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1. Introduction

In the early sixties Effros[9] and Prosser[14] studied, in independent work, the
duality of the faces of the positive cones in a von Neumann algebra and its predual
space. In an implicit way, this work was generalized to certain ordered Banach spaces
in papers of Alfsen and Shultz[3] in the seventies, the duality being given in terms of
faces of the base of the cone in a base norm space and the faces of the positive cone of
the dual space. The present paper is concerned with the facial structure of the unit
balls in an ordered Banach space and its dual as well as the duality that reigns between
these structures. Specifically, the main results concern the sets of norm-exposed and
norm-semi-exposed faces of the unit ball ¥ in a GL-space or complete base norm space
V and the sets of weak*-exposed and weak*-semi-exposed faces of the unit ball V¥ in
its dual space V* which forms a unital GM-space or a complete order unit space.

In § 2 the basic tool which is used in this investigation is introduced. This consists of
a pair E > E', F — F, of mappings, the first sending the set of subsets of the unit ball
¥, in the real Banach space V into the set of weak*-closed faces of the unit ball V§ in the
dual space V* of V, and the second sending the set of subsets of V§ into the set of
norm-closed faces of ;. Many of the proofs use the order properties of these mappings.
In addition the basic results concerning GL-spaces and their duals are listed and the
properties of the mappings mentioned above are described when V is a GL-space.

The notion of a P-projection on a GL-space was introduced by Alfsen and Shultz[3]
and they made a study of a class of GL-spaces having a property which ensures the
existence of many such P-projections [5]. It is for this class of GL-spaces V that the
main two theorems apply. The first describes the set of weak*-semi-exposed faces of
the unit ball V¥ in the dual V* of V and the set of norm-exposed faces of the unit ball
W, in V. The second main result shows that the existence of a single weak*-exposed
point of the unit ball V¥ is sufficient to ensure that every weak*-semi-exposed face of
VT is weak*-exposed. Using this theorem a criterion is found for deciding when a
particular weak*-semi-exposed face of V¥ is weak*-exposed. These results are proved
in §3.

An example of a GL-space is the predual 4, of a JBW-algebra 4. The consequences
of the results of § 3 for JBW-algebras are examined in §4. It is shown that these results
can be strengthened considerably in this case. Indeed, it is possible to identify both the
set of all weak*-closed faces of the unit ball 4, in 4 and the set of all norm-closed
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faces of the unit ball 4,, of 4,. The proofs of these results require rather different
techniques.

Finally, in § 5 further applications of the theorems of § 3 are considered.

2. Generalities

Let V be areal vector space and let C be a convex subset of V. A convex subset ¥ of
C is said to be a face of C provided that if z is an element of £ such that

x=tr,+(1-1)x,,

where 2z, and z, are elements of C and tis a real number in the open unitinterval (0, 1),
then z, and z, are elements of E. Both C and the empty subset @ of C are faces of C.
A face of C not equal to one of these issaid to be a proper face of C. An element 2 of C
is said to be an extreme point of C if {z} is a face of C.

Let 7 be a locally convex Hausdorff topology on V. A subset K of C is said to be a
T-exposed face of C provided that there exists a 7-continuous linear functional fon V
and a real number ¢ such that, for all elements z in C\E,

fle) <t

and, for all elements z in E,
flx)y=¢.

Let E£,(C) denote the set of 7-exposed faces of C. Both C and @ are elements of
E,(C) and the intersection of a finite family of elements of E,(C) again lies in E,(C). The
intersection of an arbitrary family of elements of £,(C) is said to be a 7-semi-exposed
Jace of C. Let S,(C) denote the set of 7-semi-exposed faces of C. Clearly E,(C) is con-
tained in §,(C) and the intersection of an arbitrary family of elements in S, (C) again lies
in S,(C). Hence, with respect to the ordering by set inclusion, §,(C) forms a complete
lattice.

When V is a real Banach space with dual space V* the abbreviations » and w* will
be used for the norm topology of ¥V and the weak* topology of V* respectively. Then,
for each subset E of the unit ball ¥; in V, let E’ be the subset of the unit ball V¥ in
V* defined by

E ={aeVf: a(x)=1,Y2zecE}. (2-1)
Similarly, for each subset F of V¥, let F, be the subset of V] defined by
F, = {xeV;: a(zx) = 1,Yae F}. (2-2)

The properties of the mappings ¥ — E’ and F' - F, are summarized in the following
lemma.

LevMa 2:-1. Let V be a real Banach space with dual space V*, It V, and VT be the unit
balls in V and V* respectively and let the mappings E — E' and F — F, be defined by (2-1)
and (2-2) respectively. Then:

(i) For subsets D and E of V; and F and G of V¥,

(-E)y =-F, (-F),=-F,
E<(E), Fc(Fy.
If D is contained in E then E' is contained in D', and if F is contained in G then G,
is contained in F,.
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The unat balls in a GL-space and its dual 307
(ii) A subset E of V, is a norm-semi-exposed face if and only if

('), =E
and a subset F of VT is a weak*-semi-exposed face if and only if
(F) =F.

(iii) The mappings E — E' and F — F, are anti-order isomorphisms between the com-
plete lattices S,(V;) of norm-semi-exposed faces of V; and S,.(V3) of weak*-semi-exposed
Saces of V¥ and are inverses of each other.

