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Abstract. The paper is concerned with the study of an elliptic boundary value problem
with a nonlinear Newton boundary condition considered in a two-dimensional nonpolygonal
domain with a curved boundary. The existence and uniqueness of the solution of the
continuous problem is a consequence of the monotone operator theory. The main attention is
paid to the effect of the basic finite element variational crimes: approximation of the curved
boundary by a polygonal one and the evaluation of integrals by numerical quadratures.
With the aid of some important properties of Zlámal’s ideal triangulation and interpolation,
the convergence of the method is analyzed.
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Introduction

A number of problems of technology and science are described by partial dif-

ferential equations equipped with nonlinear Newton boundary conditions. Let us
mention, e.g., radiation and heat transfer problems ([1], [19], [21]), modelling of

electrolysis of aluminium with turbulent flow at the boundary ([6], [22]) and some

*This paper was supported by Grant No. 201/99/0267 of the Grant Agency of the Czech
Republic and grants MSM 113200007 and MSM 210000010.
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problems of elasticity ([15]). In some cases the boundary value problem with a non-

linear Newton boundary condition is reformulated as a nonlinear boundary integral
equation and solved numerically with the aid of the boundary element method (see,
e.g., [16], [17]). Another quite natural possibility is to introduce the concept of a

weak solution and apply the finite element method to the numerical solution of this
problem.

In the analysis of the finite element discrete problem with a nonlinear Newton
boundary condition one meets a number of obstacles, particularly in the very topical

case when the nonlinearity is unbounded and has a polynomial behaviour. The first
results for a problem of this type were obtained in [6], where the existence and

uniqueness of the solution of the continuous problem was proved with the aid of the
monotone operator theory, and the convergence of the approximate solutions to the

exact one was established under the assumption that all integrals appearing in the
discrete problem were evaluated exactly. In [8], the convergence of the finite element

method was proved in the case that both the volume and boundary integrals were
calculated with the aid of quadrature formulae. In the analysis of the boundary terms

we were not successful in applying the well-known Ciarlet–Raviart theory ([3], [4]) of
the finite element numerical integration because of the nonlinearity on the boundary.

The convergence analysis was obtained with the aid of a suitable modification of
results from [27]. Furthermore, the work [9] is concerned with the derivation of

error estimates. They were obtained thanks to the uniform monotonicity of the
problem which we had derived in [9]. (In the previous papers only strict monotonicity

was established.) However, in contrast to standard nonlinear situations treated,
e.g., in [2], [11], [12], [18], [28], where strong monotonicity was used, here we do

not get an optimal O(h) error estimate for linear finite elements. The order of
convergence is reduced due to the fact that only uniform monotonicity with growth of

degree t2+α, α > 0, holds now, and due to the nonlinearity in the boundary integrals.
Moreover, the application of numerical integration in the nonlinear boundary integral
can also lead to further reduction of the rate of convergence. The theoretically

established decrease of the order of convergence caused by the nonlinearity in the
Newton boundary condition was confirmed with the aid of numerical experiments

in [10].

In the above mentioned papers [6], [8], [9], [10], the domain was assumed to be

polygonal. In practice one meets, of course, problems in nonpolygonal domains with
piecewise curved boundaries. Then such a domain is approximated by a polygonal

one over which the finite element discretization is applied. By G. Strang ([25]), the
approximation of the boundary and the use of numerical integration represent the

basic finite element variational crimes. They were analyzed in a number of works.
As a fundamental literature we mention [3] and [4]. The finite element variational
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crimes in the approximations of nonlinear elliptic problems were investigated in [12],

[13], [7], [11], [24], [28] and [29]. The main tools were Zlámal’s concepts of ideal
triangulation and ideal interpolation ([30]).

Here we will be concerned with the finite element analysis of the boundary value

problem with nonlinear Newton boundary conditions considered in a general two-
dimensional nonpolygonal domain. With the aid of the above mentioned Zlámal’s

techniques, we establish the convergence of the approximate finite element solutions
to the exact one, taking into account the effect of numerical integration and approxi-

mation of the curved boundary. The contents of the paper is as follows: In Section 1,
the continuous problem is formulated and the concept of a weak solution is intro-

duced. In Section 2, the problem is discretized by the finite element method (with
the approximation of the boundary and the use of quadrature formulae for the evalu-

ation of the integrals appearing in the weak formulation). Section 3 is devoted to the
definition and important properties of the ideal triangulation and the associated ideal

interpolation. Finally, in Section 4, the convergence of the method is established.

1. Formulation of the problem. Weak solution

Let Ω ⊂ �2 be a bounded domain with a Lipschitz-continuous boundary ∂Ω and
let ∂Ω be piecewise of class C3. By Ω we denote the closure of Ω.

We consider the following boundary value problem: Find u : Ω→ � such that

−�u = f in Ω,(1.1)
∂u

∂n
+ κ|u|αu = ϕ on ∂Ω,(1.2)

where f : Ω→ � and ϕ : ∂Ω→ � are given functions, n is the unit outward normal
and κ > 0, α � 0 are given constants. The classical solution of the above problem
can be defined as a function u ∈ C2(Ω) satisfying (1.1) and (1.2).
In what follows we will work with the well-known Lebesgue and Sobolev spaces

Lp(Ω), Lp(∂Ω),W k,p(Ω), Hk(Ω) =W k,2(Ω), W k,p(∂Ω). (See, e.g., [20].) By ‖·‖k,p,Ω

and ‖·‖k,p,∂Ω we denote the standard norms in W k,p(Ω) and W k,p(∂Ω), respectively.
Then ‖·‖0,p,Ω and ‖·‖0,p,∂Ω mean, of course, the norms in Lp(Ω) and Lp(∂Ω). The

symbol |·|k,p,Ω denotes the seminorm in W k,p(Ω). (Similar notation will be used for
the Lebesgue and Sobolev spaces over other sets.)

