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Abstract—There is emerging interest in more detailed models
for wireless shadowing, which may include nonconstant shadow-
ing variance, non-lognormal shadowing, and, most importantly,
correlation between paths; we focus on this last aspect. This paper
offers a structured synthesis of the existing literature on autocorre-
lation and cross-correlation in wireless shadowing and attempts to
fill existing gaps in the analysis of correlation models. We make a
survey of these models and argue, as has previously been observed,
that certain models are not mathematically feasible, which may
lead to problems in simulations or analysis. We then state some
theorems that test whether the models are positive semidefinite,
which is the central necessary condition for feasibility, and eval-
uate the existing models accordingly. Additionally, we evaluate
the models according to their physical plausibility, which leads
us to choose one model among many as arguably the best one in
existence so far. This paper should be useful as a guide on how to
implement shadowing correlation in one’s work, how to choose an
appropriate correlation model, and how to modify existing models
or create new models so that they fulfill mathematical feasibility.

Index Terms—Correlation, wireless channel modeling, wireless
shadowing.

I. INTRODUCTION

CORRELATION in wireless shadowing is a significant step
in obtaining more realistic channel propagation models.

This paper proposes to discuss in detail the existing literature
on shadowing correlation and the existing correlation models,
focusing on evaluating the mathematical feasibility of these
models while also making comments on their physical plau-
sibility. The purpose of this paper is to facilitate the choice
and implementation of correlation models in works that involve
shadowing.

A. Motivation

Recent work on various aspects of wireless communications
has indicated a wide gap between results obtained assuming
independent shadowing paths and between those that introduce
correlation in shadowing propagation models [1]–[5]. Older
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works show that shadowing correlation significantly affects
handover behavior [6]–[9], interference power [10]–[14] (and
consequently system performance) [15]–[17], and the perfor-
mance of macrodiversity schemes [10], [18]–[23]. Furthermore,
shadowing in decibels has been measured [18], [24]–[39] to
have significant correlation in various scenarios. Because of
these two facts, we believe that the general wireless community
is becoming convinced of the importance of modeling correla-
tion in shadowing [2]–[5], [12], [23], [40]–[49]. This is part of
a more general trend suggesting that most propagation models
used in simulation (and analysis) work today are sometimes too
simplistic and may lead to misleading results [50]. Shadowing
correlation can also be positively exploited in some algorithms
or protocols, e.g., for wireless positioning [2], [5], [51], cog-
nitive radio and spectrum sensing [49], [52]–[54], or neighbor
discovery [48] applications.

Meanwhile, there already exist several models for shadowing
correlation. The questions of which model to use and how
to simulate channel realisations accordingly are essential for
every researcher wanting to implement correlation. However,
because correlation models are based on estimating a complex
phenomenon from a small data sample, they may lose some
properties with respect to reality; in particular, some esti-
mated models may not be mathematically feasible, and thus, it
would be impossible, in certain cases, to generate Monte Carlo
samples from them.

In [45], it is deplored that this problem is rarely taken into
account; yet, it has received some attention in [6], [7], [45],
[46], and [55]–[57]. It has previously been addressed [43], [57],
[58] by slightly modifying particular correlation matrices so
that they become feasible (specifically, positive semidefinite
(psd) for lognormal shadowing). However, we prefer to address
the problem at its root: let us use only such correlation models
that will always produce psd correlation matrices, as suggested
in [6], [45], and [56]. This has the following advantages:

1) a faster implementation time, as no provision for correct-
ing non-psd matrices needs to be made;

2) probably a faster execution time for every realisation, as
no decisions or corrections need to be made during the
Monte Carlo simulation;

3) mathematical consistency and elegance: if a model is
feasible, then it is safe for mathematical analysis [9]–[11],
[13], [21], [22], [44], [52], [59]–[64].

If we begin with a set of independent random variables and
construct correlated shadowing variables by combining them
in some way, then we can always calculate their correlation
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structure. However, the inverse operation cannot always be per-
formed: a construction to obtain a desired correlation structure
does not always exist. Those that cannot be constructed are
termed not feasible.

B. Mathematical Tools

Some mathematical definitions and properties will be neces-
sary in this paper. All algebraic operations are taken over the
R field.

Definition 1: A square matrix AN×N is positive definite if
for every column vector x ∈ R

N \ 0, xTAx > 0 [65, p. 82,
Def. 3.1.1.xvii].

Definition 2: A square matrix AN×N is psd if for every
column vector x ∈ R

N , xTAx ≥ 0 [65, p. 82, Def. 3.1.1.xv].
Definition 3: The Hadamard (also called Schur) product of

two M × N matrices (A with entries ai,j and B with entries
bi,j) is a M × N matrix C = A ◦ B with entries ci,j such that
the matrix entries are multiplied elementwise: ci,j = ai,jbi,j

[65, p. 252, eq. (7.3.1)].
Property 1 (Schur Product Theorem): If two N × N ma-

trices A and B are both psd, then their Hadamard product
C = A ◦ B is also psd [65, p. 335, Fact 8.16.8].

Definition 4: The Kronecker (also called Zehfuss) product
of a M × N matrix A with entries ai,j and a K × L matrix B
is a MK × NL matrix C = A ⊗ B with M × N block entries
ai,jB [65, p. 248, Def. 7.1.2].

Property 2: If A and B are both psd, then so is C = A ⊗ B
[65, p. 254, Fact 7.4.15].

Definition 5: An even function f(t) is said to be positive
definite if and only if for any N , for any t1, . . . , tN on R

+, the
matrix with entries ai,j = f(|ti − tj |) is psd. This can directly
be derived from [66, p. 58, eq. (1.29)] and Definition 2.

Property 3 (Bochner’s Theorem): A continuous even func-
tion f(τ) is positive definite if and only if there exists a
nondecreasing bounded function F (ω), ω ∈ R

+ such that
[66, p. 92, eq. (2.53)]

f(τ) =

∞∫
0

cos ωτdF (ω). (1)

Property 4: Every covariance matrix is necessarily psd1 and
symmetric [66, p. 15, eq. (0.36)].

Property 5 (Pólya’s Theorem): A bounded even function
f(τ) with f(∞) = 0 that is concave (up) on (0,∞) is neces-
sarily positive definite [66, p. 136]. (The converse is not true.)

