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Abstract. Stellar differential rotation invokes subtle effects on line absorption profiles which can be best studied
in the Fourier domain. Detailed calculations of the behavior of Fourier transformed profiles with respect to
varying differential rotation, limb darkening and inclination angles are presented. The zero positions of the Fourier
transform are found to be very good tracers of differential rotation. The ratio of the first two zero positions σ2/σ1

can be easily measured and is a reliable parameter to deduce the amount of differential rotation. It is shown
that solar-like differential rotation (equatorial regions have larger angular velocity then polar regions) has an
unambigious signature in the Fourier domain and that in certain cases it can easily be distinguished from limb
darkening effects. A simple procedure is given allowing the determination of the amount of differential rotation
by the knowledge of the first two zero positions of a line profile’s Fourier transform alone (i.e., without the need
for thorough atmospheric modelling), under the assumption of a linear limb darkening law with a limb darkening
coefficient of ε = 0.6.
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1. Introduction

Differential rotation is a central ingredient of the gen-
eral accepted stellar activity paradigm, according to which
a magnetic dynamo is ultimately responsible for the
plethora of observed activity phenomena. Model calcu-
lations of stellar dynamos including differential rotation
have been carried out (e.g. Kitchatinov & Rüdiger 1999)
but only a few measurements of stellar differential rotation
exist.

Three approaches to determine differential rotation ex-
ist: (a) By identifying individual features on Doppler maps
and following their migration with time; (b) by studying
the rotation law with time; and (c) by studying line pro-
files. Method (a) has been used for example for AB Dor
(Donati & Collier Cameron 1997), PZ Tel (Barnes et al.
2000) and the rapidly rotating giant KU Pegasi (Weber
& Strassmeier 2001). At least two different images of the
surface of the star are necessary to draw conclusions about
differential rotation by this method. The construction of
two (or more) Doppler images requires good phase cover-
age with high signal to noise; consequently large amounts
of observing time are needed. For method (b) it is assumed
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that activity regions dominating the rotational period mi-
grate in latitude over the stellar surface during a magnetic
cycle and thus lead to an apparent change in rotation rate.
The observations must cover at least a complete magnetic
cycle, which makes these projects difficult and time con-
suming, too. For method (c), which we want to revisit in
this paper, only one single exposure with large spectral
resolution and high signal to noise is needed. However, to
our knowledge only one successful measurement (Reiners
et al. 2001) of non-rigid rotation through line profile anal-
ysis exists.

The possibility of detecting differential rotation
through line profile analysis is discussed in a serie of pub-
lications (Huang 1961; Gray 1977; Bruning 1981; Garćıa-
Alegre et al. 1982), but the extent of these studies is
limited to only a few cases, which do not provide a consis-
tent overall picture. Furthermore, differences between the
calculations are mentioned which can only partly be ex-
plained by the different underlying assumptions (see also
Bruning 1982). In principle, a search for differential rota-
tion effects can be carried out on every line profile mea-
sured with high signal to noise, however, in order to decide
whether rigid rotation is consistent with the data or not
a complete atmospheric model including all atomic data,
turbulence and geometric effects must be carried out.
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This is rather cumbersome and no convenient observable
is tabulated for a quick check on whether a star is differ-
entially rotating or not.

The purpose of this paper is to revisit the effects of
differential rotation on absorption line profiles. Detailed
calculations are presented which in particular do allow
a clear separation of the included model parameters. In
particular we present tabulated observables for a quick
and easy check on whether a line profile is consistent with
rigid rotation or not. Thus large samples of stars can be
analysed for differential rotation effects without the need
to carry out a time-consuming line profile modelling for
every object.

2. The Fourier-transformed profile

The basic assumption of our approach is to interpret a
given absorption line profile D(λ) as a convolution (de-
noted by ∗) between an “intrinsic” line profile F (λ) –
which here is the line profile including atomic data (e.g.
damping coefficients), temperature and element abun-
dance effects, turbulent velocity fields and instrumental
effects – and a rotational broadening function G(λ) in-
cluding limb darkening. With this assumption D(λ) can
be written as

D(λ) = F (λ) ∗G(λ). (1)

It is further assumed that the line profiles are identical
over the stellar surface including the deeper layers. The
validity of this assumption is not obvious and one has to
check individual cases, but particularly for fast rotators
rotation dominates the line profiles and our assumption
becomes more and more reliable. Gray (1976) also devel-
oped broadening functions inferred from turbulent veloc-
ity fields. In this paper we show that, except for very slow
rotators, the complete modeling of D(λ) is not necessary
for a determination of differential rotation.

