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Abstract— Trajectory preserving and lifting maps have been
implicitly used in many recursive or hierarchical control design
techniques. Well known systems theoretic concepts such as
differential flatness or more recent ones such as bisimulations
can be also understood through the trajectory lifting maps
they define. In this paper we initiate a study of trajectory
preserving and lifting maps between affine control systems. Our
main result shows that any trajectory lifting map between two
single-input control affine systems can be locally factored as the
composition of two special trajectory lifting maps: a projection
onto a quotient system followed by a differentially flat output
with respect to another control system.

I. INTRODUCTION

This paper initiates the study of a special class of maps
between control systems having the property of preserving
and lifting (or reflecting) trajectories. The importance of
this class of maps can be recognized by realizing that
several hierarchical or recursive control design techniques
are implicitly based on the existence of such maps. The most
popular example is probably backstepping [SJK97] where the
existence of a stabilizing controller for a control system of
the form:

ẏ = f(y) + g(y)v (I.1)

with y ∈ R
n being the state and v ∈ R being the input can

be extended to a stabilizing controller for the larger system:

ẏ = f(y) + g(y)v
v̇ = f ′(y, v) + g′(y, v)u (I.2)

where (y, v) ∈ R
n+1 is now the state, u ∈ R the input and

g′ is assumed to be non-zero in the region of interest. What
is interesting in this design technique, from the perspective
of this paper, is that we can define the map φ(y, v) = y
from the state space of (I.2) to the state space (I.1) with the
following two remarkable properties:

1) For any state trajectory x(t) = (y(t), v(t)) of (I.2),
φ(x(t)) = y(t) is a trajectory of (I.1);

2) For any trajectory y(t) of (I.1) there exists a trajectory
x(t) of (I.2) such that φ(x(t)) = y(t).

Indeed, if x(t) = (y(t), v(t)) is a trajectory of (I.2) then
y(t) = φ(y(t), v(t)) is the trajectory of (I.1) corresponding
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to input v(t). Conversely, if y(t) is a trajectory of (I.1) then
(y(t), v(t)) is the trajectory of (I.2) corresponding to input:

v̇(t) − f ′(y(t), v(t))
g′(y(t), v(t))

and satisfying φ(y(t), v(t)) = y(t).
A different scenario where trajectory preserving and lifting

maps also appear is in the study of abstractions of control
systems initiated by Pappas and co-workers [PLS00]. Here,
one starts with a control system ΣF defined on some
manifold M and a map φ : M → N to some lower
dimensional manifold and one seeks to construct a control
system ΣG with state space N such that φ has property (1).
The motivation behind the construction of ΣG is that the
lower dimensionality of ΣG renders its analysis simpler and
hopefully properties studied in ΣG will lift to ΣF under the
right technical assumptions. An instance of this approach
is described in [TP05a] where the problem of designing
trajectories for ΣF joining point a to point b is converted
into the problem of designing trajectories for ΣG joining
point φ(a) to point φ(b) followed by a constructive procedure
lifting designed trajectories from ΣG to ΣF .

Differential flatness can also be understood under the
light of trajectory preserving and lifting maps. Given a
differentially flat system ΣF equipped with a flat output
φ : R

m → R
n we can always construct the trivial control

system ΣG on R
n defined by ẏ = v where y ∈ R

n is
the state and v ∈ R

n the input. Since any curve in R
n

is a trajectory of ΣG we immediately have that φ satisfies
property (1). Furthermore, being φ a flat output we also
know that for every trajectory y(t) there exists a trajectory
x(t) of ΣF satisfying φ(x(t)) = y(t) which shows that
(2) is also satisfied. However, more is true in this case.
Not only trajectories of ΣG can be lifted to trajectories of
ΣF as this lifting operation is unique, that is, for every
trajectory y(t) of ΣG there is one and only one trajectory
of ΣF mapping to y(t) under φ. On the other extreme we
have bisimilar control systems. If ΣF is bisimilar to control
system ΣG through a relation defined by the graph of a map
φ : M → N , then by definition1 of bisimulation, (1) is
satisfied and every trajectory of ΣG can be lifted not to one
but to a family of trajectories. In more detail we have that

