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Abstract

It is shown that the linkage principle (Milgrom and Weber (1982)) does
not extend to the multi-unit auction setting. An analysis of the equilibium
bidding strategies is carried out for the general two-agent/two-unit Vickrey
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In addition, an explicit counterexample is provided.
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1. Introduction

Milgrom and Weber (1982) provide a number of important results on the revenue-
ranking of various single-unit auction forms under incomplete information. Their
analysis uncovered the so-called linkage principle which states that, on average,
revenues are enhanced by always providing the bidders with as much information
as possible about the value of the good. The linkage principle has come to be
considered one of the fundamental lessons provided by auction theory.

The significance and general acceptance of the linkage principle as a guide to
auction design, even in contexts beyond single-unit auctions, is highlighted by
the recent design of the spectral auction held by the FCC, which contains an
open-auction component. Although the experts agreed that collusion among the
bidders (which ultimately did occur; The Economist May 17, 1997, p.86) is more
easily sustained within an open auction, in the end the faith placed in the linkage
principle outweighed this concern and an open auction format was employed.
Indeed, according to McMillan (1994), the experts “judged [the negative collusion
effect] to be outweighed by the bidders’ ability to learn from others’ bids in the
open auction.”

Despite the faith placed in the linkage principle, we shall show that it does
not generally hold in settings beyond single-unit auctions. Indeed, it is enough to
consider a two-unit Vickrey (1961) auction to demonstrate this. By characterizing
the equilibrium strategies in this simplest of multi-unit settings, we both illustrate
the economics behind the failure of the linkage principle and provide an explicit
counterexample.1 Thus, the linkage principle can be added to the list of results
from mechanism design and auction theory which fail to extend from the single-
unit/single-dimensional context to the multi-unit/multi-dimensional one (see, for
example, Armstrong (1996)).

The rest of the paper is organized as follows. Section 2 describes the model
and provides the general structure of equilibrium bidding strategies in a two-
agent/two-unit Vickrey auction. This theoretical analysis provides the basis for
understanding the economics behind the failure of the linkage principle. Section

1In a recent paper, Ausubel (1997) establishes the linkage principle in a multi-unit Vick-
rey auction setting. However, in his model, agents are retsricted to having constant marginal
valuations (i.e. flat demand). This tends to move the analysis toward that employed in the
single-unit case.
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3 introduces into the model private information held by the seller. Section 4
draws on the analysis of Sections 2 and 3 to explain why the linkage principle
fails. Section 5 contains an explicit counterexample, and Section 6 provides some
concluding remarks.

2. The Model

A seller wishes to sell two units of a single good. The two units are identical and
each is indivisible. There are two agents. Each agent receives a real-valued signal,
which might, for example, be a measure of the good’s quality. The agents are
symmetric in that if x is one agent’s signal and y is the other’s, then mk(x, y)
denotes the one’s marginal valuation for the kth unit of the good, k = 1, 2. The
signals are distributed on the unit square with density f(x, y), which is symmet-
ric in its arguments. Each agent is informed of his own signal, but not that of
the other agent. Consequently, not only does each agent have incomplete infor-
mation regarding the other agent’s marginal valuations, he also has incomplete
information regarding his own marginal valuations.

We shall assume that each mk(·, ·) is continuous, non-decreasing in each argu-
ment, and that m1(x, y) ≥ m2(x, y) for all x, y.

2.1. The Two-Unit/Two-Agent Vickrey Auction

Consider now the Vickrey (1961) auction for the case of two agents and two units.2

Each agent submits a pair of bids. Among the four submitted bids, the highest
two are deemed “winning,” and the lowest two “losing.” If a single agent submits
both winning bids, he is awarded both units and he pays the seller the sum of the
other agent’s bids. If each agent submits a winning bid, then each is awarded one
unit of the good and each agent pays the seller the other agent’s losing bid.

Under the above rules, one can identify the larger of the two bids submitted
by an agent as his bid for a first unit, and the lower of the two bids as that for a
second unit. Thus, we can think of the agents as submitting a pair of bids (b1, b2),
with b1 ≥ b2 where bk is interpreted as the agent’s bid for a kth unit.

