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Abstract. We show that a large class of regular symmetric Dirichlet forms is generated
by pseudo differential operators. We calculate the symbols which are closely related to the
semimartingale characteristics (Lévy system) of the associated stochastic processes. Using
the symbol we obtain estimates for the mean sojourn time of the process for balls. These
estimates and a perturbation argument enable us to prove Hölder regularity of the resolvent
and semigroup; this entails that the semigroup has the Feller property.

1. Introduction. In the seminal paper Dirichlet spaces and strong Markov processes
[3] M. Fukushima established a one-to-one correspondence between regular (symmetric)
Dirichlet forms and symmetric Hunt processes. Many concrete (jump-type) examples were
given by Jacob who used pseudo differential operators to construct stochastic processes and
Dirichlet forms, [10] and [11]; the most general results in this direction are to our knowledge
due to Hoh [7, 8].

It is not by accident that pseudo differential operators enter the scene. A well-known re-
sult by Courrège, cf. [11] for a survey, implies that infinitesimal generators of ‘regular’ Feller
semigroups are pseudo differential operators—by ‘regular’ we mean that the test functions
C∞

0 are contained in the domain of the generator. Since many Feller processes are Hunt pro-
cesses, it is possible to study these processes via Dirichlet forms; such Dirichlet forms are, of
course, generated by pseudo differential operators. The connection between pseudo differen-
tial operators and Dirichlet forms runs, however, deeper. One indication is the Beurling-Deny
formula which gives the generator of the form in ‘implicit’ form, meaning that one should—
we take the analogy to the diffusion case—perform some kind of ‘integration by parts’. Some
sufficient conditions for the generator of a Dirichlet form to be a pseudo differential operator
were given in [18].

A drawback of the otherwise very powerful approach via Dirichlet forms is the problem
of non-uniqueness in the sense of Theorem 4.2.7 in [6]. That is, any two stochastic processes
associated with the same Dirichlet form are equivalent if there exists a common properly
exceptional set N such that the transition functions coincide outside of N . This leaves a
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question whether one can find a nice representative for the equivalence class of all associated
processes which starts at every point in a natural way.

One way to overcome this is to use (r, p)-capacities and refinements, see [5, 12, 4]. A
more direct approach can be based on the work of Bass and Levin [2] where they obtained
a Harnack inequality for pure jump type integral operators on Rn and showed that the corre-
sponding harmonic functions are Hölder continuous. Note that they assumed the existence of
a strong Markov process associated with the operator as infinitesimal generator. In [19] Song
and Vondraček extended the papers [2, 1] by Bass and co-authors to a larger class of Markov
processes.

In this paper we start with a symmetric regular Dirichlet form, i.e., we know that there
exists a stochastic process associated with the form. To overcome the non-uniqueness we
show that the method of Bass et al. is applicable at all points outside of the exceptional set
N . In particular, we establish a Harnack inequality and Hölder continuity of the harmonic
functions associated with the Dirichlet process. This allows us to show that the resolvent and
the semigroup of the Dirichlet process can be modified to a Feller resolvent and semigroup.
Since we are now dealing with a Feller process, Courrège’s theorem implies that the form has
been generated by a pseudo differential operator in the first place.

It is therefore natural to consider the generator and to search for an explicit formula for its
symbol. This is done in Sections 1 and 2. Having calculated the generator we need to get the
method developed by Bass et al. to work; this requires further properties of the symbol and,
in particular, estimates for the mean sojourn time of the process for small balls. We use a new
method using the symbol of the generator to derive such estimates, cf. Section 3. This section
is based on results from the paper [17] which was written for Feller processes. As a matter of
fact, [17] uses Feller processes only to guarantee that the infinitesimal generator is a pseudo
differential operator; all other calculations only need this particular form of the generator and
strong Markovianity, which means that we can apply these results. The proof of the Harnack
inequality and the Hölder estimates is modeled on the papers [2, 1] and [19]. The principal
innovation is that we use a perturbation result which allows us to pose only assumptions on
the small-jump part and to choose the large-jump part as convenient as necessary. Since we
are more interested in the method and do not strive for greatest possible generality in the
present paper, we only work out bounded perturbations; more general schemes are outlined
in Remark 6.6.

NOTATION. We write a ∨ b and a ∧ b for the maximum and minimum of a, b ∈ R and
Lp(Rn) for the usual Lp space with respect to Lebesgue measure dx; Ck

b (resp. Ck
0 ) denote

the k times continuously differentiable functions which are bounded with all their deriva-
tives (resp. with compact support) and by C∞ we mean the continuous functions vanishing at
infinity. The first entrance time into a set is denoted by τU := inf{t � 0 : Xt ∈ U} and
σV := inf{t � 0 : Xt �∈ V } is the first exit time from a set V .
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2. Generator and symbol of a jump-type Dirichlet form. Throughout this paper
we will always consider quadratic forms of the following type:

E(u, v) :=
∫∫

x �=y

(u(x) − u(y))(v(x) − v(y))n(x, y)dxdy

D(E) := {u ∈ L2(Rn) : E(u, u) < ∞}
(1)

where n(x, y) is a positive measurable function on Rn ×Rn. Denote by C
0,1
0 (Rn) the set of all

uniformly Lipschitz continuous functions on Rn with compact support. In [21], see also [20],
one of us considered ‘stable-like’ forms E(•, •) where n(x, y) = |x − y|−α(x,y)−n and gave
conditions on the exponent α which turn E(•, •) into a Dirichlet form. Since

n(x, y) = |x − y|−α(x,y)−n ⇐⇒ α(x, y) = − log n(x, y)

log |x − y| − n ,

these results extend to all quadratic forms of type (1). In the present setting, Theorems 2.1
and 2.2 of [21] become

THEOREM 2.1. Let (E,D(E)) be as above. If the set {(x, y) ∈ Rn × Rn : n(x, y) =
+∞} is a Lebesgue null set, then (E,D(E)) is a Dirichlet form on L2(Rn) in the wide sense.1

The domain D(E) contains the set C
0,1
0 (Rn) if, and only if, for all compact sets K and all

relatively compact open sets G ⊃ K the following condition is satisfied∫∫
K×K

|x − y|2(n(x, y) + n(y, x))dxdy +
∫∫

K×Gc

(n(x, y) + n(y, x))dxdy < ∞ .

For F := C
0,1
0 (Rn)

E(•)+‖•‖
L2

, i.e., the closure of C
0,1
0 (Rn) under E(•, •) + 〈•, •〉L2 , the form

(E,F) becomes a regular (symmetric) Dirichlet form.

According to the general theory of Dirichlet forms, our standard reference is Fukushima,
Oshima and Takeda [6], we can associate with every regular Dirichlet form a symmetric Hunt
process M = (Xt , Px); the family of probability measures (Px) is uniquely determined only
up to a capacity-zero set N of starting points x.

