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ON THE EXTREMAL STRUCTURE OF

THE UNIT BALLS OF BANACH SPACES OF

WEAKLY CONTINUOUS FUNCTIONS AND THEIR DUALS

ZHIBAO HU AND MARK A. SMITH

Abstract. A sufficient and then a necessary condition are given for a function
to be an extreme point of the unit ball of the Banach space C(K, (X,w)) of
continuous functions, under the supremum norm, from a compact Hausdorff
topological space K into a Banach space X equipped with its weak topology
w. Strongly extreme points of the unit ball of C(K, (X,w)) are characterized
as the norm-one functions that are uniformly strongly extreme point valued
on a dense subset of K. It is shown that a variety of stronger types of extreme
points (e.g. denting points) never exist in the unit ball of C(K, (X,w)). Lastly,
some naturally arising and previously known extreme points of the unit ball
of C(K, (X,w))∗ are shown to actually be strongly exposed points.

Introduction

Several types of extreme points of convex sets in Banach spaces have been in-
vented and studied during the last six decades. For a specific Banach space, it is
always of interest to discover whether the closed unit ball has any extreme points
and, if so, to exactly describe them; it is of further interest to determine which, if
any, of these extreme points are in fact one of the many stronger types of extreme
points appearing in the literature. Such discoveries and determinations are the
subject matter of this paper.

Let K be an infinite compact Hausdorff topological space, let X be a real Banach
space, and let w denote the weak topology on X . Let C(K, (X,w)) denote the
Banach space of all continuous functions from K into (X,w) equipped with the
supremum norm; the geometry of this Banach space has been the subject of several
recent investigations (see [ADLR], [C], [DD], and [M]).

In this paper, the extremal structure of the closed unit ball of C(K, (X,w))
relative to the extremal structure of the closed unit ball of X is investigated. The
rather elusive extreme point structure of the unit ball of C(K, (X,w)) is discussed
and it is compared to the extreme point structure situation in the unit ball of
C(K,X), the space of all continuous functions from K into X equipped with the
supremum norm (here X is considered with its norm topology). Next, the strongly
extreme points of the unit ball of C(K, (X,w)) are characterized in a very natural
manner; the strongly extreme point situation here is quite different from that in
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1902 ZHIBAO HU AND MARK A. SMITH

the unit ball of C(K,X) from one point of view and is exactly the same from
another point of view. Examples are provided that illustrate this difference, and a
proposition is given that witnesses this sameness. Finally, it is shown that the unit
ball of C(K, (X,w)) never has many of the stronger types of extreme points (for
example, denting points).

Also, in this paper, the extremal structure of the unit ball of the dual space
C(K, (X,w))∗ is examined. The lack of a concrete representation of this dual space
(as opposed to the dual space C(K,X)∗) considerably clouds the extreme point
situation. It is known, from [ADLR], that C(K,X)∗ is always complemented in
C(K, (X,w))∗; hence the extreme points of the unit ball of C(K,X)∗, which are
well known, have a chance to also be extreme points in C(K, (X,w))∗. Several
examples of classical Banach spaces are given for which this is the case. The main
results here are strengthenings of a theorem of P-K. Lin [L], as illuminated by M.
Cambern [C]; these are strengthenings that identify, for the first time, some denting
points and some strongly exposed points of the unit ball of C(K, (X,w))∗.

The authors wish to express considerable thanks to Professor P.N. “Paddy”
Dowling for many helpful conversations regarding the subject matter of this paper.

Definitions and Preliminaries

For a real Banach space E, let BE denote the closed unit ball of E and let SE
denote the unit sphere of E. The unit ball BE is said to be stable provided the
mapping from BE ×BE into BE that sends (x, y) to 1

2 (x+ y) is an open mapping.
The dual space of a Banach space E is denoted by E∗ and the value of x∗ in E∗ at
x in E is denoted by 〈x∗, x〉. The notation ‖x± z‖ ≤ 1 + δ means “‖x+ z‖ ≤ 1 + δ
and ‖x− z‖ ≤ 1 + δ.”

The following is a well-known list (included here for completeness sake) of geo-
metrical notions.

(i) A point x in BE is called an extreme point of BE provided x is not the
midpoint of any non-trivial line segment lying in BE .

(ii) A point x in BE is called a strongly extreme point of BE provided that for
every ε > 0 there exists a δ > 0 such that ‖ x± z ‖ ≤ 1 + δ for z in E implies
‖ z ‖ ≤ ε.

(iii) A point x in BE is called a point of continuity of BE provided that whenever
{xλ}λ∈Λ is a net in BE which converges weakly to x, it follows that {xλ}λ∈Λ

converges in norm to x. If nets are replaced by sequences in this condition,
then x is called a point of sequential continuity of BE .

(iv) A point x in BE is called a denting point of BE provided x is not an element
of the closed convex hull of {y ∈ BE : ‖ y − x ‖ > ε} for each ε > 0.

(v) A point x in BE is called a strongly exposed point of BE provided that there
exists x∗ in BE∗ such that 〈x∗, x〉 = ‖ x∗ ‖ = ‖ x ‖ = 1 and whenever
{xn}∞n=1 is a sequence in BE such that limn→∞〈x∗, xn〉 = 1, it follows that

lim
n→∞ ‖ x− xn ‖ = 0;

in this case, the functional x∗ is said to strongly expose BE at x.

It is known, from [LLT], that a point in BE is a denting point of BE if and only
if it is both a point of continuity and an extreme point of BE . For x∗ in E∗ and
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δ > 0, the slice of BE determined by x∗ and δ is the set

S(x∗, BE , δ) = {y ∈ BE : 〈x∗, y〉 ≥ ‖ x∗ ‖ − δ}.
It is straightforward to show that x is a denting point of BE if and only if for every
ε > 0 there exist x∗ in E∗ and δ > 0 such that diamS(x∗, BE , δ) < ε. Also x is a
strongly exposed point of BE if and only if there exists an element x∗ in SE∗ such
that 〈x∗, x〉 = 1 and limδ→0+ diamS(x∗, BE , δ) = 0.