Proof. The proof of this result is straightforward and will be omitted.

Recall that a GL-space [18] (or complete base norm space [1]) V is a real Banach space
partially ordered by a norm-closed cone V+ such that the norm is additive on ¥+ and
the unit ball ] in ¥ coincides with the convex hull conv ((V+tnF)u ((— V) nR)) of
the set (Pt n¥) U ((— V*+)nT)). Then the set K of elements of V+ of norm one forms

a base for V+ such that
¥, = conv (K U (— K)). (2-3)

A GM-space [18] A is a real Banach space partially ordered by a norm-closed cone 4+
such that the open unit ball in 4 is upward filtering and the unit ball 4, in 4 coincides
with the set (4,+4+) n (4,— A*). If 4, possesses a greatest element e then A4 is said
to be a unital GM-space (or complete order unit space [1]). Then

4,=[—eel, (2+4)
where, for each pair a, b of elements of 4, [¢,b] denotes the order interval
{ced:a<c,c<b}.

When endowed with the dual cone V*+ the dual space V* of a GL-space V is a unital
GM-space, the order unit e being defined, for each element z in V+, by

e(z) = ||||-

For further information on GL-spaces, and GM-spaces the reader is referred to [1],
(2], [6], [10] and [13].

LeMMa 2-2. Let V be a GL-space having unit ball V,, cone V+ with base K consisting of
elements of norm one and let V* be the unital GM-space which is the dual of V having unit
ball V¥ and order unit e. If the mappings E — E’ and F — F, are defined by (2-1) and
(2-2) respectively, then:

(i) The set K is a norm-exposed face of V; and the set {€} is a weak*-semi-exposed face of
V¥ such that

K' ={e}, {e}, =K.

(ii) The set E,(K) of norm-exposed faces of K is contained in the set E, (V) of norm-
exposed faces of V, and the set S, (K) of norm-semi-exposed faces of K is contained in the
set S, (V) of norm-semi-exposed faces of ;.

(iii) For each face E of V,, the set conv ((E n K) U (E n (— K))) coincides with E and, if
E is an element of the complete lattice S, (V;), then

E=(EAK)v(EA(-K)).
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(iv) For each weak*-semi-exposed face F of VT there exist weak*-semi-exposed faces G
and H of V¥, each containing e, such that F coincides with the set G n (— H).

Proof. (i) This is immediate since K coincides with the set e=({1}) n V+.
(ii) For each element ¥ of E,(K) different from K, there exists an element @ in V*
and a real number ¢ such that, for each element z in K\E,

a(x) <t
and, for each element z in E,
a(z) =t.

If ¢ is equal to 0 then —a is a non-zero element of V*+. In this case e+a/||a| lies in
[0, ] and, for each element x in E,

(e+(a/la])) () = 1,

which shows that E is contained in the set {e+ (a/| 2| )},. Conversely, if x is an element
of {e + (a/| a|)},, then z is an element of K and

o() +a(z)/Ja] = 1
This implies that
a(z) =0

and hence that z is an element of E. Therefore, E coincides with the set {e+ (a/|a|)},
and, by Lemma 2-1, E is contained in E,(V;). If ¢ is non-zero a similar argument shows
that E coincides with the set {e + (a —te)/|a —te|},. Therefore, E,(K) is contained in
E,(V}) and, since every element of S,(K) is the intersection of a family of elements of
E,(K), it follows that S,(K) is contained in 8,(7}).

(ili) For each face E of V] the set conv ((£ n K) U (E n (— K))) is clearly contained
in ¥ and the reverse inclusion follows from (2-3). If, now, E is an element of S, (F}) it

follows that
E=conv(EnK)U(En(—K)) s (EAK)V((EA(-K) < E
as required.
(iv) Using (i) and (iii) it follows from Lemma 2-1 that

F=(F) ={F)AK)V(F A(-EK))Y
= (F, A K) A(F, A (- K)Y
— (Vi) AEV{=e)).
The proof is completed by choosing G'and H to be the elements F v {e}and — (F v {—e})
of S,+(VT) respectively.
With reference to Lemma 2-2 (iii), notice that it is not necessarily true that, for

norm-semi-exposed faces B, and E, of V,, the set conv(F, U E,) is a face of V;. Therefore,
in general, conv (&, U E,) does not coincide with E, v E,.

3. Main results

Let V be a GL-space having unit ball ¥}, cone V+ with base K consisting of elements
of norm one and let V* be the unital GM-space which is the dual of ¥ having unit ball
V¥, cone V** and order unit ¢. For a positive linear projection P on V, let im+ P and
ker* P respectively denote the intersections with ¥+ of the range im P and the kernel
ker P of P. Recall that such a positive projection P of norm one is said to be a
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P-projection if there exists a (necessarily unique) positive projection P# of norm one
such that
im* P = ker* P#, im*P* = kert P# *,}

kert P = im+ P#, kert P* = im+ P#*, (8:1)

where P* and P#* respectively denote the adjoint projections on V* of P and P¥#,
For a pair P,  of elements of the set P(V) of P-projections on V, write P < @ when
im P is contained in im Q. This defines a partial ordering on P(V) such that, for all
elements P in P(V),

0PI,

where 0 and I denote the zero and identity mappings on ¥ respectively. Moreover, the
mapping P — P# is an orthocomplementation on P(V) since it enjoys the properties
that, for all elements P in P(V),

P## = P

and I is the supremum of {P,P#} and if P and @ are elements of P(V) with
P<Q

then Q* < P*.