All regular Dirichlet forms can be written in terms of their Beurling-Deny decomposi-
tion, see [6, Theorem 3.2.1, Lemma 4.5.4]. In our situation it is easy to see that

E(u, v) = 1

2

∫∫
x �=y

(u(x) − u(y))(v(x) − v(y))j (x, y)dxdy ,

j (x, y) := n(x, y) + n(y, x), holds for all u, v ∈ C
0,1
0 (Rn) or, more generally, for all quasi-

continuous (modifications of) u, v from F . Intuitively, see [6, Theorem 4.5.2] for a precise
statement, j (x, y) is the rate at which the paths of the associated Hunt process jump from the
current position Xt− = x to the point Xt = y �= x. It is sometimes helpful not to look at the
rate for the new position but at the rate of the jump size Xt − Xt− = x − y =: h. Doing so,

1Namely, E satisfies all requirements for a Dirichlet form except that D(E) might be not dense in L2(Rn).
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we get

E(u, v) = 1

2

∫∫
h�=0

(u(x + h) − u(x))(v(x + h) − v(x))j (x, x + h)dxdh ,

and the conditions of Theorem 2.1 become∫
h�=0

(|h|2 ∧ 1)j (•, • + h)dh ∈ L1
loc(R

n) .(2)

Another way to describe Dirichlet forms is through their L2-generator (A,D(A)). The
connection between form and generator is given by E(u, v) = −〈u,Av〉L2 , u ∈ F , v ∈ D(A).
For (jump-type) Dirichlet forms it is, in general, difficult to find a closed expression for A if
only the form is known. In the present situation this is, however, possible if we make some
more assumptions on the jump density j (x, y).

We call a rotationally invariant, measurable function χ : Rn → [0, 1] a centering func-
tion if χ(h) decays for |h| → ∞ at least as fast as |h|−1 and if limh→0 |χ(h)h − h|/|h|2 = 0.
Typical examples are χ(h) = (1 + |h|2)−1 and χ(h) = 1B1(0)(h).

THEOREM 2.2. Let (E,D(E)) be given by (1) and assume that (2) holds. Moreover
we assume that the jump density j (x, y) satisfies∫

|h|�1
|h||j (x, x + h) − j (x, x − h)|dh < ∞ .(3)

Then E(u, φ) = −〈u,Aφ〉L2 for all u, φ ∈ C2
0 (Rn) with the operator A given by

Aφ(x) =
∫

h�=0
(φ(x + h) − φ(x) − χ(h)h · ∇φ(x))j (x, x + h)dh

+ 1

2

∫
h�=0

χ(h)h(j (x, x + h) − j (x, x − h))dh · ∇φ(x)

(4)

= p.v.
∫

(φ(x + h) − φ(x))j (x, x + h)dh.(5)

Here χ(h) denotes a compactly supported centering function and p.v.
∫

. . . dh means the
Cauchy principal value integral.

PROOF. Let u, φ ∈ C2
0 (Rn) and fix some χ(h). Since u(x) − u(y), φ(x) − φ(y) are of

order O(1) as |x − y| → ∞ and O(|x − y|) as |x − y| → 0, we see that

E(u, φ) = 1

2

∫∫
h�=0

(u(x + h) − u(x))(φ(x + h) − φ(x))j (x, x + h)dxdh

is well-defined. Since the kernel j (x, x + h)dxdh integrates only |h|2 near the origin, it is
not possible to multiply out the product under the integral and to treat the resulting terms
separately. Instead we insert the terms

−χ(h)h · ∇φ(x + h), −χ(h)h · ∇φ(x) and χ(h)h · ∇φ(x + h) + χ(h)h · ∇φ(x)

and observe that, because of the Taylor formula, the expressions

φ(x + h) − φ(x) − χ(h)h · ∇φ(x + h) and φ(x + h) − φ(x) − χ(h)h · ∇φ(x)
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behave like O(1) for |h| → ∞ and like O(|h|2) for |h| → 0. Using the symmetry j (x, y) =
j (y, x) of the kernel, we arrive after some lengthy but elementary calculations at

E(u, φ) = −
∫∫
h�=0

u(x)(φ(x + h) − φ(x) − χ(h)h∇φ(x))j (x, x + h)dxdh

− 1

2

∫∫
h�=0

u(x)χ(h)h(∇φ(x) − ∇φ(x + h))j (x, x + h)dxdh

+ 1

4

∫∫
h�=0

(u(x + h) − u(x))χ(h)h(∇φ(x + h) + ∇φ(x))j (x, x + h)dxdh

=: −I1 − (1/2)I2 + (1/4)I3 .

The change of variable x � x − h and h � −h and the symmetry of j (x, y) show

I2 = −
∫∫
h�=0

u(x + h)χ(h)h(∇φ(x + h) − ∇φ(x))j (x, x + h)dxdh .

Averaging this and the original representation of I2 yields

I2 = 1

2

∫∫
h�=0

(u(x) + u(x + h))χ(h)h(∇φ(x) − ∇φ(x + h))j (x, x + h)dxdh .

Therefore, we have

(1/4)I3 − (1/2)I2

= 1

2
p.v.

∫∫
χ(h)(u(x + h)h · ∇φ(x + h) − u(x)h · ∇φ(x))j (x, x + h)dxdh

with the principal value integral p.v.
∫∫ := limε→0

∫∫
|h|>ε

. Since for all ε > 0

∫∫
|h|>ε

u(x+h)χ(h)h ·∇φ(x+h)j (x, x+h)dhdx =
∫∫

|h|>ε

u(x)χ(h)h ·∇φ(x)j (x, x−h)dhdx ,

we get

(1/4)I3 − (1/2)I2 = 1

2
p.v.

∫∫
u(x)χ(h)h · ∇φ(x)(j (x, x − h) − j (x, x + h))dhdx ;

because of (3) the above principal value integral is absolutely convergent and does not depend
on the particular choice of the centering function. Piecing things together we obtain for u, φ ∈
C2

0 (Rn) and a fixed centering function χ(h) formulae (4) and (5). �
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COROLLARY 2.3. Let (E,F) and A be as in Theorem 2.2. Then A can be extended to
the bounded and twice differentiable functions C2

b (Rn). For φ ∈ C2
b (Rn) we have

|Aφ(x)| �C

[ ∫
h�=0

|h|2
1+|h|2 j (x, x+h)dh +

∫
|h|χ(h)|j (x, x+h)−j (x, x−h)|dh

]

×
∑

|α|�2

‖∂αφ‖∞
(6)

for all x ∈ Rn. Moreover, A
∣∣
C∞

0 (Rn)
is a pseudo differential operator

Aφ(x) = −p(x,D)φ(x) = (2π)−n/2
∫

p(x, ξ)φ̂(ξ)eixξ dξ(7)

(φ̂(ξ) := (2π)−n/2
∫

Rn e−ixξφ(x)dx denotes the Fourier transform) with negative definite
symbol p : Rn × Rn → C which is given by the Lévy-Khinchine-type formula

p(x, ξ) =
∫

h�=0
(1 − cos hξ)j (x, x + h)dh

− 1

2

∫
h�=0

i sin ξh (j (x, x + h) − j (x, x − h))dh

= p.v.
∫

(1 − eiξh)j (x, x + h)dh .

PROOF. Once we have shown that A can be extended to all C2
b -functions, we may sub-

stitute φ(x) in (4) for eξ (x) = eixξ . With some routine calculations—see, e.g., Jacob [11]—
we then see that p(x, ξ) = e−ixξAeξ (x) and that p(x, ξ) is given by

p(x, ξ) =
∫

h�=0
(1−eihξ + iξhχ(h)l)j (x, x + h)dh

− 1

2

∫
h�=0

iξhχ(h)l(j (x, x+h)−j (x, x−h))dh .

Split p(x, ξ) into real and imaginary parts and observe that the functions 1 − cos hξ and
χ(h)hξ − sin hξ are bounded for large |h| and behave like O(|h|2) as h → 0. Since h �→
χ(h)hξ − sin hξ is odd, the claimed Lévy-Khinchine-type representation is readily derived.

To see that A extends to C2
b (Rn) it is clearly enough to prove (6). Using Taylor’s formula

we get for φ ∈ C2
b (Rn)

|φ(x + h) − φ(x) − χ(h)h∇φ(x)| � c(χ)
|h|2

1 + |h|2
∑

|α|�2

‖∂αφ‖∞ .