In order to understand the economics behind the failure of the linkage prin-
ciple, we now derive equilibrium equations for this auction. We freely assume

2But note that in Vickrey’s model, each agent has complete information regarding his own
marginal valuations.
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differentiability and other properties along the way in order to focus attention on
the main ideas.

So, let us focus attention on symmetric pure strategy equilibria which are
differentiable and strictly increasing in the agent’s signals, and in which an agent’s
bid for a first unit is never less than his bid for a second.

To characterize these, we begin by supposing that (b̂1(·), b̂2(·)) constitutes such
an equilibrium strategy for each bidder, where b̂k(x) denotes an agent’s bid for
a kth unit when his signal is x. Consider then agent 1’s expected utility from
submitting a pair of bids b1 > b2 > 0. Given that the equilibrium strategy is
employed by agent 2, agent 1’s expected utility is:

U(b1, b2 | x) = E{(m1(X, Y )− b̂2(Y ))1{b1>b̂2(Y )} |X = x}+

E{(m2(X, Y )− b̂1(Y ))1{b2>b̂1(Y )} |X = x}

=
∫ b̂−1

2 (b1)

0
(m1(x, α)− b̂2(α))f(α |x)dα +

∫ b̂−1
1 (b2)

0
(m2(x, α)− b̂1(α))f(α |x)dα

Differentiating this expression with respect to the bi’s yields the following first-
order conditions.3

∂U
∂b1

= [m1(x, b̂−1
2 (b1)− b1]

f(b̂−1
2 (b1) | x)

b̂′2(b̂
−1
2 (b1))

= 0

∂U
∂b2

= [m2(x, b̂−1
1 (b2)− b2]

f(b̂−1
1 (b2) | x)

b̂′1(b̂
−1
1 (b2))

= 0

Since in equilibrium, the first-order conditions must hold for every equilibrium
bid, we obtain the following equilibrium conditions. For every x ∈ [0, 1] :

b̂1(x) = m1(x, b̂−1
2 (b̂1(x))), and (2.1)

b̂2(x) = m2(x, b̂−1
1 (b̂2(x))) (2.2)

3This assumes an interior solution and that the bids are in the appropriate ranges.
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The theorem below establishes that conditions (??) and (??) are sufficient
for (b̂1(·), b̂2(·)) to constitute an equilibrium.4 The proof can be found in the
Appendix.

Theorem 2.1. Suppose that b̂1(·) ≥ b̂2(·) are strictly increasing on [0, 1], and that
they satisfy (??) and (??). Then each agent employing the strategy (b̂1(·), b̂2(·))
constitutes a symmetric equilibrium of the two-unit/two-agent Vickrey auction.

Equations (??) and (??) are central to understanding the failure of the linkage
principle. Consequently, we now take a moment to discuss them.

Suppose that agent 1’s signal is x, and 2’s is y. Recall that according to the
rules of the auction, 1’s first-unit bid (i.e. b̂1(x)) is winning when it is above
2’s second-unit bid (i.e. b̂2(y)). According to (??), 1’s first-unit bid is equal to
his first-unit value when 2’s signal is as high as possible, yet consistent with a
winning first-unit bid of agent 1. Consequently, when 1’s first-unit bid is winning
(resp., losing), the signal he “attributes” to agent 2 (for the purpose of obtaining
a first-unit bid) is above (resp., below) 2’s true signal.5

Similarly, 1’s second-unit bid is winning when it is above 2’s first-unit bid.
According to (??), 1’s second-unit bid is equal to his second-unit value when 2’s
signal is as high as possible, yet consistent with a winning second-unit bid of
agent 1. Therefore, when 1’s second-unit bid is winning (resp., losing), the signal
he “attributes” to agent 2 (for the purpose of obtaining a second-unit bid) is above
(resp., below) 2’s true signal.

The essential point of all of this is summarized by the following “biased signal”
property

4Suitable restrictions on the mk(·, ·) functions guarantee that equations (??) and (??) possess
a solution. For example, the following additional conditions (which many examples satisfy)
suffice: m1(0, 0) = m2(0, 0), m1(1, 1) = m2(1, 1), and m1(x, y) −m2(y, x) is strictly increasing
in x and strictly decreasing in y. The condition on the difference expresses the idea that one’s
own signal affects one’s value more than others’ signals do. Thus, the existence of an equilibrium
of the kind we consider here can be established quite generally.

