `1 + 2(t+ 1− t) + 2t+ 3 = `1 + 2t+ 5.

Hence,

n− `1 − 2 = `1 + 2t+ 5− `1 − 2 = 2t+ 3 = 2s− 3 = s+ t.

The claim follows.

Finally, we choose

G(I)`n−`1−1
= G(I)s+t+1 = {us+t+1} = {x1x2 · · ·x`1−2x`1+1 · · ·xn},

G(I)`n−`1
= G(I)s+t+2 = {us+t+2} = {x1x2 · · ·x`1−3x`1−1x`1 · · ·xn}.

Now, let us consider the case `1 + 2s − 3 = n − 3. In such a case, the smallest

monomial belonging to Shad(G(I)`s) is

ws+1 = x1x2 · · ·x`1−2
s−2∏
j=0

x`1+2jx`1+2(s−2)+1xn−1xn

= x1x2 · · ·x`1−2
s−2∏
j=0

x`1+2jxn−3xn−1xn.

Therefore, the greatest squarefree monomial of S following ws+1 is

us+1 = x1x2 · · ·x`1−2
s−2∏
j=0

x`1+2jxn−2xn−1xn.

Since max(us+1) = n, we choose

G(I)`s+1
= {us+1}.
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By hypothesis, `1 + 2(s − 2) = n − 4, so that the smallest squarefree monomial

belonging to Shad(G(I)`s+1
) is

ws+2 = x1 · · ·x`1−2
s−2∏
j=0

x`1+2jxn−3xn−2xn−1xn

= x1 · · ·x`1−2
s−3∏
j=0

x`1+2jxn−4xn−3xn−2xn−1xn.

Consequently, the greatest squarefree monomial of S following ws+2 is

us+2 = x1x2 · · ·x`1−2
s−4∏
j=0

x`1+2jx`1+2(s−3)+1x`1+2(s−3)+2 · · ·x`1+2(s−3)+6.

Note that max(us+2) = `1 + 2(s− 3) + 6 = `1 + 2s = n, whence we choose

G(I)`s+2
= {us+2}.

In general,

G(I)`s+q
= {us+q},

with

us+q = x1x2 · · ·x`1−2
s−2−q∏
j=0

x`1+2jx`1+2(s−2−(q−1))+1 · · ·x`1+2(s−2−(q−1))+2q+2,

for q = 1, . . . , t, where t is the positive integer such that s− 2− t = 0 (t = s− 2).

It is easy to verify that max(us+q) = n.

Also in such a case we can verify that s+t = n−`1−2. Indeed, since max(us+t) =

n, and t = s− 2, then

n = `1 + 2(s− 2− (t− 1)) + 2t+ 2 = `1 + 2t+ 4,

and

n− `1 − 2 = `1 + 2t+ 4− `1 − 2 = 2t+ 2 = 2(s− 2) + 2 = s+ t.

Finally, as in the previous case, we can choose

G(I)`n−`1−1
= G(I)s+t+1 = {x1x2 · · ·x`1−2x`1+1 · · ·xn},

and

G(I)`n−`1
= G(I)s+t+2 = {x1x2 · · ·x`1−3x`1−1x`1 · · ·xn}.

It is worthy observing that I is the smallest squarefree lex ideal of S with Corn(I)

= {(k1, `1), (k2, `2), . . . , (kr, `r)} and such that βki, ki+`i(I) = 1, for all i, i.e., a(I) =

(1, . . . , 1). �
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4. A numerical characterization of extremal Betti numbers

In this Section, we face the following problem.

Problem 4.1. Given three positive integers n ≥ 4, `1 ≥ 2 and 1 ≤ r ≤ n − `1, r

pairs of positive integers (k1, `1), . . ., (kr, `r) such that n − 3 ≥ k1 > k2 > · · · >
kr ≥ 2 and 2 ≤ `1 < `2 < · · · < `r, ki + `i ≤ n (i = 1, . . . , r), and r positive

integers a1, . . . , ar, under which conditions does there exist a squarefree monomial

ideal I of S = K[x1, . . . , xn] such that βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar are

its extremal Betti numbers?

For a pair of positive integers (k, `) such that k + ` ≤ n, we define the following

set:

As(k, `) = {u ∈ Mons`(S) : max(u) = k + `}.

Setting As(k, `) = {u1, . . . , uq}, we can suppose, possibly after a permutation of

the indices, that

u1 >slex u2 >slex · · · >slex uq. (10)

For the i-th monomial u of degree ` with max(u) = k + `, we mean the monomial

of As(k, `) that appears in the i-th position of (10), for 1 ≤ i ≤ q. Note that

u1 = x1x2 · · ·x`−1xk+`, uq = xk+1 · · ·xk+`, and q = |As(k, `)| =
(
k+`−1
`−1

)
.