The estimate (6) follows now from the representation (4) of the operator A. �

In order to identify A|C2
0(Rn) as the (restriction of the L2-) generator of the Dirichlet form

(E,F) we have to show that A maps C2
0 (Rn) to L2(Rn). For this we have to replace the



ON THE FELLER PROPERTY OF DIRICHLET FORMS 407

conditions (2), (3) by the following uniform versions

sup
x

∫
h�=0

(|h|2 ∧ 1)j (x, x + h)dh < ∞,(8)

sup
x

∫
|h|�1

|h||j (x, x + h) − j (x, x − h)|dh < ∞ .(9)

COROLLARY 2.4. Let (E,F) and A be as in Theorem 2.2. If (8), (9) hold, then the
operator A has bounded coefficients in the sense that there exist constants C,K > 0 such that
for all φ ∈ C2

b (Rn) resp. ξ ∈ Rn

‖Aφ‖∞ � C
∑
|α|≤2

‖∂αφ‖∞ resp. sup
x

|p(x, ξ)| � K (1 + |ξ |2) .(10)

PROOF. The assumptions guarantee that all integrals appearing in the estimate (6) of
Aφ(x) converge uniformly for all x. This proves the first estimate in (10). The second in-
equality follows immediately from the first since −p(x, ξ) = e−ixξAeξ (x), eξ (x) := eixξ ,
see the proof of Corollary 2.3. �

PROPOSITION 2.5. Let (E,F) and A be as in Theorem 2.2. If (8), (9) hold, then A

maps C2
0 (Rn) to L2(Rn). In particular, A coincides on C2

0 (Rn) with the generator of the
Dirichlet form (E,F) and C2

0 (Rn) ⊂ D(A).

PROOF. Pick some φ ∈ C2
0 (Rn) and choose r > 0 so large that supp φ ⊂ Br(0).

Because of (10) we have

‖Aφ‖L2 � ‖1B2r (0)Aφ‖L2 + ‖1Bc
2r (0)Aφ‖L2

� C
√

λn(B2r (0))
∑

|α|�2

‖∂αφ‖∞ + ‖1Bc
2r (0)Aφ‖L2 .

To see the finiteness of the second member we observe that (4) reduces for |x| � 2r to

1Bc
2r (0)(x)Aφ(x) =

∫
h�=0

φ(x + h)j (x, x + h)dh ,

and since for |h| � r and |x| � 2r we have |x + h| � |x| − |h| � r we conclude that

‖1Bc
2r (0)Aφ‖2

L2 =
∫

|x|�2r

[ ∫
|h|>r

φ(x + h)j (x, x + h)dh

]2

dx

� ‖φ‖2∞
∫

Rn

[ ∫
|h|>r

1Br(0)(x + h)j (x, x + h)dh

]

×
[ ∫

|h|>r

j (x, x + h)dh

]
dx .

For the last estimate we used the Cauchy-Schwarz inequality for the inner integral. We now
interchange the order of integration and change variables according to x � y − h and then
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h� −h. Since j (x, z) = j (z, x) we arrive at

‖1B2r (0)Aφ‖2
L2 � ‖φ‖2∞ sup

x∈Rn

[ ∫
|h|>r

j (x, x + h)dh

]2 ∫
Rn

1Br(0)(y)dy

which is finite under (8), (9). Since A(C2
0(Rn)) ⊂ L2(Rn) Theorem 2.2 shows that A coin-

cides on C2
0 (Rn) with the generator of the Dirichlet form and that C2

0 (Rn) ⊂ D(A). �

EXAMPLE 2.6. Here is a simple condition that guarantees (8), (9): if there exist expo-
nents −∞ < α � β < 2 and 0 < γ �∞ and constants c, C,K > 0 such that

c

|x − y|α+n
� j (x, y) � C

|x − y|β+n
for all |x − y| � 1(11)

0 � j (x, y) � K

|x − y|γ+n
for all |x − y| > 1(12)

(γ = ∞ means that j (x, y) vanishes if |x − y| > 1) then (8) holds. The straightforward
calculations are left to the reader.

If we write j (x, y) in the form |x − y|−α(x,y)−n + |x − y|−α(y,x)−n (as, e.g., in [21]),
then (11), (12) are essentially equivalent to the conditions

−∞ < α � α(x, y) � β < 2 for all |x − y| � 1(13)

0 < γ � α(x, y) �∞ for all |x − y| > 1 .(14)

For (3) resp. (9) we have to make the additional assumption that α(x, y) is Lipschitz
continuous for all x, y from any compact set K ⊂ Rn (resp. globally Lipschitz), i.e., that

|α(x, y) − α(x, z)| + |α(y, x) − α(z, x)| � CK |y − z|, x, y , z ∈ K(15)

(and that, for (9), the constants CK are uniformly bounded). If this is the case, we get for
x ∈ K and |h| < 1

|j (x, x+h)−j (x, x−h)|
≤ |h|−n(||h|−α(x,x+h) − |h|−α(x,x−h)| + ||h|−α(x+h,x) − |h|−α(x−h,x)|) .

The elementary formula |t−a − t−b| = |∫ b

a
t−u log tdu| shows for |h| < 1 that

||h|−α(x,x+h) − |h|−α(x,x−h)| =
∣∣∣∣
∫ α(x,x+h)

α(x,x−h)

|h|−u log |h|du

∣∣∣∣ � cK log
1

|h| |h|1−β .

Thus, ∫
|h|<1

|h||j (x, x + h) − j (x, x − h)|dh � cK

∫
|h|<1

|h|2−β−n log
1

|h| dh < ∞

uniformly for x ∈ K (resp. uniformly in x ∈ Rn).
Later on, we will use that β < 2 also guarantees that

sup
x

∫
|h|<1

|h| log
1

|h| |j (x, x + h) − j (x, x − h)|dh < ∞ .(16)
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Exact knowledge of the generator, in particular, the fact that A is a pseudo differential
operator with symbol −p(x, ξ), makes simple proofs of (global) properties of the process
possible, see [11]; most proofs only use the existence of the symbol and the (strong) Markov
property of the underlying process. The following proof is the ‘symbolic’ version of Oshima’s
conservativeness criterion [14], see also [9] and [16].

PROPOSITION 2.7. Let (E,F) be as in Theorem 2.2 and assume that the conditions
(8), (9) hold. Then the Dirichlet form (E,F) is conservative, i.e., for all t > 0 we have
Tt1 = 1 Lebesgue a.e., where (Tt )t�0 is the L2-semigroup associated with the form (E,F).

PROOF. As we have seen in Corollaries 2.3 and 2.4, the generator A of the Dirichlet
form is a pseudo differential operator with symbol −p(x, ξ) which has bounded coefficients,
i.e., |p(x, ξ)| � c(1 + |ξ |2). Since (Xt)t�0 is a Hunt process, we know that for (Lebesgue)
almost all starting points x and all φ ∈ D(A)

Ttφ(x) − φ(x) = Ex(φ(Xt)) − φ(x) =
∫ t

0
Ex(Aφ(Xs))ds =

∫ t

0
TsAφ(x)ds .

Pick φ ∈ C∞
0 (Rn) ⊂ D(A) satisfying 0 � φ � 1, φ(0) = 1, and define φk(x) := φ(x/k).