Hence P(V) forms an orthocomplemented partially ordered set.
A face F of K is said to be projective if there exists an element P of P(V) such that

F=imPnkK.
The mapping Ps>F,=imPnK (3-2)

is an order isomorphism from P(V) onto the set F(K) of projective faces of K partially
ordered by set inclusion. The mapping F — F# defined by

(imPnK)# =imP¥nK
is then an orthocomplementation on F(K). A point p of the order interval [0, e] is said
to be a projective unit if there exists an element P in P(V) such that
p = P%*e,
The mapping P > p = P*e (3-3)

is an order isomorphism from P(V) onto the set U(V*) of projective units endowed
with the partial ordering inherited from V*. Moreover, since

P#*g — ¢ — P¥e,
the mapping p>e—p
is an orthocomplementation on U(V*).

"For details of the results quoted above the reader is referred to [3].

Lemma 3-1. Under the conditions of Lemma 2-2, suppose that P is a P-projectionon V
with corresponding projective face Fyp of K and corresponding projective unit p defined by
(3-2) and (3-3) respectively. Then

Fp=[2p—e,e].

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 17:34:39, subject to the Cambridge Core terms
of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100063489


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100063489
https:/www.cambridge.org/core

310 C. M. EDwArDs AND G. T. RUTTIMANN

Proof. Since p lies in the interval [0, ], it follows from (2-4) that 2p — e is an element
of V§. Let a be an element of [2p —e¢, ¢]. Then, for each element z in Fp,

1 =2¢(Px)—e(x)=(2p—e)(z) < a(z) < e(z)=1

and it follows that a is an element of Fp. Conversely, if @ is an element of Fy then, for
each element z in V+,
a(Pzx) = e(Px)
and it follows that {(e —a) is an element of the set kert P* [0, ¢]. Using (3-1) and [3],
proposition 2-11,
0 < 3(e—a) < PH*e =e—p,

which implies that a is contained in the order interval [2p —e, ¢]. This completes the
proof of the lemma.

It is clear that, under the conditions of Lemma 3-1, the set F(K) of projective faces
of K is contained in the set £,(K) of norm-exposed faces of K. In [5] the properties of
a GL-space V satisfying the condition that the sets F(K) and E,(K) coincide were
studied. In that case the orthocomplemented partially ordered sets P(V), F(K) and
U(V*) are complete orthomodular lattices and F(K) coincides with the complete
lattice S, (X) of norm-semi-exposed faces of K.

The first main result of the paper follows.

THEOREM 3-2. Let V be a GL-space having unit ball V;, cone V+with base K consisting of
elements of norm one and let V* be the unital GM-space which is the dual of V having unit
ball V¥ and order unit e. Suppose that V has the property that every norm-exposed face of
K is projective. Then:

(i) For each pair p, q of projective units in V* the order interval [2p—e,2q9—e] is a
weak*-semi-exposed face of V.

(ii) Every weak*-semi-exposed face of V¥ is of the form [2p — e, 2q — €] for projective
units p and q.

(iii) An element sin V§ is a weak*-semi-exposed point of V§ if and only if He+3s) isa
projective unit.

Proof. (i) Using the mappings P —+ Fp and P — p defined by (3-2) and (3-3)
respectively it follows from Lemma 3-1 that

[2P—e>2q—e] = [2p—e’e] n [_e}2q_e]
=[2p—e,e]n —[2(e—q)—e,e]
=(FpA —(Fou))
= (Fp v (= Fon)Y

which, by Lemma 2-1, is an element of S,.(V¥).

(ii) Let F be an element of S,.( V). Then, by Lemma 2-2 (iv) there exist elements G
and H of S,.(V¥) containing e such that F coincides with G n (— H). It follows that @,
and H, are elements of S, (¥;) contained in K and therefore that there exist P-projections

P and @ on V such that &, and H, coincide with Fp and Fy4 respectively. Therefore,

by Lemma 3-1,
G=(G) =Fp=[2p—ece]

and —H=—(H) =—-Fos=—[2(e—q)—e,e] = [—e,2¢—e].
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Finally, F=Gn(—H)=[2p—e,2g9—e¢],
as required.
(iii) This follows immediately from (i) and (ii).

Recall that a pair P, @ of P-projections on V is said to be orthogonal if
P<@*.

Corresponding definitions exist for pairs of projective faces of K and pairs of projective
units. The following corollary describes the set of norm-semi-exposed faces of the unit
ball V] in a GL-space satisfying the conditions of Theorem 3-2.

COROLLARY 3-3. Let V be the GL-space described in Theorem 3-2. Then:

(i) If P and @ are orthogonal P-projections on V with corresponding projective faces
Fp and F, respectively then conv (Fp U (— F)) is a norm-semi-exposed face of V;.

(ii) If E is a norm semi-exposed face of V; different from V, there exists a pair P, Q of
orthogonal P-projections on V such that E coincides with conv (Fp U (— Fy)).

Proof. (i) Let p and g be the elements of U(V *) corresponding to P and @ respectively.
Then it follows from the proof of Theorem 3-2 (i) that

conv (Fp U (- Fg)) < Fpv (- Fo) = [2p—e, —(29—¢)],.