Furthermore, if ui, uj , i < j, are two monomials in (10), we define the following

subsets of As(k, `):

[ui, uj ] = {w ∈ As(k, `) : ui ≥slex w ≥slex uj},

[ui, uj) = {w ∈ As(k, `) : ui ≥slex w >slex uj};

[ui, uj ] will be called the segment of As(k, `) of initial element ui and final element

uj , whereas [ui, uj) will be called the left segment of As(k, `) of initial element ui

and final element uj . If i = j, we set [ui, uj ] = {ui}.

Remark 4.2. From (3), if (k, `) is a corner of a squarefree stable ideal I and

βk,k+`(I) = a, then there exists a segment [v1, va] of As(k, `) such that a = |[v1, va]|.

Next lemma will be crucial in the sequel. It can be easily proved by induction

on n.

Lemma 4.3. Let n and q ≥ 1 be two positive integers such that n ≥ q. Then(
n

q

)
=

(
n− 1

q − 1

)
+

(
n− 2

q − 1

)
+ · · ·+

(
q − 1

q − 1

)
.

Given a monomial u ∈ As(k, `), the next proposition shows a method, involving

Lemma 4.3, to count the number of monomials v ∈ As(k, `) such that v ≥slex u.
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Theorem 4.4. Let (k, `) be a pair of positive integers with ` ≥ 2 and let u =

xi1xi2 · · ·xi`−1
xi` be a monomial of As(k, `). Setting ũ = xi1xi2 · · ·xi`−1

, then

|[x1x2 · · ·x`−1xk+`, u]| is a sum of t suitable binomial coefficients, where

t =


i1, if Gap(ũ) = ∅,

i1 +
∑p
s=1 wd(gs -gap(ũ)), if Gap(ũ) = {g1, . . . , gp} 6= ∅.

Proof. Set m = |[x1x2 · · ·x`−1xk+`, u]|. m is the number of all monomials w ∈
As(k, `) such that w ≥slex u. By Lemma 4.3, the binomial coefficient

(
k+`−1
`−1

)
=

|As(k, `)| can be decomposed as a sum of k + 1 binomial coefficients, as follows:(
k + `− 1

`− 1

)
=

k+1∑
j=1

(
k + `− 1− j

`− 2

)
=

(
k + `− 2

`− 2

)
+

(
k + `− 3

`− 2

)
+ · · ·+

(
`− 2

`− 2

)
. (11)

One can observe that
(
k+`−2
`−2

)
counts the monomials w ∈ As(k, `) such that min(w)

= 1, the binomial coefficient
(
k+`−3
`−2

)
counts the monomials w ∈ As(k, `) such that

min(w) = 2. In general, the binomial coefficient
(
k+`−i
`−2

)
counts the monomials w ∈

As(k, `) such that min(w) = i−1, for i = 4, . . . , k+2. Note that
(
`−2
`−2
)

=
(
k+`−(k+2)

`−2
)

counts the monomials w ∈ As(k, `) with min(w) = k + 1. Indeed, there exists only

a monomial w of such a type. It is w = xk+1xk+2 · · ·xk+` = minAs(k, `). It is clear

that all monomials w ∈ As(k, `) with min(w) < i1 = min(ũ) = min(u) are greater

than u. Hence, the first i1− 1 binomial coefficients in (11) give a contribute for the

computation of m.

We need to distinguish two cases: Gap(ũ) = ∅, Gap(ũ) 6= ∅.
Note that Gap(ũ) = Gap(u), or Gap(ũ) = Gap(u)− 1.

Case 1. Let Gap(ũ) = ∅. In such a case, u is the greatest monomial of As(k, `)

with min(u) = i1. More precisely, the following sum of binomial coefficients

i1−1∑
j=1

(
k + `− 1− j

`− 2

)
(12)

gives the number of all monomials w ∈ As(k, `) greater than u. Since i1, i2, . . . , i`

are consecutive integers, then other monomials greater than u which are different

from the w’s counted by (12) do not exist. Hence,

m = |[x1x2 · · ·x`−1xk+`, u]| =
i1−1∑
j=1

(
k + `− 1− j

`− 2

)
+ 1.

On the other hand, 1 =
(
0
0

)
, and consequently m is the sum of t = i1−1 + 1 = i1 =

min(ũ) = min(u) binomial coefficients.
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Case 2. Let Gap(ũ) = {g1, . . . , gp}, p ≥ 1. It is worthy to point out that the

existence of the gaps gj (j = 1, . . . , p) implies that igj+1−igj−1 > 0, i.e., supp(ũ)∩
{q : igj < q < igj+1} = ∅, for all j ∈ [p]. Thus, all monomials w ∈ As(k, `) of the

type xi1xi2 · · ·xigj z, where z is a monomial of degree ` − gj and max(z) = k + `

such that supp(z) ∩ {q : igj < q < igj+1} 6= ∅, are greater than u.