For the analysis of absorption lines, Fourier transform
of the profiles is convenient because Eq. (1) simplifies in
Fourier domain to

d(σ) = f(σ) · g(σ), (2)

where we use the Fourier frequency σ expressed in cy-
cles/(km s−1) = s km−1 and d(σ), f(σ) and g(σ) are the
Fourier transforms of D(λ), F (λ) and G(λ), respectively.
In the Fourier domain convolutions become multiplica-
tions. Therefore any zero in the Fourier transformed ro-
tational broadening function g(σ), which contains the in-
formation on differential rotation, must also appear in the
observed Fourier transform d(σ). The latter can be ob-
served in the transformed data profiles without any data
manipulation and in particular without any deconvolution
of F (λ).

For rigid rotation the zeros in g(σ) can be analytically
calculated. Using the limb darkening law

Iλ(θ)/Iλ(0) = 1− ε+ ε cos θ, (3)

Fig. 1. A typical normalized Fourier transformed rotational
broadening function gε(σ) (v sin i = 12 km s−1; solid line)
and the Fourier transform of a Gaussian broadening function
f(λ), (e.g. isotropic turbulence) with viso = 5 km s−1 (dashed
line). The multiplication d(σ) = f(σ) · g(σ) is shown with a
dotted line.

where Iλ(θ) denotes the intensity from a surface element,
whose angle between its normal and the observer’s line of
sight is given by θ. The limb darkening dependent rota-
tionally broadening profile centered at some wavelength
λ0 can be expressed as

Gε(λ− λ0) =
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where | λ−λ0 |< δ and δ = (λ0v sin i)/c (cf. Unsöld 1968;
Gray 1976). In terms of the variable x = 2πδσ the Fourier
transform of Eq. (4) is given by Böhm (1952) as:
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with J1(x) denoting the first order Bessel-function. The ε
dependent zeros of gε are therefore determined from the
equation

(1− ε)J1x+ ε

(
sinx
x2
− cosx

x

)
= 0. (6)

An example of a typical normalized Fourier transformed
rotational broadening function gε(σ) is shown in Fig. 1.
The “main lobe” centered on σ = 0 is followed by a se-
ries of “sidelobes”. Important attributes are the zero po-
sitions σ1, σ2 etc. and the sidelobe amplitudes I1, I2 etc.
The dashed line shows the Fourier transform of an as-
sumed intrinsic Gaussian line profile with a dispersion of
vdisp = 5 km s−1. The Fourier transformed data profile
d(σ) = g(σ) · d(σ) is shown with a dotted line. Since in
our specific case the Fourier transformed broadening func-
tion f(σ) decreases monotonically, the amplitudes of the
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sidelobes especially at higher frequencies (I2, I3. . . ) are af-
fected by the multiplication with f(σ) while the zero po-
sitions of g(σ) remain unchanged and their determination
require no knowledge of f(σ).

gε(σ) and its zero positions σn scale with v sin i
(Carroll 1933a; Carroll 1933b); σn can be expressed as

σn = qn(ε) / v sin i. (7)

Thus, given ε, v sin i can directly be determined from the
zero positions of d(σ). Dravins et al. (1990) found an ap-
proximation for q1(ε) and q2(ε):

q1 = 0.610 + 0.062ε+ 0.027ε2 + 0.012ε3 + 0.004ε4 (8)
q2 = 1.117 + 0.048ε+ 0.029ε2 + 0.024ε3 + 0.012ε4 (9)

q2
q1

= 1.831− 0.108ε− 0.022ε2 + 0.009ε3 + 0.009ε4 (10)

and thus

1.72 <
q2
q1
< 1.83 (0.0 < ε < 1.0). (11)

For a parameterization of differential rotation we use a
rotation law analogous to the solar case:

ω(l) = ω0 − ω1 sin2 l, (12)

with l denoting latitude. Specifically, differential rotation
is expressed in terms of α,

α =
ω1

ω0
(α� = 0.20); (13)

α = 0 means solid body rotation, α > 0 equatorial accel-
eration (solar-like differential rotation) and α < 0 polar
acceleration.