If E is a dual space, the notions of a weak∗ point of continuity and a weak∗

point of sequential continuity of BE are defined as in (iii) above replacing weak
convergence by weak∗ convergence; the notion of a weak∗ denting point of BE is
defined as in (iv) above replacing the closed convex hull by the weak∗ closed convex
hull of the set given there; and the notion of a weak∗ strongly exposed point of BE

is defined as in (v) above insisting that the strongly exposing functional belongs to
the predual of E. Statements concerning weak∗ denting points and weak∗ strongly
exposed points can be made which correspond to the statements made immediately
after (v) above about denting points and strongly exposed points.

With the obvious abbreviations, the diagram below gives the relative strengths
of all these notions.

w∗-str-exp → w∗-dent → w∗-pc → w∗-pscy y y y
str-exp → dent → pc → pscy

str-ext → ext

The dual space C(K,X)∗ can be identified with the space of all countably additive,
X∗−valued, Borel measures of bounded variation on K equipped with the variation
norm, where the action of µ in C(K,X)∗ on f in C(K,X) is given by 〈µ, f〉 =∫
K
fdµ. The space C(K,X) may be considered as a closed subspace ofC(K, (X,w)).

For f in C(K, (X,w)), define f̃ : K ×BX∗ → R by

f̃(t, x∗) = 〈x∗, f(t)〉 for (t, x∗) in K ×BX∗ .

Then f̃ is a continuous function on the completely regular topological space K ×
BX∗ ; here BX∗ is equipped with its norm topology, and

sup {|f̃(t, x∗)| : (t, x∗) ∈ K ×BX∗} = ‖ f ‖ .
Each f̃ has a unique continuous extension to a function f̄ defined on the Stone-Čech
compactification Y of K ×BX∗ . Thus C(K, (X,w)) may be considered as a closed
subspace of C(Y ) = C(Y,R) via the mapping f 7−→ f̄ . For g in C(K) and x in X ,
the symbol g ⊗ x denotes the mapping from K ×BX∗ into R given by

(g ⊗ x)(t, x∗) = g(t)〈x∗, x〉 for (t, x∗) in K ×BX∗

and g ⊗ x denotes the continuous extension of g ⊗ x to Y .
It should be noted that, in the verification of an example or in the proof of a the-

orem, consecutive claims and displays are numbered with those numbers referring
only to the argument within that verification or proof.
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The space C(K, (X,w))

The first result in this section gives a sufficient condition and a necessary con-
dition for an element of C(K, (X,w)) to be an extreme point of the unit ball of
C(K, (X,w)). The proof of assertion (i) is straightforward, and assertion (ii) fol-
lows from the fact that, for every element f in C(K, (X,w)), the set {t ∈ K : f
is norm continuous at t} is a dense Gδ subset of K (see the proof of Theorem 5
below).

Proposition 1. Let f be an element of C(K, (X,w)).

(i) If the set of all t in K for which f(t) is an extreme point of BX is dense in
K, then f is an extreme point of BC(K,(X,w)).

(ii) If f is an extreme point of BC(K,(X,w)), then ‖ f(t) ‖ = 1 for all t in a dense
Gδ subset of K and f(t) is an extreme point of BX for all isolated points t in
K.

Recall, from [BLP], that there is a Banach space X with dimX = 4 and an
extreme point f of BC([0,1],X) such that there is no t in [0, 1] for which f(t) is an
extreme point of BX . The existence of this example shows that, in general, assertion
(ii) of Proposition 1 is as strong as possible and that the converse of assertion (i)
is certainly not true. However, if X is strictly convex (that is, every element of SX
is an extreme point of BX), then the extreme points of BC(K,(X,w)) can be nicely
characterized.

Corollary 2. If X is a strictly convex Banach space, then f is an extreme point
of BC(K,(X,w)) if and only if the set of all t in K for which f(t) is an extreme point
of BX is a dense subset of K.

Recall (see [G] or [DHS]) that if BX is stable, then a function f in C(K,X) is
an extreme point of BC(K,X) if and only if f(t) is an extreme point of BX for all t
in K. The corresponding statement for f in C(K, (X,w)) is false, as the following
example shows.

Example 3. Let K = { 1
n : n ∈ N} ∪ {0} with the topology inherited from R and

let X = `2 with its usual norm. Define f : K → X by f( 1
n ) = en for each n in N,

where {en}∞n=1 is the usual unit vector basis for `2, and f(0) = 0. Then f is in
C(K, (X,w)) and is an extreme point of BC(K,(X,w)) by Proposition 1. Yet f is not
everywhere extreme point valued, since f(0) = 0, even though BX is stable.

The function f in Example 3 is not particularly surprising; it exists because the
set of extreme points of B`2 is not weakly closed. Note that in a Banach space X
for which BX is stable, the set of extreme points of BX is norm closed. Since BX

is stable whenever X is strictly convex, it is natural to ask whether the statement
of Corollary 2 remains true whenever the hypothesis that X is strictly convex is
replaced by the hypothesis that BX is stable. The authors have no counterexample,
but there seems to be little immediate evidence to support an affirmative conjecture.

Definition 4. A subset A of BX is said to be uniformly strongly extreme pro-
vided for every ε > 0 there exists δ > 0 such that, for all x in A, if ‖ x± z ‖ ≤ 1+ δ
for z in X , then ‖ z ‖ ≤ ε.

The notion of uniformly strongly extreme subset of BX permits the very natural
and complete characterization of the strongly extreme points of BC(K,(X,w)) given
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in the next theorem. From one point of view, the strongly extreme point situation
in C(K, (X,w)) is quite different from that in C(K,X), but, from another point of
view, it is exactly the same. The difference is illustrated in the examples following
the theorem, and the sameness is given in the proposition following the examples.
Note that Theorem 5 can be read with or without the parenthetical “and Gδ”; thus
it is actually the statement of the equivalence of three assertions.

Theorem 5. An element f of C(K, (X,w)) is a strongly extreme point of
BC(K,(X,w)) if and only if there exists a dense (and Gδ) subset D of K such that
f(D) is a uniformly strongly extreme subset of BX .