It is clear that all these monomials make up the left segment [x1x2 · · ·x`−1xk+`, u).

Let us consider the i1–th binomial in (11):(
k + `− 1− i1

`− 2

)
=

k+1∑
j=1

(
k + `− 1− i1 − j

`− 3

)
. (13)

In order to compute all monomials w of the type xi1xi2 · · ·xig1 z, we need to evaluate

g1 successive binomial decompositions until the next one:(
k + `− ig1 − 1

`+ i1 − ig1 − 2

)
=

k−i1+1∑
j=1

(
k + `− ig1 − 1− j
`+ i1 − ig1 − 3

)
. (14)

The sum of the first wd(g1 -gap(ũ)) = ig1+1 − ig1 − 1 binomial coefficients in (14)

gives the number of all monomials w ∈ As(k, `) we are looking for.

In order to compute all monomials w ∈ As(k, `) of the type xi1xi2 · · ·xig2 z, we

consider the (wd(g1 -gap(ũ))− 1)–th binomial in (14):(
k + `− ig1 − 1− wd(g1 -gap(ũ))− 1

`+ i1 − ig1 − 3

)
=

(
k + `− ig1+1 − 1

`+ i1 − ig1 − 3

)
=

=

k−i1+ig1−ig1+1+2∑
j=1

(
k + `− ig1+1 − 1− j
`+ i1 − ig1 − 4

)
.

Hence, evaluating the ig2 − ig1+1 successive binomial decompositions until

(
k + `− ig2 − 1

`+ i1 − ig1 − ig2 + ig1+1 − 3

)
=

k−i1+ig1−ig1+1+2∑
j=1

(
k + `− ig2 − 1− j

`+ i1 − ig1 − ig2 + ig1+1 − 4

)
, (15)

the number of all required monomials w ∈ As(k, `) will be given by the sum of the

first wd(g2 -gap(ũ)) = ig2+1 − ig2 − 1 binomial coefficients in (15).

The procedure can be iterated for all gj ∈ Gap(ũ), j ≥ 3.

Finally, |[x1x2 · · ·x`−1xk+`, u)| = i1 − 1 +
∑p
s=1 wd(gs -gap(ũ)). Hence, in order

to get |[x1x2 · · ·x`−1xk+`, u]|, we must take into account the binomial
(
0
0

)
which

counts the monomial u:

t = i1 − 1 +

p∑
s=1

wd(gs -gap(ũ)) + 1 = i1 +

p∑
s=1

wd(gs -gap(ũ)).

The assertion follows. �
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Remark 4.5. Our choice to focus on the monomial ũ = xi1xi2 · · ·xi`−1
, instead of

u, in Theorem 4.4 is due to the fact that if i`−1 < k+`−1, i.e., Gap(ũ) = Gap(u)−1,

then all monomials z ∈ As(k, `) such that k + ` − 1 ∈ supp(z) are smaller than u,

with respect to ≥slex.

Next example illustrates Theorem 4.4.

Example 4.6. Let S = K[x1, . . . , x9] and consider the monomial u = x2x5x7x8.

Set ũ = x2x5x7. From Remark 2.7, |As(4, 4)| =
(
7
3

)
= 35. In order to compute

m = |[x1x2x3x8, u]|, we consider the following binomial decomposition:(
7

3

)
=

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
.

Since, min(u) = 2, then all monomials w ∈ As(4, 4) with min(w) = 1 are greater

than u, so we must take into account the binomial coefficient
(
6
2

)
= 15 for the

computation of m.

Now, let us consider the following binomial decomposition:(
5

2

)
=

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
.

Since Gap(ũ) = {1, 2} and wd(1 -gap(ũ)) = 2, the sum
(
4
1

)
+
(
3
1

)
= 7 gives the

number of all monomials of the type x2z ∈ As(4, 4), with z squarefree monomial of

degree 3 and max(z) = 8 such that supp(z) ∩ {q : 2 < q < 5} 6= ∅.
At this stage, we have 15 + 7 = 22 monomials.

The next decomposition we need to consider is(
2

1

)
=

(
1

0

)
+

(
0

0

)
.

Since 2 ∈ Gap(ũ), and wd(2 -gap(ũ)) = 1, we must take into account
(
1
0

)
= 1 .

Finally, we have obtained 22 + 1 = 23 monomials of As(4, 4) greater than u,

and so m = |[x1x2x3x8, u]| = 23 + 1 = 24.

The following scheme summarizes the previous calculations.(
7
3

)
=
(
6
2

)
+
(
5
2

)
+
(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
5
2

)
=
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(
1
1

)
(
2
1

)
=
(
1
0

)
+
(
0
0

)
.