Many efforts have been undertaken to find a parame-
terization of gε,α(σ) for the case of a differentially rotat-
ing star. Huang (1961) found solutions for special cases
(i = 90◦, ε = 0.0) but no analytical forms for the gen-
eral case are known. Thus modeling of differential rota-
tion has to be performed by numerical integration over
the stellar surface. Gray (1977) examined the equator-on
case (i = 90◦) and found that the ratio of first to second
sidelobe amplitudes is smaller in case of solar-like differen-
tial rotation (α > 0). Bruning (1981) and Garćıa-Alegre
et al. (1982) calculated profiles for differentially rotating
stars; Bruning’s calculations assume ε = 0.6 while Garćıa-
Alegre et al. neglected limb-darkening (ε = 0.0). Both
authors also investigated a few cases with i < 90◦ and
found differences to the equator-on case. Substantial dif-
ferences exist between the mentioned calculations, which
Bruning (1982) attributed to the different values of the
limb darkening parameter ε used. Furthermore, although
Bruning (1981) did not directly mention the amplitude of
the second sidelobe, his Fig. 4 is inconsistent with the cal-
culations of Garćıa-Alegre et al. (1982). Bruning’s Table 1
has been the reference for analyses e.g. by Gray (1982).

We thus conclude that previous calculations do not
show a clear picture of the important parameter de-
pendences of differential rotation. No approximations for

Eqs. (8)–(10) with α included are known. We therefore
carried out detailed calculations of the changes of Fourier
transformed line profiles with differential rotation, and es-
pecially focused on the inclination dependence and the
possibility of distinguishing limb darkening effects from
differential rotation effects.

3. Model

Let us first consider the rotational broadening function
G(λ) for a differentially rotating star. For the case of rigid
rotation G(λ) can be expressed analytically as in Eq. (4),
to numerically calculate G(λ) for the case of differential
rotation we use a modified version of the package devel-
oped and described by Townsend (1997). The rotation law
(12) and limb darkening law (3) was applied. The integra-
tion is carried out over 25 500 visible surface elements. To
reduce numerical noise we used a Gaussian profile as input
function instead of a δ-function. This is equivalent to the
convolution of a Gaussian profile F (λ) with the desired
rotational broadening profile G(λ). We chose an equiva-
lent width of 1 Å for the Gaussian input function, which
implies that the Fourier transformed profile is normalized
to amplitude 1 at the abscissa. Similar to the convolution
of the rotational broadening profile g(σ) with the intrin-
sic line broadening profile f(σ) discussed in Sect. 2, our
specifically chosen input function affects the amplitude of
g(σ) and has to be taken into account when amplitudes
of g(σ) are considered. However, in our case the Fourier
transformed Gaussian input profile has an amplitude of
99.93% at 0.2 s km−1; since our study focuses on the re-
gion σ < 0.15 s km−1, we applied no correction to g(σ).

We arbitrarily centered the input function at λ0 =
6251.826 Å. We chose a spectral resolution of 0.003 Å
(0.14 km s−1) and used a grid of 8192 points on which
Fourier components were computed. The calculated pro-
files depend on four parameters, the differential rotation
α, the limb darkening coefficient ε, equatorial rotational
velocity veq and the inclination i of the rotation axis.

4. Results

In Figs. 2–4 we show the dependence of the absorption line
profiles (left panel) and the corresponding Fourier trans-
forms (right panel) for a projected rotational velocity of
v sin i = 12 km s−1 on α, ε and i. Figure 2 shows the
behaviour with changing limb darkening ε for rigid rota-
tion (α = 0); in Fig. 3 we consider variable amounts of
differential rotation for constant ε = 0.6; and in Fig. 4
we investigate the influence of varying the inclination an-
gles i for the case of a solar-like differentially roting star
(α = 0.35) with ε = 0.6.

In the data domain all three parameters α, ε and i
change the line profile in a similar way, also the changes are
at the percent level showing the necessity of high signal-
to-noise data. In Fourier domain, however, the signatures
become distinguishable; note that in the Fourier domain
the ordinate is plotted with a logarithmic scale, while in
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Fig. 2. Absorption line profiles for v sin i = 12 km s−1 and rigid rotation (α = 0; i = 90◦) in data domain (left) and Fourier
domain (right). Three different cases of limb darkening (ε = 0.0, ε = 0.6 and ε = 1.0) are indicated by dashed, solid and
dotted lines, respectively. Note that in Fourier domain the ordinate is plotted with logarithmic scale, while in data domain it is
a linear scale.

Fig. 3. Absorption line profiles as in Fig. 2 for limb darkening ε = 0.6 and i = 90◦. Different cases of differential rotation
(α = −0.3, α = 0.0, α = 0.3 and α = 0.6) are indicated. In the Fourier domain the different behaviour of the first sidelobe
is evident, it narrows for larger differential rotation, while it’s amplitude lessens. The amplitude of the second sidelobe changes
slightly.