Let us assume that

f ∈ L2(Ω), ϕ ∈ L2(∂Ω).
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In the usual way we can introduce a weak formulation of problem (1.1)–(1.2). To

this end, we define the following forms:

b(u, v) =
∫

Ω
∇u · ∇v dx,(1.3)

d(u, v) = κ
∫

∂Ω
|u|αuv dS,

a(u, v) = b(u, v) + d(u, v),

LΩ(v) =
∫

Ω
fv dx, LΓ(v) =

∫

∂Ω
ϕv dS,

L(v) = LΩ(v) + LΓ(v),

u, v ∈ H1(Ω).

Defintion 1. We say that a function u : Ω → � is a weak solution of problem
(1.1)–(1.2), if

a) u ∈ H1(Ω),(1.4)

b) a(u, v) = L(v) ∀v ∈ H1(Ω).

It was shown in [8] that

Theorem 1.1. Problem (1.4) has exactly one solution.

2. Finite element discretization

We consider a system {Ωh}h∈(0,h0), 0 < h0 < 1, of polygonal approximations of Ω.

Let Ω∗ be such a domain with Lipschitz-continuous boundary that Ω∪ Ωh ⊂ Ω∗ for
every h ∈ (0, h0).
Let Th, h ∈ (0, h0), be triangulations of domains Ωh with the following properties:

(T1) Any triangulation is formed by a finite number of closed triangles T .
(T2) Ωh =

⋃
T∈Th

T .

(T3) If Ti, Tj ∈ Th, Ti 	= Tj , then either Ti ∩ Tj = ∅ or Ti ∩ Tj is a common vertex

or Ti ∩ Tj is a common side of Ti and Tj.
(T4) If T ∈ Th, then at most two vertices of T lie on ∂Ω.

We denote by σh the set of all vertices of Th. Let

(T5) σh ⊂ Ω, σh ∩ ∂Ωh ⊂ ∂Ω.

(T6) The points from ∂Ω, where the condition of C3-smoothness of ∂Ω is not satis-
fied, are elements of σh.
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We will denote by hT and ϑT the length of the maximal side and the magnitude

of the minimal angle of T ∈ Th, respectively. We set

(2.1) h̃ = max
T∈Th

hT , ϑh = min
T∈Th

ϑT .

We assume the index h to be chosen in such a way that h = h̃. Considering the

numbers ϑh, we will suppose the existence of such a constant ϑ0 > 0 that

(2.2) ϑh � ϑ0 ∀h ∈ (0, h0),

which means that

(T7) the system of triangulations {Th}h∈(0,h0) is regular.

We say that T ∈ Th is a boundary triangle, if T has a side S ⊂ ∂Ωh. We denote

by sh the sets of all sides S ⊂ ∂Ωh of boundary triangles T ∈ {T }h.

Further, let the following hold:

(T8) If P ∈ ∂Ωh ∩ ∂Ω, then either P ∈ σh or there exists such a side S ∈ sh that
P ∈ S and S ⊂ ∂Ω ∩ ∂Ωh; if P ∈ ∂Ω ∩ ∂T for some T ∈ Th, then P ∈ ∂Ωh.

In what follows we set |T | = area of T ∈ Th and |S| = length of S ∈ sh.

Let us assume that

(T9) the triangulations Th, h ∈ (0, h0), satisfy locally an inverse assumption at ∂Ω:
there exists ν > 0 such that

(2.3) h/|S| � ν ∀S ∈ sh, ∀h ∈ (0, h0).

The assumptions (T9) and (2.2) give the existence of a constant σ > 0 such that

(2.4) σh2 � |T | � h2 for every boundary triangle T ∈ Th and every h ∈ (0, h0).

Finally, because of our further considerations we suppose that

(2.5) f ∈ W 1,q(Ω∗) for some q > 2 and ϕ ∈ W 1,p(∂Ω) for some p > 1.

An approximate solution to problem (1.4) will be sought in the space of triangular
conforming piecewise linear elements Hh ⊂ H1(Ωh):

Hh = {v ∈ C(Ωh); v|T is linear for each T ∈ Th}.
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First we approximate the bilinear forms b, d, a and the linear functionals LΩ, LΓ,

L by

b̃h(u, v) =
∫

Ωh

∇u · ∇v dx,(2.6)

d̃h(u, v) = κ
∫

∂Ωh

|u|αuv dS,

ãh(u, v) = b̃h(u, v) + d̃h(u, v),

L̃Ωh (v) =
∫

Ωh

fv dx, L̃Γh(v) =
∫

∂Ωh

ϕhv dS,

L̃h(v) = L̃
Ω
h (v) + L̃

Γ
h(v),

u, v ∈ H1(Ωh),

where the function ϕh : ∂Ωh → � is an approximation of ϕ defined later according
to (3.6).
In practical computations, the integrals appearing in the definition (2.6) of the

forms d̃h(u, v) and L̃h(v) are usually evaluated for u, v ∈ Hh with the aid of quadra-
ture formulae.

For ψ ∈ C(Ωh) we write

a)
∫

Ωh

ψ dx =
∑

T∈Th

∫

T

ψ dx,(2.7)

b)
∫

T

ψ dx ≈ |T |
M∑

µ=1

ωµψ(xT,µ),

c) EΩ(ψ) =
∫

Ωh

ψ dx−
∑

T∈Th

|T |
M∑

µ=1

ωµψ(xT,µ),

where ωµ ∈ � and xT,µ ∈ T . Similarly, for θ ∈ C(∂Ωh) we evaluate integrals over

∂Ωh:

a)
∫

∂Ωh

θ dS =
∑

S∈sh

∫

S

θ dS,(2.8)

b)
∫

S

θ dS ≈ |S|
m∑

µ=1

βµθ(xS,µ),

c) EΓ(θ) =
∫

∂Ωh

θ dS −
∑

S∈sh

|S|
m∑

µ=1

βµθ(xS,µ)

with βµ ∈ � and xS,µ ∈ S.
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We will assume that

a) formula (2.7 b) is exact for all ψ ∈ P0(T ), T ∈ Th (i.e.Σωµ = 1),(2.9)

b) formula (2.8 b) is exact for all θ ∈ P1(S), S ∈ sh,

c) formula (2.8 b) is monotone, i.e., βµ > 0, µ = 1, . . . ,m.