Now, consider the monomial v = x3x4x7x8 and let ṽ = x3x4x7. Proceeding as

before, since Gap(ṽ) = {1}, then |[x1x2x3x8, u]| = 27 + 1, where 27 is given by the

sum of the highlighted binomial coefficients in the next scheme:
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(
7
3

)
=
(
6
2

)
+
(
5
2

)
+
(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
4
2

)
=
(
3
1

)
+
(
2
1

)
+
(
1
1

)
(
3
1

)
=
(
2
0

)
+
(
1
0

)
+
(
0
0

)
.

Here is the list of all monomials which come into play for u and v:

x1x2x3x8, x1x2x4x8, x1x2x5x8, x1x2x6x8, x1x2x7x8,

x1x3x4x8, x1x3x5x8, x1x3x6x8, x1x3x7x8,

x1x4x5x8, x1x4x6x8, x1x4x7x8,

x1x5x6x8, x1x5x7x8,

x1x6x7x8,

x2x3x4x8, x2x3x5x8, x2x3x6x8, x2x3x7x8,

x2x4x5x8, x2x4x6x8, x2x4x7x8,

x2x5x6x8,x2x5x7x8,

x2x6x7x8,

x3x4x5x8, x3x4x6x8,x3x4x7x8,

x3x5x6x8, x3x5x7x8,

x3x6x7x8,

x4x5x6x8, x4x5x7x8,

x4x6x7x8,

x5x6x7x8

Now, let u1, . . . ur be squarefree monomials of degree q of S. We denote by

B(u1, . . . , ur) the smallest squarefree strongly stable set of Monsq(S) containing the

monomials u1, . . . , ur.

It is well known that if q < n, Shad(B(u1, . . . , ur)) is a squarefree strongly stable

set of monomials of degree q + 1 of S, and consequently Shadi(B(u1, . . . , ur)) is a

squarefree strongly stable set of degree q + i, for 1 ≤ i ≤ n− q.

Now, let (k1, `1) and (k2, `2) be two pairs of positive integers such that k1 > k2,

`1 < `2, ki + `i ≤ n (i = 1, 2). If u1, . . . , ur ∈ Mons`1(S) are squarefree monomials
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of S such that max(uj) = k1 + `1, j = 1, . . . , r, we define the following set:

BShad(u1, . . . , ur)(k2,`2) = {v ∈ Shad`2−`1(B(u1, . . . , ur)) : max(v) ≤ k2 + `2}.

One can quickly observe that BShad(u1, . . . , ur)(k2,`2) is a squarefree strongly

stable set of degree `2 of S.

Remark 4.7. It is worthy to underline that if one wants to compute the minimum

of BShad(u1, . . . , ur)(k2,`2), it is sufficient to determine min BShad(ur)(k2,`2). Fur-

thermore, in order to obtain such a monomial, one can suitably manage the integers

in supp(ur), as we will see in a while.

Definition 4.8. Let u be a squarefree monomial of degree q of S, q < n. Let p ≤ n
a positive integer such that [p]\supp(u) 6= ∅ and {j1, . . . , jt} a subset of [p]\supp(u),

with j1 < j2 < · · · < jt, q+ t ≤ n. The monomial xj1 · · ·xjtu ∈ Monsq+t(S) is called

the joint of u with the variables xj1 , . . . , xjt .

Example 4.9. Let u = x1x3x6x8 ∈ K[x1, . . . , x9]. Let p = 7 and consider the set

{2, 4, 7} ⊂ [7]\{1, 3, 6, 8}. The joint of u with x2, x4, x7 is the squarefree monomial

x1x2x3x4x6x7x8 ∈ Mons7(S).

With the same notations as before, we give the construction of the monomial

min BShad(u)(k2,`2) for a given squarefree monomial u ∈ As(k1, `1).

Construction 4.10. Let (k1, `1) and (k2, `2) be two pairs of positive integers such

that k1 > k2, 2 ≤ `1 < `2 and ki + `i ≤ n, for i = 1, 2. Let u = xi1 · · ·xi`1 be a

squarefree monomial of As(k1, `1). Assume it to be the greatest integer belonging

to supp(u) such that it < k2 + `2, and write

u = xi1 · · ·xit · · ·xi`1 .

Let us consider the monomial u = xi1 · · ·xit and let j1, . . . , j`2−t be the greatest

integers belonging to [k2 + `2] \ supp(u). Then,

min BShad(u)(k2,`2) = xj1 · · ·xj`2−t
u ∈ As(k2, `2).

Construction 4.10 assures the correctness of the next algorithm.