Proof. Let f be in C(K, (X,w)) and suppose there exists a dense subset D of K
such that f(D) is a uniformly strongly extreme subset of BX . Since f is weakly
continuous, since D is dense and since BX is weakly closed, it follows that ‖ f(t) ‖
≤ 1 for all t in K; that is, ‖ f ‖ ≤ 1. Now, let ε > 0 be given and use the hypothesis
on f(D) to produce a corresponding δ > 0. If h is in C(K, (X,w)) and is such that
‖ f ± h ‖ ≤ 1 + δ, then

‖ f(t)± h(t) ‖ ≤ 1 + δ for all t in D,

and hence ‖ h(t) ‖ ≤ ε for all t in D. As above, it follows that ‖ h ‖ ≤ ε. This
shows that f is a strongly extreme point of BC(K,(X,w)).

Conversely, suppose f is a strongly extreme point of BC(K,(X,w)). Since f is in
C(K, (X,w)), it follows that f(K) is weakly compact in X and hence f(K) has the
point-of-continuity property. For each n in N, let

On = {t ∈ K : there exists an open set V

containing t such that diam f(V ) < 1
n

}
.

Note that, by definition, each On is open in K and

∞⋂
n=1

On = {t ∈ K : f is norm continuous at t}.

Claim 1. The set On is dense in K for each n in N.

To establish this claim, let V be a nonempty, open subset of K and fix n in N.
Since f(V ) ⊆ f(K) and f(K) has the point-of-continuity property, there exists a
weakly open, nonempty set U in X with U ∩ f(V ) nonempty and diam(U ∩ f(V ))
< 1

n . Let W = f−1(U) ∩ V . Then W is nonempty, open and a subset of V ∩ On.
This establishes the claim.

Claim 2. For every ε > 0, there exists δ > 0 such that the set

Kε,δ = {t ∈ K : ‖ f(t)± z ‖ ≤ 1 + δ implies ‖ z ‖ ≤ ε}
is dense in K.

To establish this claim, suppose otherwise. Then there exists ε > 0 such that for
all δ > 0 it is the case that Kε,δ 6= K. Let Gn = K \Kε, 1

n
for each n in N. Then

Gn is nonempty and open, and Gn ⊇ Gn+1 for each n in N. Consider the following
two alternatives:

Case 1. There exists m in N such that Gn ⊆ Gm ⊆ Gn for each n ≥ m.
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In this case, note that since, by Claim 1, the set On ∩Gm is open and dense in
Gm for each n in N, since Gn is open and dense in Gm for each n ≥ m, and since
Gm is an open (and hence Baire) subset of K, it follows that( ∞⋂

n=1

On

)
∩
( ∞⋂
n=m

Gn

)
∩ Gm is dense in Gm.

Let t0 be a fixed element of this dense subset of Gm. Then f is norm continuous
at t0, since t0 is in

⋂∞
n=1 On, and f(t0) is not a strongly extreme point of BX ,

since t0 is in
⋂∞
n=mGn. Now, proceed as in the proof of Theorem 2 of [DHS] to

produce a sequence {hn}∞n=1 in C(K,X), and hence in C(K, (X,w)), such that
‖ f ± hn ‖ ≤ 1 + 2

n and ‖ hn ‖ ≥ ε for each n in N. This shows that f is not a
strongly extreme point of BC(K,(X,w)), contrary to the hypothesis.

Case 2. For every m in N, there exists n > m such that Gn ⊆ Gm 6⊆ Gn.

In this case, there exists an increasing sequence {mn}∞n=1 in N such that

An = Gmn \Gmn+1 is nonempty for each n in N.

Note that {An}∞n=1 is a pairwise disjoint sequence of nonempty, open subsets of K.
For each n in N, choose tn in An such that f is norm continuous at tn; this can be
done (see Case 1 above) since An is open and hence An ∩

(⋂∞
i=1 Oi

)
is dense in An.

To show that this circumstance implies that f is not a strongly extreme point of
BC(K,(X,w)), which is contrary to the hypothesis, let η > 0 be given. Choose and

fix n in N such that mn > 2
η . Since f is norm continuous at tn, there exists an

open subset U containing tn such that

U ⊆ An and diamf(U) <
η

2
.

Now, there exists a continuous function g : K → [0, 1] such that supp(g) ⊆
U and g(tn) = 1. Since tn is in An, which is a subset of Gmn , it follows that
there exists z in X such that

‖ f(tn)± z ‖ ≤ 1 +
1

mn
and ‖ z ‖ > ε.

Define h : K → X by h(t) = g(t)z for t in K. Then h is in C(K, (X,w)) and
‖ h ‖ ≥ ‖ h(tn) ‖ = ‖ z ‖ > ε. For t in K \ U ,

‖ f(t)± h(t) ‖ = ‖ f(t) ‖ ≤ 1,

while, for t in U ,

‖ f(t)± h(t) ‖ ≤ ‖ f(t)− f(tn) ‖ + ‖ f(tn) ± g(t)z ‖
<

η

2
+ 1 +

1

mn

< 1 + η.

Thus ‖ f ± h ‖ ≤ 1 + η and ‖ h ‖ ≥ ε. This establishes the claim.
For every n in N, by Claim 2, there exists in in N such that K 1

n ,
1
in

is dense in K.

For ease of notation, write K(n,in) for this dense set.

Claim 3. The set O2in ⊆ K(n,2in) for each n in N.
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To establish this claim, fix n in N and let t be in O2in . Then there exists an open
set V containing t such that diamf(V ) < 1

2in
. Since K(n,in) is dense in K, there

exists a point k in K(n,in) ∩ V . Now, if z is in X such that ‖ f(t)± z ‖ ≤ 1 + 1
2in

,
then

‖ f(k)± z ‖ ≤ ‖ f(k)− f(t) ‖ + ‖ f(t)± z ‖
<

1

2in
+ 1 +

1

2in

= 1 +
1

in

and hence ‖ z ‖ ≤ 1
n , since k is in K(n,in). This shows t is in K(n,2in) and the claim

is established.
Finally, let D =

⋂∞
n=1 O2in . Then D is a Gδ subset of K and D is dense in K,

since each O2in is open and dense in K. Also, by Claim 3,

D ⊆
∞⋂
n=1

K(n,2in),

which yields that f(D) is a uniformly strongly extreme subset of BX . This com-
pletes the proof of the theorem.

