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This paper reports an unexpected and rather erratic behavior of the LAPACK software implemen-
tation of the QR factorization with Businger–Golub column pivoting. It is shown that, due to finite
precision arithmetic, the software implementation of the factorization can catastrophically fail to
produce properly structured triangular factor, thus leading to potentially severe underestimate of
a matrix’s numerical rank. The 30 year old problem, dating back to LINPACK, has (undetect-
edly) badly affected many computational routines and software packages, as well as the study of
rank revealing QR factorizations. We combine computer experiments and numerical analysis to
isolate, analyze and fix the problem. Our modification of the current LAPACK xGEQP3 routine
is already included in the LAPACK 3.1.0 release. The modified routine is numerically more robust
and with a negligible overhead. We also provide a new, equally efficient and provably numerically
safe, partial column norm updating strategy.
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Error Analysis; G4 [Mathematical Software]: —Reliability; Robustness
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1. INTRODUCTION

During the implementation and testing of a new Jacobi–type SVD algorithm [Drmač
and Veselić 2007a; 2007b], we encountered an exceptional behavior in one test case:
safety switches were triggered and an emergency branch of the code was activated.
This worst case scenario was unexpected because the theory had guaranteed a
smooth run with no need for exceptional treatment of the input matrix. An inspec-
tion of control parameters computed by numerical poka–yoke devices in our software
has shown that the exceptional behavior was caused by an objectionable result of
the pivoted QR factorization in the preprocessing phase of the algorithm. Namely,
the computed triangular factor failed to have properly ordered diagonal entries.
This fact prompted separate testing of the LAPACK routine xGEQP3, which was
used in our SVD software. It implements a BLAS 3 version [Quintana-Orti et al.
1998] of the Businger–Golub [1965] pivot strategy which, for A ∈ Rm×n, computes
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permutation matrix P , orthonormal Q and upper triangular matrix R such that

AP = QR, where |Rii| ≥

√√√√
j∑

k=i

|Rkj |2, for all 1 ≤ i ≤ j ≤ n. (1)

Our detailed experimental investigation and numerical analysis have shown that
the LINPACK and LAPACK software implementations of (1) may exhibit seri-
ous instabilities, which may lead to numerical catastrophes in engineering applica-
tions. For instance, the numerical rank of a matrix can be severely underestimated.
We have tracked the problem down to inaccurately updated partial column norms
needed to implement (1). More precisely, we have found a numerical bug in the
safety switch which is used to protect the updating formula from massive cancella-
tions. The flaw is so subtle that wrong pivoting can be provoked or cured simply by
changing the compiler options, or even by writing certain auxiliary variables to the
screen. This sensitivity indicates computation near a singularity. In other words,
the condition number of the updating formula is mistakenly underestimated.

We give detailed description of the problem and provide two solutions. Our
first modification, adopted by LAPACK 3.1.0, is a quick fix for the current LA-
PACK code. It uses a better safety switch and it does not affect the input/output
specifications of the current LAPACK’s routines. We also propose a new provably
numerically safe partial column norm updating scheme, with an overhead of n extra
locations in the workspace. In both cases, the run–time overhead is negligible.

This issue has implications to the backward (or mixed) stability. It is well known
that the QR factorization is backward stable in floating point arithmetic. Therefore,
in a proper software implementation, the computed Q̃, R̃ and the actually used
permutation matrix P̃ should satisfy (A + ∆A)P̃ = Q̃R̃ with small ∆A, and, in
addition, Q̃ should be numerically orthonormal and R̃ upper triangular. Strictly
speaking, Q̃ is close to an orthonormal matrix Q̂ such that (A+δA)P̃ = Q̂R̃ is a QR
factorization with column pivoting. Here δA is similar in size to ∆A. Notice that
in the backward stability statement we insist on the structure: R̃ must be upper
triangular and Q̃ must be numerically orthonormal. Although the factorization is
computed with pivoting, which should impose certain structure on the triangular
factor, the structure of R̃ is never mentioned in backward error analysis. It certainly
cannot be taken for granted, as e.g. the triangular form of R̃. It could be that it is
tacitly assumed that the structure will be nearly attained (up to roundoff), or that
the issue is simply pushed into the forward error – the structure of the computed
R̃ is not considered to be the responsibility of the backward error analysis. Thus,
strictly speaking, if the structure of R̃ is not guaranteed (at least in the mixed
stability sense), the computation of (1) is not backward (nor mixed) stable. Our
new scheme is provably stable implementation of the pivoted QR factorization (1).

The material is organized as follows. In §2 we give several examples which illus-
trate how the state of the art implementations of the factorization (1) can fail to
produce satisfactory results, and how this failure affects solvers based on the pivoted
QR factorization. These examples should convince the reader that the problem is
serious. An experimental diagnostics is presented in §3. Section 4 offers an analysis
of the erratic behavior and proposes modifications of the current LAPACK code.
In §5, we present new software implementations of the Businger–Golub pivoting.
ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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The new software runs at the speed similar to current LAPACK code, and it is
fail safe. Finally, §6 recalls the importance of pivoting from the numerical point of
view. We discuss how pivoting contributes to more accurate factorization, and how
it can be used as a preconditioning technique.

2. EXAMPLES OF SOFTWARE FAILURE

To make our case, we first give several examples of software failure. In particular,
we show that both the monotonicity of the diagonal and the diagonal dominance can
be destroyed in common software implementations of (1). We also illustrate how
this failure causes breakdowns of more complex routines, such as SVD computation
or least squares solvers.

The matrix which first exposed the weakness of the code was the famous Kahan
[1966] matrix K = K(n, c), but the nature of the weakness was unexpected and, to
our best knowledge, not reported elsewhere. Recall, K e.g. in the case n = 6 reads

K =




1 0 0 0 0 0
0 s 0 0 0 0
0 0 s2 0 0 0
0 0 0 s3 0 0
0 0 0 0 s4 0
0 0 0 0 0 s5







1 −c −c −c −c −c
0 1 −c −c −c −c
0 0 1 −c −c −c
0 0 0 1 −c −c
0 0 0 0 1 −c
0 0 0 0 0 1




, c2 + s2 = 1,

and in general,

K(n, c) =
(

1 −c − c . . . − c
0 sK(n− 1, c)

)
, c = cos ψ, s = sin ψ.

This matrix is known to be a counterexample for the rank revealing property of
the factorization (1) because it is already upper triangular with the property of R
from (1), and |Knn| overestimates σmin(K) by a factor of order 2n−1. The numerical
deficiency of K is exactly one [Zha 1997]. The QR factorization (1) applied to A = K
gives Q = In, P = In, R = K. In fact, even the Powell–Reid complete pivoting
[Powell and Reid 1969] leaves K unchanged. It is also well known that rounding
errors during the computation may provoke permutation different from the identity,
and the computed R̃ 6= K could be rank–revealing in the sense that |R̃nn| correctly
estimates the magnitude of the minimal singular value σmin(K) of K.

Our first examples were generated using the LAPACK xGEQP3 and xGEQPF
procedures under a GNU FORTRAN compiler. Later on, the same problem is found
in other software packages (MATLAB, SciLab, Octave, Intel Fortran compiler). In
this presentation we use examples generated in MATLAB 6.5. under MS Windows.

2.1 Loss of structure in the triangular factor

To control the structure of R, we compare |Rii| with

µi = max
j=i+1:n

|Rij |, i = 1 : n− 1.

In exact computation, (1) implies that maxi=1:n−1 µi/|Rii| ≤ 1.

ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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Fig. 1. The values of |Rii| (red line) and µi (blue line) for the matrix K(300, c) in Example 2.1.
Here maxi=1:n−1 µi/|Rii| ≈ 9.2734 · 1043 (and it should be at most 1).

Example 2.1. Take n = 300 and c = 4.664999999999993 · 10−1, define A =
K(n, c) and compute [Q,R, P ] = qr(A).1 If one routinely looks after the sudden
drop along the diagonal of R, checking the quotients |Rk+1,k+1/Rkk| will point to
the index 281 where |R281,281/R280,280| < 10−44. Having the property (1) of R in
mind, one assumes that ‖R(281 : 300, 281 : 300)‖F ≤ √

20 · 10−44 · |R280,280| and
that in the partition

R =




R11 · · · R1,280 R1,281 · · · R1,300

. . .
...