Conversely, if z and y are elements of K and £ is a real number in the open unit interval
(0,1) such that tx — (1 —t)y lies in [2p —e, — (29 —¢)],, then

t2p—e)(x)-(1-t)(2p—e)(y) =1
and H2q—e) () — (1-1) (2g— ) (y) = — 1.
It follows that
pl@)=qy) =1, ply)=qx)=0.
Therefore, x is an element of Fp and y is an element of Fy, which implies that
tx— (1 —t)y lies in conv (Fp U (— Fy)). If x is an element of K n [2p —e, — (2¢ —¢)], then
plx) =1

and z lies in Fp. Similarly every element of — K n [2p—e, — (2¢—e)], lies in — F, and
it follows that [2p —e, — (29— ¢)], is contained in conv (Fp U (— Fy)) as required.

(ii) Since £ n K and — (& n (— K)) are norm-semi-exposed faces of K, there exist
P-projections P and @ on V such that these faces coincide with Fp and F, respectively.
Then it follows from Lemma 2-2 (iii) that

E = conv(FpU(—-Fy)) = Fpv(—Fp).
Therefore, E'=Fpn(—Fy) =[2p—ce,2(e—q)—e].
Since F is different from ¥, it follows that E’ is non-empty and therefore that
p<e—q,
which implies that the pair P, Q of P-projections is orthogonal.

Although this result describes the elements of the complete lattice S, (V;) of norm-
semi-exposed faces of the unit ball ¥; in the GL-space V, the lattice itself possesses some
unusual properties one of which is described below.
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CorOLLARY 3-4. Under the conditions of Theorem 3-2, every non-maximal proper
norm-semi-exposed face of V, is the intersection of two distinct maximal proper norm-semi-
exposed faces of V;.

Proof. By Theorem 3-2 the set of minimal non-zero elements in the complete lattice
S+ V) is the set {{s}: (e +s)e U(V*)}. Therefore, by Lemma 2-1, the set of maximal
proper elements in S, (V;) coincides with the set {{s},: (e +8)e U(V*)}. If E is a non-
maximal proper norm-semi-exposed face of V; then, by Theorem 3:-2, there exist
distinct elements s and ¢ of V§ such that }(e+s) and }(e+1?) lie in U(V*) and

E = [s,1].

In addition, there exist elements « and v in V§ such that 3(e+«) and (e +v) lie in
U(V*) and

[u,v] = {s}v {t} < [s,t] < [u,]

since both ¢ and ¢ are elements of [«,v]. It follows that « and » coincide with s and ¢
respectively and hence that

E=(F), ={s,n{t},
as required.

COROLLARY 3-5. Under the conditions of Theorem 3-2 every norm-semi-exposed face
of V, is norm-exposed.

Proof. This follows immediately from the proof of Corollary 3-4 since the faces {s},
and {t}, of V] are norm-exposed.

Recall that a family (), 5 of non-zero P-projections on the GL-space V is said to be
orthogonal if each pair of elements of the family is orthogonal. Corresponding definitions
hold for families of non-empty projective faces and non-zero projective unite. The
GL-space V is said to be o-finite (or countably generated) if every orthogonal family of
non-zero P-projections is at most countable.

Suppose now that the GL-space V satisfies the condition that every norm-exposed
face of K is projective. For each element x in V+ define

S(z) = A{P€P(V): Px = z}.

Then S(z) is said to be the support P-projection of . The corresponding projective face
face Fy, of K and projective unit s(z) are said to be the support projective face of x and
the support projective unit of x respectively.

The next theorem is the second main result of the paper.

THEOREM 3-6. Let V be a GL-space having unit ball V;, cone V+ with base K consisting of
elements of norm one and let V* be the unital GM-space which is the dual of V, having unit
ball V¥ and order unit e. Suppose that V has the property that every norm-exposed face
of K is projective. Then the following conditions are equivalent.

(i) Every weak*-semi-exposed face of Vi is weak*-exposed.
(ii) There exists a weak*-exposed point of VE.

(iii) The order unit e is a weak*-exposed point of V¥.

(iv) The GL-space V is o-finite.

Proof. (i) = (ii). This is clear since {e} is a weak*-semi-exposed face of V.
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(ii) = (iii). Let s be a weak*-exposed point of V§. Then, asin the proof of Lemma 2-1,
using (2-4), there exist elements  and z in K and a real number ¢ in the closed unit
interval [0, 1] such that

{ty—(1-t)z} ={s}.
{d=K<c{) ={s

and the proof is complete. Similarly, if ¢ is equal to 0 then — s, which is also a weak*-
exposed point of V¥, coincides with ¢ and again the proof is complete. Therefore,
suppose that ¢ is contained in the open unit interval (0, 1). For each element a in V¥,

a(ty+(1-t)(-2)) =1
if and only if aly) =a(—2) = 1.
It follows that {s}={y} n{—2}.

If t is equal to 1 then

By Theorem 3-2, there exist weak*-semi-exposed points » and v of V§ such that

{y}’ = [u,e€], {z}, =[—-wv,e].
Therefore, {8} = {gy n{~2 = [u,v],

from which it follows that
s=1u=0.

Replacing z by —z in the above argument, it is clear that

{ty+(1-t)2} ={y} n{z} =[s,eIn[—s,e].