Using the above formulae, we get the approximations dh, LΩh and L
Γ
h of d̃h, L̃Ωh

and L̃Γh:

a) dh(u, v) = κ
∑

S∈sh

|S|
m∑

µ=1

βµ(|u|αuv)(xS,µ),(2.10)

b) LΓh(v) =
∑

S∈sh

|S|
m∑

µ=1

βµ(ϕhv)(xS,µ),

c) LΩh (v) =
∑

T∈Th

|T |
M∑

µ=1

ωµ(fv)(xT,µ),

u, v ∈ Hh.

For u, v ∈ Hh the bilinear form b̃h(u, v) is evaluated exactly because the elements

used are linear. We set

a) ah(u, v) = b̃h(u, v) + dh(u, v), u, v ∈ Hh,

b) Lh(v) = LΩh (v) + L
Γ
h(v), v ∈ Hh.

For the approximation of the boundary forms L̃Γh and d̃h different integration
formulae could be used, in general. For the sake of simplicity we will not distinguish

them by notation.

Now we can formulate the discrete problem:

Definition 2. We call a function uh : Ωh → � an approximate solution of prob-
lem (1.4), if

a) uh ∈ Hh,(2.12)

b) ah(uh, vh) = Lh(vh) ∀vh ∈ Hh.
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3. Ideal triangulation

In the case of a nonpolygonal domain Ω we meet in the analysis of the finite

element method some difficulties caused by the facts that Ωh 	= Ω, ∂Ωh 	= ∂Ω,⋃
T∈Th

T 	= Ω and Hh 	⊂ W 1,2(Ω). Therefore, we introduce the concept of the

so-called ideal triangulation, using the ideas from [30], [5], [11], [12], [13], [28], [29].
First we introduce the ideal triangle. Let T ∈ Th be a boundary element, i.e., two

vertices of T lie on ∂Ω. We denote the vertices of this triangle by P1, P2, P3 in such
a way that P1, P3 ∈ ∂Ω. By T id we denote the “curved” element which we obtain
from T by replacing the side P1P3 ⊂ ∂Ωh by the arcùP1P3 ⊂ ∂Ω. According to

assumptions (T4) and (T8) the arcùP1P3 has no common points with P1P2 and P2P3
except P1 and P3, and the boundary ∂T id is a Jordan curve or P1P3 =ùP1P3. If T is

not a boundary element, then we set T id := T and the vertices can be numbered in
any ordering. The element T id obtained in this way will be called the ideal element

associated with the element T ∈ Th.
Let now Th be a triangulation of the domain Ωh. We denote by T idh the ideal

triangulation of the domain Ω associated with Th, which is obtained from Th by
replacing the triangles T ∈ Th by the ideal triangles T id associated with them. It is

obvious that
⋃

T id∈T idh
T id = Ω.

Let T̆ be the unit triangle with vertices R1 = (0, 0), R2 = (1, 0), R3 = (0, 1) in the
ξ = (ξ1, ξ2)-plane. Then the affine mapping

(3.1) ξ ∈ T̆ , ξ = (ξ1, ξ2) → x = x0(ξ) ≡ P1 + (P2 − P1)ξ1 + (P3 − P1)ξ2 ∈ �2

obviously maps the triangle T̆ one-to-one onto the triangle T .

Let us now denote by S the segment P1P3 of T and by x̃0(r) = (x̃01(r), x̃
0
2(r)),

r ∈ 〈0, |S|〉 such a parametrization of S that r is the length of the part of S measured
from P1 to x̃0(r). Analogously we denote by Σ = ΣS the arcùP1P3 of T id, by |Σ| the
length of Σ and by x̃(t) = (x̃1(t), x̃2(t)), t ∈ 〈0, |Σ|〉, such a parametrization of the
arc Σ that t is the length of the part of Σ measured from P1 to x̃(t).
It is possible to show that the mapping

(3.2) ΦT id(η) =
x̃(|Σ|η) − x0(0, η)

1− η
=
x̃(|Σ|η)− P1 − (P3 − P1)η

1− η
, η ∈ 〈0, 1),

can be extended for η = 1 in such a way that it is of class C2 on 〈0, 1〉, the mapping

(3.3) ξ ∈ T̆ , ξ = (ξ1, ξ2) → x = x(ξ) ≡ x0(ξ) + (1− ξ1 − ξ2)ΦT id(ξ2) ∈ �2

maps the triangle T̆ one-to-one onto the ideal triangle T id and the mapping (3.3) as
well as its inverse are of class C2. (See [30], Theorem 1.)
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�������. a) We denote by ξ0 and ξ the inverse mappings to x0 and x, and

by r and t the inverse mappings to x̃0 and x̃.

b) We have x(0, ξ2) = x̃(|Σ|ξ2), x0(0, ξ2) = x̃0(|S|ξ2) for ξ2 ∈ 〈0, 1〉.
c) If T id ∈ T id ∩ Th (i.e., T id = T ), then obviously ΦT id(η) ≡ 0 in 〈0, 1〉 and

x = x0.