...
...

R280,280 R280,281 · · · R280,300

R281,281 · · · R281,300

. . .
...

R300,300




the sub–matrix below the line (rows with indices above 280) can be discarded.
Visual inspection (Figure 1) shows that we are misled into a wrong conclusion.
The same (wrong) conclusion is reached if an incremental condition estimator is
deployed with the task to find maximal leading well–conditioned matrix.

If the initial A is changed by random column permutation, some permutations
will produce satisfactory triangular factor, but some (very quickly found by random
search) will lead to a catastrophic loss of diagonal dominance, but always at the
positions around the index 281. If the rows and the columns are permuted simul-
taneously, catastrophic loss of diagonal dominance is less frequent, but the loss of
the non–increasing order of the diagonal entries is found very quickly, see Figure 2.

To show the subtlety of the problem, take c̃ = c∗ (1+eps) = 4.664999999999994 ·
1The results of these experiments depend on the machine and on the way one generates K because
just one bit of difference can change the result. With his/her own code for K the reader can find
other interesting values of c.

ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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Fig. 2. The values of |Rii| (red line) and µi (blue line) for the row and column permuted matrix
K(300, c) in Example 2.1. Here maxi=1:n−1 µi/|Rii| ≈ 2.7330 · 105.

10−1 (MATLAB notation), and then Ã = K(n, c̃). After computing [Q̃, R̃, P̃ ] =
qr(Ã), one can easily check that R̃ is diagonally dominant with decreasing absolute
values along the diagonal. A comparison of the diagonal entries of the computed
factors R and R̃ is given in (2). Note that the computation is in double precision
(MATLAB), so underflow is not an issue here.

i |Rii| |R̃ii|
...

...
274 4.146036291985283e− 015 4.146036291985283e− 015
275 3.667256988614787e− 015 3.667256988614787e− 015
276 3.243766545541791e− 015 3.243766545541791e− 015
277 2.869180271424214e− 015 2.869180271424215e− 015
278 2.537850771426260e− 015 2.537850771426261e− 015
279 2.244782805101268e− 015 2.244782805101268e− 015
280 1.985557976384244e− 015 1.985557976384244e− 015
281 1.510608517753438e-059 1.756268120293820e− 015
282 1.191304454419907e− 015 1.553456382058059e− 015
283 1.173764088030493e− 015 1.374065100352209e− 015
...

...
...

298 2.180875970060762e− 016 2.180876095640635e− 016
299 1.929031096752219e− 016 1.929031137161460e− 016
300 2.021325892754739e− 019 3.350097232677502e− 066

(2)

Example 2.2. Almost identical situation is obtained with B = K(300, 0.4630).
Now, M = B+BT shows more irregular behavior of the diagonal of the computed
triangular factor (Figure 3). One can easily construct more interesting examples.

For instance, take N =
(

A X
Y M

)
with various X and Y . With X = Y = 0 we

ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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50 100 150 200 250 300

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Fig. 3. The values of |Rii| (red line) and µi (blue line), i = 1 : 300 for the matrix M = B + BT ,
B = K(300, 0.4630). Here maxi=1:n−1 µi/|Rii| ≈ 1.6633 · 103.

obtain maxi=1:n−1 µi/|Rii| ≈ 4.1037 ·109. (We will use this matrix in Example 2.4.)

2.2 Consequences in applications

The QR factorization with column pivoting is computational routine used as core
procedure in other solvers in numerical linear algebra, and failing to preserve the
pivot ordering impacts these solvers’ reliability. We give a few examples and illus-
trate how the improper structure of R can fool more complex solvers.

Example 2.3. As we mentioned in the Introduction, we first experienced this
problem in context of a new Jacobi type SVD algorithm [Drmač and Veselić 2007a;
2007b]. To illustrate, we first describe a simplified variant based on the accelerated
Jacobi algorithm [Veselić and Hari 1989].

Let A ∈ Rm×n have full column rank and AP = Q

(
R
0

)
be its QR factorization

as in (1). Instead of implicit diagonalization of M ≡ RT R = PT (AT A)P , the ac-
celerated Jacobi diagonalizes W ≡ RRT . This is easier task to accomplish because
W tends to be very strongly diagonally dominant for any full rank A, and suitable
implementation of Jacobi iterations can exploit such structure. The relevant con-
dition number (for accuracy and convergence) is ‖R−1

r ‖2, where Rr is obtained by
scaling the rows of R to unit Euclidean length. The value ‖R−1

r ‖2 is expected to
be moderate for any A, and it holds that ‖R−1

r ‖2 ≤ n3/2 minD=diag κ2(AD), where
κ2(·) is the spectral condition number. (See §6.2.)

If the computed R̃ ≈ R violates (1), as in §2.1, then the value of ‖R̃−1
r ‖2 may even

overflow. This means that preconditioning completely fails – instead of reducing, it
drastically increases the condition number. An occurrence of this situation triggers
safety switches in the Jacobi SVD algorithm [Drmač and Veselić 2007a; 2007b].

Best illustration is to plot the matrix Ws = ( Wij/
√

WiiWjj ) using the mesh()
command in MATLAB. In an ideal case, Ws should have clearly visible unit diagonal
which dominates all off–diagonal entries. If the pivoting fails, we can have situation
ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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Fig. 4. The matrix Ws, where R̃ is the matrix used in Figure 3. The ill–conditioned ”tower”
Ws(150:200, 150:200) is a result of wrong pivot choices.

as in Figure 4, where Ws(150:200, 150:200) is highly ill–conditioned.

Example 2.4. Linear least squares problem solvers are also at high risk. Brief
inspection of the source code of xGELSX and xGELSY in LAPACK is enough
to conclude that this failure of xGEQPF and xGEQP3 will go undetected, and
that the least squares solution will have unnecessary and unacceptably large error.
The reason is that the numerical rank is detected by a naive incremental condition
estimator (ICE) which gets fooled by the first deep drop on the diagonal of the
computed triangular factor. We use the term naive ICE to denote an ICE which
merely records the condition numbers of leading principal submatrices, without
any attempt to recompute the triangular factor and find a better submatrix in each
particular step. Naive ICE relies on the assumed structure of the triangular factor.

For the sake of brevity, we will not list bad examples generated using LAPACK.
Instead, we illustrate the nature of failure using one example generated in MAT-
LAB. We use the backslash operator to solve minx ‖Ax− d‖2.

Let A = N(:, 1 : 560), where N is the matrix from Example 2.2. To solve
minx ‖Ax − d‖2 with randomly generated right hand side d, we use the backslash,
A\d, which computes the solution using the QR factorization with column pivoting
of the coefficient matrix A. The result is delivered with the warning

Warning: Rank deficient, rank = 304 tol = 1.0994e-012.

Note that in this case rank(A,1.0994e-12) returns 466. Since ‖A‖2 < 20, 466
can be taken as the number of singular values above the threshold. We first note
that 304 severely underestimates the numerical rank 466, as defined by the singular
value threshold. The computed 305–th singular value of A, σ305(A) ≈ 2.0470 · 10−8

is sufficiently accurate to conclude, using the Eckart–Young–Mirsky theorem, that
the distance to the closest matrix of rank at most 304 is more than 2 · 10−8.

To understand what caused this warning, we compute [Q,R,P] = qr(A) and
analyze the structure of R. See Figure 5. It is clear where 304 comes from – here

ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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Fig. 5. The values of |Rii| (red line) and µi (blue line), i = 1 : 559 for the matrix A in Example
2.4. The green line marks the tolerance 1.0994 · 10−12 used to determine numerical rank.

|R(305, 305)| ≈ 9.7560·10−13 is the first diagonal absolute value below the threshold
1.0994 · 10−12. Then, R is assumed to have block partition

R =
(

R[11] R[12]

0 R[22]

)
, where R[11] = R(1 : 304, 1 : 304), ‖R[22]‖F ≤ 1.5610 ·10−11.

Setting R[22] to zero implicitly defines a rank 304 matrix A + δA with ‖δA‖F ≤
1.5610 · 10−11. On the other hand, if we just count the number of |R(i, i)|’s above
1.0994 · 10−12 we obtain exactly 466.