The next two examples show that each of the following situations can occur:

(i) there exist an infinite compact Hausdorff space K, a real Banach space X
and a strongly extreme point f in BC(K,(X,w)) such that not every value of f
is a strongly extreme point of BX ; and

(ii) there exist an infinite compact Hausdorff space K, a real Banach space X
and f in BC(K,(X,w)) such that f(t) is a strongly extreme point of BX for all
t in K yet f is not a strongly extreme point of BC(K,(X,w)).

These examples in C(K, (X,w)) should be compared to the situation in C(K,X);
recall, from [DHS], that f in C(K,X) is a strongly extreme point of BC(K,X) if and
only if f(t) is a strongly extreme point of BX for every t in K.

Example 6. (This is really Example 3 revisited.) Let the topological space K, the
Banach space X and the function f be those of Example 3. Then f is a strongly
extreme point of BC(K,(X,w)), by Theorem 5, since D = { 1

n : n ∈ N} is dense in
K and f(D) = {en : n ∈ N} is a uniformly strongly extreme subset of BX (this is
true since X is uniformly rotund). Yet f is not everywhere strongly extreme point
valued since f(0) = 0.

Example 7. For each i in N, let

Bi = co

{(±1, 0), (0,±1
)
, (± i

i+ 1
, ± i

i+ 1
)

}
,

the “octagon” ball in R2, and let | · |i be the Minkowski functional of Bi. Then let
Xi = R3 with the norm ||| · |||i given by

||| (α, β, γ) |||i = (|α|2 + |(β, γ)|2i )
1
2 ,

that is, Xi = R⊕2 (R2, | · |i) for each i in N. Finally, let X = `∞(Xi), the Banach
sequence space, equipped with the usual supremum norm. Now, let

e0 = (1, 0, 0) and e1 = (0, 1, 0)
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in Xi and then let

x0 = (e0, e0, e0, ... )

and

xn = (e0, e0, ..., e0︸ ︷︷ ︸
n−1

, e1, e0, e0, ... )

for each n in N. Note {xn}∞n=1 and x0 are in X and ‖ xn ‖ = ‖ x0 ‖ = 1.

Claim 1. Each xn and x0 are strongly extreme points of BX .

To establish this claim, let | · |∞ denote the supremum norm on R2 and then let
X0 = R3 with the norm ||| · ||| given by

||| (α, β, γ) ||| = (|α|2 + |(β, γ)|2∞)
1
2 ,

that is, X0 = R⊕2 (R2, | · |∞). Since BXi ⊆ BX0 and B(R2,|·|∞) ⊆ 2B(R2,|·|i) for each
i in N, it follows that

||| z ||| ≤ ||| z |||i ≤ 2||| z |||(1)

for all z in R3. It is easily seen that e0 is a strongly extreme point of BX0 ; in fact,
e0 is a strongly exposed point of BX0 exposed by the functional (1, 0, 0) in X∗

0 .
Using this fact combined with (1), it follows that for every ε > 0 there exists δ > 0
such that, for all i in N,

||| e0 ± z |||i ≤ 1 + δ implies ||| z |||i ≤ 2ε(2)

for all z in R3. To show x0 is a strongly extreme point of BX , let ε > 0 be given
and suppose y = (y(1), y(2), ...) is in X such that ‖ x0 ± y ‖ ≤ 1 + δ, where δ is
given as in (2). Then ||| e0 + y(i) |||i ≤ 1+ δ and hence ||| y(i) |||i ≤ 2ε for each i
in N. Thus ‖ y ‖ ≤ 2ε. This shows x0 is a strongly extreme point of BX . Now, fix
n in N; to show xn is a strongly extreme point of BX , let ε > 0 be given. Consider
the unit ball BXn and note that e1 is a strongly extreme point of BXn ; in fact, e1
is a strongly exposed point of BXn exposed by the functional (0, 1, 0) in X∗

n. Use
this fact in combination with (2) to produce δ > 0 such that

||| e1 ± w |||n ≤ 1 + δ implies ||| w |||n ≤ ε

for all w in R3 and, for all i in N,

||| e0 ± z |||i ≤ 1 + δ implies ||| z |||i ≤ 2ε

for all z in R3. Suppose y = (y(1), y(2), ...) is in X such that ‖ xn ± y ‖ ≤ 1 + δ.
Then

||| e1 ± y(n) |||n ≤ 1 + δ and ||| e0 ± y(i) |||i ≤ 1 + δ

for all i 6= n in N, and hence

||| y(n) |||n ≤ ε and ||| y(i) |||i ≤ 2ε

for all i 6= n in N. Thus ‖ y ‖ ≤ 2ε. This shows that xn is a strongly extreme point
of BX and Claim 1 is established.

Claim 2. The sequence {xn}∞n=1 converges weakly to x0 in X .
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EXTREMAL STRUCTURE OF UNIT BALLS 1909

To establish this claim, note that

xn − x0 = (0, 0, ..., 0︸ ︷︷ ︸
n−1

, e1 − e0, 0, 0, ...)

for each n in N and hence the sequence {xn − x0}∞n=1 is actually in c0(Xi). Recall
that the dual of c0(Xi) is `1(X∗

i ) and so if x∗ = (x∗(1), x∗(2), ...) is in `1(X∗
i ), then∣∣ 〈x∗, xn − x0〉

∣∣ =
∣∣ 〈x∗(n), e1 − e0〉

∣∣ ≤ 2||| x∗(n) |||n
for each n in N. But limn→∞ ||| x∗(n) |||n = 0 since ‖ x∗ ‖ =

∑∞
n=1 ||| x∗(n) |||n.

This shows that {xn−x0}∞n=1 converges weakly to 0 in c0(Xi) and hence converges
weakly to 0 in X = `∞(Xi). Thus Claim 2 is established.

Let K = { 1
n : n ∈ N}∪{0} with the topology inherited from R, and then define

f : K → X by f( 1
n ) = xn, for each n in N, and f(0) = x0. Then f is in

C(K, (X,w)) by Claim 2, and note ‖ f ‖ = 1. Let D = { 1
n : n ∈ N} and observe

that D is the only proper, dense subset of K and that f(D) is not a uniformly
strongly extreme subset of BX ; this last observation follows by examining the point
e1 in the unit ball BXi as i increases. It follows, by Theorem 5, that f is not a
strongly extreme point of BC(K,(X,w)); yet, by Claim 1, every value of f is a strongly
extreme point of BX . This completes Example 7.