By Theorem 3-2 (iii) there exists a projective unit p such that s is equal to 2p—e.
Since the mapping b — (e +b) is an affine order isomorphism from V7§ onto [0, e] and
the mapping b — ¢ —b is an affine anti-order automorphism of [0, ¢}, it follows that a is
an element of [s,e]n[—s,e] if and only if 4(e—a) is an element of [0,p] N [0,e—p],
which, by [3], proposition 2-11, is the set {0}. It follows that

{ty+(1-1)z}' = {¢g},

which shows that e is a weak*-exposed point of V¥.
(iii) = (iv). Let 2 be an element of K such that

{2y ={g
and let (p;), 5 be an orthogonal family of non-zero projective units. By [3], proposition
4-4, the net (Z,. 5 p,) where A’ ranges over all finite subsets of A is monotone and
bounded by e. Hence, (Z;. 5 p,(x)) is & bounded monotone increasing real net, which
therefore converges. It follows that there exists a countable subset A4 of A such that,
for all elements j of A\A,,

pj(x) = 0.

Hence, for each element j in A\A,, the element e — p, lies in the set {x}' and it follows
that p, is equal to 0. Since, for every element j of A, p, is non-zero, the set A, coincides
with the set A, which is therefore countable.

(iv) = (i). Let P be a non-zero P-projection having corresponding projective face
Fp and projective unit p. Let (2,),. 5 be a family of elements of Fp, the family (8(z;));a
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of supports of which forms a maximal orthogonal family of P-projections on V. The
set A is at most countable and, in the complete lattice P(V),

E=V 8(z;) < P.
JeA

If y is an element of the projective face Fp A Fr# then it follows that
S(y) < P A R¥,

which contradicts the maximality of (8(x;)),c . Therefore, using the orthomodularity
of P(V), it follows that P and R coincide. If A is infinite, identifying A with the set of
natural numbers, let z, be the norm limit of the increasing sequence (Xj_,27x;) of
elements of V+. Then clearly z is an element of Fp and so

Fpc{zp}.
Conversely, if a is an element of {xp}’, then
a(z)=1, j=12,..,

and it follows that z; is an element of the norm-exposed face {a}, n K of K. Since every
norm-exposed face of K is projective,

FS(zj) s {a}/ n K! j = 1; 2’ seey
and hence, in the complete lattice F(X),

Fp = j\_/l Fsep < {a}, n K.

Therefore, {a} = ({a},) vi{e} = ({a},nK)' < Fp.
Hence the set {zp} coincides with F'p which, by Lemma 3-1, is the order interval
[2p —e, e]. If A is finite and identified with the set {1, 2, ..., n} then the same result can
be obtained by choosing
n
tp=n"13Y 2,

j=1
If Fis a weak*-semi-exposed face of V¥ then, by Theorem 3-2, there exist P-projections
P and @ on V with corresponding projective units p and ¢ respectively, such that F
coincides with the order interval [2p —e, 29 —e]. Let xp and zy# be the elements of K
constructed as above. Then

F=[2p-e,29—e] =[2p—e,e]n —[2e—q) —e,e] = {zp}' N —{2os}
which, being the intersection of two weak*-exposed faces of V¥, is itself weak*-exposed.

Let V be a GL-space having unit ball V] and cone V+ with base K consisting of
elements of norm one. If P is a P-projection on V then, with respect to the norm
inherited from V and the cone im+ P, the Banach space im P is a GL-space. Moreover,
the base of im* P consisting of elements of norm one is the projective face Fp corre-
sponding to P. If the GL-space V has the property that every norm-exposed face of
K is projective then, by [5], proposition 1-10, the same holds for the GL-space im P.

CoROLLARY 3-7. Under the conditions of Theorem 3-2, let F' be a non-empty weak*-semi-
exposed face of VI and let P and Q be the P-projections on V, with corresponding projective
units p and q respectively, such that F coincides with the order interval [2p—e, 2q—e].
Then F is weak*-exposed if and only if the GL-spaces im P and im Q¥ are o-finite.
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Proof. Suppose that im P and im Q¥ are o-finite. As in the proof of Theorem 3-6,
there exist elements z, and zy# in K such that Fp and Fg¢ coincide with {rp} and
{zo#} respectively. Continuing as in that proof, the set F is the intersection of the
weak*-exposed faces {xp}’ and — {4}’ of V{ and hence is itself weak*-exposed.

Conversely, if F is weak*-exposed then there exist elements y and zin K and a real
number ¢ in the closed unit interval [0, 1] such that

{ty—(1-8)2} = [2p—e,29—¢].
If ¢ is equal to 1 then

{f =K' < {y} =[2p—e¢,29—¢],
and hence ¢q is equal to e. Therefore,
{v} = (oY), = 2p—e.e], = Fp.
By [3], proposition 2-11, the unit ball (im P)f in the dual space (im P)* of the GL-space
im P may be identified with the order interval [ — p, p]. Therefore,
{Y n[-p.p] = [2p~e,eln[-p,p] = {p}.