Example 2.5. More sophisticated rank revealing factorizations [Chandrasekaran
and Ipsen 1994], [Bischof and Quintana-Orti 1998] postprocess the computed trian-
gular factor. The initial triangular factor is computed by Businger–Golub pivoting
restricted to a sliding window (for better use of memory hierarchy), see TOMS
Algorithm ] 782. Then, fast condition estimators is used to detect and move sus-
picious columns to the rear and the triangular form is corrected by a sequence of
Givens rotations. From the source code of TOMS ] 782 one can conclude that
erratic behavior can be expected in the initial phase (see xGEQPC.F, xGEQPW.F,
xGEQPB.F). Our numerical experiments with xGEQPX have shown that it can
catastrophically fail, and that a modification of the code is necessary.

3. EXPERIMENTAL DIAGNOSIS OF THE PROBLEM

Our first approach is experimental diagnosis. Several experiments under different
circumstances will provide useful hints for the ensuing numerical analysis. So far,
it is clear that the problem is in wrongly determined pivotal columns, and that
we must go into the details of a concrete software implementation. We first focus
to xGEQPF, because: (i) the code is simpler than its BLAS 3 implementation
xGEQP3; (ii) it has less numerical uncertainties than xGEQP3. (The same prob-
lem occurs in xQRDC from LINPACK. It should be stressed that xGEQP3 and
xGEQPF are not numerically equivalent.) To remove the unknown factor of ma-
ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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1. DO 30 J = I+1, N
2. IF ( WORK( J ).NE.ZERO ) THEN

3. TEMP = ONE - ( ABS( A( I, J ) ) / WORK( J ) )**2

4. TEMP = MAX( TEMP, ZERO )

5. TEMP2 = ONE + 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2

6. IF( TEMP2.EQ.ONE ) THEN
7. IF( M-I.GT.0 ) THEN
8. WORK( J ) = SNRM2( M-I, A( I+1, J ), 1 )
9. WORK( N+J ) = WORK( J )
10. ELSE
11. WORK( J ) = ZERO
12. WORK( N+J ) = ZERO
13. END IF
14. ELSE

15. WORK( J ) = WORK( J )*SQRT( TEMP )

16. END IF
17. END IF
18. 30 CONTINUE

Table I. Critical part in the column norm update in SGEQPF.F. The input matrix A is M×N.

chine optimized libraries we use BLAS and LAPACK compiled from the source
code from the NETLIB repository. (The first bad cases were discovered while using
BLAS from the Intel’s MKL library.) Our machine is Intel Pentium 4 based HP
X2100 Workstation running under MS Windows/Suse Linux.2

In Table I we display a part of SGEQPF.F which is critical for column norms
of submatrices in the factorization process. This well known updating strategy is
the same as in the LINPACK procedure SQRDC. At the beginning of the I–th
step of the factorization, for each column index J, WORK(J) contains the norm
of A(I:M,J). On exit from the I–step, WORK(J) contains the norm of A(I+1:M,J)
which is computed explicitly (line 8. or 11.) or by the updating formula (lines 3.
and 15.), depending on the safety switch (lines 5. and 6.). Explicitly computed
norms are kept in WORK(N+J) and used to estimate cancellations in the J–th
column at later stages. Initially, WORK(J)=WORK(N+J) contains the norm of
the J–th column of the input matrix.

What follows is a brief description of our course of action after facing this problem.
The first attempt to resolve the problem is the obvious one – enforce explicit norm
computation by SNRM2 in all cases. That is not satisfactory – we still do not know
the source of the problem that we have removed so easily by using an expensive
modification, which is not even feasible in the block (BLAS 3) implementation
xGEQP3. However, this points to the main suspect: the IF statement which chooses
between the updating formula and explicit norm computation (lines 5. and 6.).

We returned the code to its original version in order to study the switching mech-
anism. An old fashion debugging practice called for writing out the values of the
key variable TEMP2. The outcome was one of the most feared – the run was
smooth and the computed R had proper structure. The result was as it should
be! A bug?! In our code? (Our test code is very simple and, say, easily checked
to be correct. It generates the matrix, calls SGEQPF and checks the structure
of the computed upper triangular factor.) In LAPACK? (There is a W 3 page for
LAPACK bugz, http://icl.cs.utk.edu/lapack-forum/bugz/) In MATLAB? (MAT-
LAB uses LAPACK as computing engine.) Or in the compiler? But, we have
encountered the same problem with the Intel Fortran compiler.

Since finding a bug in a program which returns a correct result is difficult, we

2 The same problems were discovered using Athlon and Pentium Xeon processors.

ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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removed the WRITE statements and restored the erratic behavior. Just to produce
a different executable, we recompiled SGEQPF with the optimizer switched off.
Needless to say, the result (data from our collection of bad matrices) was as it
should be, with no anomalies. Finally, we got a clue what might be going on.

We focus on the possibility that the optimizer keeps the variable TEMP2 in a
long register (80 bit, 64 bit mantissa) which can change some equivalence relations
we are used to take for granted. Note that the test ”IF ( TEMP2 .EQ. ONE )
THEN” in line 6. was meant to be an equivalent way of asking

IF ( 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2 .LT. EPS ) THEN (3)

where EPS=SLAMCH(’Epsilon’) is the working precision. It is known that this is
a bad idea if TEMP2 is kept in a 80 bit register, which is precisely what happens
in this case. The two IF’s are not equivalent.

To prevent the compiler from using TEMP2 in extended precision, the code is
compiled with the -ffloat-store option added to the -O. A quick look at the
assembler code shows the effect of this option: TEMP2 is stored from the reg-
ister to the memory and reloaded. The same happens without ffloat-store if
WRITE(*,*) TEMP2 is inserted, because writing TEMP2 requires popping it from
the stack. The FORTRAN code compiled with -O -ffloat-store has successfully
factorized all our bad examples.

IF( TEMP2 .EQ. ONE ) THEN ... !

g77 -O -S g77 -O -ffloat-store -S

fstps -24(%ebp)
flds -24(%ebp)

flds -104(%ebp) flds -116(%ebp)
fxch %st(1) fxch %st(1)
fucompp fucompp
fnstsw %ax fnstsw %ax
sahf sahf
jne L41 jne L41
jp L41 jp L41

Table II. Fragments of the assembler code that correspond to the key IF statement.

On the other hand, extra precision (extra 11 bits to the 53 bit mantissa of double
precision) is priceless in floating point arithmetic and switching it off to have a
numerical program running correctly (and probably more slowly) is simply wrong.
Extra steps would be required from the processor to prevent it from using extra
precision in numerical software!

A careless, aggressive optimizer can destroy numerical accuracy, but is switching
it off because of this story with TEMP2 reasonable? Suppose we had an optimizer
which is perfect from the numerical point of view. Would we expect it to keep
storing and reloading TEMP2, and would that be the best way around this problem?

One possible way out of this situation is to replace the test IF (TEMP2 .EQ.
ONE) with the one that explicitly uses the machine epsilon. So, we use relation (3)
instead of the line 6. in Table I.3 (For xGEQP3, one has to go to xLAQPS.F and

3Note that this changed code compiled with -O and the old code compiled with -O -ffloat-store

are not necessarily numerically equivalent.

ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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xLAQP2.F to find the critical IF statements and make this change.) As a result
of this change, the code compiled with -O runs fine in all our previous cases. The
issue of improper implicit use of machine epsilon seems to be resolved.

Unfortunately, this is not the end of the story. If we turn the optimizer off, or
if we have the optimizer on, but with -O -ffloat-store, the problems reappear,
but with some new bad matrices. So, in this case the optimizer works in favor of
the accuracy. Again, assembler code reveals that the key point is keeping TEMP
in a long register. It was simply a matter of time and little (bad) luck to find bad
cases for the -O option. Should we then try some other constellations of compiler
options and hope not to see any bad result? In fact, using different compiler options
for routines called by xGEQP3 may give such a constellation for which new bad
examples have to be constructed. What if changing the rounding mode causes
substantially different results? How this looks like if one uses software debugging
tools together with,4 or without the optimizer? What if the problem is somewhere
else, and everything we have observed thus far are just its various manifestations?