5For example, suppose that 1’s signal is x and that his first-unit bid is winning. Then it
must be the case that b̂1(x) exceeds agent 2’s second-unit bid, b̂2(y), where y is agent 2’s signal.
Consequently, 1 ’s estimate, ŷ = b̂−1

2 (b̂1(x)), of 2’s signal for the purpose of obtaining a first-unit
bid is above 2’s true signal since ŷ = b̂−1

2 (b̂1(x)) > y.
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In a Vickrey auction, winning bids (both first and second-unit) arise when the
opponent’s signal is “overestimated” and losing bids arise when the opponent’s
signal is “underestimated.”6,7

3. Private Information Held by the Seller

The linkage principle asserts that when the seller possesses private information
that is affiliated with the (affiliated) signals of the agents, expected revenues are
enhanced (on average over the seller’s information) when the seller commits to
a policy of always revealing his private information. Milgrom and Weber (1982)
were the first to uncover the linkage principle and to show that it holds when
a single indivisible unit is sold through either a Vickrey auction or a first-price
(sealed-bid) auction. In order to investigate the linkage principle in our two-unit
setting, we now introduce into the model private information held by the seller.

Let x and y continue to denote the signals of the agents, let z denote the signal
obtained by the seller, and let f(x, y, z) denote the joint density of the signals. It
is assumed that f is symmetric in x and y for every value of z. When necessary,
we will write X, Y, Z to denote the random variables generating the signals, and
x, y, z to denote their realizations. If an agent’s signal is x, the other agent’s signal
is y, and the seller’s signal is z, then the agent’s marginal valuation for the kth

unit is mk(x, y, z), k = 1, 2, where each mk is continuous and non-decreasing in
all arguments. As before, an agent knows only his own signal, unless the seller
has committed to a policy of revealing his information, in which case each agent
also knows the seller’s signal, z. We shall consider in turn the equilibrium of
the auction under the two policies in which the seller either commits to always

6This phenomenon also arises in the single-unit Vickrey auction. See Milgrom and Weber
(1982). There as here, the over- and underestimation discussed here should not be identified with
unsophisticated behavior. The strategies do indeed constitute an equilibrium and the agents’
bidding behavior is therefore optimal. The agents can afford to employ biased estimates of the
opponent’s signal when contemplating their own bids because the price they pay for a unit is
determined not by their own bids, but by those of the opponent.

7Since a single bidder might have both a winning first-unit bid and a losing second-unit bid,
the reader might wonder how the bidder’s estimate of the opponent’s signal can be both an
overestimate and an underestimate. The answer is that the estimate of the opponent’s signal
for the purpose of obtaining a first-unit bid typically differs from the estimate employed for the
purpose of obtaining a second-unit bid. Indeed, the former estimate is always weakly larger
than the latter.
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revealing his private information, or commits to never revealing it.
Consider first the case in which the seller commits to always revealing his

private information. In this case, the agents’ bids depend not only on their own
signal, but that revealed by the seller as well, and it is easy to see that the anal-
ysis of the previous section carries through with mk(x, y) replaced by mk(x, y, z).
Consequently, the equilibrium equations when the seller reveals his information
are

b̂1(x; z) = m1(x, b̂−1
2 (b̂1(x; z)), z), and (3.1)

b̂2(x; z) = m2(x, b̂−1
1 (b̂2(x; z)), z), (3.2)

where b̂−1
1 (b̂2(x; z)) denotes the signal, x̄, such that b̂1(x̄; z) = b̂2(x; z), and simi-

larly for b̂−1
2 (b̂1(x; z)).