As mentioned above, the last two examples show that the strongly extreme point
situation in the unit ball of C(K, (X,w)) is quite different from that in the unit ball
C(K,X) when viewed from the perspective of an element f being strongly extreme
point valued at every t in K. However, from the perspective of an element f being
uniformly strongly extreme point valued on a dense subset of K, the situations in
C(K, (X,w)) and C(K,X) are exactly the same, as is seen from Theorem 5 and
part (iv) of the following proposition (which may be read with or without the
parenthetical “and Gδ”).

Proposition 8. Let f be an element of C(K,X). The following assertions are
equivalent:

(i) f is a strongly extreme point of BC(K,X).
(ii) f(t) is a strongly extreme point of BX for each t in K.
(iii) f(K) is a uniformly strongly extreme subset of BX .
(iv) there exists a dense (and Gδ) subset D of K such that f(D) is a uniformly

strongly extreme subset of BX .

Proof. The equivalence of (i) and (ii) is from [DHS]. Suppose (ii) is true for f in
C(K,X). If (iii) fails for f , then, following a line of argument from [DHS], there
exist ε > 0 and sequences {tn} in K and {zn} in X such that, for all n in N,

‖f(tn)± zn‖ ≤ 1 +
1

n
and ‖zn‖ > ε.

Since K is compact, there exist a subnet {tnλ} of {tn} and t0 in K such that
limλ tnλ = t0. Since f(t0) is a strongly extreme point of BX , there exists n0 in N
such that ‖f(t0)± z‖ ≤ 1 + 1

n0
for z in X ; then ‖z‖ ≤ ε. Using the continuity of f

at t0, choose λ0 such that

‖f(tnλ0
)− f(t0)‖ < 1

2n0
and nλ0 > 2n0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1910 ZHIBAO HU AND MARK A. SMITH

Then

‖f(t0)± znλ0
‖ ≤ ‖f(t0)− f(tnλ0

)‖ + ‖f(tnλ0
)± znλ0

‖
<

1

2n0
+ 1 +

1

nλ0

< 1 +
1

n0
,

yet ‖znλ0
‖ > ε, contrary to the choice of n0. This shows that (ii) implies (iii).

That (iii) implies (iv) is immediate. Finally, if (iv) is true for f in C(K,X), then
Theorem 5 yields that f is a strongly extreme point of BC(K,(X,w)), and hence,
since C(K,X) is a subspace of C(K, (X,w)), assertion (i) follows. This completes
the proof.

An immediate corollary of Theorem 5 and Proposition 8 is formally stated below.
Although the corresponding statement for extreme points is unlikely to hold, the
authors know of no counterexample.

Corollary 9. If f is a strongly extreme point of the unit ball of C(K,X), then f
is also a strongly extreme point of the unit ball of C(K, (X,w)).

As an immediate consequence of the next theorem, it follows that the unit ball
of C(K, (X,w)) contains neither denting points nor strongly exposed points.

Theorem 10. The unit ball of C(K, (X,w)) contains no point of sequential conti-
nuity.

Proof. Let f be in BC(K,(X,w)) and set D = {t ∈ K : f is norm continuous at t}.
Recall that D is dense in K. Since K is infinite, there exists a pairwise disjoint
sequence {Vn}∞n=1 of nonempty, open subsets of K. For each n in N, choose a point
tn in Vn ∩D and use the norm continuity of f at tn to obtain an open subset Un
containing tn such that Un ⊆ Vn and diamf(Un) < 1

6 . Since ‖ f(tn) ‖ ≤ 1 for each

n in N, choose xn in X such that ‖ xn ‖ = 1
6 and ‖ f(tn) + xn ‖ ≤ 5

6 ; it follows
that, for all t in Un,

‖ f(t) + xn ‖ ≤ ‖ f(t)− f(tn) ‖ + ‖ f(tn) + xn ‖
≤ 1

6
+

5

6
= 1.

For each n in N, choose a continuous function gn : K → [0, 1] such that supp(gn) ⊆
Un and gn(tn) = 1, and then define hn : K → X by hn(t) = gn(t)xn for t in K.
Note that hn is in C(K,X) and ‖ hn ‖ = 1

6 for each n in N.

Claim. The sequence {hn}∞n=1 converges weakly to 0 in C(K,X).
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To establish this claim, let µ be in C(K,X)∗. Since supp(hn) ⊆ Un, it follows
that ∣∣ 〈µ, hn〉 ∣∣ =

∣∣∣ ∫
K

hn dµ
∣∣∣

=
∣∣∣ ∫

Un

gn(t)xn dµ(t)
∣∣∣

≤
∫
Un

|gn(t)| ‖ xn ‖ d|µ|(t)
≤ |µ|(Un)

for each n in N. Since the sequence {Un}∞n=1 is pairwise disjoint, it follows that
|µ|(Un) → 0. This combined with the last inequality establishes the claim.

Now, for each n in N, let fn = f + hn. Then the sequence {fn}∞n=1 is in
C(K, (X,w)). Note that if t is in K \ supp(gn), then

‖ fn(t) ‖ = ‖ f(t) ‖ ≤ 1,

and if t is in supp(gn), then, since t is in Un,

‖ fn(t) ‖ = ‖ f(t) + hn(t) ‖
≤ (1− gn(t)) ‖ f(t) ‖ + gn(t) ‖ f(t) + xn ‖
≤ (1− gn(t)) + gn(t)

= 1.

Thus {fn}∞n=1 is in BC(K,(X,w)). Finally, note that {fn}∞n=1 converges weakly to f
by the claim above, but {fn} does not converge in norm to f since ‖ fn − f ‖ =
‖ hn ‖ = 1

6 for each n in N. This shows that f is not a point of sequential continuity
of BC(K,(X,w)), and the proof is complete.