To identify the source of the problem and to develop reliable implementation of
the factorization (1) we need numerical analysis as debugging tool.

4. UPDATING STRATEGY – NUMERICAL ANALYSIS

The experimentally observed erratic behavior of the LAPACK’s xGEQP3 and xGE-
QPF routines is best understood through numerical analysis of the updating for-
mula and its condition number. The analysis in §4.2 reveals that the sharpest
decrease of the partial column norm (WORK(J)new/WORK(J)old) that can be de-
tected by the current code is approximately the square root of the roundoff unit.
That conclusion leads to a more appropriate threshold value in the updating for-
mula, and the modified software computes correctly structured triangular factor in
all cases mentioned in the previous section. However, we were not able to prove that
this new threshold will successfully endure many updates of a particular column.
For a provably reliable software, in §4.3 we introduce and analyze a new updating
strategy with guaranteed accuracy of the column norms.

4.1 Preliminaries

Consider the k–th elimination step. Let A(1) = A = (a1, . . . ,an) ∈ Rm×n and let

A(k)Πk =




· · ¯ · ⊕ ·
· ¯ · ⊕ ·

¥ · ~ ·
} · ∗ ·
} · ∗ ·
} · ∗ ·




, a(k)
j =




⊕
⊕
~
∗
∗
∗



≡




x(k)
j

η
(k)
j

y(k)
j


 ,

η
(k)
j = ~ ≡ (A(k))kj ,

z(k)
j =

(
η
(k)
j

y(k)
j

)
.

(4)
Elements to be annihilated are denoted by }, and ¥ denotes the element Rkk,
computed in the k–th step, after the }’s have been eliminated.

Let ω
(k)
j = ‖z(k)

j ‖2. Permutation Πk ensures that |Rkk| ≥ ω
(k)
j for all j ≥ k. Let

4Some GNU CC compilers have the debugging option -g by default with the -O2 optimization.
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Hk be Householder reflector such that

Hk

(
η
(k)
k

y(k)
k

)
=

(
Rkk

0

)
, and let, for j > k,

(
β

(k+1)
j

z(k+1)
j

)
= Hkz

(k)
j . (5)

The goal is to compute ω
(k+1)
j = ‖z(k+1)

j ‖2 by a simple scalar formula with guaran-
teed and controlled number of correct digits whenever numerically feasible. Clearly,
possible loss of accuracy by catastrophic cancellation should be avoided by a failsafe
safety switch, which should react in cases of sharp norm reduction.

The following proposition shows that sharp norm reduction is related to the
condition number of Ac, where Ac denotes the matrix obtained from A by scaling
its nonzero columns to have unit Euclidean length. (cf. §6.2). In other words,
cancellation indicates ill–conditioning, and the rank–revealing pivoting is at risk
exactly when its performance is most needed.

Proposition 4.1. If rank(A) = n, then for each j, k, ‖A†c‖2 ≥ ‖a(1)
j ‖2/‖z(k)

j ‖2.
The matrix A is rank deficient if and only if z(k)

j = 0 for some j, k.

For the proof note that ‖A†c‖2 is independent of the permutation of the columns of
A, and that any z(k)

j can become pivot column by a suitable permutation.

Remark 4.1. Even if all ω
(k)
j are computed by xNRM2, we cannot guaran-

tee that the computed R̃ satisfies (1). Instead, we can only say that |R̃ii| ≥
ρ̃i

√∑j
k=1 |R̃kj |2, 1 ≤ i ≤ j ≤ n, with parameters ρ̃i close to one. £

For the purpose of error analysis, computed quantities will be denoted by tildes, e.g.
ω̃

(k)
j is the computed floating point value of ω

(k)
j . We use hats to denote perturbed

quantities created in backward error analysis. Basic operations +, −, ·, ÷,
√

¦ will
be denoted by ⊕, ª, ¯, ®, sqrt(), respectively. The set of floating point numbers
is denoted by F, and e is the gap between one and its first neighbor in F.

4.2 LAPACK (LINPACK) updating strategy

To compute ω
(k+1)
j we go back to (4) and (5). Orthogonality of Hk implies that in

(5) the norm of z(k)
j equals ω

(k)
j =

√
(β(k+1)

j )2 + ‖z(k+1)
j ‖22, and thus

ω
(k+1)
j =

√
(ω(k)

j )2 − (β(k+1)
j )2 = ω

(k)
j

√√√√1−
(

β
(k+1)
j

ω
(k)
j

)2

. (6)

Since initially ω
(1)
j = ‖aj‖2, each ω

(k+1)
j can be recursively computed from ω

(k)
j and

β
(k+1)
j , using (6). This is the approach taken in LAPACK, see Table I.

Note that (ω(k)
j )k≥1 is nonincreasing sequence, obtained by successive substrac-

tions. If at some step k the update (6) is not considered to be numerically safe, the
corresponding value ω̃

(k+1)
j is computed explicitly as vector norm. In that case, the

value of ω̃
(k+1)
j is also stored in the variable ν̃j , ν̃j = ω̃

(k+1)
j . Thus, at any moment

in the algorithm, ν̃j contains the last explicitly computed partial column norm in
ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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the j–th column. In Table I, WORK(N+J) contains ν̃j . Initially, the ν̃j ’s are the
computed column norms of A.

The safety switch in LAPACK which allows using update by (6) has simple and
elegant structure:

computed(


1−

(
β̃

(k+1)
j

ω̃
(k)
j

)2



︸ ︷︷ ︸
predicted

·
(

ω̃
(k)
j

ν̃j

)2

︸ ︷︷ ︸
memorized

) > tol, tol ≈ 20e, (7)

where predicted part estimates loss of accuracy in computing ω̃
(k+1)
j from ω̃

(k)
j , and

the memorized part memorizes the cumulative loss of accuracy (by cancellations)
since the last update by explicit norm computation. The two factors together indi-
cate how accurately ω̃

(k+1)
j approximates the corresponding partial column norm.

Remark 4.2. Let t̃
(k)
j = max{1ª (β̃(k+1)

j ® ω̃
(k)
j )∗∗2, 0}. The LAPACK test

if ( 1⊕ 0.05¯ t̃
(k)
j ¯ (ω̃(k)

j ® ν̃j)∗∗2︸ ︷︷ ︸
TEMP2

.eq. 1 ) (8)

probes whether or not ω̃
(k+1)
j = sqrt(t̃(k)

j ) ¯ ω̃
(k)
j (see (6)), sharply drops as com-

pared to ν̃j . However, depending on the compiler, the optimizer, and given options,
(8) implicitly tests

if ( 0.05¯ t̃
(k)
j ¯ (ω̃(k)

j ® ν̃j)∗∗2 < ` · e), (9)

where ` ∈ (0, 1] denotes the extra precision factor if long registers are used. So, for
instance, if TEMP2 is kept in a long register, it can have the value of 1 + e/2 6= 1.
If the code is forced to spill TEMP2 back to working precision, the resulting value
can be 1(= 1) or 1 + e( 6= 1), depending on implementation.
Following (8), if ω̃

(k+1)
j /ν̃j is below

√
20
√

`e(1+O(e)) the value of ω̃
(k+1)
j is obtained

by explicit norm computation. Else, ω̃
(k+1)
j = sqrt(t̃(k)

j ) ¯ ω̃
(k)
j . Here the use of

long registers actually lowers the threshold and weakens the safety switch. £
From now on, we assume that the test is explicit as in (9), with ` = 1.
How should we analyze the accuracy of the ω̃

(k)
j ’s? It makes little sense to

compare them with the exact ω
(k)
j ’s. Instead, we have to attach their values to the

norms of the actually computed vectors z̃(k)
j . Let ω̃

(k)
j = ‖z̃(k)

j ‖2(1 + ε
(k)
j ). If ω̃

(k)
j

is obtained by computing the norm of z̃(k)
j explicitly, then |ε(k)

j | is at most a small

multiple of e. We need to know how ε
(k)
j propagates through repeated applications

of the updating formula (6). To this end, consider floating point version of (5):
(

β̃
(k+1)
j

z̃(k+1)
j

)
= Ĥkẑ

(k)
j , where ẑ(k)

j = z̃(k)
j + δz̃(k)

j is backward perturbed z̃(k)
j ,

(10)
and Ĥk is exactly orthogonal, close to the actually used numerically orthogonal
H̃k. The backward perturbation δz̃(k)

j is small, and ‖ẑ(k)
j ‖2 = ‖z̃(k)

j ‖2(1 + λ
(k)
j ),
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where |λ(k)
j | is bounded by a small multiple of the roundoff e, depending on the

implementation details (e.g. simple or aggregated transformations). Note that in

this situation the analog of (6) reads ‖z̃(k+1)
j ‖2 =

√
‖ẑ(k)

j ‖22 − (β̃(k+1)
j )2.