Noting that φk(x)
k→∞−−−→ 1 and that for the Fourier transform φ̂k(ξ) = knφ̂(kξ), we see using

A|C∞
c

= −p(x,D),

|Aφk(x)| =
∣∣∣∣(2π)−n/2

∫
p(x, ξ)φ̂k(ξ)eixξdξ

∣∣∣∣
=

∣∣∣∣(2π)−n/2
∫

p(x, ξ/k)φ̂(ξ)eixξ/kdξ

∣∣∣∣
� c (2π)−n/2

∫
(1 + ∣∣ξ/k

∣∣2
)|φ̂(ξ)|dξ

� c (2π)−n/2
∫

(1 + |ξ |2)|φ̂(ξ)|dξ .

(17)

The last integral converges absolutely since φ̂ is a rapidly decreasing Schwartz function. Since
this estimate is uniform in k ∈ N, we can use dominated convergence in (17), and conclude
that limk→∞ Aφk = 0 and supk ‖Aφk‖∞ < ∞. Therefore, another application of the domi-
nated convergence theorem shows that for almost all x

|1 − Tt1| = lim
k→∞ |φk − Ttφk| � lim

k→∞

∫ t

0
|TsAφk|ds =

∫ t

0
lim

k→∞ |TsAφk|ds = 0 ,

whence Tt1 = 1 almost everywhere. �

3. Sojourn times for small balls. In [17] one of us studied the growth behaviour of a
class of Feller processes (Xt)t�0 which are generated by pseudo differential operators. To do
so, estimates for the running maxima and the sojourn times σx

r := inf{t � 0 : |Xt − x| � r},
were obtained. Although [17] was written for Feller processes, the necessary input for the
estimates to work was that (Xt )t�0 is a strong Markov process whose infinitesimal generator
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is a pseudo differential operator −p(x,D)—i.e., an operator of the form (7)—with negative
definite symbol p(x, ξ)—i.e., a locally bounded function p : Rn × Rn → C satisfying a
Lévy-Khinchine representation

p(x, ξ) = a(x) − i(x)ξ + ξ · Q(x)ξ +
∫

h�=0
(1 − e−ihξ − iχ(h)hξ)ν(x, dh) ,

for some centering function χ(h) and measurable ‘coefficients’ a(x) � 0, (x) ∈ Rn,
the positive semidefinite Q(x) ∈ Rn×n and the Lévy kernel ν(x, dh) which is such that∫
h�=0(|h|2 ∧ 1)ν(x, dh) < ∞.

In order to use the methods developed in [17] we need to know that the process (Xt , Px)

from Section 2 is a Px-semimartingale for all x �∈ N and some capacity-zero set N .

LEMMA 3.1. Let (E,F) and A be as in Theorem 2.2 and assume that (8), (9) hold
true. (In particular, the symbol p(x, ξ) has bounded coefficients in the sense of (10).) Denote
by N ′ the exceptional set outside of which the process (Xt , Px), which is properly associated
with (E,F), is uniquely defined. Then (Xt , Px) is a Px -semimartingale for all x outside some
( possibly larger) exceptional set N ⊃ N ′.

PROOF. The proof is similar to the argument from [17, Lemma 3.2] and we only sketch
the differences. Recall that our assumptions imply C2

0 (Rn) ⊂ D(A). Pick φ
j
k ∈ C2

0 (Rn) such

that φ
j
k (x) = xj on Bk(0) and φ

j
k (x) = 0 on Bc

2k(0), j = 1, 2, . . . , n, and k ∈ N. Because of
the Fukushima decomposition of additive functionals, see [6, Theorem 5.2.2],

M
[u]
t := u(Xt ) − u(X0) −

∫ t

0
Au(Xs)ds , u ∈ D(A) ,

is a Px -martingale for all x ∈ Rn \ M where M is an exceptional set that may depend on u;
thus, Mt := M

[u]
t , u = φ

j
k (· − x), is a Px -martingale for all x outside some exceptional set

Mj,k . We set N := ⋃
j,k Mj,k ∪ N ′ which is again a capacity-zero set. We may now literally

follow the argument of [17]. �

Since all proofs of [17] only involve stopping techniques (at a sequence of countably
many stopping times), we can use all arguments of that paper in the present situation, possibly
at the expense of a larger exceptional set.

THEOREM 3.2. Let {(Xt , Px), t � 0, x ∈ Rn \ N} be the Hunt process associ-
ated with the regular Dirichlet form (E,F) and assume that the generator of E is (on the
test functions C∞

0 (Rn)) a pseudo differential operator −p(x,D) with negative definite
symbol −p(x, ξ). If the symbol has bounded coefficients in the sense that supx |p(x, ξ)| �
K(1 + |ξ |2) for all ξ ∈ Rn and if it satisfies a sector condition |Im p(x, ξ)| � c0 Re p(x, ξ),
x ∈ Rn, |ξ | > ρ, with absolute constants c0, ρ > 0, then we have for all x ∈ Rn \ N , t � 0
and r > 0

Px

(
sup
s�t

|Xs − x| � r

)
� cn t sup

|x−y|<2r
sup

|e|�1
Re p(y, e/r)(18)
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and for all x ∈ Rn \ N , t � 0 and 0 < r < ρ−1

Px

(
sup
s�t

|Xs − x| <
r

m

)
� cm

κ

tm inf|x−y|<2r
sup
|e|=1

Re p(y, e/4κr)
, m = 1 , 2(19)

with absolute constants κ−1 := 4 arctan(1/2c0) and cn, cκ > 0.

Since {sups�t |Xs − x| < r} ⊂ {σx
r > t} ⊂ {sups�t |Xs − x| � r}, for all r > 0 and

t > 0, Theorem 3.2 gives also upper bounds for the sojourn probabilities Px(σ
x
r > t) and

Px(σ
x
r � t). As in [17, Theorem 4.7, Remark 4.8] these lead to the following estimates for

the mean sojourn time for x ∈ Rn \ N and small r < ρ−1,

cn

sup
|x−y|<2r

sup
|e|�1

Re p(y, e/r)
� Ex(σ

x
r ) � Cκ

inf|x−y|<2r
sup
|e|=1

Re p(y, e/4cκr)
,(20)

with absolute constants κ−1 := 4 arctan(1/2c0) and cn, Cκ > 0. In [17] we assumed the
sector condition of Theorem 3.2 for all ξ ∈ Rn and obtained estimates for all r > 0. If it
holds only for |ξ | > ρ for some fixed ρ > 0, the argument [17, p. 607, line 6 from below]
shows that the estimates are still valid if we restrict ourselves to small values r < ρ−1.

If z ∈ Br/2(x), then it is clear that Br/2(z) ⊂ Br(x) ⊂ Br/2+r (z). Hence, σz
r/2 � σx

r �
σz

3r/2. This gives

COROLLARY 3.3. Under the assumptions of Theorem 3.2 we have

cn

sup
|x−y|<3r/2

sup
|e|�1

Re p(y, 2e/r)
� Ez(σ

x
r ) � Cκ

inf|x−y|<7r/2
sup
|e|=1

Re p(y, e/6cκr)
(21)

for all x ∈ Rn, r < ρ−1 and all z ∈ Br/2(x) \ N .

In order to make Theorem 3.2 and Corollary 3.3 work in the setting of Section 2, we
have to verify the conditions on the symbol p(x, ξ). From Theorem 2.2 and Corollary 2.4 we
know already that (8), (9) imply that a symbol exists and that supx |p(x, ξ)| � K (1 + |ξ |2).
For the sector condition of Theorem 3.2 we need some preparations.

LEMMA 3.4. Let (E,F) be as in Theorem 2.1 and assume that (8), (9) and (16) hold.
If for all |h| < 1

|j (x, x + h) − j (x, x − h)| � c |h| log
1

|h| (j (x, x + h) + j (x, x − h)) ,(22)

then the symbol p(x, ξ) satisfies the estimate |Im p(x, ξ)| � c
√

Re p(x, ξ) for all x, ξ ∈ Rn.