ON THE EXTREMAL BETTI NUMBERS OF SQUAREFREE MONOMIAL IDEALS 193

Algorithm 1: Computation of min BShad(u)(k,`)

Input: Polynomial ring S, monomial u, positive integer k, positive integer `

Output: monomial v

begin

j ← k + `;

t←| {i ∈ supp(u) : i < j} |;
v ← the first t variables of u;

q ← `− t;
while q > 0 do

if j /∈ supp(v) then

if j > 0 then

v ← v ∗ Sj ;
else

error no monomial ;

end

q ← q − 1;

end

j ← j − 1;

end

return v;

end

Lemma 4.11. Take two pairs of positive integers (k1, `1) and (k2, `2) such that

k1 > k2, 2 ≤ `1 < `2 with ki + `i ≤ n, for i = 1, 2. Let u be a squarefree monomial

of degree `1 with max(u) = k1 + `1 and let v = min BShad(u)(k2,`2). If Gap(v) 6= ∅,
then there exists a monomial w ∈ As(k2, `2) \ BShad(u)(k2,`2) .

Proof. Let

v = min BShad(u)(k2,`2) = xr1 · · ·xr`2 .

One has max(v) = k2 + `2. Assume p = max Gap(v), then the greatest squarefree

monomial following v in the squarefree lex order is xr1 · · ·xrp−1
xrp+1 · · · xrp+`2−p+1,

with rp + `2 − p+ 1 ≤ k2 + `2. Hence, if rp + `2 − p+ 1 = k2 + `2, we choose

w = xr1 · · ·xrp−1xrp+1 · · ·xrp+`2−p+1.

Otherwise, if rp + `2 − p+ 1 < k2 + `2, let

w = xr1 · · ·xrp−1xrp+1 · · ·xrp+`2−pxk2+`2 .

�
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Next pseudocode describes the procedure in Lemma 4.11.

Algorithm 2: Computation of the next monomial smaller than a given u in

As(k, `)

Input: Polynomial ring S, monomial u

Output: monomial w

begin

m← max supp(u);

`← deg(u);

if Gap(u) 6= ∅ then

t← max Gap(u);

w ← the first t− 1 variables of u;

j ← index of variable of u at position t;

foreach i ∈ {1 . . `− t} do

j ← j + 1 ;

w ← w ∗ Sj ;
end

w ← w ∗ Sm;

else

error no monomial ;

end

return w;

end

The discussion below is significant for solving Problem 4.1.

Discussion 4.12. Let (k1, `1) and (k2, `2) be two pairs of positive integers such

that k1 > k2, 2 ≤ `1 < `2 with ki + `i ≤ n (i = 1, 2) and let a1, a2 be two positive

integers.

Let T be a segment of As(k2, `2) of cardinality a2 <
(
k2+`2−1
`2−1

)
. We want to

determine the admissible values for a1 ≤
(
k1+`1−1
`1−1

)
so that there exists a segment

[u1, ua1 ] of As(k1, `1) of cardinality a1 and such that BShad([u1, ua1 ])(k2,`2) + T .

It is clear that it should be a1 <
(
k1+`1−1
`1−1

)
.

Now, set T = [z1, za2 ], and assume T * BShad([u1, ua1 ])(k2,`2). Let v1 ∈
As(k1, `1) be the smallest monomial such that z1 /∈ BShad(v1)(k2,`2). Such a mono-

mial allows us to determine the bound on a1 for which there exists the segment

T .
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Indeed, we can compute the following cardinalities (Theorem 4.4):

n1 = |{u ∈ As(k1, `1) : u ≥ v1}| = |[x1x2 · · ·x`1−1xk1+`1 , v1]|,

p1 = |{v ∈ As(k1, `1) : v > u1}| = |[x1x2 · · ·x`1−1xk1+`1 , u1)|.

Hence, since [u1, ua1 ] ⊆ [x1x2 · · ·x`1−1xk1+`1 , v1], we get the following coarse

bound for a1:

a1 ≤ n1;

then, we can refine such a bound via p1 as follows:

a1 ≤ n1 − p1.

One can notice, that if u1 = maxAs(k1, `1), then p1 = 0.

Example 4.13. Given S = K[x1, . . . , x10], let us consider the pairs of positive

integers (5, 4) and (2, 6), the positive integers a1 = 8 and a2 = 6, and the following

segment of As(5, 4) of cardinality a1 = 8:

[x1x3x4x9, x1x4x7x9] = {x1x3x4x9, x1x3x5x9,x1x3x6x9, x1x3x7x9, x1x3x8x9,

x1x4x5x9, x1x4x6x9, x1x4x7x9}.

We want to verify if there exists a segment of As(2, 6) of cardinality a2 = 6 not

contained in BShad([x1x3x4x9, x1x4x7x9])(2,6).

First, from Remark 2.7, we know that a1 ≤
(
8
3

)
= 56 and a2 ≤

(
7
5

)
= 21.