For w ∈ Lp(Ωh), p � 1, we define a function ŵ : Ω→ � associated with w by

(3.4) ŵ(x) = w(x0(ξ(x))) ∀T id ∈ T idh , ∀x ∈ T id

and for a function γ ∈ Lp(∂Ωh), p � 1, a function γ̂ : ∂Ω → � is associated with γ
by

(3.5) γ̂(x) = γ(x0(ξ(x))) ∀S ∈ sh, ∀x ∈ ΣS .

On the other hand, we define an approximation γh : ∂Ωh → � of a function
γ ∈ Lp(∂Ω) by

(3.6) γh(x0) = γ(x(ξ0(x0))) ∀S ∈ sh, ∀x0 ∈ S.

������. It is obvious that ŵh|T = wh|T for every T ∈ Th ∩ T idh .

For v : M → �, where M = T id or M = Σ =ùP1P3, we define a function v̆ : M̆ →
�, where M̆ = T̆ or M̆ = S̆ = R1R3, by

(3.7) v̆(ξ) = v(x(ξ)), ξ ∈ M̆,

and similarly for v : M0 → � with M0 = T or M0 = S = P1P3, we put

(3.8) v̆(ξ) = v(x0(ξ)), ξ ∈ M̆.

It is easy to see that for v : T → � or v : S → � we have

(3.9) (v̂)̆ (ξ) = v̂(x(ξ)) = v(x0(ξ(x(ξ)))) = v(x0(ξ)) = v̆(ξ).

Now let us introduce sets ωh and τh and the natural extension of a function
from Hh which we will use in several proofs. Let T id ∈ T idh \ Th be an ideal triangle

with vertices P1, P2, P3 numbered as above. We denote again by Σ the arcùP1P3 ⊂ ∂Ω
and by S the straight segment P1P3. According to assumption (T8) we have

Σ ∩ S = {P1, P3}
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and the bounded open set L with the boundary formed by Σ and S is a simply
connected domain.

Let us set

(3.10) ωh = Ω \ Ωh, τh = Ωh \ Ω.

Due to assumption (T8), these sets are formed by a finite number of components of
the type of the set L with the boundary Σ ∪ S.
We say that a function wh : Ωh ∪ Ω → � is the natural extension of a function

wh ∈ Hh from Ωh to Ωh ∪Ω, if for every T ∈ Th and T id associated with T we have

wh|T∪T id = p|T∪T id ,

where p ∈ P1(�2 ) is the polynomial of degree � 1 defined on �2 satisfying p|T =
wh|T .

������. In what follows c denotes a generic constant which can assume differ-

ent values at different places and c1, c2, . . . are local generic constants that can have
different values in different proofs.

Lemma 1. Let p ∈ 〈1,∞). Then there exist h0 > 0 and c = c(p) > 0 such that

for every h ∈ (0, h0) and w ∈ Lp(∂Ωh)

a) ‖w‖0,p,∂Ωh
� c‖ŵ‖0,p,∂Ω,(3.11)

b) ‖ŵ‖0,p,∂Ω � c‖w‖0,p,∂Ωh
.

����	. We will proceed in several steps: I) Let S ∈ sh, Σ = ΣS and v ∈ L1(S),
u ∈ L1(Σ). Then by our choice of parametrizations x̃0 and x̃ of S and Σ we have

∫

S

v(x) dS = |S|
∫ 1

0
v̆(0, ξ2) dξ2(3.12)

and
∫

Σ
u(x) dS = |Σ|

∫ 1

0
ŭ(0, ξ2) dξ2.(3.13)

This and (3.9) imply that

(3.14)

∣∣∣∣
∫

Σ
v̂(x) dS −

∫

S

v(x) dS

∣∣∣∣ =
∣∣|Σ| − |S|

∣∣
∣∣∣∣
∫ 1

0
v̆(0, ξ2) dξ2

∣∣∣∣.
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We can estimate the term
∣∣|Σ| − |S|

∣∣ on the basis of the definition of the length of
an arc, the smoothness of the boundary and the mean value theorem by

(3.15)
∣∣|Σ| − |S|

∣∣ � c1h
2.

This, (3.14), (3.12) and assumption (T9) yield
∣∣∣∣
∫

Σ
v̂(x) dS −

∫

S

v(x) dS

∣∣∣∣ � c1h
2

∣∣∣∣
∫ 1

0
v̆(0, ξ2) dξ2

∣∣∣∣(3.16)

� c1h
2|S|−1

∣∣∣∣
∫

S

v(x) dS

∣∣∣∣

� c2h

∣∣∣∣
∫

S

v(x) dS

∣∣∣∣,

i.e., for v ∈ L1(∂Ωh) we have
∣∣∣∣
∫

∂Ω
v̂(x) dS −

∫

∂Ωh

v(x) dS

∣∣∣∣ �
∑

S∈sh

∣∣∣∣
∫

Σ
v̂(x) dS −

∫

S

v(x) dS

∣∣∣∣(3.17)

�
∑

S∈sh

c2h

∣∣∣∣
∫

S

v(x) dS

∣∣∣∣

� c2h

∫

∂Ωh

|v(x)| dS.

II) Let now w ∈ Lp(∂Ωh), p ∈ 〈1,∞). If we put v := |w|p in (3.17) we get
∣∣‖ŵ‖p

0,p,∂Ω − ‖w‖p
0,p,∂Ωh

∣∣ =
∣∣∣∣
∫

∂Ω
|ŵ|p dS −

∫

∂Ωh

|w|p dS
∣∣∣∣(3.18)

� c2h

∫

∂Ωh

|w|p dS = c2h‖w‖p
0,p,∂Ωh

as |ŵ|p = |̂w|p.
III) Now we can prove estimates (3.11 a) and (3.11b).
a) From (3.18) we have

(3.19) ‖w‖p
0,p,∂Ωh

� ‖ŵ‖p
0,p,∂Ω + c2h‖w‖

p
0,p,∂Ωh

,

which gives for h < h0 <
1
c2
the inequalities

‖w‖p
0,p,∂Ωh

� 1
1− c2h

‖ŵ‖p
0,p,∂Ω <

1
1− c2h0

‖ŵ‖p
0,p,∂Ω,(3.20)

i.e.,

‖w‖0,p,∂Ωh
� c‖ŵ‖0,p,∂Ω.
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b) Similarly we have

‖ŵ‖p
0,p,∂Ω � ‖w‖p

0,p,∂Ωh
(1 + c2h) < ‖w‖p

0,p,∂Ωh
(1 + c2h0),(3.21)

i.e.,

‖ŵ‖0,p,∂Ω � c‖w‖0,p,∂Ωh
.