C. Structure of This Paper

In Section II, we discuss the different types of physical
situations that lead us to discuss correlation in shadowing
before focusing on autocorrelation and cross-correlation. In
Section III, we define correlation in general mathematical
terms. In Section IV, we define positive semidefiniteness, which

1Reference [56] says “positive definite,” but this is too restrictive, whereas
[66] also says “positive definite,” but this is a difference in nomenclature, and
clearly, psd is meant.

is the primary property to determine feasibility, and give some
indications on how this property can be proved. In Section V,
we discuss why models derived from real-world measurements
may nevertheless prove not feasible. In Section VI, we make
a comprehensive study of the correlation models in the liter-
ature and summarised these models’ properties in a table. In
Section VII, we impose further conditions on correlation mod-
els by talking about their physical plausibility. These physical
properties are also summarised in the table, which allows us
to formulate a best model that meets both mathematical and
physical criteria. In Section VIII, we discuss the relationship
between feasibility and positive semidefiniteness in the cases
of both lognormal and non-lognormal shadowing and discuss
how to generate correlated jointly lognormal shadowing. We
conclude in Section IX with practical guidelines for using
shadowing correlation models in one’s work.

This paper represents a synthesis of existing knowledge and
some new contributions. As such, all non-original statements
are given appropriate references.

II. TYPES OF CORRELATION

In wireless communications, shadowing is a phenomenon
that corresponds to a random variability of the power gain over
a (directed) propagation path. A transmitting node radiates a
radio signal toward a receiver node. The receiver may receive
a desired signal or an interfering signal. Shadowing represents
the variability of the logarithm of the received power around
its expected value: we denote this quantity S, with VAR{S} <
∞. The small-scale effect of fading has been removed in the
spatial dimension by averaging over a local region [45] of about
50 wavelengths [56], [62], that is, approximately 8–34 m for
classic cellular channels [18], [24], [25], [27], [29], [37], [38].

Consider two directed paths
−−−→
X1Y1 and

−−−→
X2Y2 with shadowing

values S1 and S2, respectively. Their correlation coefficient is
defined as

ρ1,2 =
E{S1S2}√

VAR{S1}VAR{S2}
. (2)

In general, correlation may exist for any set of four points X1 �=
Y1,X2 �= Y2. However, we usually examine correlation under
more specific scenarios.

A. Scenarios

Shadowing correlation can occur in various particular sce-
narios, specifically in peer-to-peer links [2], [67], [68], in
indoor, cross-floor, and indoor–outdoor links [27], [30], and
in satellite–ground communications [31], [69]–[71]. It should
be noted however that most of the literature on correlation
in shadowing is driven by cellular (usually urban) scenarios,
where the base station/mobile and uplink/downlink dualities
apply. In cellular communications, the distinction between au-
tocorrelation and cross-correlation applies [45]. Cross-sector
correlation has also been considered [72].

An important consideration for satellite and indoor scenarios
is that propagation is usually considered in three, not just
two, Cartesian dimensions. In this paper, we will analyze 2-D
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Fig. 1. (a) Shadowing autocorrelation for a mobile Y (t). (b) Shadowing
cross-correlation for a mobile X .

channel models only, although the analysis usually translates
easily to three dimensions.

B. Autocorrelation

Called serial correlation [73], this model considers a trans-
mitting base station X received by the same moving mobile
Y at two moments in time t1 and t2 and at distinct locations
Y1 = Y (t1) and Y2 = Y (t2). Alternatively, the signal may be
received by two distinct mobiles Y1 and Y2 at the same moment
in time. These scenarios may also be reversed to consider
the uplink: either the same mobile transmits to the same base
station X at moments t1 and t2 at locations Y1 and Y2, respec-
tively, or the same base station X simultaneously receives from
two distinct mobiles at locations Y1 and Y2. All four cases can
come under the category of autocorrelation and are illustrated
in Fig. 1(a).

C. Cross-Correlation

This is the central object of our study. Cross-correlation,
or site-to-site correlation [73], considers two transmitting base
stations Y1 and Y2 that transmit to a common mobile receiver
X . Alternatively, cross-correlation can consider a mobile trans-
mitter X whose signal is picked up by two base stations Y1 and
Y2. These are illustrated in Fig. 1(b).

Now, observing the previous section on autocorrelation and
the systematic nomenclature we gave to nodes (X a common
node, and Y1 and Y2 nodes on two separate links), we may
abstract from the nature of these nodes and the link direction
and conclude that autocorrelation and cross-correlation are
very similar in the mathematical sense and can be studied in
the same manner. Furthermore, we see in [46] and [74] how
an autocorrelation model can also be used to model cross-
correlation. We therefore assume that X is the common node
to all paths, which we locate at the origin for simplicity, and all
links are between X and the points Yi.

D. Generalised Correlation

If we allow total freedom for the positions of the two paths,
then the correlation model becomes more complex; in fact,
it becomes a function of up to eight free variables (four free
positions on a 2-D plane).

We will not study this type of correlation for two reasons:
first, because of its increased complexity; and second, because
the methods given in the literature begin with an explicit
construction of the shadowing realisations, and hence, it is
not necessary to study their feasibility. They are always fea-
sible. Contrast this with the correlation models studied here.
In Section VIII-A, it is necessary to factorise a matrix, which
is not always possible, and thus, the method is implicit, and
feasibility must be studied.

Such methods rely on generating shadowing maps [42] in
some way. Three algorithms for doing so are the sum-of-
sinusoids (SoS) algorithm [67], the network shadowing (NeSh)
method [2], [3], [44], [68], and the over-obstacle multiple-edge
diffraction model [75].

E. Time Correlation

Time correlation is different in that it only considers one
path

−−→
XY but looks at the correlation between shadowing at

various moments in time. Shadowing can thus be represented as
a random process S(t) [8], [64]. The feasibility of the model is a
simple problem here because the problem simply evolves in one
dimension, i.e., time. The correlation model is then specified
by the autocorrelation function of S(t), and the model will be
psd if and only if the autocorrelation function is psd. We are
not aware of any measurements of correlation in time only,
and it is not evident if shadowing significantly changes over a
fixed path.

It should be understood that shadowing evolution in time
should (like in space) have fast fading removed through time
averaging of some duration.

F. Uplink–Downlink Correlation

Consider the path
−−→
XY and then its return path

−−→
Y X . By

channel symmetry, one might conclude that the shadowing
experienced in both directions is identical, which would cor-
respond to a correlation coefficient of ρud = 1. In practice,
measurements indicate a high degree of correlation: ρud ≥ 0.66
[35]. From these measurements, Kim and Han [76] assumed
ρud = 0.7. Furthermore, Kotz et al. [50] demonstrated asym-
metry but positive correlation in link connectivity, which can
be interpreted as unequal but correlated shadowing in each
direction.

III. SHADOWING MODEL DESCRIPTION

Autocorrelation and cross-correlation models can generically
be described as follows: consider N points Y1, . . . , YN located
on a plane at positions �r1, . . . �rN with �ri ∈ R

2 \ {0}. We will
write ri = ‖�ri‖. We assume, without loss of generality, that the
common point X is located at the origin, and thus, �ri = −−→

XYi.
Consider Si as the logarithm of the power attenuation due to
shadowing on each path �ri (see Fig. 2). We have E{Si} =
0. We will, for the moment, not commit to any particular
shadowing distribution. We only require the condition that
VAR{Si} < ∞.
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Fig. 2. Generic geometry of shadowing autocorrelation and cross-correlation.