1See for example [vdS04], [TP04], [Pap03] for a discussion of bisimula-
tion in a systems theoretic context.
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for every trajectory y(t) of ΣG and for every point x ∈ M
satisfying φ(x) = y(0) there exists a lifting trajectory xx(t)
of ΣF satisfying φ(xx(t)) = y(t) and xx(0) = x. The
situations just described correspond to two extreme cases
since in general a trajectory preserving and lifting map does
not admit unique liftings neither admits lifting for every
possible initial condition. However, as we prove in this paper,
every trajectory preserving and lifting map between single-
input control affine systems can be locally factored as the
composition of two trajectory preserving and lifting maps of
the kinds just described.

A related line of inquiry is the study of maps satisfying
property (2) but not necessarily property (1) as was done
in [Gra05] for the extreme case where trajectories can be
lifted for all possible initial conditions. We believe that the
results presented in this paper also offer some insight into
this ”one-sided” aspect of the question of which kinematic
reductions [BLL02] can be seen as particular examples.

The results presented in this paper rely on the so called
geometric approach to nonlinear control [Jur97], [NvdS95]
and are presented in the setting of category theory [Lan71].
Even though category theory only plays a moderate role
in the proof of our results, it the provides a convenient
conceptual setting to study many problems in systems and
control theory. Such approach has already been proved useful
in the study of quotients [TP05b], bisimulations for dynami-
cal, control and hybrid systems [HTP03], mechanical control
systems [Lew00] as well as other problems in systems and
control theory [Elk98]. Due to space limitations we were
forced to eliminate the proofs of the most elementary results.
The interested reader can consult such proofs in [Tab05].

II. NOTATIONAL PRELIMINARIES

We follow standard terminology and notation in differ-
ential geometry [AMR88]. We will assume all objects to
be smooth unless stated otherwise and by smooth we mean
infinitely differentiable. We will denote by TM the tangent
bundle of a manifold M and by TxM the tangent space of M
at x ∈ M spanned by { ∂

∂x1
, . . . , ∂

∂xm
} where (x1, . . . , xm)

are the coordinates of x. Similarly we denote by Tf the
tangent map of a map f : M → N while Txf denotes
the tangent map of f evaluated at x ∈ M . Recall that Txf
maps tangent vectors in TxM to tangent vectors Txf · X =
Y ∈ Tf(x)N . For each x ∈ M , Txf ∈ L(Rm, Rn) where
L(Rm, Rn) denotes the space of linear maps from R

m to
R

n and m = dim(M), n = dim(N). When the dimension
of the kernel of Txf does not change with x we say that f
has constant rank. By an affine distribution we will mean a
function assigning to each x ∈ M a an affine space of TxM .
Recall that a subset S of a vector space is said to be an affine
space when for any s, s′ ∈ S we have λs+λ′s′ ∈ S for any
λ+λ′ = 1 and λ, λ′ ∈ R. Similarly, a function f(x, y) is said
to be affine in y when f(x, λy+λ′y′) = λf(x, y)+λ′f(x, y′)
in which case it can be written as f(x, y) = α(x) + β(x)u.
The exterior derivative of a real valued map f will be denoted
by df while the Lie derivative of f along vector field X will

be denoted by LXf . Iterated Lie derivatives are defined by
the recursion L0

Xf = f and Li+1
X f = LX(Li

Xf).