PROOF. Obviously, (16) is stronger than (9) which means that the form E is generated
by a pseudo differential operator with symbol p(x, ξ). Define θ(h) :=(|h|∧1) log(e/(|h|∧1)),
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e = 2.71828... . Then we see using the Cauchy-Schwarz inequality

|Im p(x, ξ)| =
∣∣∣∣1

2

∫
h�=0

sin(hξ)(j (x, x + h) − j (x, x − h))dh

∣∣∣∣
�

( ∫
h�=0

sin2(hξ)
|j (x, x + h) − j (x, x − h)|

θ(h)
dh

)1/2

×
( ∫

h�=0
θ(h) |j (x, x + h) − j (x, x − h)|dh

)1/2

.

Because of (8) and (16) the second factor is uniformly bounded for all x; using (22) and the
elementary estimate sin2 t � 2(1 − cos t) the claim follows. �

LEMMA 3.5. Let p(x, ξ) be as in Corollary 2.3. If for some absolute constant c > 0

lim inf|ξ |→∞
j (x, x + h/|ξ |)

|ξ |n � c > 0 , x ∈ Rn, |h| < 1 ,(23)

then lim inf|ξ |→∞ |p(x, ξ)| � (c/12) πn/2/Γ (n/2 + 2).

PROOF. Since 1 − cos t � t2/3 for |t| � 1 and since j (x, x + h/|ξ |)|ξ |−n � c/2 for
large values of |ξ |, we find for |ξ | � 1

|p(x, ξ)| �
∫

h�=0
(1 − cos(h · ξ))j (x, x + h)dh � 1

3

∫
|h||ξ |�1

(h · ξ)2j (x, x + h)dh

= 1

3

∫
|y|�1

(y · ξ/|ξ |)2j (x, x + y/|ξ |) dy

|ξ |n

� c

6

∫
|y|�1

(y · ξ/|ξ |)2dy = c

12

πn/2

Γ (n/2 + 2)

where we used Sonin’s formula
∫
|y|�1(y · a)2 dy = (1/2)(πn/2/Γ (n/2 + 2))|a|2. Since the

right-hand side is independent of ξ , the claim follows as |ξ | → ∞. �

If E is as in Section 2 we have the alternative representation j (x, y) = |x − y|α(x,y) +
|x − y|α(y,x) for the jump density.

PROPOSITION 3.6. Let (E,F) be as in Theorem 2.1, assume that (8), (9), (16) and
(23) hold and that α(x, y) is Lipschitz continuous. Then p(x, ξ) satisfies the sector condition
of Theorem 3.2 for large |ξ |.

PROOF. The assertion follows directly from Lemmata 3.4 and 3.5. Only (22) needs
proof. For this we use the elementary formula

|t−a − t−b| =
∣∣∣∣
∫ b

a

t−u log t du

∣∣∣∣ � |b − a|| log t|(t−a + t−b)

with a = α(x, x + h) resp. α(x + h, x), b = α(x, x − h) resp. α(x − h, x) and t = |h|. �
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EXAMPLE 3.7. We have seen in Example 2.6 that (11), (12), and (15) imply (8), (9)
and even (16). If we also assume that 0 � α � β < 2, we find for |ξ | > 1 and |h| < 1

j (x, x + h/|ξ |)
|ξ |n � c

|h|n+α
|ξ |n+α|ξ |−n = c

|ξ |α
|h|n+α

� c

|h|n+α
� c

which shows that condition (23) from Lemma 3.5 is satisfied. Thus, Proposition 3.6 holds.
The above assumptions are more far-reaching. Let p(x, ξ) and j (x, y) be as before and

define a new symbol by

p1(x, ξ) := p.v.
∫

h�=0
(1 − eihξ )j1(x, x + h)dh ,(24)

with the modified jump measure

j1(x, y) := j (x, y)1B1(0)(x − y) + e−|x−y|1Bc
1 (0)(x − y) .(25)

The corresponding pseudo differential operator can then be written as

−p1(x,D)u(x) = p.v.
∫

0<|h|<1

(u(x + h) − u(x))j (x, x + h)dh

+
∫

|h|�1

(u(x + h) − u(x))e−|h| dh .

(26)

Note that j1 has the same small jumps as j but that large jumps occur at a different rate than
before. A short calculation using (11) shows that for suitable constants cβ, cα,ρ not depending
on x and |ξ | > ρ

cα,ρ |ξ |α � Re p1(x, ξ) � cβ |ξ |β , x ∈ Rn , |ξ | � ρ .(27)

Using (8) it is now easy to see that Re p(x, ξ) ∼ Re p1(x, ξ) for large |ξ | and that

cα,ρ |ξ |α � Re p(x, ξ) � cβ,ρ |ξ |β , x ∈ Rn , |ξ | � ρ(28)

for some cβ,ρ . Substituting (28) into (18), (19) and (21) yields

COROLLARY 3.8. Let p(x, ξ) and p1(x, ξ) be as in Example 3.7, i.e., satisfying (13)–
(15) and take ρ as in (27), (28). Then the following estimates hold for the sojourn time σx

r ,
x ∈ Rn, r < 1, of the process belonging to either symbol:

Px(σ
x
r � t) � cn t r−β , for all r < 1 , Px(σ

x
r > t) � cκ t−1 rα , for all r < 1/ρ ,

cn,β,ρ rβ � Ezσ
x
r � cκ,α,ρ rα, for all r < 1/ρ, z ∈ Br/2(x) .

REMARK 3.9. The arguments used in Example 3.7 show that we can replace
in Theorem 3.2 and Corollary 3.3 the symbol Re p by the modification Re p1 if
lim inf|ξ |→∞ Re p(x, ξ) � c > 0 and supx supξ |p(x, ξ)−p1(x, ξ)| < ∞; the latter is always
implied by conditions of the type (8).
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4. A perturbation result. In Example 3.7 we have modified the (large-jump part of
the) symbol p(x, ξ) from Corollary 2.3 to become

p1(x, ξ) = p.v.
∫

|h|<1
(1 − eihξ )j (x, x + h)dh +

∫
|h|�1

(1 − eihξ ) e−|h| dh .

The jump measure j (x, y) was assumed to satisfy the conditions (11)–(15) which meant, in
particular, that −p(x,D) and −p1(x,D) (defined on, say, C∞

0 (Rn)), have extensions A and
A1 to generators of Dirichlet forms and that for the corresponding stochastic processes all
results of Sections 1–3 hold true. We will now always make these assumptions.

For q1(x, ξ) := p(x, ξ) − p1(x, ξ) we have q1(x, ξ) = ∫
|h|�1(1 − eihξ )(j (x, x + h) −

e−|h|)dh. It is easy to see that under (8)

‖ − q1(•,D)u‖∞ � 2

(
sup
x

∫
|h|�1

j (x, x + h)dh + cn

)
‖u‖∞ ,(29)

which shows that −q1(x,D) extends naturally to a continuous operator B on L∞(Rn), resp.,
Bb(Rn). From A

∣∣
C∞

0 (Rn)
= −p(x,D) = −p1(x,D) − q1(x,D), we see that −p1(x,D) has

an extension A1 on D(A).
Since A and A1 generate Dirichlet forms, we can associate with both of them sub-

Markovian semigroups and resolvent operators on L2(Rn) which we will denote by T A
t , T

A1
t

and RA
λ , R

A1
λ , respectively.