Remark 4.3. The transformation (10) can produce z̃(k+1)
j with ‖z̃(k+1)

j ‖2/ω̃
(k+1)
j

much smaller than e. Such a sharp drop may go undetected. Having null vector may
go undetected, and it can happen that zero column z̃

(k+1)
j can be taken as pivot

because it appeared of larger norm than non–zero columns. We have encountered
such catastrophic miss–pivoting.

Example 4.1. To illustrate how this strategy can fail, take (in MATLAB)

(
β̃

(k+1)
j

z̃(k+1)
j

)
=




1ª 11¯ e
s
s
s
s


 , |s| ≤ e, and let ω̃

(k)
j = ν̃j = 1.

t = max{1 ª (β̃(k+1)
j ® ω̃

(k)
j )∗∗2, 0} = 22e, and the value of the control parameter

is 0.05 ¯ t ¯ (ω̃(k)
j ® ν̃j)∗∗2 = 1.1e > e. The computed value of ω̃

(k+1)
j is

√
22e ≈

6.99 ·10−8, and the true norm of z̃(k+1)
j is at most 2e ≈ 4.44 ·10−16. To the pivoting

device, z̃(k+1)
j will appear as roughly 108 times bigger than it actually is. Further,

in the next step, the value of t will be computed as one, the safety check will allow
updating formula, ω̃

(k+2)
j = ω̃

(k+1)
j . From this point on, the partial column norms

in the j–th column will never again be refreshed by explicit norm computation.
Note that in the case s = 0, even the zero vector can mistakenly be taken for pivot.

The following proposition summarizes the above considerations, and stresses the
fact that in the LAPACK’s updating formula the sharpest observable norm reduc-
tion factor is approximately

√
e.

Proposition 4.2. Let t̃
(k)
j = max{1 ª (β̃(k+1)

j ® ω̃
(k)
j ) ∗ ∗2, 0}. Then t̃

(k)
j ∈

{0}⋃
[e, 1]

⋂
F. (Depending on the way the compiler and the optimizer use long

registers, e could be replaced by a smaller value.) As a consequence, if ‖z̃(k+1)
j ‖2 is

computed by ω̃
(k+1)
j = sqrt(t̃(k)

j ) ¯ ω̃
(k)
j (see (6)), the sharpest drop in the partial

column norm that can be observed is of order
√

e, which is the order of magnitude
of smallest nonzero value of sqrt(t̃(k)

j ).

Next, we identify relevant condition number of one step of the updating formula
(6). To anticipate the outcome, consider f(x) =

√
1− x2, and its relative change

f(x + δx)− f(x)
f(x)

≈ δx

x

xf ′(x)
f(x)

=
δx

x

−x2

1− x2
.

Computing f(x) for x close to one is obviously sensitive, and the following propo-
sition gives formal error analysis.

Proposition 4.3. Let ω̃
(k)
j = ‖z̃(k)

j ‖2(1 + ε
(k)
j ), and let ω̃

(k+1)
j be computed as

in Proposition 4.2, with t̃
(k)
j > 0. Further, let in (10) ‖ẑ(k)

j ‖2 = ‖z̃(k)
j ‖2(1 + λ

(k)
j ).
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If z̃(k+1)
j 6= 0, then ω̃

(k+1)
j = ‖z̃(k+1)

j ‖2(1 + ε
(k+1)
j ) with

1 + ε
(k+1)
j = (1 + ε

(k)
j )(1 + α

(k)
j )

√√√√1−
[

(β̃(k+1)
j )2

‖ẑ(k)
j ‖22 − (β̃(k+1)

j )2

]
σ

(k)
j , where

1 + α
(k)
j =

√
1 + e3(1 + e4)(1 + e5)

1 + λ
(k)
j

, σ
(k)
j =

(1 + λ
(k)
j )2

(1 + ε
(k)
j )2

(1 + e1)2(1 + e2)− 1

and maxi |ei| ≤ e. If z̃(k+1)
j = 0 and t̃

(k)
j > 0, then ω̃

(k+1)
j will be computed as

ω̃
(k+1)
j = ‖ẑ(k)

j ‖2
1 + ε

(k)
j

1 + λ
(k)
j

√√√√1− (1 + λ
(k)
j )2

(1 + ε
(k)
j )2

(1 + e1)2(1 + e2)
√

1 + e3(1+e4)(1+e5).

This is the lowest nonzero value that can be computed in this update.

We see that the critical condition number for this update is the value

κ̂
(k)
j =

(β̃(k+1)
j )2

‖ẑ(k)
j ‖22−(β̃(k+1)

j )2
=

(β̃
(k+1)
j )2

‖ẑ(k)
j ‖22

1− (β̃
(k+1)
j )2

‖ẑ(k)
j ‖22

≡ 1− t̂
(k)
j

t̂
(k)
j

, t̂
(k)
j = 1− (β̃(k+1)

j )2

‖ẑ(k)
j ‖22

.

Note that κ̂
(k)
j ≤ 1 for t̂

(k)
j ≥ 1/2. Since t̂

(k)
j is not accessible, its role is taken by

the computed t̃
(k)
j . It is easily checked that

t̂
(k)
j =

1

1 + σ
(k)
j

(
t̃
(k)
j

1 + e3
+ σ

(k)
j ), t̃

(k)
j = max{1ª (β̃(k+1)

j ® ω̃
(k)
j )∗∗2, 0}. (11)

From the numerical experiments we know that the occurrences of failure are not
easily found and that slightest change of rounding errors decides between success
and failure. The rounding errors can conspire to bring down the updating strategy.

Example 4.2. Here is one realistic scenario: Let ω̃
(k)
j = ν̃j be computed by

explicit norm computation, thus |ε(k)
j | ≤ O(n)e. Then |σ(k)

j | ≤ O(n)e as well; take

for instance σ
(k)
j ≈ −30e. Now assume that t̃

(k)
j = −(1 + e3)σ

(k)
j (1 − O(e)) ≈ 30e,

which is the value above the threshold and updating formula will be used. But,
t̂
(k)
j = O(e)σ(k)

j /(1 + σ
(k)
j ) ≈ O(e2), and |ε(k+1)

j | can be as big as O(1/
√

e). Note
that the failure is caused by a severe underestimate of the actual condition number,
and that σ

(k)
j had to be negative to make this scenario possible. £

We should keep in mind that condition number is also computed quantity, and it
has its own condition number. Further, the parameter t̃

(k)
j itself depends on possibly

inaccurate value ω̃
(k)
j , with its own condition number. In a long run, a cumulative

effect of cancellations is also to be expected, and it is not certain whether or not the
memorized part in (7) will prevent inappropriate use of the updating formula. This
all indicates that the threshold tolerance for t̃

(k)
j should be lifted to the level where

we can guarantee satisfactory lower bound for t̂
(k)
j . Let us take in (7) tol =

√
e.
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To unroll the recurrence from Proposition 4.3 after s consecutive updates is rather
tedious. The sole purpose of this page is to show how hard it is to give any useful
bound on error propagation through several updates by (6). Note that

σ
(k)
j = −2ε

(k)
j + 2λ

(k)
j + O(e) + O(e2) $ −2ε

(k)
j

ε
(k+1)
j =

ε
(k)
j

t̂
(k)
j

+
λ

(k)
j

t̂
(k)
j

+ α
(k)
j + O(e) + O(e2) $

ε
(k)
j

t̂
(k)
j

,

where $ indicates dependence on the dominant, potentially largest term (in modu-
lus). In a simplified model with λ

(k)
j and all ei’s equal to zero, we have σ

(k)
j = −2ε

(k)
j

and ε
(k+1)
j = ε

(k)
j /t̂

(k)
j .