Next, consider the case in which the seller commits to never revealing his pri-
vate information. Since the seller’s signal remains unknown, the agents must con-
sider their expected marginal valuations when formulating bids. Let m̄k(x, y) =
E(mk(X, Y, Z) |X = x, Y = y), k = 1, 2. Again, it is not hard to see that one
obtains the equilibrium equations here by repeating the analysis of the previous
section with m̄k(x, y) replacing mk(x, y). Consequently, the equilibrium equations
when the seller does not reveal his information are

b̂1(x) = m̄1(x, b̂−1
2 (b̂1(x))), and (3.3)

b̂2(x) = m̄2(x, b̂−1
1 (b̂2(x))). (3.4)

4. Why the Linkage Principle Fails

Recall the biased signal property from Section 2.

In a Vickrey auction, winning bids (both first and second-unit) arise when the
opponent’s signal is “overestimated” and losing bids arise when the opponent’s
signal is “underestimated.”

Since the analysis of Section 2 has been shown to apply equally well whether
or not the seller reveals his signal, the biased signal property applies in both of
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those circumstances as well. Consider then the effect on losing bids were the seller
to switch from a policy of never revealing to a policy of always revealing his signal.

When the seller does not reveal his signal, a losing bid, b̂2(x) of agent 1,
say, is based upon an underestimate of agent 2’s signal. That is, from (??),
b̂2(x) = E(m2(X, Y, Z) |X = x, Y = ŷ), where ŷ = b̂−1

1 (b̂2(x)) is less than agent
2’s signal.8 Now, since ŷ is below 2’s true signal, and the seller’s signal is affiliated
with 2’s, conditioning on Y = ŷ leads to a downward bias in the estimate of the
distribution of Z. Consequently, on average, employing the true value, z, of Z
in m2(X,Y, Z) will increase its expectation conditional on Y = ŷ. This indicates
that revealing his signal tends (on average) to raise bids that were losing when
the seller’s information was not revealed.

Since the seller’s revenues are precisely the sum of the two losing bids, one
might think that the above provides strong intuition for the soundness of the
linkage principle. However, there is another half of the story. A similar argument
as above indicates that revealing his signal tends (on average) to decrease bids that
were winning when the seller’s information was not revealed. It is this possibility
that upsets the linkage principle. Indeed, if a previously winning bid were to fall
sufficiently so that it becomes a losing bid, the sum of the two new losing bids (i.e.
the seller’s revenue) may well be lower than the sum of the original losing bids.
When this occurs, the seller’s revenue falls. If this occurs sufficiently frequently,
then the seller’s revenues will fall on average. In the next section, we present
an example illustrating these effects. Indeed, in the example, under a policy of
always revealing his information the seller never raises more revenue (and with
positive probability raises strictly less) than under a policy of never revealing his
information.

5. A Counterexample to the Linkage Principle

Let θ, εx, εy, εz be independent random variables each uniformly distributed on
[0, 1]. Define the random variables X,Y, Z by X = θ + εx, Y = θ + εy, Z = θ + εz.
Consequently, X, Y, and Z are affiliated. As in previous sections, agent 1’s signal
is generated by X, agent 2’s by Y, and the seller’s by Z. Realizations of X, Y, and
Z are denoted by x, y, and z, respectively.

Let m1(x, y, z) = x + 2
3(y + z), and m2(x, y, z) = x for all x, y, z. We now

8To see that ŷ is less than agent 2’s signal, y, note that b̂2(x) is a losing bid for agent 1
precisely when it is below agent 2’s first-unit bid, b̂1(y). Hence, ŷ = b̂−1

1 (b̂2(x)) < y.
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provide equilibrium bidding strategies first when the seller never reveals his signal
and thereafter when he always reveals his signal. In each case, the strategies can
be derived by employing appropriate versions of the equilibrium equations given
in Section 3.9 Note that because m2(x, y, z) = x, it is a dominant strategy for
an agent to bid his signal on his second unit.10 Thus, whether or not the seller
reveals his signal, we will have b̂2(x) = x in equilibrium. Thus, in what follows it
remains only to derive the equilibrium first-unit bid.

We remark here that once dominated strategies are eliminated, the equilib-
rium outcomes in the two informational settings considered below are unique.
Consequently, although there are other undominated equilibrium strategies, they
all yield the same revenues for the seller as the strategies we display below.

5.1. When the Seller’s Signal is Never Revealed

Consider the following bidding strategy for an agent: For all x ∈ [0, 2]

b̂1(x) = 2
(5.1)

b̂2(x) = x.