III. THE CATEGORY OF AFFINE CONTROL SYSTEMS

Informally speaking, a category is a collection of objects
and morphisms between the objects and relating the structure
of the objects. If one is interested in understanding vector
spaces, it is natural to consider vector spaces as objects and
linear maps as morphisms since they preserve the vector
space structure. This choice for objects and morphisms
defines Vect, the category of vector spaces. Choosing man-
ifolds for objects leads to the the natural choice of smooth
maps for morphisms and defines Man, the category of
smooth manifolds. In this section we introduce the category
of affine control systems which we regard as the natural
framework to study trajectory lifting morphisms. Besides
providing an elegant language to describe the constructions
to be presented, category theory also offers a conceptual
methodology for the study of objects, affine control systems,
in this case. Since our results are of local nature we define
affine control systems directly on open subsets of Euclidean
space.

Definition 3.1: A local affine control system Σ =
(M, Ro, F ) is defined by the following elements:

1) The state space M , an open subset of R
m;

2) The input space R
o;

3) The system map F : M × R
o → TM defined by:

F (x, u) = X(x) +
o∑

i=1

Zi(x)ui

where x ∈ M , u = (u1, . . . , uo) ∈ R
o, X is a vector

field on M and Z1, . . . , Zo are linearly independent
vector fields on M .

A local affine control system is said to be single-input when
o = 1.
Since we are working locally there is no loss in generality
in assuming that vector fields X, Z1, . . . , Zo are globally
defined in M . Furthermore, as we are interested in local
results we will not distinguish between a control system
ΣF and its restriction to an open subset M ′ ⊂ M . The
linear independence assumption also results in no loss of
generality when the distribution spanned by Z1, . . . , Zo has
constant rank. In this case if, for example, vector field
Zo is linearly dependent on the remaining vector fields
Z1, . . . , Zo−1 we have Zo(x) =

∑o−1
i=1 ci(x)Zi(x) and the

feedback ui = −ci(x) + u′
i can be used to cancel Zo. The

resulting control system F ′(x, u′) = X(x) +
∑o−1

i=1 Zi(x)u′
i

can now be identified with a control system with input space
R

o−1 where the linear independence assumption is valid.
Definition 3.2: Let ΣF = (M, Ro, F ) and ΣG =

(N, Rp, G) be affine control systems. A map f = (f1, f2) :
M×R

o → N×R
p with f1 : M → N and f2 : M×R

o → N
is a morphism from ΣF to ΣG if the following equality holds:

Txf1(x) · F (x, u) = G(f1(x), f2(x, u)) (III.1)
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To illustrate the notion of morphism consider affine control
system ΣF defined by:

ẋ1 = x2
1 + x1x2 (III.2)

ẋ2 = x1x
2
2 + x1u (III.3)

ẋ3 = x3
1x2x

2
3 + x1x3u (III.4)

and affine control system ΣG defined by ẏ = v. To show
that:

f1(x1, x2, x3) = x1 (III.5)

f2(x1, x2, x3, u) = x2
1 + x1x2 (III.6)

defines a morphism from ΣF to ΣG we need to show
that (III.1) holds. We first note that Txf1(x) · F (x, u) =
x2

1 + x1x2. Since G(f1(x), f2(x, u)) = f2(x) = x2
1 + x1x2

we conclude that equality (III.1) is satisfied and that f1 and
f2 define a morphism from ΣF to ΣG.

The notion of morphism generalizes the notion of feedback
equivalence so many times used in systems and control
theory. Recall that control systems ΣF and ΣG, defined by
F (x, u) = X(x) +

∑o
i=1 Zi(x)ui and G(y, v) = Y (y) +∑o

i=1 Wi(y)vi, respectively, are said to be feedback equiv-
alent when there exists a diffeomorphism in the state space
g(x) = y and an invertible feedback h(x, v) = u = hx(v)
such that the feedback transformed system:

F ′(y, v) = Tg−1(y)g · X ◦ g−1(y)

+
o∑

i=1

Tg−1(y)g · Zi ◦ g−1(y)h(g−1(y), v)

is equal to G(y, v). Note that by using x = g−1(y) and
v = h−1

x (u) the equality between F ′(y, v) and G(y, v) can
be written as:

Txg·X(x)+
o∑

i=1

Txg·Zi(x)u = Y ◦g(x)+
o∑

i=1

W◦g(x)h−1
x (u)

which is no more than (III.1) with f1(x) = g(x) and
f2(x, u) = h−1

x (u).
Local affine control systems introduced in Definition 3.1

and morphisms between local affine control systems intro-
duced in Definition 3.2 define the category of local affine
control systems denoted by AConl. It follows from the
affine nature of the considered control systems that mor-
phisms are also affine in the following sense:

Proposition 3.3: Let ΣF
f � ΣG be a morphism in

AConl. Then, f2(x, u) = α(x) + β(x) · v where α : M →
R

p and for each x ∈ M , β(x) ∈ L(Ro, Rp).
Properties of affine control systems are sometimes easily

studied with the help of a naturally induced affine distribu-
tion.

Definition 3.4: With each local affine control system Σ
we associate an affine distribution A defined by:

A(x) = X(x) + span
R
{Z1(x), . . . , Zo(x)}

One can show that studying local affine control systems is
in many ways equivalent to studying affine distributions and

their morphisms [Elk98]. The essence of this correspondence
is the following result that we will use later in the paper.

Proposition 3.5: Let ΣF
f � ΣG be a morphism in

AConl, then:

Txf1(x)(AF (x)) ⊆ AG ◦ f1(x) (III.7)

Conversely, for any map f1 : M → N satisfying (III.7)
there exists a unique map f2 : M × R

o → R
p such that

f = (f1, f2) is a morphism from ΣF to ΣG.
This correspondence between morphisms in AConl and

affine distribution preserving maps critically relies on the
affine structure of the control systems. For non-affine control
systems additional assumptions are necessary to conclude
regularity of f2 as discussed in [Gra03].

IV. TRAJECTORIES OF AFFINE CONTROL SYSTEMS

A. The path subcategory

Even tough we have already introduced the objects of
study, affine control systems, and presented some of its
properties we have not yet defined the fundamental notion
of trajectory. Once again we will follow a categorical ap-
proach based on Joyal’s and co-workers work on bisimula-
tion [JNW96]. There are two main reasons for following this
approach. One, is that this approach has alredeady proved
useful in studying notions of bisimulation for dynamical,
control and hybrid systems [HTP03]. The other reason, is
that by altering the notion of path objects, defined below,
we can use similar techniques to study different properties
lifted by morphisms.

Definition 4.1: An object ΣT of AConl is a path object
if the following hold:

1) M is a connected subset of R containing the origin;
2) The input space is R

0 = {0};
3) The system map T is given by T (t) = (t, 1).

A path or trajectory in a local affine control system ΣF is a
morphism ΣT

p� ΣF .
Morphism p = (p1, p2) : ΣT → ΣF captures the usual
notion of trajectory since equality (III.1) reduces to:

d

dt
p1(t) = Ttp1(t) · 1 = F (p1(t), p2(t))

where we have identified the function p2 defined on M×{0}
with a function p2 defined on M . The above definition
is no more than an elegant way of expressing trajectories
through the use of morphisms. At this point it is important
to show that morphisms of control systems have property
(1) mentioned in the Introduction. This immediately follows
from our definition since given a path ΣT

p� ΣF in ΣF

and a morphism ΣF
f� ΣG from ΣF to ΣG it follows

immediately that f ◦ p is a morphism from ΣT to ΣG,
therefore a path in ΣG.

B. Path lifting morphisms

Although morphisms in AConl preserve trajectories by
construction not every morphism reflects or lifts trajectories.
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Definition 4.2: Let ΣF
f � ΣG be a morphism in

AConl. Morphism is said to be path lifting if for any path
object ΣT and any morphism ΣT

p� ΣG there exists

a morphism ΣT
p′
� ΣF making the following diagram

commutative:
ΣF

ΣT
p �

p
′

�

ΣG

f

�

(IV.1)

A path lifting morphism f is said to be:

• Singular when p′ is unique;
• Total when for every x ∈ f−1

1 (p1(0)) there exists

a morphism ΣT
p′

x� ΣF making diagram (IV.1)
commutative and satisfying p′x1(0) = x.