Fig. 4. Absorption line profiles as in Fig. 2 for limb darkening ε = 0.6 and differential rotation (α = 0.35). Different inclination
angles at constant v sin i (i = 90◦, i = 60◦, i = 40◦ and i = 10◦) are indicated. The behaviour of the first sidelobe with smaller
inclination is comparable to the case of larger differential rotation. The amplitude of the second sidelobe remains constant.
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Fig. 5. q2/q1 plotted versus α (left) and versus i (right); ε = 0.6. Calculated values are marked by crosses in the left and by
dots in the right plot. Hand drawn lines of constant inclination (left) respectively constant differential rotation (right) connect
the values. Dashed lines define the region which can be achieved by rigid rotation (α = 0.0) and varying limb darkening
(0.0 ≤ ε. ≤ 1.0).

the data domain it is a linear scale. We confirm that limb
darkening (Fig. 2) changes the zero positions σi and am-
plitudes of all sidelobes Ii in a similar way. Differential
rotation (Fig. 3) narrows the first sidelobe and dimin-
ishes its amplitude I1 while the amplitude of the second
sidelobe I2 is only slightly affected. Our calculations are
consistent with Gray (1977), Bruning (1981) and Garćıa-
Alegre et al. (1982) and confirm that the first sidelobe of
a Fourier transformed line profile is sensitive to differen-
tial rotation. As can be seen in Fig. 4, smaller inclination
angles do mimic stronger differential rotation; note that
v sin i remains constant in the profiles. For inclination an-
gles as small as i = 10◦ the first sidelobe even vanishes.
On the other hand, the amplitude of the second sidelobe
is only slightly affected by changing differential rotation α
(non-varying inclination i, Fig. 3) and it remains almost
constant with changing inclination i and constant differ-
ential rotation α (Fig. 4).

Bruning (1981) calculated σ1, σ2 and I1 while Garćıa-
Alegre et al. (1982) showed I1 and I1/I2. Our results are in
good agreement with the results of Bruning for i = 90◦,
for i < 90◦ deviations of up to 15% can be recognized.
Calculations of I1 agree with the calculations from Garćıa-
Alegre et al. for all cases of α and i while their ratios of
first and second sidelobe amplitudes I1/I2 are systemat-
ically higher (up to 25%) than our values. We attribute
these differences to the width of the used input function.
Garćıa-Alegre et al. used a Gaussian profile which is not
further specified. If their input function has a significant
line width, the amplitudes of higher sidelobes will be di-
minished, as explained in Sect. 3 resulting in a higher ratio
I1/I2.

The two most instructive ratios of observable param-
eters are, first, the ratio of the second and first zero posi-
tions σ2/σ1 (which is identical to q2/q1) and, second, the
ratio of the first and second sidelobe amplitudes I1/I2.

According to Eq. (11) the value of q2/q1 varies between
1.72 and 1.83 for a rigidly rotating star by varying ε. As
mentioned in Sect. 2, for a sufficiently high rotation rate
the zero positions of a Fourier transformed profile are only
affected by the rotation law. A measured value of σ2/σ1

outside that range (1.72–1.83) must therefore be a direct
indication of differential rotation.

Figure 5 shows the value q2/q1 for different combina-
tions of α and i (keeping ε = 0.6 fixed). In the left panel
the values are plotted versus α, in the right panel versus
inclination i. Calculated values are marked by crosses in
the left and by dots in the right panel. Lines of constant in-
clinations (left) resp. constant differential rotation values
(right) connect the calculated values. The dashed lines de-
fine the region of q2/q1 between 1.72 and 1.83, where rigid
rotation is possible.

Clearly, well defined dependences of q2/q1 on α and i
appear which exceed the effects caused by limb darken-
ing and rigid rotation alone. In all cases q2/q1 shows a
monotonic behaviour; it diminishes (the first sidelobe be-
comes narrower) with larger α and smaller inclination i.
For extreme values of differential rotation and for small
inclination angles, q2/q1 crosses the ordinate, i.e. the first
sidelobe vanishes (cf. Fig. 4). Although it is not possible
to determine both α and i from a measured value of q2/q1
simultaneously, this easily measured value is suitable to
rule out rigid rotation for many cases.