�

Lemma 2. Let p ∈ 〈1,∞). Then there exists a constant c = c(p) > 0 such that

a) |v|1,p,∂Ωh
� c|v̂|1,p,∂Ω,(3.22)

b) |v̂|1,p,∂Ω � c|v|1,p,∂Ωh

for every h ∈ (0, h0) and v ∈ W 1,p(∂Ωh).

����	. For S = P1P3 ∈ sh, Σ = ΣS and v ∈W 1,p(∂Ωh) we define

vΣ(t) = v̂(x̃(t)) = v̂

(
x

(
0,

t

|Σ|

))
= v̆

(
0,

t

|Σ|

)
, t ∈ 〈0, |Σ|〉,(3.23)

vS(r) = v(x̃
0(r)) = v

(
x0

(
0,

r

|S|

))
= v̆

(
0,

r

|S|

)
, r ∈ 〈0, |S|〉.(3.24)

a) By the definition of the seminorm |.|1,p,S and by the choice of x̃0 and x̃ we have

|v|p1,p,S =
∫

S

|v′S(r(x))|p dS =
∫

S

∣∣∣∣
∂v̆

∂ξ2

(
0,

r

|S|

)
1
|S|

∣∣∣∣
p

dS(3.25)

=
∫ |S|

0

∣∣∣∣
∂v̆

∂ξ2

(
0,

r

|S|

)
1
|S|

∣∣∣∣
p

dr =
∫ |Σ|

0

∣∣∣∣
∂v̆

∂ξ2

(
0,

t

|Σ|

)
1
|S|

∣∣∣∣
p |S|
|Σ| dt

=

( |S|
|Σ|

)1−p ∫ |Σ|

0

∣∣∣∣
∂v̆

∂ξ2

(
0,

t

|Σ|

)
1
|Σ|

∣∣∣∣
p

dt =

( |S|
|Σ|

)1−p

|v̂|p1,p,Σ.

Now we use (3.15) and the local inverse assumption (T9) to estimate the fraction

|Σ|/|S|:

(3.26)
|Σ|
|S| �

|S|+
∣∣|Σ| − |S|

∣∣
|S| � 1 + c1h

2

|S| � 1 + c2h < 1 + c2h0.

This means that

|v|p1,p,S �
(
1 + c2h0

)p−1|v̂|p1,p,Σ,(3.27)

i.e.,

|v|p1,p,∂Ωh
=

∑

S∈sh

|v|p1,p,S �
(
1 + c2h0

)p−1|v̂|p1,p,∂Ω.(3.28)
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b) The second estimate can be obtained immediately from (3.25) as |S| � |Σ| and
p � 1. �

Corollary 1. Let p ∈ 〈1,∞). Then there exist h0 > 0 and c = c(p) > 0 such
that for every h ∈ (0, h0) and w ∈ W 1,p(∂Ωh) we have

a) ‖ŵ‖1,p,∂Ω � c‖w‖1,p,∂Ωh
,(3.29)

b) ‖w‖1,p,∂Ωh
� c‖ŵ‖1,p,∂Ω.

Let us now deal with the norms over Ω and Ωh.

Lemma 3. There exists c > 1 such that for every h ∈ (0, h0) and v ∈ Hh we

have

(3.30) |v̂|1,2,Ω � c|v|1,2,Ωh
.

����	. Estimate (3.30) is a special case of Lemma 2.7 in [24]. �

Lemma 4. There exist constants c > 0 and h0 > 0 such that for every h ∈ (0, h0)
and v ∈ Hh we have

a) ‖v̂‖1,2,Ω � c‖v‖1,2,Ωh
,(3.31)

b) ‖v‖1,2,Ωh
� c‖v̂‖1,2,Ω.

����	. Let v ∈ Hh and let vh : Ω ∪ Ωh → � be its natural extension. By
Lemma 3.3.12 in [12] and the results obtained in the proof of Lemma 5.1.6 in [13],

‖v‖21,2,ωh∪τh
� ch‖v‖21,2,Ωh

and hence

‖v̂‖1,2,Ω � ‖v‖1,2,Ω + ‖v̂ − v‖1,2,Ω
� (‖v‖21,2,Ωh

+ ‖v‖21,2,ωh∪τh
)1/2 + ‖v̂ − v‖1,2,Ω

� ‖v‖1,2,Ωh
(1 + c1h)

1/2 + c2h‖v‖1,2,Ωh
,

where c1, c2 > 0 are constants. It means that for any h0 > 0 there exists such a c > 0
that (3.31 a) holds for every h ∈ (0, h0).
In virtue of the definition of v we have

‖v‖21,2,Ω = ‖v‖21,2,Ωh
+ ‖v‖21,2,ωh

− ‖v‖21,2,τh
� ‖v‖21,2,Ωh

− ‖v‖21,2,ωh∪τh
.
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Similarly as above, we get the existence of a constant c3 > 0 such that

‖v‖21,2,Ω � ‖v‖21,2,Ωh
− c3h‖v‖21,2,Ωh

= (1− c3h)‖v‖21,2,Ωh
> (1 − c3h)2‖v‖21,2,Ωh

as 0 < 1− c3h < 1. Then we have

‖v̂‖1,2,Ω � ‖v‖1,2,Ω − ‖v − v̂‖1,2,Ω
� (1− c3h)‖v‖1,2,Ωh

− c4h‖v‖1,2,Ωh

� (1− (c3 + c4)h)‖v‖1,2,Ωh

with a constant c4 independent of h and v.
Hence, if h0 is chosen such that 1− (c3 + c4)h0 > 0, (3.31 b) holds with

c = (1− (c3 + c4)h0)−1.