It follows immediately from diagram (IV.1) that a necessary
condition for f to be a path lifting morphism is surjectivity of
f1. In addition to surjectivity other conditions must hold for
a morphism to be path lifting. The study of such conditions
requires the use of extensions of affine control systems
introduced in the next section.

V. EXTENSIONS

The operation of extension allows to increase the state
space dimension of a control system while retaining many
of its properties. Extensions will play an important role in
the factorization of path lifting morphisms.

Definition 5.1: Let Σ = (M, Ro, F ) be a local affine
control system. The extension of Σ, denoted by Σe, is defined
by Σe = (Me, Ro, F e) where:

1) Me = M × R
o;

2) F e((x, u), v) = X(x) +
∑o

i=1 Zi(x)ui +
∑o

i=1 vi
∂

∂vi
.

The extension of a control system models the addition of
a pre-integrator to the original dynamics. If we start with a
system of the form ẋ = X(x) + Z1(x)u1 + . . . + Zo(x)uo

its extension is described by:

ẋ = X(x) + Z1(x)u1 + . . . + Zo(x)uo

u̇1 = v1

...

u̇o = vo

where u1, . . . , uo are now regarded as states and v1, . . . , vo

are new inputs.
Note that the extension Σe of a local affine control system

comes equipped with a morphism Σe π� Σ defined by
π1(x, u) = x and π2((x, u), v) = u. Furthermore, morphism
π is a singular path lifting morphism since any trajectory
p(t) = (p1(t), p2(t)) in Σ defines a unique trajectory pe(t) =(
(p1(t), p2(t)), d

dtp2(t)
)

in Σe satisfying π ◦ pe = p.

Proposition 5.2: Let ΣF
f � ΣG be a morphism in

AConl for ΣF = (M, Ro, F ) and ΣG = (N, Rp, G), and
assume that Tf1 · Zi = 0 for i = 1, . . . , o. Then, f2 can be

identified with a map f2 : M → R
p and there exists a unique

morphism fe making the following diagram commutative:

Σe
G

ΣF
f �

f
e

�

ΣG

π

�

Furthermore, if f is path lifting and f1 has constant rank
there exists a vector field K defined on a neighborhood of
every x ∈ M satisfying Tf1 · K = 0 and Tfe

1 · K �= 0.
Proof: Since f is a morphism we have Txf1(x)·F (x, u) =

G(f1(x), f2(x, u)) and assumption Tf1 · Zi = 0 implies
that Txf1(x) · F (x, u) = Txf1(x) · X(x). Therefore, for
any u, u′ ∈ R

o it follows that G(f1(x), f2(x, u)) =
G(f1(x), f2(x, u′)). From injectivity of G(y, v) in v we
conclude that f2(x, u) = f2(x, u′) so that we can identify
f2 with a function on M . Let now fe

1 = (f1, f2) : M →
N × R

p. If V ∈ AF (x), then:

Txfe
1 · V = (Txf1 · V, Txf2 · V )

=
(
G(f1(x), f2(x)), Txf2 · V

) ∈ AG ◦ f1(x) × Tf2(x)R
p

= Ae
G ◦ fe

1 (x)

It now follows from Proposition 3.5 applied to fe
1 the

existence of a unique map fe
2 making (fe

1 , fe
2 ) a morphism

from ΣF to Σe
G. To conclude uniqueness of fe assume that g

is another morphism satisfying π◦g = f . Since π◦g = g1 we
conclude that g1 = f = fe

1 and as f2
e is uniquely determined

by fe
1 = g1 it follows that fe = g.