We wish to demonstrate that these constitute an equilibrium. As remarked
above, because b̂2(x) = x is dominant, it remains only to show that the first-unit
bid above is optimal. First, note that E(Z |X = x, Y = y) = min(x,y,1)+max(x,y,1)

2 .
Second, note that according to the equilibrium strategies, for every x and y, each
agent wins one unit of the good and pays the other agent’s signal. Thus, it suffices
to show that conditional on every x and y, each agent’s expected first-unit value
exceeds the other agent’s signal. That is, it suffices to show that for every x and
y ∈ [0, 2]

E(m1(X,Y, Z) |X = x, Y = y) ≥ y.
9To keep the analysis of Sections 2 and 3 as simple as possible, we implicitly assumed there

that the equilibrium first and second-unit bidding functions had the same image. As remarked in
footnote 3 one can indeed impose enough structure on the marginal valuation functions so that
this is the case. However, equilibria can be shown to exist without these additional restrictions
as well, but the pair of bidding functions then need not have the same image. Nonetheless, the
resulting equilibrium equations remain closely related to those given in Sections 2 and 3, and
it is these, more general, equilibrium equations which yield the equilibrium bidding functions
displayed below.

10Indeed any strategy in which either of the two bids is sometimes below the agent’s signal is
dominated by one in which both bids are never below the agent’s signal.
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That this holds can be seen as follows:

E(m1(X, Y, Z) |X = x, Y = y) = x +
2
3
y +

2
3
E(Z |X = x, Y = y)

=
(

x +
2
3
y
)

+
(

min(x, y, 1) + max(x, y, 1)
3

)

≥ 2
3
y +

1
3
y

= y.

We conclude that the strategies given in (??) constitute a symmetric, non-decreasing
equilibrium.

Note that because each agent always receives one unit, the two losing bids are
the two second-unit bids. Consequently, when the seller’s signal is never revealed,
the seller’s revenues are x + y for each x and y.

5.2. When the Seller’s Signal is Always Revealed

Consider the following bidding strategy for an agent: For all x, y, z ∈ [0, 2]

b̂1(x; z) = 3x + 2z
(5.2)

b̂2(x; z) = x.

Once again, it suffices to show that the first-unit bid is optimal for every x, y,
and z, given the opponent’s bidding behavior. To see that this is indeed the case,
note that given signals x, y, and z, agent 1 (with signal x) wins a first unit if and
only if

3x + 2z = b̂1(x; z) > b̂2(y; z) = y.

But the above inequality holds if and only if

m1(x, y, z) = x +
2
3
(y + z) > y = b̂2(y; z).

Consequently, agent 1 wins a first unit precisely when his value for it exceeds what
he must pay for it. We conclude that these strategies constitute a symmetric non-
decreasing equilibrium.
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Now, because the seller’s revenues are determined by the two lowest bids
among the four submitted, his revenues when he always reveals his signal are
equal to the sum of the lowest two among

3x + 2z; x; 3y + 2z; y,

for every x, y, z.

5.3. Hiding Information Yields Strictly More Revenue

It is now easy to see that the linkage principle fails. Indeed, not only are the
seller’s revenues strictly larger on average when he hides rather than reveals his
signal, hiding his signal dominates revealing it for every realization x, y, z.

To see this, fix x, y, and z. A seller who always hides his signal receives revenues
equal to x + y, while a seller who always reveals his signal receives revenues equal
to min(x + y, 4x + 2z, 4y + 2z) ≤ x + y. Moreover, the inequality is strict with
positive probability.11

6. Discussion

As Milgrom and Weber (1982) have shown, there is a close connection between
the linkage principle and the tenet that expected revenues in an ascending auction
dominate those from a Vickrey auction. Indeed, the latter result is a corollary of
the former in the single-unit setting (see Milgrom and Weber (1982), Theorem 11).
This is because in an ascending auction, the last two remaining bidders observe
the prices at which all others have dropped out. As pointed out by Milgrom and
Weber, the implicit information so revealed about the others’ signals plays the
same role as would information revealed by the seller. Consequently, if revealing
information is revenue enhancing for the seller (as the linkage principle implies in
the single-unit setting), then the ascending auction dominates the Vickrey auction.