Figure 6 shows a contour plot of the parameter q2/q1
vs. α and i for the case ε = 0.6 (solid lines); it can be
used to determine the permitted α/i-combinations from a
measured q2/q1-ratio. The dashed lines mark the values of
q2/q1 which can be achieved with solid body rotation and
extreme limb darkening parameters alone. Small values of
q2/q1 are expected for small inclination angles combined
with differential rotation of the order of the solar value.
Above the 1.3-contour the gradient of q2/q1 is very steep
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Fig. 6. Contour-plot of q2/q1 in the α − i plane. Solid lines
mark the possible combinations of differential rotation α and
inclination i for a given q2/q1 with limb darkening ε = 0.6.
Dashed lines show the region which is accessible with rigid
rotation (α = 0.0) and varying limb darkening ε.

and lines for q2/q1 = 1.2 and 1.1 are not drawn for better
legibility. The first sidelobe vanishes close to the 1.3-line.

The second measurable ratio, I1/I2, is shown in Fig. 7
for ε = 0.6. A systematic behaviour can also be noticed
here; for positive α (solar-like differential rotation) the
situation is comparable with that of q2/q1, but for nega-
tive α (anti-solar differential rotation; polar regions rotate
faster than the equator) the ratio lessens as well. Thus
I1/I2 can validate results obtained with q2/q1, but the
sense of differential rotation cannot be determined using
this value. Moreover, unlike q2/q1, I1/I2 is affected by
the intrinsic line profile f(σ), which involves additional
velocity fields, intrinsic parameters like temperature and
atomic data, and the instrumental profile. In Fig. 1 the
shown Fourier transform of the isotropic velocity field with
viso = 5 km s−1 can be interpreted as an approximation
of a Fourier transformed intrinsic line profile f(σ). While
g(σ) scales in σ-direction with varying v sin i, f(σ) re-
mains constant. Thus the sidelobe amplitudes of d(σ) are
affected by the shape of f(σ) and particularly for slower
rotators I1/I2 becomes unreliable. Therefore, in order to
use the ratio I1/I2 for determination of differential rota-
tion, g(σ) has to be deconvolved from the data d(σ), and
especially for slower rotators a complete line profile mod-
elling is required.

5. An example: ψ Cap

As an example for the application of the above procedure
we show the determination of α/i-combinations from the
absorption line Fe iλ5775 of the differentially and rapidly
rotating F5 dwarf ψCap (v sin i = 42 ± 1 km s−1). The
data has been taken during an 810 s exposure on Oct. 13,
2000 with the CES at ESO 3.6 m, S/N ∼ 800; a com-
plete analysis has been presented by Reiners et al. (2001).
Although the S/N ratio is rather high, we mirrored the

Table 1. Fourier transformed Fe iλ5775 intensities and zero
positions of ψCap.

q1 q2 I1 I2 q2/q1 I1/I2

0.017 0.027 0.078 0.041 1.65 1.914

± 0.001 0.001 0.003 0.003 0.01 0.004

line profile at its center to achieve an even higher S/N
ratio and to obtain a symmetric profile. Since the main
broadening mechanism for ψCap is rotation, symmetry of
the profile is expected and no problems should arise with
mirroring. No further corrections were applied to the data
and especially no corrections for turbulence or instrumen-
tal broadening were made.

In Table 1 we show the values for zero positions and
sidelobe intensities derived from our CES spectrum of
ψCap. The zero positions were determined from the in-
tersection of a regression line defined by the nearest three
points neighbouring the zero position with unambigious
sign and the abscissa. We estimated the error of the zero
positions by regression lines through the respective point
plus (minus) Sσ. For ψ Cap we derive q2/q1 = 1.65±0.01.
In Fig. 8 the corresponding combinations of inclination
i and differential rotation α is shown. Clearly, the thus
defined region (black area with 1.64 ≤ q2/q1 ≤ 1.66) is
significantly distinct from that accessible by rigid rota-
tion and arbitrary limb darkening. In particular, the thus
defined region is fully consistent with the parameter re-
gion determined from a complete atmospheric modelling
of the ψ Cap data (cf. Fig. 4 in Reiners et al. 2001). Since
the result derived from q2/q1 is the same as that derived
from the complete atmospheric fit, we argue that q2/q1 is
an adequate observable to quickly and reliably determine
solar-like (α > 0) differential rotation for fast rotators.