Then, starting with ω̃
(k)
j = ν̃j , |ε(k)

j | ≤ O(n)e, t̃
(k)
j >

√
e(1 + O(e)) implies

|σ(k)
j | / O(n)e,

|σ(k)
j |

t̃
(k)
j

/ O(n)
√

e,

and we see (using (11)) that t̂
(k)
j ' t̃

(k)
j (1 − O(n)

√
e) ≥ O(

√
e), which in turn

guarantees sufficiently small ε
(k+1)
j $ ε

(k)
j /t̂

(k)
j . Thus, the first update after explicit

norm computation is safe. (Cf. Example 4.2.)
Consider the next, second, update. Let t̃

(k+1)
j (ω̃(k+1)

j /ν̃j)2 >
√

e(1 + O(e)).

Hence, t̃
(k+1)
j t̃

(k)
j >

√
e(1+O(e)). Since the dominant part in ε

(k+2)
j is ε

(k)
j /(t̂(k)

j t̂
(k+1)
j ),

the key question is how small can be the product t̂
(k)
j t̂

(k+1)
j , given the fact that

t̃
(k)
j t̃

(k+1)
j >

√
e(1+O(e)). Note that t̃

(k+1)
j > (

√
e/t̃

(k)
j )(1+O(e)), and that by (11)

t̂
(k+1)
j t̂

(k)
j =

t̃
(k+1)
j t̃

(k)
j

(1 + σ
(k+1)
j )(1 + σ

(k)
j )

[
1

1 + f3
+

σ
(k+1)
j

t̃
(k+1)
j

][
1

1 + e3
+

σ
(k)
j

t̃
(k)
j

]
,

where σ
(k+1)
j $ −2ε

(k+1)
j $ −2ε

(k)
j /t̂

(k)
j , and |f3| ≤ e. It follows that

σ
(k+1)
j

t̃
(k+1)
j

$ −2
ε
(k+1)
j

t̃
(k+1)
j

$ −2
ε
(k)
j

t̂
(k)
j t̃

(k+1)
j

$ −2
ε
(k)
j

t̃
(k)
j t̃

(k+1)
j

(1 + O(n)
√

e)

and thus t̂
(k+1)
j t̂

(k)
j ≈ t̃

(k+1)
j t̃

(k)
j . Hence, ε

(k+2)
j $ ε

(k)
j /(t̃(k+1)

j t̃
(k)
j ) ≈ O(n)

√
e. Note

how important it is that the upper bound on |σ(k+1)
j | does not reach the lower

bound on t̃
(k+1)
j in the case of negative σ

(k+1)
j .

In general case, t̃
(k+s)
j (ω̃(k+s)

j /ν̃j)2 >
√

e(1 + O(e)), that is
∏s

i=0 t̃
(k+i)
k >

√
e(1 +

O(s)e). From previous updates we have

σ
(k+s)
j $ −2ε

(k+s)
j $ −2

ε
(k)
j∏s−1

i=0 t̂
(k+i)
j

,
σ

(k+s)
j

t̃
(k+s)
j

$ −2
ε
(k)
j

t̃
(k+s)
j

∏s−1
i=0 t̂

(k+i)
j

.

If
∏s−1

i=0 t̂
(k+i)
j and

∏s−1
i=0 t̃

(k+i)
j are of the same order of magnitude, then by (11)

t̂
(k+s)
j ≈ t̃

(k+s)
j , and ω̃

(k+s+1)
j =

√
t̃
(k+s)
j ¯ ω̃

(k+s)
j is sufficiently accurate.
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t = |β̃(k+1)
j /ω̃

(k)
j | ; t = max{0, 1− t2}

t2 = t · (ω̃(k)
j /ν̃j)

2

if ( t2 ≤
√

e ) then

push z̃
(k+1)
j to stack of unresolved columns

else

ω̃
(k+1)
j = ω̃

(k)
j

√
t

end if

Table III. Modification of the LINPACK/LAPACK column norm update.

These estimates are rather rough, messy and incomplete, but they indicate that
the updating strategy with higher threshold value (

√
e) could survive several up-

dates. Such a modified updating strategy, shown in Table III, has successfully
passed all our tests, performed in single precision with tol =

√
e ≈ 2.44 · 10−4.

However, it has failed with slightly smaller threshold, tol = 10−4.

4.3 An alternative formula

Since accurate partial column norms are crucial for the success of pivoting, it is
desirable to have updating formula with controlled forward error for all partial
column norms of the computed floating point matrices. The goal is to have provably
safe implementation of the Businger–Golub column pivoting.

Note that in (4) we have ‖a(k)
j ‖2 = ‖aj‖2 for all j, k. If we set ξ

(k)
j = ‖x(k)

j ‖2,
then ξ

(k+1)
j =

√
(ξ(k)

j )2 + (β(k+1)
j )2, and, using αj = ‖aj‖2,

ω
(k)
j =

√
α2

j − (ξ(k)
j )2, ω

(k+1)
j =

√
α2

j − (ξ(k+1)
j )2. (12)

Proposition 4.4. The formula (12) can be used to compute all ω̃
(k)
j with con-

trolled forward error. It involves substraction of two quantities always known to
guaranteed high relative accuracy.

Proof: The backward stability of the QR factorization implies that ‖ã(k)
j ‖2 = αj(1+

θ
(k)
j ), where the upper bound on |θ(k)

j | depends on the details of the algorithm. In

the Givens QR factorization |θ(k)
j | ≤ O(m + n)e. For the Householder algorithm,

|θ(k)
j | ≤ O(mk)e. (This means that with e ≈ 10−16 and a million–by–million matrix

we can have three accurate digits in all norms even with the most pessimistic case of
straightforward computation.) The computed column norms of the initial A satisfy
α̃j = αj(1 + O(m)e), and thus α̃j = ‖ã(k)

j ‖2(1 + O(m)e)/(1 + θ
(k)
j ), for all j, k.

Hence, once we have computed the the α̃j ’s, we have accurate approximations of
the norms of all columns of all computed Ã(k)’s. Further, at any moment, ξ̃

(k)
j can

be available to high relative accuracy, ‖x̃(k)
j ‖2 = ξ̃

(k)
j (1 + ζ

(k)
j ), |ζ(k)

j | ≤ O(ke).
Rewriting (12) to avoid underflow and overflow gives the following proposal for

partial norm computation in k–th step:

ω̃
(k)
j = α̃

(1)
j ¯ sqrt(max(1ª (ξ̃(k)

j ® α̃
(1)
j )2, 0)). (13)

To analyze (13), we need to know how accurately we can compute ω̃
(k)
j , and how ac-
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curately the exactly computed ω̂
(k)
j = α̃

(1)
j

√
1− (ξ̃(k)

j /α̃
(1)
j )2 approximates ‖z̃(k)

j ‖2.
It is straightforward to show that, under the assumption ‖ã(k)

j ‖2 6= ‖x̃(k)
j ‖2,

ω̂
(k)
j = ‖z̃(k)

j ‖2 1+O(m)e

1 + θ
(k)
j

√√√√1− e
(k)
j ‖x̃(k)

j ‖22
‖ã(k)

j ‖22−‖x̃(k)
j ‖22

, with e
(k)
j =

(1 + θ
(k)
j )2

(1+ζ
(k)
j )2(1+O(m)e)2

−1,

and that under the assumption α̃j 6= ξ̃
(k)
j it holds

ω̃
(k)
j = ω̂

(k)
j

√
1 + ε3(1 + ε4)(1 + ε5)

√√√√1− f
(k)
j (ξ̃(k)

j )2

α̃2
j − (ξ̃(k)

j )2
, where

f
(k)
j = (1 + ε1)2(1 + ε2)− 1, max

i=1:5
|εi| ≤ e.