The shadowing log-variance can most generally be charac-
terised as

σ2
i = VAR{Si} = σ2

s (�ri) (3)

although in an isotropic medium, it will simply be a function of
distance: VAR{Si} = σ2

s (ri). Usually, shadowing log-variance
is considered as constant after some distance [1].

The pairwise correlation coefficients necessarily exist (by the
Cauchy–Schwarz inequality) and can be defined as

ρi,j = E{SiSj}/σiσj = h(�ri, �rj), i �= j

ρi,i = 1. (4)

We then have the following properties.
1) −1 ≤ h(�ri, �rj) ≤ 1.
2) h(�ri, �rj) = h(�rj , �ri).
A shadowing model that includes pairwise correlation

can most generally be defined by the pair of functions
(σ2

s (�r), h(�r1, �r2)).
Now, the correlation matrix of S = [S1, . . . , SN ] is

K =

⎡
⎢⎢⎣

σ2
1 σ1σ2ρ1,2 · · · σ1σNρ1,N

σ1σ2ρ1,2 σ2
2 · · · σ2σNρ2,N

...
...

. . .
...

σ1σNρ1,N σ2σNρ2,N · · · σ2
N

⎤
⎥⎥⎦ . (5)

IV. POSITIVE SEMIDEFINITENESS

OF CORRELATION MODELS

From Property 4, for K to be a valid covariance matrix
of S, it is necessary (but not always sufficient, as seen in
Section VIII) that K be psd (K is already symmetric by
construction).

Definition 6: We say that a shadowing model (σ2
s (�r),

h(�r1, �r2)) is psd if ∀N , ∀[�r1, . . . , �rN ] ∈ (R2 \ {0})N , the cor-
relation matrix K is always psd.

A. Models With Variable Shadowing Variance

Theorem 1: If a model (1, h(�r1, �r2)) with constant
log-variance 1 is psd, then for any σ2

s (�r), the model

(σ2
s (�r), h(�r1, �r2)) is also psd. Conversely, if the model

(σ2
s (�r), h(�r1, �r2)) is psd and σ2

s (�r) > 0 ∀�r ∈ R
2 \ {0}, then the

model (1, h(�r1, �r2)) with constant log-variance 1 is psd.
Proof: Consider N shadowing paths �ri ∈ R

2 \ {0} and
a shadowing model (σ2

s (�r), h(�r1, �r2)), where (1, h(�r1, �r2)) is
a psd shadowing model. We call H the N × N matrix with
entries h(�ri, �rj) and s the column vector with entries σs(�ri).
Then, the correlation matrix of S can be written as

K = (ssT) ◦ H. (6)

Now, the matrix ssT is psd, as can be seen from
Definition 2: xT(ssT)x = (xTs)2 ≥ 0 ∀x ∈ R

N . In addition,
since (1, h(�r1, �r2)) is psd, it follows that H is psd. Applying
the Schur product theorem, we find that K is always psd, which
implies that the model (σ2

s (�r), h(�r1, �r2)) is psd.
To prove the converse, we write

H = (zzT) ◦ K (7)

where z is the column vector with entries σ−1
s (�ri), and the proof

is analogous. Of course, here, the additional requirement that
σs(�r) �= 0 ∀�r ∈ R

2 \ {0} is required. �
Thus, to study the positive semidefiniteness of a shadowing

model, it is sufficient to study the correlation function h(�r1, �r2)
in isolation, which simplifies the problem. We will therefore say
that h is psd if (1, h) is psd.

B. Methods for Proving Positive Semidefiniteness

While we do not have a general criterion for proving that
some given h is psd or not, the following approaches will
nevertheless help us analyze most particular cases.

1) If there exists an explicit constructive algorithm for gener-
ating data according to h, then h is necessarily psd, since
the resulting covariance matrix will always be psd (see
Property 4).

2) If there exists at least one choice of [�r1, . . . , �rN ] for
which K is not psd, then h is not psd. For this test, we
need N ≥ 3, since every correlation matrix of size 2 is
psd, as seen from this decomposition:

[
1 ρ
ρ 1

]
=

[
u v
v u

]2

, −1 ≤ ρ ≤ 1

u =
1
2

√
1 + ρ +

1
2

√
1 − ρ

v =
1
2

√
1 + ρ − 1

2

√
1 − ρ. (8)

However, N = 3 may not be enough [57].
3) Several theorems can also be used to prove that some h is

psd, as seen in the next section.
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C. One-Parameter and Separable Correlation

Proving that isotropic models (functions of d = ‖�r1 − �r2‖
only, with �ri ∈ R

2) are psd is not trivial. Indeed, while for all
psd models h(d) the function h(x) on R

+ is positive definite,
the converse is not true, and tighter conditions are needed [66,
p. 361]. The following two theorems are examples of tests that
can be applied to verify that h(d) is psd.

Theorem 2: A one-parameter correlation model h(d) with
d = ‖�r1 − �r2‖ with �ri ∈ R

2 is psd if2 the integral

f(ω) =

∞∫
0

h(x)J0(ωx)xdx (9)

exists and is nonnegative ∀ω ≥ 0 [66, p. 357]. J0(x) is the
Bessel function of the first kind of order 0.

Theorem 3: A one-parameter correlation model h(d) with
d = ‖�r1 − �r2‖ with �ri ∈ R

2 is psd if we have the following2:

1) the function h(x) with x ∈ R
+ is positive definite;

2) the Fourier transform f(ω) of h(|x|) is nonincreasing on
ω ∈ (0,∞).

The converse is not true [66, p. 361].
Many other useful properties of isotropic correlation models

are found in [66, Ch. 22].
Theorem 4: A one-parameter correlation model h(θ) with

θ = |∠�r1 − ∠�r2 + 2kπ|, k ∈ Z, such that θ ∈ [0◦, 180◦] is psd
if it may be written as

h(θ) =
∞∑

n=0

an cos(nθ) (10)

for some nonnegative and bounded sequence a0, a1, . . . with
0 <

∑∞
n=0 an < ∞.