Hence the unit ball (im P)f possesses a weak*-exposed point and, by Theorem 3-6, the
GL-space im P is o-finite. If £ is equal to 0 then

(=K <@ =—{~3 =[~20+e,~2p+e]

and it follows that p is equal to 0. Therefore,
{Z} b= ({z}’)l = [2(€—Q) —e, e]/ = FQ#
and a similar argument to that above shows that the GL-space im @# is o-finite. Finally,
suppose that ¢ is an element of the open unit interval (0, 1) and let ¢ be an element of
V¥. Then
a(ty +(1—1)(—2)) = 1
if and only if ay) =a(-2) = 1.
It follows that {y¥ n{-2} =[2p—e,2¢—c¢].
By Theorem 3-2, there exist projective units ! and m such that
[2p—e,2¢g—e] =[2l—¢,elN[—¢,2m—e] = [2l —e,2m —¢],

which implies that [ and m coincide with p and ¢ respectively. Therefore,

{y} = {y)), =[2p—e,e], = Fp

and, as in the case when ¢ is equal to 1, the GL-space im P is o-finite. Similarly, z is an
element of F,# and, as in the case when ¢ is equal to 0, the GL-space im Q# is o-finite.

CoroLLARY 3-8. Let the GL-space V described in Theorem 3-2 be separable. Then the
equivalent conditions (i)-(iv) of Theorem 3-6 hold.

Proof. If V is separable then the weak* topology of the unit ball V¥ in V* is metri-
zable. Therefore, every closed subset of the weak* compact set V§ is a G,. By [1],
proposition I1.5-16, every weak*-semi-exposed face of V¥ is weak*-exposed and the
result follows.
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4. Applications to JBW-algebras

A real Jordan algebra 4 which is also the dual of a real Banach space 4, with the
property that the dual norm on 4 satisfies the conditions that, for all elements a and b
in 4,

la?) = |al®

and la® - %] < max {|la?], [b°|}

is said to be a JBW-algebra. Examples of JBW-algebras are all formally real finite-
dimensional Jordan algebras [12], the self-adjoint parts of W*-algebras and the
weakly closed Jordan subalgebras of the Jordan algebra of bounded self-adjoint
operators on complex Hilbert spaces, or JW-algebras [17].

The set A+ consisting of squares of elements of 4 forms a weak*-closed cone in 4
and, with respect to the associated partial ordering, 4 is monotone complete. It follows
that 4 possesses a multiplicative unit e. An element p in 4 is called an idempotent if

PP=p.
A pair of idempotents p, ¢ is said to be orthogonal if

pogq=0.
An element s in 4 is said to be a symmetry if
s=ce.

The set of symmetries in 4 coincides with the set {2p — e: p an idempotent}. Also notice
that the symmetries are precisely the extreme points of the unit ball 4, in 4.

Let A denote the norm-closed cone in 4 4 which is predual to the cone 4+ and let
K denote the set of elements of Af of norm one. The elements of K are said to be
normal states of A. The set K is a base for the cone 4] and the unit ball 4,, in 4,
coincides with the convex hull conv(K U — K) of the set K U — K. Therefore 4, is a
GL-space with respect to the cone 4§, and it follows that 4 together with its cone A+
forms a unital GM-space, the order unit in 4 being its multiplicative unit e.

For each element a in 4, the weak*-continuous linear mappings L, and U, on 4 are
defined, for each element b in 4, by

L,b=aob,

U,b = {aba}
where, for elements a, b and ¢ in A4, the Jordan triple product {abc} is defined by
{abc} = ao (boc)—bo(coa)+co(aobd).
The mapping U$, on 4, is defined by
b(U%z) = U,b(2)

for all elements bin 4 and xin 4.
The P-projections on 4, are precisely the mappings U} for p anidempotent element
in A. The set U(4) of projective units coincides with the set of idempotents in 4.

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 17:34:39, subject to the Cambridge Core terms
of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100063489


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100063489
https:/www.cambridge.org/core

The unit balls in a GL-space and its dual 317

Moreover, each norm-exposed face of the base K in 4, is projective [5]. Notice that a
pair p, g of idempotents in 4 is orthogonal if and only if the P-projections U}, U form
an orthogonal pair.

For each element a in 4, the support r(a) of a is defined by

r(a) = A{peU(4): U,a = a}.

Notice that 7(a) is the unit element in the smallest JBW-subalgebra M(4) of A con-
taining a. Hence, when a is an element of the order interval [0, e], the support 7(a) is the
least upper bound of the increasing sequence (e — (¢ —a)*) in M(a).

A pair y, z of elements of A} is said to be orthogonal if their support projective units
8(y), 8(z) form an orthogonal pair of idempotents. Each element x in 4, has a unique
decomposition

x=y-—z,

where y and z are elements of A3 such that

=] = llg] +l=-

It follows that the pair ¥, z is orthogonal. The decomposition above is said to be the
orthogonal decomposition of x.

For details of these and other properties of JBW-algebras the reader is referred to
[3], [41, [7], [8] and [16].

It is now possible to prove the first main result of this paragraph.

THEOREM 4-1. Let A be a JBW-algebra with unit ball A, and unit e. Then

(i) For each pair s, t of symmetries in A, the order interval [s,t] is a weak*-closed face
of A,.

(i) For each weak*-closed face F of A, there exists a pair s,t of symmetries in A such
that F coincides with {s,t].

Proof. (i) This is an immediate consequence of Theorem 3-2 (i).