Recall that a sub-Markovian operator T is said to be Feller, if T maps the set C∞(Rn)

into itself; T is called a strong Feller operator, if T maps Bb(Rn) into Cb(Rn). Note that a
sub-Markovian operator that is defined on L2(Rn) has a canonical extension onto L∞(Rn),
while a Feller operator can be canonically extended to Bb(Rn), see the proof of Lemma 1.6.4
in Fukushima et al. [6].

LEMMA 4.1. Let T : L2(Rn) → L2(Rn) be a continuous operator which (has an
extension which) is strongly Fellerian. Then T maps L∞(Rn) into Cb(Rn).

PROOF. The point is to show that any two representatives f, φ ∈ Bb(Rn) of some equiv-
alence class [f ] ∈ L∞(Rn) have the same image under T . By assumption, N := {x : f (x) �=
φ(x)} is a Lebesgue null set and, therefore, f −φ ∈ L2(Rn) and so ‖T (f −φ)‖L2 = 0. Thus,
Tf = T φ almost everywhere, hence, everywhere since Tf, T φ ∈ Cb(Rn). �

PROPOSITION 4.2. Let A,A1 be infinitesimal generators of sub-Markovian semi-
groups on L2(Rn) such that B := A − A1 is a bounded operator on L∞(Rn). If the re-
solvent operators (R

A1
λ )λ>0 are strong Feller operators, then the resolvent (RA

λ )λ>0 is also
strongly Fellerian.

PROOF. Note that RA
λ , R

A1
λ are a priori defined on L2(Rn). Since λRA

λ , λR
A1
λ are sub-

Markovian operators, they have an extension to L∞(Rn); the assumption says that R
A1
λ can

be defined on Bb(Rn). Using the second resolvent equation R
A1
λ − RA

λ = R
A1
λ (A1 − A)RA

λ

we get for u ∈ Bb(Rn) or L∞(Rn) that RA
λ u = R

A1
λ u + R

A1
λ BRA

λ u. Since BRA
λ is bounded

on L∞(Rn), the assertion follows from Lemma 4.1 and the strong Feller property of R
A1
λ . �
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Since RA
λ = ∫ ∞

0 e−λtT A
t dt , it is clear from Lebesgue’s dominated convergence theorem

that RA
λ inherits the (strong) Feller property from T A

t . Conversely, if (RA
λ )λ>0 is strongly

Fellerian, Tt need not have the strong Feller property. Things are different if we consider the
Feller property. The following result is a consequence of the Hille-Yosida theory, cf. sections
III.4–6 in Rogers and Williams [15].2

PROPOSITION 4.3. Let (Rλ)λ>0 be a sub-Markovian resolvent and assume that it cor-
responds to a sub-Markovian semigroup (Tt )t�0. If the operators Rλ have the Feller property
and if limλ→∞ λRλu(x) = u(x) for all u ∈ C∞(Rn), then the semigroup operators Tt , t > 0
are Fellerian and, as operators on C∞(Rn), strongly continuous.

Now we can apply Propositions 4.2 and 4.3.

COROLLARY 4.4. Let A and A1 be the extensions of −p(x,D) and −p1(x,D) de-
scribed at the beginning of Section 4; In particular we know that (8), (9) hold. If the L2 sub-
Markovian contraction resolvent R

A1
λ has the strong Feller property, then the L2-semigroup

(T A
t )t�0 generated by A is a Feller semigroup, i.e., a strongly continuous sub-Markovian

contraction semigroup on C∞(Rn).

PROOF. Note that B := A − A1 is a bounded operator on L∞(Rn). Proposition 4.2
therefore shows that RA

λ inherits the strong Feller property from R
A1
λ . This means, in par-

ticular, that RA
λ : C∞(Rn) → Cb(Rn). To get the Feller property, it remains to show that

lim|x|→∞ RA
λ u(x) = 0 for all λ > 0.

From Theorem 2.2 we know that C∞
0 (Rn) ⊂ D(A) (note that D(A) is the L2 domain of

the operator A). From the estimate (10) we find for all v ∈ C∞
0 (Rn)

‖µRA
µv − v‖∞ = ‖RA

µAv‖∞ �
1

µ
‖Av‖∞ �

C

µ

∑
|α|�2

‖∂αv‖∞ .

Since C∞
0 (Rn) is dense in C∞(Rn) and since ‖µRA

µ‖∞ � 1, we get with a routine 3ε-
argument that limµ→∞ ‖µRA

µu − u‖∞ = 0 for all u ∈ C∞(Rn).
From the resolvent equation one easily sees that λ �→ λRA

λ v is increasing for measurable
functions v � 0. Thus, we find for u ∈ C∞(Rn), x ∈ Rn and all µ > λ

|λRA
λ u(x)| � λRA

λ |u|(x) � µRA
µ |u|(x) � ‖µRA

µ |u| − |u|‖∞ + |u(x)| .
Letting first µ → ∞ and then |x| → ∞ proves lim|x|→∞ |λRA

λ u(x)| = 0. The assertion
follows now from Proposition 4.3. �

5. A Harnack inequality. Let p(x, ξ), j (x, y), A and p1(x, ξ), j1(x, y), A1 be as
described at the beginning of Section 4. We write (Xt)t�0 resp. (Yt )t�0 for the Hunt processes
generated by A resp. A1; since the corresponding Dirichlet forms are equivalent, we can
assume that the exceptional set N is the same for both processes. Note that this ensures that
all assumptions of Corollary 3.8 are satisfied.

2We are grateful to the editorial committee of the journal, for pointing out this reference.
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In this section we will prove the Harnack inequality for the process generated by the
modified operator A1. Our argument follows closely the methods developed by Bass and
co-authors [2, 1], see also Song and Vondraček [19].

Let D be a domain in Rn. A function h defined on Rn \ N is said to be A1-harmonic in
D \ N if it is not identically infinite in D \ N and if for all bounded open sets U ⊂ Ū ⊂ D

h(x) = Ex [h(YσU )], x ∈ U \ N ,

where σU is the first exit time from U of the process (Yt )t�0 belonging to A1.
We say that the Harnack inequality holds for the process if for every domain D ⊂ Rn

and every compact set K ⊂ D there exists a constant C = CD,K > 0 such that for all positive
harmonic functions h in D \ N the following inequality holds

sup
x∈K\N

h(x) � C inf
x∈K\N h(x) .

Recalling that j1(x, y) behaves like j (x, y) if |x−y| is small and like e−|x−y| otherwise,
the following Lemma follows at once from (11) and (12).

LEMMA 5.1. For all x ∈ Rn, r < 1 and all v, y, z ∈ Rn satisfying |v − x| > r and
|y − x| < r/2, |z − x| < r/2 we have j1(y, v) � γ rα−β j1(z, v) with an absolute constant
0 < γ < ∞.

PROPOSITION 5.2. Let p1(x, ξ) and j1(x, y) be as above, x ∈ Rn \ N and 0 < r <

1 ∧ ρ−1. Then there exists a constant c such that for all H ∈ B+
b (Rn) with support supp H ⊂

Bc
r (x) the inequality EyH(Yσx

r/2
) � c r2(α−β) EzH(Yσx

r/2
) holds for all y, z ∈ Br/4(x) \ N .

PROOF. We consider first functions φ ∈ C2∞(Rn) ⊂ D(A1), with φ � 0 and supp φ ⊂
Bc

r (x). To simplify notation we write σ := σx
r/2. For all z ∈ Br/4(x) we find using Dynkin’s

formula

Ezφ(Yσ ) = Ezφ(Yσ ) − φ(z) = Ez

( ∫ σ

0
A1φ(Ys)ds

)

= Ez

( ∫ σ

0
p.v.