Finally, note that the condition numbers for this computation

χ̃
(k)
j =

(ξ̃(k)
j )2

α̃2
j − (ξ̃(k)

j )2
, χ

(k)
j =

‖x̃(k)
j ‖22

‖ã(k)
j ‖22 − ‖x̃(k)

j ‖22
can safely be compared against given tolerance. Only χ̃

(k)
j is accessible, and it will

be below given tolerance tol (χ̃(k)
j < tol) if ξ̃

(k)
j /α̃j <

√
tol/(1 + tol). In that case

χ
(k)
j < tol(1 + ς)/(1− ς · tol) ≈ tol, where ‖x̃(k)

j ‖2/‖ã(k)
j ‖2 = (ξ̃(k)

j /α̃j)(1 + ς), and
|ς| is bounded by roundoff e times a modest polynomial in m. The key point here
is that we use original data (α̃j) and the values ξ̃

(k)
j which are computed to high

relative accuracy (without subtractions). Hence, we can always correctly predict
and thus avoid conditions for catastrophic cancellations.

If ξ̃
(k)
j and α̃j are too close, then ω̃

(k)
j is computed explicitly as ‖z̃(k)

j ‖2. In that

case the updating formula is reset: α̃j = ω̃
(k)
j , and ξ̃

(k)
j is set to zero. £

Assuming familiarity with the xGEQP3 code, we give in Table IV partial column
norm update strategy, which uses both the new (12) and the old (6) formulas.
Note that we allow at most one use of the formula (6) per Householder reflector per
column, and that control counter is obtained by flipping the sign of ω̃

(k+1)
j . The

parameters γ1, γ2 can be taken e.g. around 1 − √e (for tol ≈ 1/
√

e), with some
fine–tuning for speed. (Setting γ2 = 0 switches off updating by the old formula.)

5. NEW SOFTWARE FOR BUSINGER–GOLUB PIVOTING

We now present our new codes for the Businger–Golub QR factorization – modifica-
tions of the xGEQP3 subroutine, with the new norm updating strategies as outlined
above. The goal is strongly backward stable numerical software (with column–wise
small backward error and properly structured computed upper triangular factor).

We test preliminary codes SGEQP3A (Table III) and SGEQP3Z (Table IV).
A collection of 1792 1000× 800 test matrices is generated following [Drmač and

Veselić 2007b, §3.3.1]. The matrices are divided into eight groups, each group
containing 224 matrices of the form A = AcD with fixed κ2(Ac) = 10i for the i–th
group. The diagonal scaling can have arbitrarily high condition number, we have
taken up to 1012. The whole collection is enumerated so that the values κ2(Ac)
ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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ξ̃
(k+1)
j = max{ξ̃(k)

j , β
(k+1)
j }

q
1 + (min{ξ̃(k)

j , β
(k+1)
j }/ max{ξ̃(k)

j , β
(k+1)
j })2

t0 = ξ̃
(k+1)
j /α̃

(1)
j

if ( t0 < γ1 ) then

ω̃
(k+1)
j = α̃

(1)
j

q
1− t20

else

t1 = |β(k+1)
j /ω̃

(k)
j | ; t2 = max{0, 1− t21}

if ( (t2 < γ2) and (ω̃
(k)
j > 0)) then

ω̃
(k+1)
j = −ω̃

(k)
j

√
t2

else

push z̃
(k+1)
j to stack of unresolved columns

end if
end if

Table IV. Critical part in the column norm update.

form nondecreasing sequence. The first 224 matrices have κ2(Ac) = 10, the next
224 have κ2(Ac) = 102 and so on. Around the index 900, κ2(Ac) reaches 1/

√
e.

In Figure 6 and Figure 7 we show the timing results of SGEQP3A and SGEQP3Z
in one test run. In SGEQP3Z we used only the new updating formula, i.e.γ2 = 0.
With the old formula added to updating strategy, the performance of SGEQP3Z
can be only slightly improved, which does not seem to be worth having more com-
plicated code. Clearly, depending on the matrix, there can be a drop in the per-
formance because explicit computations of the column norms interfere with block
structure of the algorithm.

The xGEQP3A code is a simple modification of xGEQP3, and, since it does
not require any change in the specifications, it has been included as replacement
for xGEQP3 in LAPACK 3.1.0. The xGEQP3Z routine needs n extra locations
in the workspace. From the numerical point of view, the few percent increase in
run time and this increase of the workspace are a negligible price for the provable
numerical reliability of the software. We stress that this reliability assumes properly
implemented floating–point arithmetic and the BLAS library.

Remark 5.1. Much to our disappointment, during thorough testing we found
examples of failure of our software. Both SGEQP3A and SGEQP3Z failed. This
time, the problem was not in the updating formula, but in the explicit norm com-
putation. Using old fashioned debugging we traced the problem to the BLAS 1
function SNRM2 in the Intel’s MKL library. Namely, for x = (x1, . . . , xn) and
n > 24, the norm ‖x‖2 can be computed completely wrong by SNRM2 if the result
is smaller than the square root of the underflow threshold. Sapienti sat.

6. IMPORTANCE OF PIVOTING

In this section we show how pivoting plays an important role in the forward error
analysis (perturbation theory) of the QR factorization. In particular, pivoting
contributes to a more accurate and better conditioned upper triangular factor. Our
main motivation is reliable implementation of the pivoted QR factorization in the
new Jacobi SVD algorithm [Drmač and Veselić 2007a; 2007b], but the issue is also
relevant for least squares solvers and other applications of the QR factorization.
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Fig. 6. The relative timings: time(SGEQP3A) / time(SGEQP3).
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Fig. 7. The relative timings: time(SGEQP3Z) / time(SGEQP3).

6.1 Perturbation theory

In an error analysis of the QR factorization, one usually ignores the pivoting. For
the backward error analysis of a particular algorithm, it is usually said that pivoting
is equivalent to initial permutation of matrix columns, followed by the factorization
without pivoting. Then, in order to simplify the notation, permutation matrix is
replaced with identity. An exception is in [Cox and Higham 1998], where pivoting
is the key for structured backward error of the QR factorization with the com-
plete pivoting of Powell and Reid [1969]. Perturbation analysis of the factorization
usually does not assume any pivoting, [Stewart 1977; 1993], [Sun 1991].

To specify the kind of perturbations of interest, we recall a backward stability
result for the Householder and Givens QR factorization algorithms. (For more
details see [Drmač 1994], [Higham 1996].)

Theorem 6.1. Let AP̃ ≈ Q̃R̃ be the computed QR factorization with column
ACM Transactions on Mathematical Software, Vol. ?, No. ?, ? 2007.
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pivoting. (P̃ is permutation matrix obtained by applications of prescribed rule of a
concrete pivoting.) Then there exist backward perturbation δA and an orthonormal
Q̂ such that (A + δA)P̃ = Q̂R̃, where ‖Q̂− Q̃‖F ≤ ηQ, and

‖δA(:, i)‖2 ≤ ηA‖A(:, i)‖2, 1 ≤ i ≤ n.

The error bounds ηA, ηQ depend on the implementation details, and both are
bounded by a low degree polynomial times the machine precision e. For the Givens
rotation based computation ηA, ηQ ≈ O(m + n)e. For the Householder reflection
based algorithm ηA, ηQ ≈ O(mn)e.

Under the perturbation from the previous theorem, the QR factorization (A +
δA)P̃ = Q̂R̃ must be compared with the exact factorization AP̃ = QR, but with
the intended and actually computed structures of R̃ taken into consideration.

Assume that both A and Ã = A + δA have full column rank, and consider the
Cholesky factorizations H̃ = R̃T R̃ and H = RT R = H̃ + δH̃. Following the ideas
from [Drmač et al. 1994], we write RT R = R̃T (I + E)R̃, with

E ≡ R̃−T δH̃R̃−1 = Q̂T F + FT Q̂ + FT F, F = −δAP̃ R̃−1.

The matrix E expresses the size of δH̃ relative to H̃ = R̃T R̃, and F is a relative
perturbation of (A + δA)P̃ . If R̃c is the matrix obtained from R̃ by scaling its
columns to have unit Euclidean norm, then Theorem 6.1 implies

‖E‖F ≤ 2‖(Q̂Q̂T )F‖F + ‖F‖2‖F‖F , ‖F‖F ≤
√

nηA

1− ηA
‖R̃−1

c ‖2. (14)

Having the relative sizes (14) of the backward errors, we now estimate R− R̃.