(ii) Since the mapping a - 2a—e is a weak*-homeomorphic affine order iso-
morphism from the order interval [0, e] onto 4,, it is sufficient to show that every
weak*-closed face of [0, ] is of the form [p, ¢] for idempotents p and ¢ in 4.

Suppose that F is a non-empty weak*-closed face of [0, ¢]. Let a be an element of F
and let face (a) denote the smallest face of [0, e] containing a. Let the sequence (a,,) of

elements of 4 be defined by
a, =e—(e—a)".

Then (a,) is a monotone increasing sequence in the smallest JBW-subalgebra M(a) of
A containing a and has the least upper bound r(a). Moreover, using spectral theory,
it follows that for each integer n greater than one

laall < 1,
0<a,<na
and [na—a,| < n-1.
Moreover, a=(1/n)a,+((n—1)/n)((ra~a,)/(n—1)).

Hence the sequence (a,,) is contained in face (a). It follows that the support r(a) of a is
contained in F and, by (i), is an upper bound for face (a).
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Notice that, since, for each pair a, bof elements of F, the faces face (a) and face (b) are
contained in face ((a + b)/2), the support r((a + b)/2) of (a + b)/2 majorizes both @ and b.
Therefore the face F'is directed and, being weak *-compact, hasa largest element ¢ which
is an idempotent since its support belongs to F. Since the mapping ¢ > e — ¢ is a weak*-
homeomorphic affine anti-order-automorphism of [0, ¢], we conclude that F contains
a least element p, an idempotent. Hence F is contained in the order interval [p, ¢].

Let a be an element of [p, ¢]. Then the element p + ¢ — @ belongs to [p,q] and

a/2+(p+q—a)/2 = (p+9)/2
Therefore, a is an element of F.
Theorem 3-2 leads immediately to the following corollary.

COROLLARY 4-2. Every weak*-closed face of the unit ball A, in a JBW-algebra A is
weak*-semi-exposed.

LemMA 4-3. Let 4 be a JBW-algebra with predual Ay, let A} be the cone in the GL-
space A . For every non-empty norm-closed face G of A} there exists an idempotent p in
A such that G coincides with U% Af.

Proof. For each element x in A%, let face(x) denote the smallest face of A3 con-
taining « and let face (z) denote its norm closure. Then, by [11}, appendix 2, lemma 9,
the set face (x) coincides with the face U, 4. When ordered by set inclusion, the set
{face(x): x€ G} is directed, and if « and y are elements of G such that face(x) is con-
tained in face(y) then

s(x) < s(y).

Moreover, if face(x) and face(y) coincide so also do s(z) and s(y). Therefore,
(s(z): face (x) < G) forms an increasing net in U(4), which therefore converges in the
weak*-topology to its least upper bound p. Since, for each element a in 4, the linear
operator L, on A is weak*-continuous, for each element y in 4, the net (U, y:
face (x) = G) converges weakly to the element U}y in 4,. In particular, if y is an
element of the norm-closed face Uj A} of Af, it follows that y is contained in the weak
closure GY of the set G, defined by

Gy = U{U%, Af: 2 G} = U{face (x): zG}.

Notice that if Y is an element of G, then, for some element x in ¢, y is contained in the
set face (x) and hence in G. Clearly, ¢ is contained in G, and therefore the two sets
coincide. Hence B _
UyAic Gy =GY =G,
since the norm and weak closure of convex subsets of 4, coincide. However, if 2 is an
element of ¢ then
s(r) < P,

and hence Upz =z,

which implies that z lies in U} A%. This completes the proof of the lemma.

This result was proved for von Neumann algebras by Effros[9] and Prosser[14].
Their proofs, however, do not easily generalize to this context. The second main result
of this paragraph depends heavily upon the lemma above.
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THEOREM 4-4. Let A be a JBW-algebra with predual A, let A, be the unit ball in 4,
and let K be the set of normal states on A. Then
(1) For each pair p, q of orthogonal idempotents in A, the set

conv (Uy A, n K)u (U344 n ~K))

s a norm-closed face of A .
(ii) For each norm-closed face E of A, different from A,,, there exists a pair p, q of
orthogonal idempotents in A such that E coincides with the set

conv (U4, n K)U(Us 4, n —K)).

Proqf. (1) This follows from Corollary 3-3 (i).
(ii) By Lemma 2-2 (iii), the face E of A, coincides with the set

conv ({E n K) VU (E n—K)).

Notice that the mapping @ — @ n K is an order isomorphism from the complete lattice
of non-empty norm-closed faces of 4} onto the complete lattice of norm-closed faces
of K. Since E n K and — (£ n — K) are norm-closed faces of X it follows from Lemma
4-3 that there exist idempotents p and ¢ in 4 such that E coincides with the set
conv (U4, nK)u(U¥A4,n —K)).IfEn K or En — K isempty then clearly pand q
are orthogonal. Otherwise, let ¥ and z be elements of Uy A, n K and Uf4,n K
respectively and let ¢ be a real number in the open interval (0, 1). Then, the element x
defined by

x=ty—(1—1)z

is an element of E. Since F is a face of 4, different from 4 ,, itself all elements of K are
of norm one. Therefore

1= e <flyl+1-t)z] =1

and it follows that the decomposition of x above is precisely its orthogonal decom-
position. Therefore, the support projective units s(y), s(z) form an orthogonal pair of
idempotents. However, from the proof of Lemma 4-3 it can be seen that p and ¢ are
the weak*-limits of the increasing nets

(s(y): face (y) < Uy A*n K) and (s(2): face(2) < Ug 4, n K)

respectively. Since multiplication by elements of 4 is weak*-continuous on A it follows
that p, ¢ is an orthogonal pair of idempotents as required.