Proofs are given in [55] and [56].
Theorem 5: A one-parameter correlation model h(|x|) with

|x| = |g(�r1) − g(�r2)| for some function g : R
2 \ {0} �→ R is

psd if it may be written as

h(x) =

∞∫
0

cos(2πxω)f(ω) dω (11)

for some nonnegative and finite-area f(ω) on 0 < ω < ∞.
Proof: From Bochner’s theorem, h(x) in (11) is a psd

function. From Definition 5, it follows that for any N the matrix
HN×N with entries ρi,j = h(|ti − tj |), ti = g(�ri) is psd. �

Theorem 6: If a correlation model h may be written as

h(�r1, �r2) = h1(�r1, �r2)h2(�r1, �r2) (12)

with h1 and h2 both psd, then h is also psd.
Proof: Let H, H1, and H2 be the N × N matrices with

entries h(�ri, �rj), h1(�ri, �rj), and h2(�ri, �rj), respectively. We
may then write H = H1 ◦ H2. Now, since h1 and h2 are psd, it
follows that H1 and H2 are both psd. Applying Schur’s product
theorem, we have that H is also psd, which implies that h
is psd. �

2These two theorems apply for shadowing on R
2 and take a more restricted

form on R
3 [66].

A similar argument was given in [56] but for positive definite
instead of psd matrices.

D. Incorporating Time and Uplink–Downlink Correlation

As shown in Section II-E, shadowing may evolve in time
in a correlated manner. In addition, as seen in Section II-F,
shadowing may be different on the same propagation path in
both directions, although these are usually highly correlated.
We will show that, given a positive definite temporal auto-
correlation RS(τ) and a psd spatial correlation model h, and
assuming correlation separability between the spatial, time, and
uplink–downlink dimensions, the resulting combined correla-
tion matrix is always psd. Combining cross-correlation with
temporal autocorrelation was described in [8].

Consider a common node X and N nodes Y1, . . . , YN . Let
Si(t) be the shadowing on path

−−→
XYi at time instant t with

variance σ2
i = σ2

s (�ri) and S̃i the shadowing on the return path−−→
YiX with variance σ̃2

i = σ̃2
s (�ri).

Consider the spatial correlation function h such that ρi,j =
h(�ri, �rj), i �= j, and ρi,i = 1, i.e.,

E {Si(t)Sj(t)} = σiσjρi,j ∀t

E

{
S̃i(t)S̃j(t)

}
= σ̃iσ̃jρi,j ∀t. (13)

We will assume that the correlation between the two directions
of the same path is constant, as in [76], i.e.,

E

{
Si(t)S̃i(t)

}
/σiσ̃i = ρud ∀i ∀t. (14)

Consider also the normalised temporal autocorrelation
function ζ(τ), i.e.,

E {Si(t)Si(t+τ)}
σ2

i

=
E

{
S̃i(t)S̃i(t+τ)

}
σ̃2

i

=ζ(τ) ∀i ∀t (15)

where ζ(τ) is positive definite, and ζ(0) = 1.
We will further assume separability of cross-correlation and

uplink–downlink correlation so that the correlation terms can
be found as follows:

E {Si(t1)Sj(t2)}
σiσj

=
E

{
S̃i(t1)S̃j(t2)

}
σ̃iσ̃j

= ρi,jζ(t2 − t1)

E

{
Si(t1)S̃j(t2)

}
= σiσ̃jρudρi,jζ(t2 − t1). (16)

From this equation, we see that separability implies that the
uplink and downlink cross-correlation models must be the
same, i.e., h = h̃.

Consider M time instances t1, . . . , tM . Then, the correla-
tion matrix ofS1(t1), S̃1(t1), . . . , SN (t1), S̃N (t1), . . . , S1(tM ),
S̃1(tM ), . . . , SN (tM ), S̃N (tM ) is

K̄2NM×2NM = [ζ(tj − ti)]M×M

⊗
(

(s̆s̆T) ◦
(

[ρi,j ]N×N ⊗
[

1 ρud

ρud 1

]))
(17)

where s̆ is the column vector with entries σ1, σ̃1, . . . , σN , σ̃N .
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Theorem 7: Given a psd correlation function h, uplink
and downlink shadowing variances σ2

s (�r) and σ̃2
s (�r), an

uplink–downlink correlation coefficient −1 ≤ ρud ≤ 1, and a
normalised shadowing positive definite time autocorrelation
function ζ(τ) with ζ(0) = 1, and assuming that the correlation
is separable, as in (16), we can conclude that the composite
correlation model is psd.

Proof: Consider (17). The matrix s̆s̆T is always psd, as
seen in the proof of Theorem 1. The matrix [ζ(tj − ti)]M×M is
psd because ζ(τ) is positive definite, and the matrix [ρi,j ]N×N

is psd because h is psd. Finally, all 2 × 2 correlation matrices
are psd, as seen in (8). Both the Hadamard and the Kronecker
products are psd if both their factors are psd, as seen in
Properties 1 and 2. It follows that K̄ is psd. �

Simply speaking, one can incorporate (separable) directional
and time correlation without upsetting the positive semidefi-
niteness of the correlation model. Other dimensions, notably
frequency [49], may also be similarly incorporated.

One can note that the Kronecker product has similarly been
used in [77] in a multiantenna context and in [45] for correlation
between shadowing, delay spread, and angle spread, all under
the assumptions of separability, which is natural when no
further information is available [45].

V. ESTIMATING THE CORRELATION FUNCTION

FROM MEASURED DATA

To better understand why the estimated models may be psd
or not, it is worthwhile to examine some aspects of how these
models are constructed from measured data.

A. Autocorrelation as Mixed Time–Space Measurements

Autocorrelation is measured [24]–[26], [28], [32], [36]–[39]
by taking a single moving mobile Y with velocity v in uniform
rectilinear motion, measuring the power loss between Y and a
base station X , correcting for path loss and small-scale fading,
and considering the shadowing S along the path

−−→
XY (or

−−→
Y X)

as a process of time S(t) (equivalently, of space S(d), with d =
vt [78], [79]). The underlying assumption is that shadowing
over a fixed link does not vary with time (or perhaps varies
little or very slowly compared with variation when in motion).
More specifically, consider the shadowing S(�r, t) as would be
experienced by a virtual mobile Ỹ at time t and location �r. Now,
let the real mobile Y begin at location �r0 at time t = 0 and move
in uniform rectilinear motion with velocity �v. Thus, its location
at time t is �r = �r0 + t�v. The observed shadowing process at Y
is thus S(t) = S(�r0 + t�v, t), or equivalently, S(d) = S(�r0 +
d�v/v, d/v). Clearly, the observed process varies in both time
and space, and assuming that S(�r, t) varies in t when �r is fixed
(see Section II-E), these measurements do not directly translate
into a correlation model. For example, a different model S(d)
might be extracted if the velocity v is changed. This is generally
true for other motion trajectories.

An additional issue about autocorrelation models is the level-
crossing rate, which is only properly defined for some models.
This topic is addressed in [61], [62], and [79]–[81], and we do
not further explore it here.

Fig. 3. Pair of autocorrelated or cross-correlated paths with the most relevant
dimensional variables: d, θ, R.