Theorem 6.2. Let (A + δA)P̃ = Q̂R̃ be the factorization from Theorem 6.1,
where the permutation matrix P̃ is computed following the Businger–Golub pivoting.
Let AP̃ = QR be the exact QR factorization, and let R = R̃ + δR̃. Further, let

|R̃ii| ≥ ρ̃i

√√√√
j∑

k=1

|R̃kj |2, 1 ≤ i ≤ j ≤ n. (15)

If the pivoting has functioned properly, with correct choices of pivot columns, then
ρ̃i ≥ 1 for all i. Then for all i = 1, . . . , n

‖δR̃(:, i)‖2 ≤ ‖Γ(:, 1 : i)‖2‖R̃(:, i)‖2, δR̃ii = ΓiiR̃ii, (16)

‖δR̃(i, :)‖∞ ≤ 1
ρ̃i
‖Γ(i, :)‖2‖R̃(i, :)‖∞, (17)

where δR̃ = ΓR̃, and the matrix Γ = RR̃−1 − I is bounded as follows:

—If ‖E‖F <
1
2
, then ‖Γ‖F ≤

√
2‖E‖F

1 +
√

1− 2‖E‖F

.

—Let χn = 1/2 + dlog2 ne. If ‖E‖2 ≤ 1
4χ2

n

, then ‖Γ‖2 ≤ 2χn‖E‖2
1 +

√
1− 4χ2

n‖E‖2
.

—It always holds that ‖Γ‖F ≤
√

8n + 2
√

n‖E‖F .

In all cases, the norm of E is bounded using (14). Further, Q̂−Q = QΓ− F .
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Proof: Note that we can write R̃−T RT RR̃−1 = I + E, which implies that RR̃−1

is the Cholesky factor of I + E and it can be written as RR̃−1 = I + Γ. Hence,
δR̃ = ΓR̃ and thus (16) follows. To derive (17), note that

‖δR̃(i, :)‖∞ = max
j=i:n

∣∣∣∣∣
j∑

k=i

ΓikR̃kj

∣∣∣∣∣ ≤ max
j=i:n

‖Γ(i, :)‖2

√√√√
j∑

k=i

|R̃kj |2 ≤ ‖Γ(i, :)‖2 1
ρ̃i
|R̃ii|.

(18)
It remains to estimate Γ, or equivalently, the perturbation of the Cholesky factor
of the identity under the perturbation I Ã I + E. We use the perturbation results
from [Drmač et al. 1994], and the proof is completed. £

Remark 6.1. Perturbation estimates are derived relative to R̃ (instead to R)
because (15) allows us to easily monitor its structure. The structure of exact
triangular factor R of AP̃ , with the computed permutation P̃ , is not known.

Remark 6.2. As in [Drmač et al. 1994], we note that the Theorem 6.2 contains

an element–wise bound: δR̃ij =
j∑

k=i

ΓikR̃kj implies |δR̃ij | ≤ ‖Γ(i, :)‖2
√∑j

k=i |R̃kj |2.

Note in particular that |δR̃ii| ≤ |Γii||R̃ii|, which additionally stresses the impor-
tance of having dominant elements along the diagonal.

Remark 6.3. The value of ‖R̃−1
c ‖2 can be estimated by an O(n2) condition

estimator and then Theorem 6.2 and (14) can be used in practice. The relevant
condition number in this case is ‖R̃−1

c ‖2 and it properly reflects the column–wise
structure of the perturbation (backward error). Recall that

‖R̃−1
c ‖2 ≤ κ2(R̃c) ≡ σmax(R̃c)

σmin(R̃c)
≤ √

n min
D=diag

κ2(R̃D) =
√

n min
D=diag

κ2(ÃD).

Example 6.1. Let A ≡ I2R =
(

ε ε
0 1

ε

)
, and Ã = A + δA =

(
ε ε
ε2 1

ε

)
. Take ε

so small that 1 + ε2 ≈ 1 in the working precision. The QR factorization of Ã reads

Ã =
1√

1 + ε2

(
1 −ε
ε 1

)



ε
√

1 + ε2
1 + ε√
1 + ε2

0
1
ε

1− ε3√
1 + ε2


 ≈

(
1 −ε
ε 1

)(
ε 1 + ε
0 1

ε

)
.

The column–wise bound (16) holds, but the element R12 and the whole first row
of the upper triangular factor are substantially changed. Furthermore, the cosine
of the angle between the first two rows of R is 1/

√
2, while the first two rows of R̃

are almost parallel. On the other hand, if we pivot, the QR factorizations are

(
ε ε
0 1

ε

) (
0 1
1 0

)
=

1√
1 + ε4

(
ε2 −1
1 ε2

)



1
ε

+ ε3

√
1 + ε4

ε3√
1 + ε4

0
−ε√
1 + ε4


 ,

≈
(

ε2 −1
1 ε2

) ( 1
ε

ε3

0 −ε

)
;
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(
ε ε
ε2 1

ε

) (
0 1
1 0

)
=

1√
1 + ε4

(
ε2 −1
1 ε2

)



1
ε

+ ε3

√
1 + ε4

ε3 + ε2√
1 + ε4

0
−ε + ε4√

1 + ε4




≈
(

ε2 −1
1 ε2

) ( 1
ε

ε3 + ε2

0 −ε

)
.

In this case, the perturbation of R is column–wise (16) and row–wise ((17), Remark
6.2) small, although the relative change in R12 is arbitrarily bad.

6.2 Preconditioning

Let AP = QR be the Businger–Golub QR factorization. Denote by Ac, Rc the
matrices obtained from A, R, respectively, by scaling their columns to have unit
Euclidean lengths, A = AcDc, R = RcDc, where Dc = diag(‖R(:, i)‖2). From §6.1
it follows that κ2(Rc) = κ2(Ac) is the relevant condition number for perturbations
of the QR factorization under column–wise perturbations of A. Note that κ2(Rc) =
κ2(Ac) independent of the permutation P .

However, the permutation P can substantially change another condition number
related to R. Let R = DrRr, where Dr is the diagonal matrix of the Euclidean
lengths of the rows of R. Preconditioning property of the Businger–Golub QR
factorization is here understood in the light of the fact that κ2(Rr) can be much
smaller and never much bigger that κ2(Ac). The following Proposition ([Drmač
1994; 1999]) gives an estimate.

Proposition 6.1. Let AP = QR, where |Rii| ≥
√∑j

k=i |Rkj |2 for all 1 ≤ i ≤
j ≤ n. Then ‖ |R−1

r | ‖2 ≤
√

n‖ |R−1
c | ‖2 where the matrix absolute value is defined

element–wise. Moreover, ‖R−1
r ‖2 is bounded by O(2n), independent of A. With

exception of rare pathological cases, ‖R−1
r ‖2 is below O(n) for any A.

Now, κ2(A) = κ2(R), κ2(Ac) = κ2(Rc), but it is possible that κ2(Rr) ¿ κ2(Ac) ≤√
nκ2(A). Since ‖R−1

r ‖2 ≤ n‖R−1
c ‖2, κ2(Rr) is in the worst case only n3/2 times

larger than κ2(Ac). In fact, the stronger the scaling Dc (meaning that A has very
differently scaled columns and thus larger condition number), the Businger–Golub
QR factorization will compute R with smaller κ2(Rr).

This feature is one of the important ingredients in the preconditioned Jacobi
SVD algorithm [Drmač and Veselić 2007a; 2007b], and it is also relevant in least
squares and linear system solvers. Just to illustrate, consider solving Rx = b
and (R + δR)x̃ = b. The perturbed solution is x̃ = (I + R−1δR)−1x, where
R−1δR = R−1

r (D−1
r δR). Pivoting moves the triangular factor away from ill–

conditioning (with respect to row–wise small perturbations), and, at the same time,
ensures that it is computed with row–wise small errors (cf. Theorem 6.2 and Ex-
ample 6.1).

With our new implementation, these important properties of the Businger–Golub
QR factorization can be used with confidence in numerical software.
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ACKNOWLEDGMENTS

The authors thank Jim Demmel and Jason Riedy (Berkeley), Julien Langou (Den-
ver), Nick Higham (Manchester) and Krešimir Veselić (Hagen) for many fruitful
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