∫
(φ(Ys + h) − φ(Ys))j1(Ys, Ys + h)dhds

)

= Ez

( ∫ σ

0

∫
φ(v)j1(Ys, v)dvds

)
� (Ezσ )

∫
φ(v) sup

y∈Br/2(x)

j1(y, v)dv .

From Corollary 3.8 we get for r < 1/ρ and y, z ∈ Br/2(x) that Ezσ � C rα−β Eyσ, where
C = Cκ,α,β,ρ; with Lemma 5.1 we conclude

Ezφ(Yσ ) � Crα−β(Eyσ )

∫
φ(v)γ rα−β inf

y∈Br/2(x)
j1(y, v)dv

� C′r2(α−β)Ey

( ∫ σ

0

∫
φ(v)j1(Ys, v)dvds

)

= C′r2(α−β) Ey

( ∫ σ

0
A1φ(Ys)ds

)
= C′r2(α−β) Eyφ(Yσ ) .
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Since we can approximate any positive measurable function H with C2∞(Rn)-functions, the
claim follows. �

PROPOSITION 5.3. There exists a constant c > 0 such that for all x ∈ Rn, 0 < r <

1/2 ∧ 1/ρ, D ⊂ Br(x) and y ∈ Br/2(x) the following inequality holds:
Py(τD < σx

r ) � crβ−α |D|
|Br(x)| ,

where τD is the first entrance time into D and σx
r is the first exit time from Br(x).

PROOF. Fix y ∈ Br/2(x) \ N . If Py(τD < σx
r ) � 1/4, the claim is obviously true.

This happens, in particular, if y ∈ D \ N . Let us, therefore, assume that y �∈ D and that
Py(τD < σx

r ) < 1/4. Pick a sequence φj ∈ C2
0 (Rn) ⊂ D(A1) such that 0 � φj ↑ 1D and

φj (y) = 0. Then we get from Dynkin’s formula and the form (26) of the generator A1

Py(τD<σx
r ) � Ey1D(YτD∧σx

r
)−1D(y) = sup

j

Ey

(∫ τD∧σx
r

0
A1φj (Ys)ds

)

= sup
j

Ey

(∫ τD∧σx
r

0

∫
φj (Ys+h)j1(Ys, Ys+h)dhds

)
(11)
� sup

j

Ey

( ∫ τD∧σx
r

0

∫
φj (Ys + h)

c

|h|α+n
dhds

)

= Ey

( ∫ τD∧σx
r

0

∫
1D(v)

c

|Ys − v|α+n
dvds

)

� Ey

( ∫ τD∧σx
r

0

∫
1D(v)

c

(2r)α+n
dvds

)

= c′ Ey(τD ∧ σx
r ) r−α |D|

|Br(x)| .

In the penultimate step we used that |Ys − v| � |Ys − x| + |x − v| � 2r for all s < σx
r .

From the Markov inequality and Corollary 3.8 we get for any T > 0

Ey(τD ∧ σx
r ) � T (1 − Py(τD < σx

r ) − Py(σ
x
r < T ))

� T (3/4 − Py(σ x
r < T )) � T (3/4 − cn T r−β) .

The last expression reaches its maximum at T = 3rβ/(8cn), and we find Ey(τD ∧ σx
r ) �

(9/64cn)r
β . Inserting this into the first estimate we finally arrive at

Px(τD < σx
r ) � c′′rβ−α |D|

|Br(x)| . �

We can now show the Harnack inequality. If we take into account the exceptional set N ,
the proof is almost literally the same as Bass and Kaßmann’s proof of Theorem 4.1 in [1]; we
will therefore only state the result.

THEOREM 5.4. Let A1 = −p1(x,D), p1(x, ξ) and j1(x, y) be as above. For all
R > 0 and x0 ∈ Rn, there exists a constant C = C(R, x0) > 0 such that for all positive
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bounded functions h on Rn \ N which are A1-harmonic in BR(x0), the following Harnack
inequality holds:

h(x) � Ch(y) for all x, y ∈ BR/2(x0) \ N .

6. The Feller property of the semigroup etA. Let p(x, ξ), j (x, y), A and p1(x, ξ),
j1(x, y), A1 be as in the previous section. We write (Xt)t�0 (resp. (Yt )t�0) for the Hunt
processes generated by A (resp. A1); without loss of generality we can assume that the excep-
tional set N is the same for both processes. We will from now on assume that α = β.

LEMMA 6.1. Let 0 < r < 1/2 ∧ 1/ρ. Then we have for all x ∈ Rn \ N and R > 2r

Px(Yσx
r

�∈ BR(x)) � c′′ rα

Rα
.

PROOF. Pick a sequence φj ∈ C2
0 (Rn) ⊂ D(A1) with 0 � φj ↑ 1Bc

R(x). From Dynkin’s
formula and the structure (26) of A1 = −p1(x,D) we get

Px(Yσx
r

�∈ BR(x)) = sup
j

Ex(φj (Yσx
r
)) = sup

j

Ex

(∫ σx
r

0
A1φj (Ys)ds

)

= sup
j

Ex

( ∫ σx
r

0

∫
φj (Ys + h)j1(Ys, Ys + h)dhds

)

� C Ex

( ∫ σx
r

0

∫
1Bc

R(x)(v)
dvds

|Ys − v|α+n

)
.

The last estimate follows from (11) if |Ys − v| � 1, and from the trivial estimate e−|Ys−v| �
|Ys − v|−n−α , if |Ys − v| > 1. For s < σx

r we have |Ys − x| < r which means that for
v ∈ Bc

R(x) the inequality |Ys − v| � |x − v|− |Ys − x| � R − r � R/2 obtains; in particular,
Bc

R(x) ⊂ Bc
R/2(Ys). Thus,

Px(Yσx
r

�∈ BR(x)) � CEx

( ∫ σx
r

0

∫
Bc

R/2(Ys)

dvds

|Ys−v|α+n

)
= C′

n (Exσ
x
r )

∫ ∞

R/2

du

|u|α+1 � C′′
n

rα

Rα

where we used Corollary 3.8 for the last estimate. �

THEOREM 6.2. Let 0 < r < 1/2 ∧ 1/ρ and x0 ∈ Rn. There exist constants c < ∞
and κ > 0 such that for all bounded functions h ∈ Rn \ N which are A1-harmonic in Br(x0)

|h(x) − h(y)| � c ‖h‖∞ |x − y|κ , x, y ∈ Br/2(x0) .

The constants c, κ are independent of 0 < r < 1/2 ∧ 1/ρ, x0 and h.

PROOF. From Proposition 5.3 we know that for all D ⊂ Br(x) with |D| � |Br(x)|/3
there exists a constant c > 0 such that Py(τD < σx

r ) � c/3. Take some h as in the statement
of the theorem; by adding a suitable constant we can achieve that h � 0. Set

M := ‖h‖∞ , η2 := 1 − c

12
and θα := c

24c′′

√
1 − c

12
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where c, c′′ are the constants from Proposition 5.3 and Lemma 6.1, respectively. Without loss
of generality we can assume that c′′ > ρ, where ρ is as in Corollary 3.8. Obviously, η < 1
and we can choose c′′ so large that θα/η < 1 and θ < 1/ρ ∧ 1/2.

Following the idea of Bass and Levin [2] we are going to show that

sup h(Bθk (x) \ N) − inf h(Bθk (x) \ N) �Mηk for all k ∈ Z .(30)

We write Bj := Bθj (x) \ N , σj := σx
θj , aj := inf h(Bj ) and bj := sup h(Bj ) for j ∈ Z.