B. Cross-Correlation as Spatial-Only Correlation

Several field measurements have been performed [18], [24],
[28], [29], [33], [34], [36]–[38] to gather data about the true
physical correlation model, which we call h̄. Field measure-
ments produce a set of data points, from which an estimate
of the cross-correlation function, which we call ĥ, is obtained
by fitting the data with plausible-looking simple mathematical
functions. It must be understood that h̄ is always a psd model by
its very mathematical definition in (4). It was argued in [57] that
a particularly convenient psd model ĥ may not accurately reflect
the true correlation. This is true. However, because h̄ must be
psd, it is likely that there exists some psd model ĥ that is close
to h̄. Therefore, we argue that it is always best and possible to
choose a psd model ĥ that is also close to h̄.

In general, h̄(�r1, �r2) is a function of four variables. However,
estimating a four-variable function accurately requires many
more points than can realistically be obtained from costly and
cumbersome field measurements. Additionally, every point of
the function h̄ is itself estimated as an expectation (4) and
requires several data points. Two consequences follow.

1) The measurement data are usually grouped by collapsing
them from four variables into a single variable.

2) On that one variable, the curve fitting is still relatively
crude [26], [28], [31], [32], [34], [39].

These two approximation steps further distance ĥ from h̄
and may cause the model ĥ to be non-psd. Nevertheless, for
practical reasons, it is simplest to measure correlation along one
dimension only [66, pp. 358–359].

C. Collapsing Correlation Onto One Dimension

The measurements can be grouped along one variable in sev-
eral ways. In such cases, ĥ is expressed as a function of a single
free variable. The most common forms are the following:

1) absolute distance (between Y1 and Y2) [24]–[26], [28],
[31], [32], [36]–[39]: d = ‖�r1 − �r2‖;

2) angle (not oriented) of arrival separation [24], [28], [33],
[34], [36]–[38], [56]: θ = |∠�r1 − ∠�r2| ∈ [0◦, 180◦];

3) arrival distance ratio (in decibels) [33], [37], [56], [72]:
R = |10 log10 r1/r2| = (10/ ln 10)| ln r1 − ln r2|.

These quantities are illustrated in Fig. 3.
For correlation functions expressed in d, one may also esti-

mate and fit the power spectral density (which is the Fourier
transform of the autocorrelation function in differences of d) of
the measured data to that of a particular model [28], [32].
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TABLE I
SUMMARY OF EXISTING SHADOWING CORRELATION MODELS AND THEIR PROPERTIES

VI. SPECIFIC CORRELATION MODELS AND THEIR

POSITIVE SEMIDEFINITENESS

We have made a wide (if not exhaustive) investigation of
the correlation models h used in the literature. All existing
models imply jointly lognormal shadowing (which is by no
means a requirement of our analysis). Most models assume a
constant shadowing variance σ2

s (�r) = σ2
s but not all [1], [39].

As we have shown in Theorem 1, the positive semidefiniteness
of a shadowing model is separate from the shadowing spread
function. As such, we may safely study the existing correlation
models while looking forward to more complex point-to-point
shadowing spread models in the future.

The various existing models and their properties are sum-
marised in Table I. In particular, we show which models are
psd. While [45] stated that “most” models are non-psd, we find
that actually a slight majority of the models are in fact psd.

It should be understood that these models are not neces-
sarily mutually exclusive when they are expressed in differ-

ent (d,R, θ) domains, since this implies a different reduction
(integration) of the original 4-D model h̄ onto one or two
dimensions, possibly representing different projections of the
same h̄ onto those dimensions.

A. Constant Model

The simplistic model that assigns ρi,j = ρ, i �= j

h(�r1, �r2) = ρ (18)

with 0 < ρ < 1, is sometimes used [5], [9]–[11], [20], [21],
[29], [42], [45], [47], [53], [61], [63], [76], [82], [83] (ρ =
0.5 [7], [23], [59], [60]) when more information is lacking.
However, [7] argued that this may be a too-simplistic model,
comparing simulations that use constant versus nonconstant
models. On the other hand, we have shown [13] that for a high
number of highly correlated lognormal-shadowed interferers,
the total interference power may be well approximated with
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the knowledge of the average correlation coefficient only. (It is
important to actually estimate this average. This was not done
in [7].)

The model is claimed psd for ρ = 0.5 in [45]. It does, in
fact, give a psd H for ρ ≥ −1/(N − 1) [83], and therefore,
the model is psd according to Definition 6 for 0 < ρ < 1 (as
well as ρ = 0, 1) but would be non-psd for −1 ≤ ρ < 0. It can
quickly be simulated [42], [83] in the case of jointly lognormal
correlated shadowing.

B. Absolute Distance-Only Models

All the autocorrelation models are expressed as a function
of d (equivalently, of time t, given a constant velocity v).

1) Exponential Model: The most common autocorrelation
model is a decaying exponential of distance [6], [8], [25], [26],
[31], [36], [38]–[40], [42], [45], [48], [49], [51], [52], [56],
[62], [70], [73], [74], [78], [80], [84]–[88]. This model is often
attributed to Gudmundson [26], although the less-cited work of
Marsan et al. [25] also proposes this model, and measurements
by Graziano [24, Figs. 5 and 7] suggest it. This model has also
been interpreted as a cross-correlation model [74]. It may be
expressed as

h(d) = e−d/d0 (19)

where d0 > 0 is the tunable parameter called the decorrelation
distance (sometimes defined for 50% correlation rather than
1/e). Literature surveys have been made [85], [86] of the values
that d0 might take in field measurements. While this model
can be understood as being based on a first-order autoregres-
sive (AR(1)), i.e., first-order Markov process [45], its positive
semidefiniteness is not thereby evident, since, on a nonlinear
trajectory, nonsuccessive points may have different correlation
coefficients than simply those constructed by an AR(1) filter.
The fact that e−x/d0 is a psd function on R

+ is a necessary but
not sufficient condition [66, p. 361] (the same applies for any
model depending on d). Nevertheless, this model is proved to
be psd using Theorem 2 in [66, p. 362] and similarly in [56].

For equally spaced ordered points Y1, . . . , YN on a straight
line with separation dsep, we have the correlation coefficients
equal to ρi,j = ρ|i−j|, where ρ = e−dsep/d0 . We then have a
correlation matrix as in [89], which is necessarily psd, because
the model (19) is psd.

2) More Complex Models: The exponential model has in-
spired some more complex models, which may be interpreted
as autocorrelation or cross-correlation models.

In [28], [32], and [90], the sum of two independent exponen-
tial processes is used, which leads to the following correlation
model:

h(d) = ae−d/d1 + (1 − a)e−d/d2 (20)

where 0 ≤ a ≤ 1, 0 < d1, and 0 < d2 are tunable parameters.
This model is always psd.