The space C(K, (X,w))∗

The absence of a concrete representation of the space C(K, (X,w))∗ makes an
investigation of the extremal structure of its unit ball difficult. From [ADLR], it is
known that C(K,X)∗ is a complemented subspace of C(K, (X,w))∗ for any Banach
space X and any compact Hausdorff space K. Indeed,

C(K, (X,w))∗ = C(K,X)∗ ⊕ C(K,X)⊥.(∗)
Thus an extreme point of BC(K,X)∗ has a chance to be an extreme point of
BC(K,(X,w))∗ . Recall the classical result, from [S], that an element of C(K,X)∗

is an extreme point of BC(K,X)∗ if and only if it has the form Lk,x∗ where k is in
K and x∗ is an extreme point of BX∗ , with the action of this functional on an f in
C(K,X) given by

〈Lk,x∗ , f〉 = 〈x∗, f(k)〉.
So one question is: for which (if any) extreme points x∗ of BX∗ , are the function-
als Lk,x∗ extreme points of BC(K,(X,w))∗? From [ADLR], every extreme point F ∗

of BC(K,(X,w))∗ is a so-called point functional, that is, there exists a point y in

Y , the Stone-Čech compactification of K × BX∗ , such that F ∗ = δy|C(K,(X,w)),
where δy denotes the functional in C(Y )∗ given by point mass measure at y. Here
C(K, (X,w)) is considered to be a subspace of C(Y ) as described in the Defini-
tions and Preliminaries section. Note that if y = (k, x∗) is in K × BX∗ , then
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δy|C(K,(X,w)) = Lk,x∗ . Also, from [ADLR], every point functional is supported at
a point in K, that is, for y in Y there is a point k in K, an element x∗ in X∗ and
F⊥ in C(K,X)⊥ such that

δy|C(K,(X,w)) = Lk,x∗ + F⊥ ;

thus every extreme point F ∗ of BC(K,(X,w))∗ can be written in the form F ∗ =

Lk,x∗+F⊥. So another question is: are there extreme points of BC(K,(X,w))∗ where

F⊥ is nonzero?
With regard to the first question, from [C], the functional Lk,x∗ need not be an

extreme point of BC(K,(X,w))∗ whenever x∗ is an extreme point of BX∗ . This is in
marked contrast to the situation in C(K,X)∗ as given above. However, from [L] as
illuminated in [C], if x∗ is a weak∗ strongly exposed point of BX∗ and k is in K,
then Lk,x∗ is an extreme point of BC(K,(X,w))∗ . The results given below, Theorem
14 and Theorem 16, are considerable strengthenings of this last statement. Indeed,
if x∗ is a weak∗ strongly exposed point of BX∗ and k is in K, then (Theorem 14)
Lk,x∗ is a strongly exposed point of BC(K,(X,w))∗ . If the hypothesis on x∗ is relaxed
to that of being a weak∗ denting point of BX∗ , then it follows (Theorem 16) that
Lk,x∗ is a denting point of BC(K,(X,w))∗ ; in particular, Lk,x∗ is a point of continuity
of BC(K,(X,w))∗ . In both of these results the conclusion for Lk,x∗ is much stronger
than that of just being an extreme point of BC(K,(X,w))∗ , but the hypothesis on
x∗ is also much stronger than that of just being an extreme pont of BX∗ . There
are some situations, as illustrated by Proposition 11 below, in which Lk,x∗ is an
extreme point of BC(K,(X,w))∗ whenever x∗ is an extreme point of BX∗ . The proof
of Proposition 11 is straightforward since under its hypothesis the sum in (∗) is an
`1-sum and so the classical result from [S], mentioned above, can be applied in the
case of an extreme point, a result from [HS] can be applied in the case of a strongly
extreme point, and results from [RS] can be applied in the cases of a denting point
or a strongly exposed point.

Proposition 11. Let X be a Banach space such that C(K,X) is an M-ideal in
C(K, (X,w)). Then Lk,x∗ is an extreme point (respectively, strongly extreme point,
denting point, strongly exposed point) of BC(K,(X,w))∗ whenever k is in K and x∗

is an extreme point (respectively, strongly extreme point, denting point, strongly
exposed point) of BX∗.

It should be noted, from [ADLR], that C(K,X) is an M-ideal in C(K, (X,w))
whenever X has the Schur approximation property. Also, from [ADLR], the space
c0, the space c0(Γ) and c0-sums of spaces with the Schur property have the Schur
approximation property.

With regard to the second question, there are spaces X for which there are
extreme points of BC(K,(X,w))∗ other than those of the form Lk,x∗ . For example,

let X = c0. Then the sum in (∗) is an `1-sum and so any extreme point of BC(K,X)⊥

will also be an extreme point of BC(K,(X,w))∗ . That BC(K,X)⊥ has extreme points
follows by the Krein-Milman theorem since BC(K,X)⊥ is weak∗ compact and convex.

Since the next two theorems involve the functional Lk,x∗ for x∗ inBX∗ with ‖ x∗ ‖
= 1, in the proofs Y will denote the Stone-Čech compactification of K × SX∗ and,
in a manner completely analogous to that given in the Definitions and Preliminaries
section (just replace BX∗ by SX∗), the space C(K, (X,w)) will be considered as a
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subspace of C(Y ). Also, for ε > 0, let

S+
ε = {z∗ ∈ SX∗ : ‖ z∗ − x∗ ‖ < ε}

and

S−ε = {z∗ ∈ SX∗ : ‖ z∗ − (−x∗) ‖ < ε};
and then let Sε = S+

ε ∪ S−ε and Scε = SX∗ \ Sε.
The proofs of Theorem 14 and Theorem 16 require a great deal of work but the

rewards are great as well since, for the first time, some strongly exposed points
and some denting points of the unit ball of C(K, (X,w))∗ are identified without
restriction on X or K. The proofs of both theorems will be facilitated by the
following two technical results.

Lemma 12. Let ε and δ be positive numbers each less than 1
2 and let x in SX and

x∗ in SX∗ be such that 〈x∗, x〉 > 1− δ and diamS(x,BX∗ , δ) < ε. Let k be a point
of K, let V be an open subset of K that contains k and let g : K → [0, 1] be a
continuous function such that g(k) = 1 and supp(g) ⊆ V . Let Y be the Stone-Čech
compactification of K × SX∗ . If µ in C(Y )∗ is such that ‖ µ ‖ ≤ 1 and∫

Y

g ⊗ x dµ > 1 − δε,

then

µ+
(
V × S+

ε

)
+ µ−

(
V × S−ε

)
> 1 − ε.