We now turn to the second part of the result and start
by showing that if f is path lifting then for every x ∈ M ,
f2|L is surjective where L is the submanifold2 L = f−1

1 ◦
f1(x) of M . For any trajectory p in ΣG starting at f1(x),
there exists a trajectory p′ of ΣF satisfying f ◦ p′ = p, by
assumption. Differentiating f1 ◦ p′1 = p1 at t = 0 we get
Txf1(x) · ṗ′1(0) = ṗ1(0). Since ṗ1(0) can be any vector in
AG ◦ f1(x), there must exist a x′ ∈ M such that Tx′f1 ·
F (x′, u) = G(f1(x′), f2(x′)) = ṗ1(0) and f1(x′) = f1(x),
that is x′ ∈ L. We thus conclude that f2|L must be surjective
in order for AG ◦ f1(x) to be contained in the image of
G(f1(x′), f2(x′)) with x′ ∈ L since G(y, v) is injective on
v. Having proved surjectivity of f2|L we now assume, for the
sake of contradiction, that no vector field K satisfies Tf1 ·
K = 0. But this implies that L is a manifold of dimension 0
since the tangent space of L is described by the vector fields
V satisfying Tf1 ·V = 0. We thus reach a contradiction since
level set L has at most a countable number of connected
components which prevents f2|L from being surjective (on
the codomain R). Therefore we conclude the existence of
vector fields K satisfying Tf1 · K = 0 and to finalize the
proof we assume, again for the sake of contradiction, that
every vector field satisfying Tf1 ·K = 0 also satisfies Tf2 ·
K = 0. However, this assumption implies that f2 is constant

2Recall that since f1 has constant rank L = f−1
1 ◦f1(x) is a submanifold

of M .
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on every connected component of L since the tangent space
of L consists of all vector fields V satisfying Tf1 · V =
0. Furthermore, since L has at most a countable number
of connected components we contradict again surjectivity of
f2|L thus finishing the proof. �

VI. MAIN RESULT

In this section we present and prove our main result.
Its statement requires a variation on the notion of rela-
tive degree usually found in the geometric control theory
literature [Isi96], [NvdS95]. The slightly different notion
presented here will simplify the statement of the main results.

Definition 6.1: Let ΣF
f � ΣG be a morphism in

AConl where ΣF and ΣG are single-input systems. The
relative degree of ΣF with respect to f is the natural number
k satisfying:

1) k = 0 if Tf1 · Z �= 0 otherwise:
2) k = 1 if LZf2 �= 0;
3) k = i + 1 if LZLj

Xf2 = 0 for j = 0, . . . , i − 1 and
LZLi

Xf2 �= 0.
Note that the relative degree is not necessarily well defined at
every point in the state space. However, since our results are
local in nature, we will assume that the state space has been
reduced in order to contain only points where the relative
degree is well defined.

Theorem 6.2: Let ΣF
f� ΣG be a path lifting mor-

phism in AConl where ΣF and ΣG are single input systems.
If ΣF has relative degree k with respect to f and f1 has
constant rank, then there exists a unique total path lifting
morphism ΣF

h� Σek

G and a unique singular path lifting

morphism Σek

G

g� ΣG making the following diagram
commutative:

ΣF
f � ΣG

Σek

G

g

�

h
�

Furthermore, g = (g1, g2) is given by the natural projections
on the first factor g1 : N × R

kp → N and g2 : (N × R
p) ×

R
kp → N × R

p.
Proof: We start by considering the case where Tf1 ·Z �=

0, that is k = 0. Let F (x, u) = X(x) + Z(x)u and
G(y, v) = Y (y)+W (y)v and recall that by Proposition 3.3,
f2(x, u) = α(x) + β(x)u. Evaluating Txf1 · F (x, u) =
G(f1(x), f2(x, u)) at u = 0 provides:

Txf1 · X(x) = Y ◦ f1(x) + W ◦ f1(x)α(x) (VI.1)

Evaluating now Txf1 · F (x, u) = G(f1(x), f2(x, u)) for an
arbitrary u ∈ R and using (VI.1) we obtain:

Txf1 · Z(x) = W ◦ f1(x)β(x)