The following result is an immediate consequence of Theorem 4-4, Corollaries 3-3
and 3-5.

COROLLARY 4-5. Every norm-closed face of the unit ball A, in the predual of a JBW-
algebra A is norm-exposed.

The JBW-algebra 4 is said to be o-finite if every family (p,);. , of non-zero pairwise
orthogonal idempotents in A4 is at most countable. Clearly, a JBW-algebra 4 is
o-finite if and only if the GL-space 4, is o-finite. A normal state x of 4 is said to be
Saithful if its support projective unit s(x) coincides with the unit ¢ in 4. Notice that a
normal state x is faithful if and only if the set of elements a in A+ on which = vanishes
is {0}.
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THEOREM 4-6. Let A be a JBW -algebra with unit ball A,. Then the following conditions
are equivalent.

(i) Every weak*-closed face of A, i3 weak*-exposed.

(ii) There exists a weak*-exposed point in A,.

(iii) The unit element e in A is a weak*-exposed point of A,.
(iv) There exists a faithful normal state on A.

(v) The IBW-algebra A is o-finite.

Proof. All except the equivalence of condition (iv) with the other conditions follow
from Theorems 4:1 and 3-6. Suppose that (iv) holds and that x is a faithful normal
state of A. If ¢ is an element of 4, such that

a(@) = 1,

then e —a is an element of A+ on which x vanishes and it follows that a is equal to e.
Lemma 2-1 now shows that (iii) holds.

Conversely, suppose that (iii) holds and, again using Lemma 2-1, let z be an element
of 4, such that the set {a€ 4,: a(x) = 1} coincides with {e}. There exist normal states
y and z of 4 and a real number ¢ in the closed interval [0, 1] such that

rz=ty—(1-1t)z.
Therefore, 1 =e(x) =te(x)~(1—t)e(z) = 2t—1,

and it follows that « and y coincide. Hence z is a normal state of 4; a reversal of the
argument above shows that z is faithful.

The next result follows from Theorem 4-1 and Corollary 3-7.

THEOREM 4:7. Let A be a JBW-algebra with unit ball A, and unit e. Let p and q be
tdempotents in A with p majorized by q. Then the weak*-closed face [2p—e,29 —e] of A, 18
weak*-exposed if and only if the JBW-algebras U, 4 and U,_, 4 are o-finite.

5. Further examples
(1) Finate-dimensional spaces
Let V be a finite-dimensional GL-space which satisfies the condition that every
norm-exposed face of the set K of positive elements of ¥ of norm one is projective. Then,
by [5], proposition 2-5, and [3], proposition 8:7, it follows that the set U(V*) of pro-
jective units in the dual space V* of V coincides with the set of extreme points of the
order interval [0,¢] in V*. Moreover, in finite-dimensional spaces the notions of
exposure and semi-exposure coincide. Consequently the only result of interest in this
example is Theorem 3-2, which leads to the following

THEOREM 5-1. Let V be a finite-dimensional GL-space with dual unital GM-space V*,
Let V¥ betheunit ball in V* and suppose that the set K of positive elements of V of norm one
has the property that every norm-exposed face of K is projective. Then:

(i) For each pair s, t of extreme points of V¥, the order interval [s,t] is a weak-exposed
Jace of V¥.

(i) Bvery weak-exposed face of V¥ is of the form [s,t] for extreme points s and t or V¥.
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(2) GL-spaces with smooth strictly convex bases

Let V be a GL-space with dual GM-space V* and let K be the set ot positive elements
of ¥ of norm one. Recall that K is said to be strictly convex if every proper face of K is
of the form {z} for some point x of K and is said to be V*-smooth if for every extreme
point z of K there exists a unique element »_ in V* of norm one such that

Uy () = 1.

THEOREM 5-2. Let V be a GL-space with dual V* and let VT be the unit ball in V*.
Suppose that the set K of positive elements of norm one in V is strictly convex, V*-smooth
and weakly compact. Then:

(i) Every weak-semi-exposed face of V¥ is weak-exposed.

(ii) Every extreme point of VY ts weak-exposed.

(iii) Bvery proper non-singleton weak-exposed face of Vi is one-dimensional and
contains either +e or —e.

Proof. Tt follows from [3], theorem 10-5, that every norm-exposed face of K is
projective and that every face of K is norm-exposed. Moreover, an orthogonal family
of non-empty projective faces has at most two elements. Therefore, V is o-finite and
(i) follows from Theorem 3-6. Furthermore, the set of projective units in V* coincides
with the set of extreme points of the order interval [0, ¢]. Hence (ii) holds true.

By (i), Theorem 3-2 (ii) and the orthomodularity of U(V*), it follows that a proper
non-singleton weak-exposed face of VT is of the form + [2p — e, €] for some projective
unit p different from e and 0. It follows from (ii), Theorem 3-2 (iii) and again the
orthomodularity of U(V*) that the elements 2p —e and e are the only extreme points
of the face [2p — e, e]. This proves (iii).
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