Proof. If z∗ is in S+
ε , then ‖ z∗− x∗ ‖ < ε. This combined with 〈x∗, x〉 > 1− δ and

ε+ δ < 1 yields that 〈z∗, x〉 ≥ 0. Thus g ⊗ x ≥ 0 on V × S+
ε , and hence it follows

that g ⊗ x ≥ 0 on V × S+
ε , where the closure is in Y . Similarly, it can be shown

that g ⊗ x ≤ 0 on V × S−ε . Thus∫
V×S+

ε

g ⊗ x dµ− ≥ 0 and

∫
V×S−ε

g ⊗ x dµ+ ≤ 0.

From these inequalities and the fact that ‖ g ⊗ x ‖ ≤ 1, it follows that∫
V×Sε

g ⊗ x dµ =

∫
V×S+

ε

g ⊗ x dµ+ −
∫
V×S+

ε

g ⊗ x dµ−

+

∫
V×S−ε

g ⊗ x dµ+ −
∫
V×S−ε

g ⊗ x dµ−

≤
∫
V×S+

ε

g ⊗ x dµ+ −
∫
V×S−ε

g ⊗ x dµ−

≤ µ+
(
V × S+

ε

)
+ µ−

(
V × S−ε

)
.

(1)

Now, for z∗ in Scε, it is the case that

‖ z∗ − x∗ ‖ ≥ ε and ‖ z∗ − (−x∗) ‖ ≥ ε,
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and hence, since diamS(x,BX∗ , δ) < ε, it follows that z∗ is in neither S(x,BX∗ , δ)
nor S(−x,BX∗ , δ). This yields 〈z∗, x〉 ≤ 1 − δ and 〈z∗,−x〉 ≤ 1 − δ, that is,
| 〈z∗, x〉 | ≤ 1− δ. Thus, for (t, z∗) in V × Scε,

| (g ⊗ x)(t, z∗) | ≤ | 〈z∗, x〉 | ≤ 1− δ,

and hence | g ⊗ x | ≤ 1−δ on V × Scε . Also, g ⊗ x = 0 on V c × SX∗ since supp(g) ⊆
V . Now it follows that∫

Y \V×Sε
g ⊗ x dµ ≤ (1− δ)|µ|(Y \ V × Sε).(2)

Combining (1) and (2) yields

1− δε <

∫
Y

g ⊗ x dµ

=

∫
V×Sε

g ⊗ x dµ +

∫
Y \V×Sε

g ⊗ x dµ

≤ µ+
(
V × S+

ε

)
+ µ−

(
V × S−ε

)
+ (1− δ)|µ| (Y \ V × Sε

)
≤ |µ|(Y ) − δ|µ| (Y \ V × Sε

)
.

(3)

From this and the fact that ‖ µ ‖≤ 1, it follows that |µ|(Y \ V × Sε) < ε. Now,
using this and the first two inequalities listed in (3) yields

µ+
(
V × S+

ε

)
+ µ−

(
V × S−ε

)
≥ 1− δε − (1 − δ)|µ| (Y \ V × Sε

)
> 1− δε − (1 − δ)ε

= 1 − ε.

This completes the proof.

Lemma 13. Let ε and δ be positive numbers each less than 1
2 and let x in SX and

x∗ in SX∗ be such that 〈x∗, x〉 > 1 − δε and diamS(x,BX∗ , δ) < ε. Let k be in
K and let N(k) denote the collection of all open subsets of K which contain the
point k. For each V in N(k), choose a continuous function gV : K → [0, 1] such
that gV (k) = 1 and supp(gV ) ⊆ V . Then {gV ⊗ x}V ∈N(k) forms a net (ordered by
inclusion) in BC(K,(X,w)) which can be considered as a subset of BC(K,(X,w))∗∗. Let
T be a weak∗ cluster point of this net. Then

(i) 〈T, Lk,x∗〉 = 〈x∗, x〉 > 1− δε and ‖T ‖ ≤ 1,
(ii) if 〈T, F ∗〉 > 1−δε, where F ∗ is in BC(K,(X,w))∗, it follows that ‖F ∗−Lk,x∗‖ ≤

4ε.

Proof. Note that since

〈 Lk,x∗ , gV ⊗ x 〉 = 〈 x∗, x 〉 > 1− δε

for every V in N(k), it follows that 〈 T, Lk,x∗ 〉 = 〈x∗, x〉 > 1− δε. It is clear that
‖ T ‖ ≤ 1. Suppose F ∗ is in BC(K,(X,w))∗ such that 〈 T, F ∗ 〉 > 1 − δε. Let

Y be the Stone-Čech compactification of K × SX∗ and consider C(K, (X,w)) as
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a subspace of C(Y ). Apply the Hahn-Banach theorem to obtain µ in C(Y )∗ such
that µ extends F ∗ while ‖ µ ‖ = ‖ F ∗ ‖; thus

〈 F ∗, f 〉 =

∫
Y

f̄ dµ for all f in C(K, (X,w)).(1)

Claim. For every U in N(k),

µ+
(
U × S+

ε

)
+ µ−

(
U × S−ε

)
> 1− ε.

Since T is a weak∗ cluster point of {gV ⊗ x}V ∈N(k) in C(K, (X,w))∗∗, from the
hypothesis on F ∗, there exists V in N(k) such that V ⊂ U and 〈 F ∗, gV ⊗ x 〉 >
1− δε. Hence, by (1), ∫

Y

gV ⊗ x dµ > 1− δε.

Lemma 12 is applicable, and it yields that

µ+
(
U × S+

ε

)
+ µ−

(
U × S−ε

)
≥ µ+

(
V × S+

ε

)
+ µ−

(
V × S−ε

)
> 1− ε.