In order to determine p1 = |{v ∈ As(5, 4) : v > x1x3x4x9}| = |[x1x2x3x9, x1x3x4x9)|,
we need to consider a suitable sequence of binomial decompositions. The first

binomial decomposition that we have to examine is(
8

3

)
=

(
7

2

)
+

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
.

Then, applying the procedure described in Theorem 4.4 (see also Example 4.6), we

obtain the following sequence of binomial decompositions,(
8
3

)
=
(
7
2

)
+
(
6
2

)
+
(
5
2

)
+
(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
7
2

)
=
(
6
1

)
+
(
5
1

)
+
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(
1
1

)
,

whereupon p1 = 6.
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In order to compute n1, we consider the set A2 consisting of the smallest a2 = 6

monomials of As(2, 6):

A2 = {x2x3x4x5x6x8, x2x3x4x5x7x8,x2x3x4x6x7x8, x2x3x5x6x7x8,

x2x4x5x6x7x8, x3x4x5x6x7x8}.

These monomials can be found using the “reversal” of Algorithm 2.

The smallest monomial z of As(5, 4) such that maxA2 = x2x3x4x5x6x8 /∈
BShad(z)(2,6) is z = x1x7x8x9. The number of all monomials w ∈ As(5, 4) greater

than or equal to z is determined by the following binomial sequences:(
8
3

)
=
(
7
2

)
+
(
6
2

)
+
(
5
2

)
+
(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
7
2

)
=
(
6
1

)
+
(
5
1

)
+
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(
1
1

)
.

Hence, we have n1 = (6 + 5 + 4 + 3 + 2) + 1 = 21 monomials. Finally, we have

a1 ≤ n1 − p1 = 21− 6 = 15.

For a1 = 15, then a segment of As(2, 6) of length a2 = 6 is

A2 = [x2x3x4x5x6x8, x3x4x5x6x7x8].

Discussion 4.12 yields the following result.

Theorem 4.14. Consider three positive integers n ≥ 5, `1 ≥ 3 and 1 ≤ r ≤ n− `1,

r pairs of positive integers (k1, `1), . . ., (kr, `r) such that n − 3 ≥ k1 > k2 > · · · >
kr ≥ 2 and 2 ≤ `1 < `2 < · · · < `r, ki + `i ≤ n (i = 1, . . . , r), and r positive

integers a1, . . . , ar. Let K be a field of characteristic zero. The following conditions

are equivalent:

(1) There exists a squarefree graded ideal J of S = K[x1, . . . , xn] with

βk1,k1+`1(J) = a1, . . ., βkr,kr+`r (J) = ar as extremal Betti numbers.

(2) There exists a squarefree strongly stable ideal I of S = K[x1, . . . , xn] with

βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar as extremal Betti numbers.

(3) Setting

(i) vr = xkr+1 · · ·xkr+`r ,

Ar = [wr, vr], with wr ∈ As(kr, `r) and such that |Ar| = ar;

(ii) for i = 1, . . . , r − 1,

vr−i = min{u ∈ As(kr−i, `r−i) : maxAr−i+1 /∈ BShad(u)(kr−i+1,`r−i+1)},
Ar−i = [wr−i, vr−i], with wr−i ∈ As(kr−i, `r−i) and such that |Ar−i| =
ar−i;
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(iii) for i = 1, . . . , r, ni = |{u ∈ As(ki, `i) : u ≥ vi}|, then the integers ai

satisfy the following conditions:

ai ≤ ni.

If ai = |[ui,1, ui,ai ]|, ui,j ∈ As(ki, `i) (j = 1, . . . , ai) and pi = |{v ∈
As(ki, `i) : v > ui,1}|, then ai ≤ ni − pi, for i = 1, . . . , r.

Proof. (1) ⇔ (2) See [3] and the introduction in this paper.

(2)⇒ (3) It follows applying iteratively Discussion 4.12, for i = 1, . . . , r. Note that

vr = minAs(kr, `r), and consequently nr =
(
kr+`r−1
`r−1

)
; whereas p1 = 0.

(3)⇒ (2) We construct a squarefree strongly stable ideal I of S generated in degrees

`1, . . . , `r as follows:

- G(I)`1 = B(u1,1, . . . , u1,a1);

- G(I)`2 = B(u2,1, . . . , u2,a2) \ BShad`2−`1(G(I)`1)(k2,`2);

- G(I)`i = B(ui,1, . . . , ui,ai)\BShad`i−`i−1(Mons(I`i−1
))(ki,`i), for i = 3, . . . , r,

where Mons(I`i−1
) is the set of all squarefree monomials of degree `i−1

belonging to I`i−1 .

The monomials ui,1, . . . , ui,ai , for i = 1, . . . , r, are the basic monomials of I. �

Remark 4.15. A similar statement can be formulated in the case `1 = 2 and

n ≥ 5.