Proof: Applying (20) in (9), we may separate the resulting
integral by linearity into two integrals, both of which are
nonnegative, as seen for the model (19), and weighed by the
nonnegative coefficients a and 1 − a. The resulting integral is

thus nonnegative. It follows from Theorem 2 that this model
is psd. �

In [61] and [79] (and implicitly in [81]), a Gaussian correla-
tion model is used, i.e.,

h(d) = e−(d/d̄)2 (21)

where d̄ > 0 is the tunable parameter. This model is proved to
be psd using Theorem 2 in [66, p. 364].

In [81], a convolution of an exponential and a Gaussian
function is proposed, i.e.,

h(d) =Ke−|d|/d0 ∗ e−(d/d̄)2

=K

∞∫
−∞

e−|d−t|/d0−t2/d̄2
dt (22)

where d0 > 0 and d̄ > 0 are the tunable parameters, and
K = exp(−d̄2/4d2

0)/
√

πd̄. This model is psd.
Proof: The Fourier transform of (22) with x = d is

f(ω) = K
2/d0

ω2 + d−2
0

d̄
√

πe−
1
4 (d̄ω)2

which meets the conditions of Theorem 3. �
In [91], a model is proposed that can be written as

h(d) = e−(d/d0)
ν

(23)

with d0 > 0 and ν > 0 as tunable parameters. The positive
semidefiniteness of this model is dependent on ν: for 0 < ν ≤
2, it is proved to be psd with the aid of Theorem 3 in [66,
p. 364]. This of course includes models (19) and (21), as well
as the choice of ν = 0.9682 in [91]. For ν > 2, however, the
model is in non-psd [66, p. 137]. As a counterexample, consider
three aligned points with equal consecutive spacings of 0.2d0,
for which we find that the correlation matrix is not psd for
ν = 2.1, 2.2, 2.5, 3, 5, 50.

C. Angle-Only Models

Some of the first shadowing correlation measurements along
θ were reported in [18] and [24], but no analytical model was
extracted. A similar measurement campaign [37] reported a
much lower angular correlation, suggesting the need for a more
complex model. However, it has been argued [45] that θ is the
most significant parameter in cross-correlation, which justifies
using these models as a first approximation.

In [55] and [84], and later in [15] and [92], a cosine model
was proposed, i.e.,

h(θ) = A cos θ + B (24)

with two tunable parameters A ≥ 0 and B ≥ 0, A + B ≤ 1.
The model was used and assumed psd in [45]. Typical
parameter choices have been A = 0.3, B = 0.5 [17], [19], [21],
[62] and A = 0.3, B = 0.699(9) [15], [92].

The model was proved to be psd in [6], [55], and [56] using
Theorem 4 by setting a0 = A, a1 = B, and all other an = 0.
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In [34], a piecewise-linear model was proposed, i.e.,

h(θ) =

⎧⎨
⎩

0.78 − 7θ/1250◦, 0◦ ≤ θ < 15◦

0.48 − 7θ/1250◦, 15◦ ≤ θ < 60◦

0, 60◦ ≤ θ ≤ 180◦.
(25)

It was shown in [57] that this model is non-psd. Here is an
example: N = 7 with ∠�ri = 0, 5, . . . , 30◦.

In [33, Tab. I], a lookup table for intervals of θ, which is
effectively a piecewise-constant model, was given, i.e.,

h(θ) =

{ 0.6, 0◦ ≤ θ < 30◦

0.25, 30◦ < θ < 60◦

α ≥ 0.2, θ ≥ 90◦.
(26)

This model is undefined for θ ∈ {30◦} ∪ [60◦, 90◦]. We under-
stand that a value for α may be chosen on [0.2, 0.25]. Regard-
less of the missing information, the model is non-psd, as shown
in the following example: N = 11 with ∠�ri = 0, 4, . . . , 40◦.

A triangular model in θ was proposed in [72], i.e.,

h(θ) =
{

a − (a − b)θ/θ0, θ ≤ θ0

b, θ > θ0
(27)

with 0 ≤ b < a ≤ 1, and 0◦ < θ0 ≤ 180◦: three tunable pa-
rameters. In [72], the model a = 0.8, b = 0.4, and θ0 = 60◦

was used to fit the measurements in [24]. The same choice
of parameters was proposed for cross-correlation modeling
for the 802.16-m standard [87]. In addition, a = 0.8, b = 0,
θ0 = 60◦ was proposed to fit the measurements in [34], which
were previously fitted with (25). In [28], the same model with
a = 0.9, b = 0, and θ0 = 180◦ was used. This model is always
psd for any choice of parameters.

Proof: Consider

a0 = b + (a − b)
θ0

2π

an = 2(a − b)
1 − cos θ0n

πθ0n2
.

Using Theorem 4 yields (27). �
A decaying exponential angle model has also been proposed

[4], [41], [56], [93], i.e.,

h(θ) = e−αθ (28)

with α > 0 as a tunable parameter. This model can be seen as
inspired from the exponential d model (19), which it approxi-
mates for small θ. This model is psd [56].

Proof: Consider

a0 =
1 − e−απ

απ

an =
2
π

α

n2 + α2

(
1 − e−απ(−1)n

)
.

Using Theorem 4 yields (28). �

D. Separable Models

Separable models are easily constructed from the multipli-
cation of 1-D models. Theorem 6 shows that if the component
1-D models are psd, then so is the composite separable model.

1) Angle–Distance Ratio: Separable θ–R models may
always be written as

h(θ,R) = hΘ(θ)hR(R). (29)

The use of the θ and R dimensions for shadowing correlation
models has been argued in [37], [38], [45], [56], [62], and [72],
although separability may be a simplistic assumption [56].

In [72], the model “1.0/0.0 RX” is given as

hΘ(θ) =
{

1 − θ/75◦, θ ≤ 60◦

0, θ ≤ 60◦
(30)

hR(R) = max(0, 1 − R/R0) (31)

with R0 > 0, with R0 usually in [6 dB, 20 dB]. This model is
not psd, as shown in the following example: let N = 7 and all
ri equal, and let �ri = 0, 15, . . . , 90◦.

The problem with the preceding model is its discontinuity at
θ = 60◦. This is simple to resolve: if we use the general form
(27) as hΘ(θ) and (31) as hR(R), then we have a very flexible
model that is always psd.

Proof: hR(R) is shown to be psd by choosing

f(ω) =
2 sin2(πR0ω)

π2R0ω2

with g(�r) = (10/ ln 10) ln ‖�r‖ in Theorem 5. Equivalently,
we may use Pólya’s theorem, as in [56].