Now, although we have shown that the linkage principle does not extend to
the multi-unit setting, this does not immediately imply that an ascending version
of a multi-unit auction might fail to dominate the multi-unit Vickrey auction.
However, it does raise serious concerns in this regard. One of the main difficulties

11In fact, the inequality is strict precisely when εx > 4θ + 3εy + 2εz or εy > 4θ + 3εx + 2εz.
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in addressing this issue is the determination of equilibrium bidding behavior in a
multi-unit ascending auction.12

We have focussed attention here on the Vickrey auction. On the other hand,
Milgrom and Weber (1982) prove the linkage principle for both the single-unit
Vickrey auction and the single-unit first-price sealed-bid auction. One might
wonder whether the linkage principle remains true in the multi-unit setting for a
first-price sealed-bid auction. We are very far from understanding the full com-
plexities of the equilibrium bidding strategies in such an environment and so have
rather little to offer in the way of insight here, except perhaps for the following
observation. The failure of the linkage principle for the Vickrey auction, as we
have shown, is due to the downward effect that the release of information has
(on average) on winning bids. In a single-unit first-price sealed-bid auction, the
release of information raises the winning bid on average. Needless to say, if infor-
mation revelation raises all winning bids on average in the first-price multi-unit
setting, the linkage principle would survive.

7. Appendix

Proof of Theorem ??. Suppose that b̂1(·) and b̂2(·) satisfy the hypotheses of
the theorem. Since (??) and (??) are satisfied, it follows that b̂1(·) and b̂2(·) have
the same image. Consequently, by (??) and (??), we have that for all b in their
common range:

b = m1(b̂−1
1 (b), b̂−1

2 (b)), and (7.1)

b = m2(b̂−1
2 (b), b̂−1

1 (b)) (7.2)

Now, consider a state, (x̄, ȳ), in which agent 1 wins precisely one unit. That
is

b̂1(ȳ) > b̂2(x̄), and (7.3)

b̂1(x̄) > b̂2(ȳ) (7.4)

12Further concerns are raised by the examples of Frutos and Rosenthal (1997). In particular,
they show that when bidders demand only one of two identical items, and the items are auctioned
sequentially, the seller may raise more revenue by not revealing the winning bid on the first item.
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By replacing b in (??) by b̂1(ȳ), we obtain

b̂1(ȳ) = m2(b̂−1
2 (b̂1(ȳ)), ȳ)

≥ m2(x̄, ȳ),

where the inequality follows from (??). Consequently, agent 1 does not wish to
increase his second bid so as to win a second unit.

Similarly, by replacing b in (??) by b̂2(ȳ), we obtain

b̂2(ȳ) = m1(b̂−1
1 (b̂2(ȳ)), ȳ)

≤ m1(x̄, ȳ)

where the inequality follows from (??). Consequently, agent 1 does at least as
well by winning at least one unit as compared to winning neither unit. Thus, in
all such states, agent 1 cannot improve his payoff.

Next, consider a state, (x̄, ȳ), in which agent 1 wins both units. That is,

b̂2(x̄) > b̂1(ȳ) (7.5)

By replacing b in (??) by b̂1(ȳ), we have

b̂1(ȳ) = m2(b̂−1
2 (b̂1(ȳ)), ȳ)

≤ m2(x̄, ȳ)

where the inequality follows from (??). Consequently, agent 1’s equilibrium bids
are optimal in all such states.

Finally, consider a state, (x̄, ȳ), in which agent 1 wins neither unit. That is,

b̂2(ȳ) > b̂1(x̄) (7.6)

Replacing b in (??) by b̂2(ȳ) yields

b̂2(ȳ) = m1(b̂−1
1 (b̂2(ȳ)), ȳ)

≥ m1(x̄, ȳ)

where the inequality follows from (??). Consequently, agent 1 cannot improve his
payoff by attempting to obtain one or both units.

Thus, we have shown that in each state agent 1’s bid is a best reply to agent
2’s bid (and vice versa, by symmetry). Consequently, a fortiori, the strategies
constitute an equilibrium at the interim stage when the players know only their
own signal.
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