Since the left hand side is, by assumption, nonzero it follows
that β(x) must also be nonzero. We can therefore consider
the feedback equivalent system ΣF ′ defined by F ′(x, u′) =

F
(
x, u′−α(x)

β(x)

)
= X ′(x) + Z ′(x)u′. Note that f is also a

morphism from ΣF ′ to ΣG and equality Txf1 · F ′(x, u′) =
G(f1(x), f2(x, u′)) now reduces to:

Txf1 · X ′(x) + Txf1 · Z ′(x)u′

= Y ◦ f1(x) + W ◦ f1(x)α(x)

+W ◦ f1(x)β(x)
u′ − α(x)

β(x)
= Y ◦ f1(x) + W ◦ f1(x)u′ (VI.2)

Let now p(t) = (p1(t), p2(t)) be any trajectory in ΣG

starting at any y ∈ N , that is, p1(0) = y. Consider also
the trajectory p′(t) in ΣF ′ satisfying p′2 = p2 and starting
at any x ∈ M such that f1(x) = y, that is, p′1(0) = x.
Differentiating equality f1 ◦ p′1(t) = p1(t) with respect to
time and using (VI.2) we obtain:

d

dt
f ◦ p′1(t) = Tp′

1(t)
f1 · X ′ ◦ p′1(t) + Z ′ ◦ p′1(t)p

′
2(t)

= Y ◦ f1(p′1(t)) + W ◦ f1(p′1(t))p
′
2(t)

= Y ◦ f1(p′1(t)) + W ◦ f1(p′1(t))p2(t)

thus showing that f◦p′1(t) is the trajectory of ΣG correspond-
ing to input p2(t). Since trajectories are necessarily unique
it follows that we must have f1 ◦ p′1(t) = p1(t) from which
we conclude that for every trajectory p(t) in ΣG starting at
any y ∈ N and for any x ∈ M satisfying f1(x) = y there
exists a trajectory p′(t) in ΣF ′ starting at x and satisfying
f1 ◦ p′ = p. Morphism f is therefore a total path lifting
morphism from ΣF ′ to ΣG and therefore also a total path
lifting morphism from ΣF to ΣG as ΣF is isomorphic to
ΣF ′ .

We now consider the case where Tf1 · Z = 0. By
assumption f1 has constant rank so that we can apply Propo-
sition 5.2 to factor ΣF

f� ΣG as ΣF
fe

� Σe
G

π� ΣG.
Recall that fe

1 = (f1, f2) and since by Proposition 5.2
there exists a vector field K such that Tf1 · K = 0 and
Tfe

1 · K �= 0 we conclude that Tf2 · K �= 0. This shows
that df2 is linearly independent of dh1, . . . ,dhn for any
coordinate description f1 = [h1 . . . hn]T of f1. Therefore,
dim ker(Tfe

1 ) = dim ker(Tf1) − 1 and fe
1 = (f1, f2) has

constant rank since f1 has constant rank. Note also that
if the relative degree of ΣF with respect to f is greater
than one we have LZf2 = 0 which combined with Tf1 ·
Z = 0 implies Tfe

1 · Z = 0. We can therefore apply

Proposition 5.2 again to factor ΣF
fe

� Σe
G

π� ΣG

as ΣF
fe2

� Σe2

G

π2
� Σe

G

π� ΣG. We now have
fe2

1 = fe = (f, Tf2 · F ) since by Proposition 5.2 fe is the
unique morphism determined by f and fe is a morphism as
can be seen from:

Tfe · F = (Tf1 · F, Tf2 · F ) = (G ◦ f, Tf2 · F ) = Ge ◦ fe

Provided that the relative degree of ΣF is greater than 2, it
follows that LZLXf2 = 0 = LZ(Tf2 · X) = LZ(fe

2 ) =
Tfe

2 ·Z = 0 leading to Tfe2

1 ·Z = 0. Also since there exists
a vector field K satisfying Tfe

1 · K = 0 and Tfe2

1 · K �= 0
we conclude that dim ker(Tfe2

1 ) = dim ker(Tfe
1 ) − 1 =
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dim ker(Tf1) − 2 and fe2