�

4. Convergence of the method

In virtue of (2.5), we have f ∈ C(Ω∗) and ϕ ∈ C(∂Ω). Hence, these functions are
bounded by ‖f‖0,∞,Ω∗ and ‖ϕ‖0,∞,∂Ω, respectively.

Lemma 5. There exists c > 0 such that

(4.1) |LΩh (v)| � c‖f‖0,∞,Ω∗‖v‖0,2,Ωh
, v ∈ Hh, h ∈ (0, h0).

����	. Let us set Kω =
M∑

µ=1
|ωµ|. Then we find that

|LΩh (v)| �
∑

T∈Th

|T |
M∑

µ=1

|ωµ(fv)(xT,µ)|(4.2)

� ‖f‖0,∞,Ω∗Kω

∑

T∈Th

|T | ‖v̆‖0,∞,T̆ .

As v|T ∈ P1(T ), we have v̆ ∈ P1(T̆ ). Since P1(T̆ ) is a finite dimensional space,
there exists a constant c1 > 0 independent of w̆ ∈ P1(T̆ ) such that

‖w̆‖0,∞,T̆ � c1‖w̆‖0,2,T̆ = c1
(∫

T̆

|w̆|2 dx
)1/2

(4.3)

= c1

(
|T |−1

∫

T

|w|2 dx
)1/2

= c1|T |−1/2‖w‖0,2,T .
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Using the Hölder inequality, we get

|LΩh (v)| � c1Kω‖f‖0,∞,Ω∗
∑

T∈Th

|T |1/2‖v‖0,2,T(4.4)

� c1Kω‖f‖0,∞,Ω∗ [meas(Ω∗)]1/2‖v‖0,2,Ωh
.

�

In what follows we denote by S̆ the side R1R3 of the reference triangle T̆ .

Lemma 6. There exists a constant c > 0 such that for every h ∈ (0, h0), v ∈ Hh

the following estimate holds:

(4.5) |LΓh(v)| � c‖ϕ‖0,∞,∂Ω‖v‖1,2,Ωh
.

����	. By the definition of LΓh and ϕh we have similarly as in (4.2)

(4.6) |LΓh(v)| � ‖ϕ‖0,∞,∂ΩKβ

∑

S∈sh

|S| ‖v̆‖0,∞,S̆,

where Kβ =
m∑

µ=1
|βµ|.

Further, we use again the fact that v̆|S̆ ∈ P1(S̆), dimP1(S̆) < ∞, which implies
the existence of c2 > 0 such that for every w̆ ∈ P1(S̆)

(4.7) ‖w̆‖0,∞,S̆ � c2‖w̆‖0,2,S̆ = c2|S|−1/2‖w‖0,2,S .

By (4.7) and the definition of ϕh,

|LΓh(v)| � c2Kβ‖ϕ‖0,∞,∂Ω

∑

S∈sh

|S|1/2‖v‖0,2,S(4.8)

� c2Kβ‖ϕ‖0,∞,∂Ωmeas(∂Ωh)]1/2‖v‖0,2,∂Ωh
.

Let us now denote by c3 the constant from Lemma 1 and by c4 the constant from the
imbedding H1(Ω) ↪→ L2(∂Ω). Then, due to the inequality meas(∂Ωh) � meas(∂Ω),

|LΓh(v)| � c2Kβ‖ϕ‖0,∞,∂Ω[meas(∂Ω)]1/2c3‖v̂‖0,2,∂Ω(4.9)

� c2c3Kβ‖ϕ‖0,∞,∂Ω[meas(∂Ω)]
1/2c4‖v̂‖1,2,Ω.

Now it is sufficient to use Lemma 4 a). �
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������. By (2.5), the functions f and ϕ satisfy the assumptions of Lemmas 5

and 6.

From Lemmas 5 and 6 we immediately get the following assertion:

Corollary 2. There exists a constant c > 0 such that

(4.10) |Lh(v)| � c‖v‖1,2,Ωh

for every h ∈ (0, h0), v ∈ Hh.

������. The following lemma is proved in [8]. Although the problem with a
polygonal domain Ω is studied in that paper, the fact that Ωh = Ω is not used in the

proof. The same will be true whenever we refer to any proof from [8].

Lemma 7. Let p ∈ (1,∞〉 and (2.9 b) hold. Then there exists a constant c > 0
such that

(4.11) |EΓ(Qv)| � ch|Q|1,p,∂Ωh
‖v‖1,2,Ωh

for every h ∈ (0, h0), v ∈ Hh, Q ∈W 1,p(∂Ωh), where EΓ is defined by (2.8 c).

����	. See Lemma 3.44 in [8]. �

Lemma 8. Let (2.5) and (2.9 b) hold. Let h0 be as in Lemma 1. Then there
exists a constant c > 0 such that

(4.12) |LΓ(v̂h)− LΓh(vh)| � ch‖vh‖1,2,Ωh
, vh ∈ Hh, h ∈ (0, h0).

����	. By the triangle inequality we have

(4.13) |LΓ(v̂h)− LΓh(vh)| � |LΓ(v̂h)− L̃Γh(vh)|+ |L̃Γh(vh)− LΓh(vh)|.