The model (27) was already shown to be psd.
Now, h is expressed as a product of two psd models, and it

follows from Theorem 6 that h(θ,R) is psd. �
2) Angle-Absolute Distance: In [46], a separable model

depending on d and θ is used and can be rewritten as

hd(d) = e−d/d0

hΘ(θ) =
{

1, θ ≤ 90◦

0, θ > 90◦

h(d, θ) =hd(d)hΘ(θ). (32)

(There is a typo in the original equation [46, eq. (18)]: the term
σ2

ψ̄p
should be removed, as confirmed in a private communica-

tion with D. Kaltakis).
The authors say that this model is psd; however, this claim is

not substantiated, although we understand that their simulations
always gave psd correlation matrices. We already recognise the
model hd(d) from (19), which we know to be psd. However, it
is simple to show that hΘ is non-psd; therefore, the product
of the two might not be psd either. In fact, the following
counterexample shows it is not psd: N = 14 with ri = d0, and
∠�ri = 0, 180/7, . . . , 2340/7◦.

The authors of [46] claim that this model is psd based on
their simulations. This is to be expected: because the model
can be approximated by (19) for ri � d0, as might be the case
in the cellular context, it can often appear psd in simulations.



SZYSZKOWICZ et al.: ON THE FEASIBILITY OF WIRELESS SHADOWING CORRELATION MODELS 4231

However, strictly speaking, it is non-psd, and our example
shows that it can fail, particularly in cases of small ri.

In [94], the same author proposes

hd(d) = e−d/d0

hΘ(θ) = max (0, cos(θ))

h(d, θ) =hd(d)hΘ(θ). (33)

Again, while the model appears psd [94], in fact, it is not,
as attested to by the following counterexample: N = 8 with
ri = 0.4d0 and ∠�ri = 0, 45, . . . , 325◦. However, this is a case
with very small ri. In practice, for ri � d0, this model is well
approximated by

h(d, θ) = e−d/d0 cos(θ) (34)

which is psd.
Proof: Model (34) is the product of models (19) and (24)

with A = 1 and B = 0, both of which were shown to be psd.
Then, by Theorem 6, (34) is psd. �

E. More Elaborate (Nonseparable) Models

It has been suggested [56] that separable models might not
be sufficient to accurately model shadowing correlation.

Saunders’ model [73] has been used in [7], [43], [45], [57],
and [95] (but watch for various transcription errors), i.e.,

h1 = 10−0.05R

h2 =
{

1, θ < θT

(θT /θ)γ , θ ≥ θT

θT = 2arcsin
d0

2min{r1, r2}
h(θ, r1, r2) =h1h2 (35)

where d0 is the same decorrelation distance as measured for
model (19), and γ > 0 is the other tunable parameter (a typical
value is γ = 0.3). The model is not separable in θ and R
because θT depends on r1 and r2. This model is non-psd,
as seen in [45], [46], and [57] and as is apparent from this
example: N = 3 with ri = r ≥ d0/

√
2, and ∠�ri = 0, θT , 2θT .

In addition, we see that this model is undefined for ri <
d0/2, since the domain of arcsin is [−1, 1]. To rectify this
problem, Saunders’ model has been modified [1] (also [88], but
note some transcription errors) by augmenting its domain, i.e.,

h(θ, r1, r2) =
{

same as (35), r1, r2 ≥ d0/2√
d0/2max{r1, r2}, otherwise.

(36)

Notice, however, that if more than one ri is less than d0/2, then
we will again have h > 1, which is not a valid correlation value.

In addition, extending the model’s domain cannot make it
psd: the same counterexamples used to show that (35) is non-
psd can be used to show that (36) is non-psd.

Another model was given in [33, Tab. II] and used in [45].
It is piecewise constant on rectangles in the θ − R domain, i.e.,

h(θ,R)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R < 2, 2 < R < 4, R ≥ 4
0.8, 0.6, 0.4, θ < 30◦

0.5, 0.4, 0.2, 30◦ < θ < 60◦

0.4, 0.4, 0.2, 60◦ < θ < 90◦

0.2, 0.2, 0.2, θ ≥ 90◦.
(37)

The entries of this table cannot be obtained from an outer
product, and thus the model is nonseparable. The model is
non-psd, as observed in [45, 46, 57]; for example: N = 6 with
ri = r ∀i and ∠�ri = 0, 7, 14, 21, 28, 35◦.

Another model is given in [22], i.e.,

hΘ(θ) as in (25)

hR(R) = max (0, (1 − R/R0)α)

h(θ,R) =hR(R) (hΘ(θ) + a) + b (38)

with a > 0, b > 0, a + b ≤ 0.22, α ≥ 0, and R0 > 0. When
b �= 0, this model is not quite separable. It is not psd, as seen
from the same counterexample used for model (25), with a =
b = 0 and ri = r ∀i.

Finally, the model “1.0/0.4 RX” in [72] takes the following
form:

h(θ,R)=

{
max

(
0, 1− R

R0

) (
0.6− θ

150◦

)
+0.4, θ≤60◦

0.4, θ>60◦
(39)

where R0 is chosen between 6 and 20 dB. This model is not psd,
as attested to by the following example: with N = 4, regardless
of the value of R0, choose ri all equal, and ∠�ri = 0, 30, 60, 90◦.

VII. SOME THOUGHTS ON PHYSICAL REALISM

While this paper focuses on the mathematical feasibility
of correlation models, we would like to give a few thoughts
about physical realism as well: can the correlation model h
be considered realistic based on what we know about wireless
propagation? Does it make sense intuitively? It is important to
keep in mind that, while mathematical feasibility is an objective
criterion, physical plausibility is relative to the understanding of
wireless shadowing, and therefore, the criteria presented in this
section are merely tentative. We hope that these initial ideas
will encourage thought and discussion on what a shadowing
correlation model should realistically look like. Nevertheless,
these initial criteria can give a first approximation in choosing
a good correlation model.

Proposition 1: Shadowing is a large-scale phenomenon,
averaged over small displacements in space (and time), and
should not by nature vary quickly in these dimensions [26],
[45], [56], [62].

Proposition 2: As argued in [7], [18], [37], [59], [60], [72],
[73], [86], [95], and [96], correlation in shadowing may be
explained by a partial overlap of the large-scale propagation
medium, as seen in Fig. 4. The nonoverlapping propagation
areas are considered independent. When a propagation front
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Fig. 4. Physical argument of common propagation area for correlation in
shadowing.

passes through successive areas, the gains are multiplicative
and thus add in the logarithmic domain. We may then write the
following:

Let W , W1, and W2 be independent random variables with
zero mean and variances a2, b2, and c2, respectively. We have

S1 =W + W1

S2 =W + W2. (40)

It follows that

VAR{S1} = a2 + b2 = σ2
s (�r1)

VAR{S2} = a2 + c2 = σ2
s (�r2)

E{S1S2} = a2 (41)

and therefore

h(�r1, �r2) =
a2√

(a2 + b2)(a2 + c2)
. (42)

This applies to any pair of shadowing terms.
This interpretation leads us to formulate the following

criteria.