1 has constant rank. We can thus
apply Proposition 5.2 repeatedly for a total of k times after
which Tfek

1 · Z �= 0 since fek

1 = (fek−1

1 , Lk−1
X f2) and by

definition of relative degree we have LZLk−1
X f2 �= 0. We

thus have f = fek ◦ πk ◦ . . . ◦ π2 ◦ π with Σei

G

πi

� Σei−1

G .
Morphism g is now given by g = π ◦ π2 ◦ . . . ◦ πk and the
proof is finished by defining h = fek

and noting that fek

is a
total path lifting morphism (by the argument in the first part
of the proof) since the relative degree of ΣF with respect to
fek

is zero. �

Even tough a general path lifting morphism ΣF
f� ΣG

is neither total or singular Theorem 6.2 asserts that f can
be uniquely factored into a composition of singular and
total path lifting morphisms. This decomposition allows
one to regard ΣF as a control system that is differentially
flat with respect to ΣG up to symmetries. As explained
in [TP04], a total path lifting morphism ΣF

h� Σek

G that is
also a surjective submersion necessarily corresponds to the
projection from ΣF onto the quotient control system Σek

G

obtained from ΣF by factoring out the controlled invariant
distribution defined by all the vector fields K satisfying
Th1 · K = 0. Once this controlled invariant distribution,
describing symmetries of ΣF , is factored out we obtain a
singular path lifting morphism Σek

G

g� ΣG that can be
regarded as a differentially flat output with respect to ΣG

in the sense that any trajectory of ΣG lifts uniquely to a
trajectory of Σek

G . The special cases of singular and total path
lifting morphisms correspond to the cases where h or g are
the identity morphisms, respectively, as we now summarize
in the following corollary.

Corollary 6.3: Let ΣF
f� ΣG be a path lifting mor-

phism in AConl where ΣF and ΣG are single input systems.
1) If ΣF has relative degree 0 with respect to f then f

is a total path lifting morphism;
2) If ΣF has relative degree dim(M) − dim(N) with

respect to f then f is a singular path lifting morphism.
We now apply Theorem 6.2 to factor morphism f defined

by (III.5) and (III.6) as f = g ◦ h. We first compute the
relative degree k of ΣF , defined by (III.2), (III.3) and (III.4),
with respect to f . Since Tf1 · Z = 0 and LZf2 = x2

1 we
conclude that k = 1 provided that M is any open subset
of R

3 not containing the hyper-plane defined by x1 = 0.
Since k = 1 Theorem 6.2 reduces to Proposition 5.2 and
h is the morphism ΣF

fe

� Σe
G while g is the projection

morphism Σe
G

π� ΣG. From the proof of Proposition 5.2
(see [Tab05]), fe

1 is given by fe
1 = (f1, f2) and we can find

fe
2 through equality (III.1). Comparing:

Tfe
1 · F =

[
x2

1 + x1x2

2x3
1 + x1x2(3x1 + x2 + x1x2) + x2

1u

]
(VI.3)

with Ge(fe
1 (x), fe

2 (x, u)) we conclude that fe
2 is given by:

fe
2 (x1, x2, x3, u) = 2x3

1 + x1x2(3x1 + x2 + x1x2) + x2
1u

We can therefore regard ΣF as a differentially flat system
with respect to the output f1 modulo the symmetries defined
by the controlled invariant distribution ker(Tfe

1 ).

VII. CONCLUSIONS

The results described in this paper constitute the first step
to understand and place in a broader setting the many existing
hierarchical and recursive control design algorithms. Even
though only the single-input case has been discussed we
believe that a similar decomposition result should hold also
for the multi-input case. In addition to a study of the multi-
input case, ongoing research is focusing on the study of
weaker forms of path lifting in order to extend hierarchical
and recursive control design techniques to broader classes of
systems.
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