Next example illustrates Theorem 4.14.

Example 4.16. Let n = 11, r = 4, C = {(8, 3), (4, 5), (3, 6), (2, 9)} and a =

(a1, a2, a3, a4) = (7, 5, 2, 2). We want to construct a squarefree strongly stable ideal

I of S = K[x1, . . . , x11] generated in degrees 3,5,6,9 and such that Corn(I) = C,
a(I) = a.

With the same notations as in Theorem 4.14, before starting the construction of

the ideal, we verify if the coarse bounds are satisfied for each ai, i = 1, . . . , 4.

First of all, v4 = x3x4x5x6x7x8x9x10x11 and n4 = |[x1x2x3x4x5x6x7x8x11, v4]|
=
(
10
8

)
= 45. Hence, a4 = 2 ≤ n4.

Moreover, A4 = {x2x4x5x6x7x8x9x10x11, x3x4x5x6x7x8x9x10x11},
v3 = x2x3x6x7x8x9, and from the binomial decompositions(

8
5

)
=
(
7
4

)
+
(
6
4

)
+
(
5
4

)
+
(
4
4

)
(
6
4

)
=
(
5
3

)
+
(
4
3

)
+
(
3
3

)
(
5
3

)
=
(
4
2

)
+
(
3
2

)
+
(
2
2

)
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we obtain a3 = 2 ≤ n3 = |[x1x2x3x4x5x9, v3]| = 35 + (6 + 3) + 1 = 45.

Furthermore, A3 = {x2x3x5x7x8x9, x2x3x6x7x8x9} and v2 = x2x3x5x6x9. From

the binomial decompositions(
8
4

)
=
(
7
3

)
+
(
6
3

)
+
(
5
3

)
+
(
4
3

)
+
(
3
3

)
(
6
3

)
=
(
5
2

)
+
(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
5
2

)
=
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(
1
1

)
one has a2 = 5 ≤ n2 = |[x1x2x3x4x9, v2]| = (35 + 4) + 1 = 40.

Finally, A2 = [x2x3x4x5x9, x2x3x5x6x9] = {x2x3x4x5x9, x2x3x4x6x9,
x2x3x4x7x9, x2x3x4x8x9, x2x3x5x6x9} and v1 = x1x10x11. The binomial decom-

positions(
10
2

)
=
(
9
1

)
+
(
8
1

)
+
(
7
1

)
+
(
6
1

)
+
(
5
1

)
+
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(
1
1

)
(
9
1

)
=
(
8
0

)
+
(
7
0

)
+
(
6
0

)
+
(
5
0

)
+
(
4
0

)
+
(
3
0

)
+
(
2
0

)
+
(
1
1

)
+
(
0
0

)
imply a1 = 7 ≤ n1 = |[x1x2x11, v1]| = 8 + 1 = 9.

Now, we proceed with the construction of the ideal I we are looking for, and so

doing we refine the previous bounds for the ai’s.

- The greatest monomial of As(8, 3) is x1x2x11. Since p1 must be equal to 0

and a1 = 7 ≤ n1 − p1 = 9, one can consider the greatest a1 = 7 monomials

of As(8, 3). Such monomials can be obtained by Algorithm 2. Hence, we

set

G(I)3 = B(x1x2x11, x1x3x11, x1x4x11, x1x5x11, x1x6x11, x1x7x11, x1x8x11).

- Let us consider the corner (4, 5). By Algorithm 1, we compute the smallest

monomial of BShad2(G(I)3)(4,5), i.e., the monomial x1x6x7x8x9; whereas,

by Algorithm 2, we determine the greatest monomial of As(4, 5)\ BShad2

(G(I)3)(4,5), i.e., x2x3x4x5x9. Finally, from the binomial decomposition(
8
4

)
=
(
7
3

)
+
(
6
3

)
+
(
5
3

)
+
(
4
3

)
+
(
3
3

)
it follows that p2 = |[x1x2x3x4x9, x2x3x4x5x9)| = 35. Hence, n2 − p2 =

40− 35 = 5 monomials are available. Therefore, since a2 = 5, we set

G(I)5 = B(x2x3x4x5x9, x2x3x4x6x9, x2x3x4x7x9, x2x3x4x8x9, x2x3x5x6x9)

\BShad2(G(I)3)(4,5).

- Let us consider the corner (3, 6). One has

min BShad(G(I)5)(3,6) = x2x3x5x6x8x9
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and

max(As(3, 6) \ BShad(G(I)5))(3,6) = x2x3x5x7x8x9,

and from(
8
5

)
=
(
7
4

)
+
(
6
4

)
+
(
5
4

)
+
(
4
4

)
(
6
4

)
=
(
5
3

)
+
(
4
3

)
+
(
3
3

)
(
5
3

)
=
(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
3
2

)
=
(
2
1

)
+
(
1
1

)
we have p3 = |[x1x2x3x4x5x9, x2x3x5x7x8x9)| = 43. Hence, n3 − p3 =

45− 43 = 2.