We mention in passing that the measured ratio of the
sidelobe amplitudes I1/I2 = 1.914 ± 0.004 also supports
the result that ψ Cap is no rigid rotator (cp. with Fig. 7).
Although we showed that great care has to be taken using
I1/I2 for differential rotation determination, in the case
of the fast rotator ψ Cap the sidelobe amplitudes are ex-
pected to be only marginally affected by turbulent velocity
fields and instrumental effects.

6. Summary

We have carried out detailed calculations of the depen-
dence of Fourier transformed line profiles on differential
rotation α and the inclination angle, focusing on the ques-
tion, to what extent differential rotation can be distin-
guished from limb darkening effects and to what extent
inclination matters. We have excluded the question of how
starspots can influence the reliability of the method. This
will be the topic of a further publication.

Our calculations assume an approximation of the
Maunder differential rotation law analogous to that de-
rived for the solar case and a linear limb darkening law.
Alternative rotation or limb darkening laws and influences
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Fig. 7. I1/I2 for ε = 0.6 plotted in the same way as q2/q1 in Fig. 5. I1/I2 also depends strongly on α and i but shows a
non-monotonic behaviour. Note that in the right panel the line for α = −0.3 lies below the line for α = 0.0.

Fig. 8. Contour-plot of q2/q1 with the derived region for ψ Cap
(1.64 ≤ q2/q1 ≤ 1.66) marked black. The black area is clearly
different from that accessible with rigid rotation (area between
the dottet lines) and occupies the same region as that found
by Reiners et al. (2001) in their Fig. 4.

of spots have not been investigated yet. Although we in-
tend to carry out calculations including a greater variety
of assumptions we do not expect large differences in our
results. Our analysis focuses on the low frequency part
of the Fourier transforms while small bumps produced by
small scale spots or small deviations from the rotation and
limb darkening laws are expected to influence only the
high frequency part of the Fourier spectrum. However, we
do want to point out that large polar spots as found in
many Doppler images on a variety of stars may possibly
influence our results.

Two measurable values – q2/q1, the ratio of the second
and the first zero of the Fourier transform, and I1/I2, the
ratio of the amplitudes of the first and second sidelobes –
have been studied. A reliable interpretation of a measured

Fig. 9. The required resolution R for the detection of the first
(σ1) and second (σ2) zero positions for a star with a projected
rotational velocity of v sin i and rigid rotation (α = 0.0).

value of I1/I2 is quite difficult because those ratios are af-
fected by the – in general unknown – intrinsic line profile.
Only for very rapid rotators this ratio can be disentangled
from the intrinsic line profile characteristics. The sign of
differential rotation cannot be determined with this ratio.
However, q2/q1 turned out to be a very reliable tracer of
differential rotation. The measurement of q2/q1 is straight-
forward and can be used without any modelling of line
profiles. q2/q1 does carry information about differential
rotation; a value of q2/q1 < 1.72 is a direct indication for
a solar-like differential rotation law, while q2/q1 > 1.83
indicates anti-solar differential rotation. The combination
of inclination angle i and differential rotation α remains
ambiguous, but information on period and radius of the
star can confine possible parameter regions.
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As is clear from Fig. 6 for a given value of α, smaller in-
clinations always lead to larger deviations from the rigid
rotation case, but obviously small inclination angles di-
minish the projected value of v sin i and the given spec-
tral resolution limits the measurement of σ2. Consequently
sufficiently large v sin i values are needed. Thus there is a
bias in our detectability of differential rotation.

For slow rotators the Nyquist frequency σν , i.e. the
maximum Fourier frequency σ contained in a Fourier
transform of a line profile obtained with a resolution R,
limits the detection of σ2. For fast rotators the situa-
tion improves dramatically and no problems arise with
the measurement of σ2. In Fig. 9 the required resolu-
tion for the detection of the first (σ1) and second (σ2)
zero positions of g(σ), the Fourier transform of a rigid
rotation broadening function G(λ), observed with a spec-
ified value of v sin i is shown. A resolution of the order
R = 70 000 is needed to determine σ2 for a star with
v sin i = 10 km s−1. Known complications like aliasing
emphasize the need for a somewhat higher resolution.

Our picture of stellar rotation law is still very poor
(e.g. Gray 1977, 1982; Wöhl 1983). Information on a large
sample of moderate rotators with high sensitivity to differ-
ential rotation would be instructive for our understanding
of stellar dynamo processes. This can easily be accom-
plished by measuring the q2/q1 ratios as shown in this
paper.

References

Barnes, J. R., Collier Cameron, A., James, D. J., & Donati,
J.-F. 2000, MNRAS, 314, 162
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