1) h(�ri, �rj) ≈ 1 for �ri ≈ �rj .
2) h(�ri, �rj) � 1 for ‖�ri − �rj‖ � 0.
3) h should be a nonincreasing function in θ [24], [33], [45],

[56] R [33] and d.
4) h should be nonnegative, according to (41). However, this

is contradicted by some measurement campaigns [24],
[26], [27], [30], [34], [36]–[39], which reported some
significantly negative estimated correlation coefficients
in some cases. It would be interesting to study whether
these observations are statistically significant. In addition,
we suspect that negative correlations in measurements
may appear in a particular obstacle scenario. However,
averaged over very many obstacle realisations, the corre-
lations are perhaps less likely to be negative.

5) h should be small for large θ and approach zero for θ ≈
180◦, and r1 and r2 large, as the propagation regions are
then essentially nonoverlapping.

6) Continuity: a small change in �ri should result in small
changes in h(�ri, �rj), at least when ri is large.

7) Correlation should not depend on d only, as the distance
between �r1 and �r2 tells us little about the overlap between
the corresponding propagation areas.

Furthermore, it was argued [37], [38], [45], [56], [62], [72]
that cross-correlation should depend on θ and R.

We have checked each model against these physical con-
straints and summarised the results (without proof) in Table I.
The only model that is both psd and fulfills all these physical
criteria is the model we proposed based on [72], as given by
(27), (29), and (31), with a = 1, and b = 0.

VIII. FEASIBILITY ACCORDING TO

MARGINAL DISTRIBUTION

Until now, we have only verified whether a given model
h gives psd covariance matrices K. This is a necessary but
not sufficient condition to ensure that a random vector S can
be constructed with covariance K. To further study feasibility,
it is necessary to look at the marginal distribution of Si.

A. Jointly Lognormal Shadowing

In the most common case of lognormal shadowing (i.e., each
Si being Gaussian), a natural and effective way to jointly model
shadowing paths is by making S1, . . . , SN jointly Gaussian. We
then say that shadowing is jointly lognormal. In this case, every
symmetric psd correlation matrix is feasible by the following
explicit construction.

We begin by solving for CN×N in

K = CCT. (43)

In general, there are many solutions to this equation if and only
if K is psd. Then, we generate an independent column vector
of standard Gaussian random variables Z = [Z1, . . . , ZN ] and
obtain the shadowing terms with

S = CZ. (44)

There exist various algorithms for calculating C. In the case
when K is positive definite, Cholesky factorization is a stable
algorithm [57], [97] that gives a triangular solution for C.
However, K is allowed to be psd in general.3 In addition,
numerical rounding can make K slightly non-psd. To fix this
double problem, there are at least two procedures. One is to
slightly modify K so that it becomes positive definite [57].
However, K need not be positive definite (as suggested in
[43], [56], and [57]) but may be psd in general. In this case,
Cholesky factorization is not applicable, and matrix diagonal-
ization (eigenvalue decomposition) [1], [7], [58], [95] should
be used. In addition, should some of the resulting eigenvalues
of K be slightly negative due to rounding, they can be set to
zero [58]. Then, if there are eigenvalues equal to zero, K is
not full rank and therefore not positive definite, but C can still
be found. Additionally, if K is highly correlated, then a fast
approximation exists [98].

We may conclude that, for lognormal shadowing, it is only
necessary for a model h to be psd for it to be possible to
explicitly construct any number of correlated shadowing paths.

3The case when K is psd but not positive definite corresponds to a singular
matrix. In practice, for randomly generated positions �ri and using double-
precision arithmetic, we find this event to be extremely rare [13], [14], and
thus, Cholesky factorization is almost safe.
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B. Non-Lognormal Shadowing

While lognormal is a well-established [8], [27], [73], [78],
[86] and by far the most common model for the marginal dis-
tribution of shadowing, it is not the only model available. Other
models have been proposed, either from physical plausibility
arguments or for easier mathematical tractability. The two other
models that we have encountered for the distribution of eSi

are truncated lognormal [86], [99] and Gamma [100]–[102].
See [86, Sec. V-B4] for a survey of shadowing distribution
measurements.

We have seen in Section III that the condition for the finite
variance of Si is required for an adequate definition of correla-
tion. For the truncated lognormal model, which corresponds to
a truncated Gaussian Si, it is easy to see that truncation reduces
the variance; hence, it is finite. For Gamma shadowing, it is easy
to verify that all the moments of the logarithm of a Gamma
random variable are finite, since they can be expressed as the
integral in [103, Integral 4.352.1].

It is, however, not evident that the vector S can be generated
according to non-Gaussian marginal distributions and a given
psd correlation matrix K. One constructive method for ob-
taining such jointly distributed vectors is Normal-to-Anything
(NORTA), as described in [104]. This method requires some
more stringent conditions on the marginal distributions to be
feasible. These conditions might merit further study should
non-lognormal shadowing models gain popularity.

IX. CONCLUSION

We propose the criteria developed in this paper as a basis for
evaluating, designing, and correcting existing future correlation
models. Naturally, there is more to be said both on testing more
complex models for being psd and on their physical plausibility.

A. For Those Wanting to Incorporate Shadowing Correlation

For lognormal shadowing, only certain models that have the
psd property (see Table I) guarantee to always give feasible joint
shadowing distributions. For non-lognormal shadowing, some
additional conditions might be required.

Based on both mathematical feasibility and physical argu-
ments, we conclude that a subset of the family of models
inspired by [72] is the best existing candidate for modeling
correlation in shadowing. This model is given by (29), (31),
and (27) with a = 1 and b = 0. With two tunable parameters θ0

and R0, it may be tuned to approximate many other correlation
models that might have less-desirable properties.

B. For Those Using a Model That Is Not Feasible

Models that are not psd may still be used in particular
application scenarios. For example, all models give psd corre-
lation matrices for N = 2. In addition, we have argued that a
correlation model that exactly corresponds to reality must per
force be psd. It follows that for any model that approximates
reality well (whether from extensive measurement campaigns
or from theoretical arguments), there exists a model that is close

to it (according to some reasonable metric) while also being
psd. For example, the authors in [72] fit the psd model (27) to
the data of [24] to replace the non-psd model (25).

Our suggestion is to take non-psd models and slightly correct
them to make them psd, as we have done for (33).

C. For Those Designing New Correlation Models

We suggest that all new correlation models be designed as
psd for the reasons described in Section I-A. Theorem 6 can be
used to construct more detailed separable models.
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