Since η < 1, (30) clearly holds for all negative k ∈ Z. For k ∈ N we use induction. Assume
that (30) is true for 0, 1, 2, . . . , k. Fix ε > 0; from the definition of ak+1 and bk+1 we find
some y, z ∈ Bk+1 such that

bk+1 − ak+1 � h(y) − h(z) + ε .

Define D′ := {z ∈ Bk : h(z) � (ak + bk)/2}. We may assume that |D′| � |Bk|/2—
otherwise we consider M − h instead of h. Since Lebesgue measure is inner regular, we can
find a compact set D ⊂ D′ such that |D| � |Bk|/3.

Since h is harmonic, we use the strong Markov property to deduce

h(y) − h(z) = Ey(h(Yσk ) − h(z))

= Ey(h(Yσk ) − h(z); σk > τD) + Ey(h(Yσk ) − h(z); σk � τD)

= Ey(h(YτD ) − h(z); σk > τD) + Ey(h(Yσk ) − h(z); σk � τD, Yσk ∈ Bk−1)

+
∞∑

j=1

Ey(h(Yσk ) − h(z); σk � τD, Yσk ∈ Bk−j−1 \ Bk−j ) .

By the very definition of the set D, the first term on the right is bounded by(
1

2
(ak + bk) − ak

)
Py(τD < σk) = 1

2
(bk − ak) Py(τD < σk) .

The second term is less than or equal to

(bk−1 − ak)Py(σk � τD) � (bk−1 − ak−1)(1 − Py(σk > τD)) .

By the induction assumption and Lemma 6.1 we find that the third term is dominated by
∞∑

j=1

(bk−j−1 − ak−j−1) Py(Yσk �∈ Bk−j ) �
∞∑

j=1

Mηk−j−1 c′′ θαk

θ(k−j)α
= c′′M θα

η

1

1 − θα/η
.

Since θα/η � 1/2, the last fraction is less than 2. Bearing in mind that η � 1 and that
Py(τD < σk) > c/3, we find altogether

h(y) − h(z) � 1

2
Mηk Py(τD < σk) + Mηk−1 (1 − Py(τD < σk)) + 2 c′′Mηk−1 θα

η

� Mηk−1
(

1 − c

6

)
+ 2 c′′Mηk−1 θα

η
,

and inserting the definition of θα/η we get

h(y) − h(z) � Mηk−1(1 − c/6 + c/12) = Mηk−1 η2 .
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This finishes the induction step.
The rest is now routine: if x, y ∈ Br(x0) \ N , let k ∈ Z be the smallest integer such that

θk+1 � |x − y| < θk . Then log |x − y| � (k + 1) log θ , y ∈ Bθk (x), and

h(x) − h(y) � Mηk = Mek log η � Me(log |x−y|/ log θ−1) log η = (M/η)|x − y|log η/ log ρ. �

Recall that for all λ > 0 the resolvent of A1 is given by

R
A1
λ f (x) =

∫ ∞

0
e−λtT

A1
t f (x)dt = Ex

( ∫ ∞

0
e−λtf (Yt )dt

)
, f ∈ L∞(Rn) .

THEOREM 6.3. For every compact set K there exist constants C < ∞ and κ > 0 such
that for every λ > 0 the resolvent R

A1
λ f , f ∈ L∞(Rn), is Hölder continuous,

|RA1
λ f (x) − R

A1
λ f (y)| � C (1 + 1/λ) ‖f ‖∞|x − y|κ, x, y ∈ K \ N .

PROOF. Without loss of generality we can assume that x, y ∈ K \ N are so close
together that r := 3|x − y| � 1/2 ∧ 1/ρ. (If x and y are further apart, we can link them
with a finite chain of neighbouring intermediate points.) Fix λ > 0 and f ∈ L∞(Rn). An
application of the strong Markov property shows for z = x, y, x �∈ N , y ∈ Br/2(x) \ N

R
A1
λ f (z) = Ez

( ∫ σx
r

0
e−λsf (Ys)ds

)
+ Ez((e

−λσx
r − 1)R

A1
λ f (Yσx

r
)) + Ez(R

A1
λ f (Yσx

r
)) .

A further application of the strong Markov property reveals that the last term, z �→
Ez(R

A1
λ f (Yσx

r
)) is A1-harmonic in Br(x) \ N . Using the elementary estimates |e−λs − 1| �

λs and |e−λs| � 1, we get from Theorem 6.2 and Corollary 3.8 that∣∣RA1
λ f (x)−R

A1
λ f (y)

∣∣
� 2‖f ‖∞ max

z=x,y
(Ezσ

x
r )+2λ‖RA1

λ f ‖∞ max
z=x,y

(Ezσ
x
r )+c ‖RA1

λ f ‖∞|x−y|κ

� 4c‖f ‖∞ rα+ c

λ
‖f ‖∞|x − y|κ

� C(1 + 1/λ)(rα + |x − y|κ)‖f ‖∞ .

Since r = 3|x − y| the claim follows from

|RA1
λ f (x) − R

A1
λ f (y)| � C′ (1 + 1/λ)‖f ‖∞|x − y|α∧κ. �

The following result has been obtained by Komatsu [13] for non-degenerate Lévy-kernels
of the form k(x, y)|x − y|−α−n where 0 < c1 � k(x, y) � c2 < ∞ using pseudo differential
operator methods and a smoothing technique for non-smooth kernels k.

COROLLARY 6.4. The semigroups T
A1
t and T A

t have modifications T̃
A1
t and T̃ A

t which
are Feller semigroups. In particular, we can take the exceptional set N = ∅ and both (Xt)t�0

and (Yt )t�0 are everywhere defined processes.
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PROOF. Theorem 6.3 shows that R
A1
λ has a modification R̃

A1
λ which has the strong

Feller property, i.e., which maps Bb(Rn) to Cb(Rn). Thus, the Feller property of (a modifica-
tion of) T A

t follows from Corollary 4.4. The claim for T
A1
t follows if we take A = A1 in the

first place. �

COROLLARY 6.5. If h ∈ L∞(Rn) ∩ D(A) is such that Ah ∈ L∞(Rn)—e.g., if h is
A-harmonic on Rn—, then h ∈ Cb(Rn) and even Hölder continuous.

PROOF. Set g = Ah. Since B = A − A1 is a bounded operator in L∞(Rn), cf. (29),
we see that g = Ah = A1h + Bh and this implies h − A1h = h − g + Bh. Applying R

A1
1

on both sides of this equality we get h = R
A1
1 (h − g + Bh); since h − g + Bh ∈ L∞(Rn),

the claim follows from the strong Feller property of the resolvent operator R
A1
1 . In view of

Theorem 6.3 we have even Hölder continuity. �

REMARK 6.6. There are a few obvious extensions of this paper: one possibility is
to use the full power of the estimate (21) rather than an asymptotic version of it. Another
possibility is to use the full strength of our perturbation technique. In the present paper we
have always assumed that A − A1 is a bounded operator in L∞(Rn); this is equivalent to
consider only perturbations of the large jump part of j (x, y) where |x − y| > 1. In fact,
all arguments only require that (A − A1)R

A
λ is a bounded operator on L∞(Rn). Using some

standard functional analysis this amounts to saying that D(A) ⊂ D(A1). A typical example
would be a perturbation of j (x, y) which satisfies conditions (11) with α = β by some
j̃ (x, y)1{|x−y|<1}(x − y) ∼ |x − y|−n−α̃ , where 0 < α̃ < α. This covers, e.g., jump kernels
considered by Song and Vondraček [19].
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