This establishes the Claim.
Let f be any element of BC(K,(X,w)). By the weak continuity of f at k, there

exists V in N(k) such that

| 〈x∗, f(t) − f(k)〉 | < ε for all t in V.(2)

If (t, z∗) is in V × S+
ε , then ‖ z∗ − x∗ ‖ < ε and hence, by (2),

| f̃(t, z∗)− 〈x∗, f(k)〉 | = | 〈z∗, f(t)〉 − 〈x∗, f(k)〉 |
≤ | 〈z∗ − x∗, f(t)〉 | + | 〈x∗, f(t)− f(k)〉 |
< ε + ε.

This yields that

| f̄ − 〈x∗, f(k)〉 | ≤ 2ε on V × S+
ε .(3)

Similarly, it can be shown that

| f̄ + 〈x∗, f(k)〉 | ≤ 2ε on V × S−ε .(4)

From the Claim and the fact that ‖ µ ‖ = |µ|(Y ) ≤ 1, it follows that

µ+
(
V × S−ε

)
+ µ−

(
V × S+

ε

)
+ |µ| (Y \ V × Sε

)
< ε.
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Combining this with (1), (3), (4), the Claim, and the fact that ‖ f ‖ ≤ 1, it follows
that

| 〈F ∗ − Lk,x∗ , f
〉 |

=
∣∣∣ ∫

Y

f̄ dµ − 〈
x∗, f (k)

〉 ∣∣∣
≤

∣∣∣ ∫
V×S+

ε

f̄ dµ+ −
∫
V×S−ε

f̄ dµ− − 〈
x∗, f (k)

〉 ∣∣∣
+

∣∣∣ ∫
V×S−ε

f̄ dµ+ −
∫
V×S+

ε

f̄ dµ− +

∫
Y \V×Sε

f̄ dµ
∣∣∣

≤
∣∣∣∣∣
∫
V×S+

ε

(
f̄ − 〈x∗, f (k)

〉 )
dµ+ −

∫
V×S−ε

(
f̄ +

〈
x∗, f (k)

〉 )
dµ−

− 〈
x∗, f (k)

〉 [
1 − µ+

(
V × S+

ε

)
− µ−

(
V × S−ε

)] ∣∣∣∣∣
+ µ+

(
V × S−ε

)
+ µ−

(
V × S+

ε

)
+ |µ| (Y \ V × Sε

)
≤ 2ε µ+

(
V × S+

ε

)
+ 2ε µ−

(
V × S−ε

)
+

∣∣∣1 − µ+
(
V × S+

ε

)
− µ−

(
V × S−ε

) ∣∣∣
+ ε

< 2ε |µ| (V × Sε
)

+ ε + ε

≤ 4ε.

Since f was arbitrary, it follows that ‖ F ∗ − Lk,x∗ ‖ ≤ 4ε. This completes the
proof.

Theorem 14. If k is in K and x∗ is a weak∗ strongly exposed point of BX∗, then
Lk,x∗ is a strongly exposed point of BC(K,(X,w))∗.

Proof. Let x in SX be such that x weak∗ strongly exposes BX∗ at x∗. Let N(k)
denote the collection of all open subsets of K which contain the point k. For each
V in N(k), choose a continuous function gV : K → [0, 1] such that gV (k) = 1
and supp(gV ) ⊆ V . Then {gV ⊗ x}V ∈N(k) forms a net (ordered by inclusion) in
BC(K,(X,w)) which can be considered as a subset of BC(K,(X,w))∗∗ . Let T be a weak∗

cluster point of this net. It will be shown that T strongly exposes BC(K,(X,w))∗ at
Lk,x∗ . Lemma 13 yields that 〈T, Lk,x∗〉 = 〈x∗, x〉 = 1 and ‖T ‖ ≤ 1; hence ‖ T ‖= 1.
Suppose {F ∗n} ∞

n=1 is a sequence in BC(K,(X,w))∗ such that limn→∞〈 T, F ∗n 〉 = 1;
the proof will be complete once it is shown that limn→∞ ‖ F ∗n −Lk,x∗ ‖ = 0. Let ε
be such that 0 < ε < 1

2 . Choose δ such that 0 < δ < 1
2 and diamS(x,BX∗ , δ) < ε.

Since limn→∞〈T, F ∗n〉 = 1, Lemma 13 (ii) applies and yields that ‖F ∗n−Lk,x∗‖ ≤ 4ε
for all sufficiently large n in N. This completes the proof.

The proof of the following corollary is immediate, since its hypothesis implies
that every x∗ in SX∗ is a weak∗ strongly exposed point of BX∗ .

Corollary 15. If X is a reflexive Banach space with Fréchet differentiable norm
(for example, if X is any of the spaces `p(Γ) or Lp(µ) for 1 < p <∞), then Lk,x∗

is a strongly exposed point of BC(K,(X,w))∗ whenever k is in K and x∗ is in SX∗ .
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The next result should be compared with Theorem 14; it applies to a wider
variety of extreme points but, as expected, delivers a little less in its conclusion.
Nevertheless, it does yield denting points of BC(K,(X,w))∗ with no restrictions on K
or X .

Theorem 16. If k is in K and x∗ is a weak∗ denting point of BX∗ , then Lk,x∗ is
a denting point of BC(K,(X,w))∗.

Proof. Let k and x∗ be as in the hypothesis. Let ε be such that 0 < ε < 1
2 . By

Lemma 5 in [HL], there exist x in SX and δ > 0 such that

〈x∗, x〉 > 1− δε and diamS(x,BX∗ , δ) < ε.

Note that δ ≤ ε < 1
2 . Now, let T be a weak∗ cluster point of the net considered

in the statement of Lemma 13. Let δ1 = ‖T ‖ − (1 − δε). By Lemma 13 (i), it
follows that δ1 > 0 and Lk,x∗ is in S(T,BC(K,(X,w))∗ , δ1). Let F ∗ be an element of
S(T,BC(K,(X,w))∗, δ1). Then

〈T, F ∗〉 > ‖T ‖ − δ1 = 1− δε

and hence, by Lemma 13 (ii),

‖F ∗ − Lk,x∗‖ ≤ 4ε.

Thus

diamS(T,BC(K,(X,w))∗, δ1) ≤ 8ε.

This shows that Lk,x∗ is a denting point of BC(K,(X,w))∗ , and the proof is complete.
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