First we estimate the second term on the right-hand side. Let us denote the

constants from Lemmas 7 and 2 by c1 and c2, respectively. From the definition of
the functions ϕh it follows that ϕh ∈W 1,p(∂Ωh). Hence, by Lemma 7,

|L̃Γh(vh)− LΓh(vh)| = |EΓ(ϕhvh)| � c1h|ϕh|1,p,∂Ωh
‖vh‖1,2,Ωh

.

Since ϕ = ϕ̂h, Lemma 2 implies that

|ϕh|1,p,∂Ωh
� c2|ϕ|1,p,∂Ω � c2‖ϕ‖1,p,∂Ω

and thus

(4.14) |L̃Γh(vh)− LΓh(vh)| � c1c2h‖ϕ‖1,p,∂Ω‖vh‖1,2,Ωh
.
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Let us now deal with the first term on the right-hand side in (4.13). With the aid

of (3.17) and the Hölder inequality we get

|LΓ(v̂h)− L̃Γh(vh)| =
∣∣∣∣
∫

∂Ω
ϕv̂h dS −

∫

∂Ωh

ϕhvh dS

∣∣∣∣

=

∣∣∣∣
∫

∂Ω
�ϕhvh dS −

∫

∂Ωh

ϕhvh dS

∣∣∣∣

� c3h

∫

∂Ωh

|ϕhvh| dS � c3h‖ϕh‖0,2,∂Ωh
‖vh‖0,2,∂Ωh

,

where c3 is the constant from (3.17).

Further, on the basis of Lemma 1, the continuous imbeddingsW 1,2(Ω) ↪→ L2(∂Ω),
W 1,p(∂Ω) ↪→ L2(∂Ω) and Lemma 7, there exist positive constants c4, c5, c6 inde-

pendent of h ∈ (0, h0) and vh ∈ Hh such that

|LΓ(v̂h)− L̃Γh(vh)| � c4h‖v̂h‖0,2,∂Ω‖ϕ‖0,2,∂Ω(4.15)

� c5h‖v̂h‖1,2,Ω‖ϕ‖1,p,∂Ω

� c6h‖vh‖1,2,Ωh
‖ϕ‖1,p,∂Ω.

Combination of (4.13), (4.14) and (4.15) already gives estimate (4.12). �

Lemma 9. Let (2.5) and (2.9 a) hold. Let h0 be as in Lemma 4. Then there
exists such a constant c > 0 that

(4.16) |LΩ(v̂h)− LΩh (vh)| � ch‖vh‖1,2,Ωh

for every h ∈ (0, h0) and vh ∈ Hh.

����	. Similarly as in (4.13) we first estimate

(4.17) |LΩ(v̂h)− LΩh (vh)| � |LΩ(v̂h)− L̃Ωh (vh)|+ |L̃Ωh (vh)− LΩh (vh)|.

It is possible to show in the same way as in the proof of Lemma 3.23 in [8] that

there exists a constant c1 > 0 independent of h ∈ (0, h0) and vh ∈ Hh such that

(4.18) |L̃Ωh (vh)− LΩh (vh)| � c1h(meas(Ω∗))
q−2
2q ‖f‖1,q,Ω∗‖vh‖1,2,Ωh

,

as Ωh ⊂ Ω∗ for every h ∈ (0, h0).
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This means that it remains to estimate the first term on the right-hand side

in (4.17). Because vh = vh in Ωh ∩ Ω, we have

|LΩ(v̂h)− L̃Ωh (vh)| =
∣∣∣∣
∫

Ω
f v̂h dx−

∫

Ωh

fvh dx|(4.19)

�
∣∣∣∣
∫

Ω∩Ωh

f(v̂h − vh) dx

∣∣∣∣+
∣∣∣∣
∫

ωh

f v̂h dx

∣∣∣∣+
∣∣∣∣
∫

τh

fvh dx

∣∣∣∣
� ‖f‖0,2,Ω∩Ωh

‖v̂h − vh‖0,2,Ω∩Ωh

+ ‖f‖0,∞,ωh

∫

ωh

|v̂h| dx+ ‖f‖0,∞,τh

∫

τh

|vh| dx

� ‖f‖0,2,Ω∗‖v̂h − vh‖1,2,Ω

+ ‖f‖0,∞,Ω∗

(∫

ωh

|v̂h| dx+
∫

τh

|vh| dx
)
.

By Lemma 2.3 in [24], there exists a constant c2 > 0 independent of h and vh such

that

(4.20) ‖v̂h − vh‖1,2,Ω � c2h‖vh‖1,2,Ωh
.

Further, by [12], there exists c3 > 0 independent of h ∈ (0, h0) such that

(4.21) meas(ωh ∪ τh) � c3h
2.

This, the Hölder inequality and Lemma 4 give us the estimates
∫

ωh

|v̂h| dx � meas(ωh))1/2‖v̂h‖0,2,ωh
� c

1/2
3 h‖v̂h‖1,2,Ω � c

1/2
3 c4h‖vh‖1,2,Ωh

(4.22)

and
∫

τh

|vh| dx � (meas(τh))1/2‖vh‖0,2,τh
� c

1/2
3 h‖vh‖1,2,Ωh

.(4.23)

(By c4 we denote the constant from (3.31 a).)

Finally, the continuous imbeddingsW 1,q(Ω∗) ↪→ L2(Ω∗) andW 1,q(Ω∗) ↪→ L∞(Ω∗)
imply that there exists c5 > 0 independent of f such that

(4.24) ‖f‖0,2,Ω∗ � c5‖f‖1,q,Ω∗ , ‖f‖0,∞,Ω∗ � c5‖f‖1,q,Ω∗ .

If we now summarize (4.19)–(4.24), we get

(4.25) |LΩ(v̂h)− L̃Ωh (vh)| � ch‖f‖1,q,Ω∗‖vh‖1,2,Ωh
.