Since a3 = 2, we set

G(I)6 = B(x2x3x5x7x8x9, x2x3x6x7x8x9) \ BShad(Mons(I5))(3,6).

- If one considers the corner (2, 9), since

min BShad3(G(I)6)(2,9) = x2x3x5x6x7x8x9x10x11

max(As(2, 9) \ BShad3(G(I)6))(2,9) = x2x4x5x6x7x8x9x10x11,

from (
10
8

)
=
(
9
7

)
+
(
8
7

)
+
(
7
7

)
(
8
7

)
=
(
7
6

)
+
(
6
6

)
it follows p4 = |[x1x2x3x4x5x6x7x8x11, x2x4x5x6x7x8x9x10x11)| = 43.

So n4 − p4 =
(
10
8

)
− p4 = 45− 43 = 2. Hence, since a4 = 2, we can set

G(I)9 = B(x2x4x5x6x7x8x9x10x11, x3x4x5x6x7x8x9x10x11)\BShad3(Mons(I6))(2,9).

The Betti table of the squarefree strongly stable I just constructed is the follow-

ing one:

0 1 2 3 4 5 6 7 8

3 : 42 217 553 861 875 587 252 63 7

4 : − − − − − − − − −
5 : 13 39 45 24 5 − − − −
6 : 2 6 6 2 − − − − −
7 : − − − − − − − − −
8 : − − − − − − − − −
9 : 2 4 2 − − − − − −
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One can observe that Theorem 4.14 assures the correctness of the next Algo-

rithm 3.

Algorithm 3: Computation of the basic monomials for the given data

Input: Polynomial ring S, list of corners {(ki, `i)}, list of values (ai)

Output: list of monomials mons

begin

hyp← logical conditions required as hypotheses of the Theorem4.14;

if hyp then

m← k0 + `0;

w ← S1 ∗ . . . ∗ S`0−1 ∗ Sm; // first corner

mons← {w};
foreach j ∈ {2 . . a0} do

w ←next monomial of w; // calling Algorithm 2

if no monomial then

error no ideal ;

else

mons← mons ∪ {w};
end

end

r ← number of corners; // successive corners

foreach i ∈ {2 . . r} do

w ← min BShad(mons)(ki−1,`i−1) ; // calling Algorithm 1

foreach j ∈ {1 . . ai} do

w ← next monomial of w; // calling Algorithm 2

if no monomial then

error no ideal ;

else

mons← mons ∪ {w};
end

end

end

end

return mons;

end

We close the Section with an example that illustrates a situation where the

construction of a squarefree strongly stable ideal is not possible.
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Example 4.17. Let n = 10, r = 3, C = {(6, 2), (5, 4), (3, 7)} and a = (a1, a2, a3) =

(2, 1, 4). We have |As(3, 7)| =
(
9
6

)
= 84, so it is possible to manage a3 = 4 ≤ 84

monomials.

Let us consider the set A2 consisting of the smallest four monomials in As(3, 7):

A2 = {x3x4x5x7x8x9x10, x3x4x6x7x8x9x10, x3x5x6x7x8x9x10, x4x5x6x7x8x9x10},

and let us try to get the smallest monomial z ∈ As(5, 4) such that x3x4x5x6x8x9x10

/∈ BShad(z)(3,7). It is z = x2x7x8x9. Now, we compute |[x1x2x3x9, z]| as bound for

a2: (
8
3

)
=
(
7
2

)
+
(
6
2

)
+
(
5
2

)
+
(
4
2

)
+
(
3
2

)
+
(
2
2

)
(
6
2

)
=
(
5
1

)
+
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(
1
1

)
.

We have n2 = 21 + (5 + 4 + 3 + 2) + 1 = 36 monomials greater than z and so

a2 = 1 ≤ 36.

Note that if z does not exist, then it is clear that we can not go on.

Now, we try to verify the bound for a1 taking into account the previous results.

Consider the monomial z ∈ As(5, 4), and take the greatest monomial w of As(6, 2)

such that z /∈ BShad(w)(3,7). It is w = x1x8. We can note that w is the smallest

monomial of As(6, 2), i.e., |[x1x8, w]| = 1.

Hence, we have that a1 ≤ 1. For this reason the requested value for a1 =

2 is not admissible and there does not exist any squarefree monomial ideal I of

K[x1, . . . , x10] such that Corn(I) = C and a(I) = a.

Nevertheless, there exists a squarefree monomial ideal J of S such that Corn(J) =

C and a(J) = (1, 1, 4).
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