This and (4.18) already yield estimate (4.16). �
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As a consequence of the last two lemmas we get

Corollary 3. Let h0 be as in Lemmas 1 and 3. Then under assumptions (2.9 a–b)
and 2.5 there exists a constant c > 0 such that

(4.26) |L(v̂h)− Lh(vh)| � ch‖vh‖1,2,Ωh
, vh ∈ Hh, h ∈ (0, h0).

Lemma 10. Let h0 be as in Lemmas 1 and 3. Then, under assumptions (T7),
(T9) and (2.9 b), for every r ∈ 〈1,∞) there exists a constant c = c(r) > 0 such that

(4.27) |dh(uh, vh)− d(ûh, v̂h)| � ch1/2−α/r‖uh‖α+1
1,2,Ωh

‖vh‖1,2,Ωh

for all h ∈ (0, h0) and all uh, vh ∈ Hh.

����	. First we show the existence of a constant c1 > 0 such that

|d̃h(uh, vh)− d(ûh, v̂h)| � c1h‖uh‖α+1
1,2,Ωh

‖vh‖1,2,Ωh
,(4.28)

uh, vh ∈ Hh, h ∈ (0, h0).

By the definitions of d̃h, d and estimates (3.17),

|d̃h(uh, vh)− d(ûh, v̂h)| = κ
∣∣∣∣
∫

∂Ωh

|uh|αuhvh dS −
∫

∂Ω
|ûh|αûhv̂h dS

∣∣∣∣

� κc2h

∫

∂Ωh

|uh|α+1|vh| dS,

where c2 denotes the constant from (3.17). Further, using the Hölder inequality we

get

∫

∂Ωh

|uh|α+1|vh| dS �
(∫

∂Ωh

|uh|α+2 dS
)α+1

α+2
(∫

∂Ωh

|vh|α+2 dS
)1/(α+2)

= ‖uh‖α+1
0,α+2,∂Ωh

‖vh‖0,α+2,∂Ωh
.

To obtain estimate (4.28), it is now enough to use Lemma 1, the continuity of the
imbedding H1(Ω) ↪→ Lα+2(Ω) and Lemma 4.

In the next step we show that there exists a constant c3 = c3(r) > 0 independent
of h ∈ (0, h0) and uh, vh ∈ Hh such that

(4.29) |dh(uh, vh)− d̃h(uh, vh)| � c3h
1/2−α/r‖uh‖α+1

1,2,Ωh
‖vh‖1,2,Ωh

.
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In what follows, we will proceed similarly as in the proof of Theorem 3.51 in [8].

If we put Q := |uh|αuh and p = 2 in Lemma 7, we get

|dh(uh, vh)− d̃h(uh, vh)| = κ|EΓ(|uh|αuhvh)|(4.30)

� κc4h
∣∣|uh|αuh

∣∣
1,2,∂Ωh

‖vh‖1,2,Ωh
,

where c4 denotes the constant from Lemma 7. Further, similarly as in the proof of
Theorem 3.51 from [8],

∣∣|uh|αuh

∣∣
1,2,∂Ωh

� (α+ 1)‖uh‖α
0,∞,∂Ωh

|uh|1,2,∂Ωh
.

By [8], Lemma 3.18 and Corollary 3.16, there exist constants c5 = c5(r) (r ∈
〈1,∞)) and c6 > 0 independent of h ∈ (0, h0) and wh ∈ Hh such that

‖wh‖0,∞,∂Ωh
� c5h

−1/r‖wh‖0,r,∂Ωh

and

|wh|1,2,∂Ωh
� c6h

−1/2|wh|1,2,Ωh
.

This gives

(4.31)
∣∣|uh|αuh

∣∣
1,2,∂Ωh

� (α+ 1)cα5 (r)c6h−1/2−α/r‖uh‖α
0,r,∂Ωh

|uh|1,2,Ωh
.

Now (3.11 a), the continuity of the imbedding H1(Ω) ↪→ Lr(∂Ω) and (3.31 a) imply
the existence of a c7 = c7(r) > 0 such that

(4.32) ‖uh‖α
0,r,∂Ωh

� cα7 ‖uh‖α
1,2,Ωh

.

Combining (4.30)–(4.32), we get estimate (4.29).

The assertion of the theorem follows immediately from (4.28) and (4.29). �

Lemma 11. Let the assumptions of Lemma 10 be satisfied. Let us denote by c̃
the constant from Lemma 4. Then there exist constants c > 0 and h0 > 0 such that

(4.33) ah(uh, uh) � c

for every h ∈ (0, h0) and every uh ∈ Hh with ‖uh‖1,2,Ωh
= c̃.
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����	. Let us denote by c1 and c2 the constants from (3.30) and (4.27),

respectively. Then for uh ∈ Hh, ‖uh‖1,2,Ωh
= c̃ we can write

ah(uh, uh) = |uh|21,2,Ωh
+ dh(uh, uh)

� 1
c21
|ûh|21,2,Ω + d(ûh, ûh) +

(
dh(uh, uh)− d(ûh, ûh)

)

� 1
c21
a(ûh, ûh)− |dh(uh, uh)− d(ûh, ûh)|

� 1
c21
a(ûh, ûh)− c3h

1/2−α/r‖uh‖α+2
1,2,Ωh

=
1
c21
a(ûh, ûh)− c2c̃

α+2h1/2−α/r.

As ‖uh‖1,2,Ωh
= c̃, we have by Lemma 4

‖ûh‖1,2,Ω � 1
c̃
‖uh‖1,2,Ωh

= 1.

It was shown in the proof of Theorem 1.14 in [8] that there exists such a constant

c3 > 0 that
a(w,w) � c3‖w‖21,2,Ω

for every w ∈ H1(Ω) with ‖w‖1,2,Ω � 1. This and Lemma 4 yield the estimate

a(ûh, ûh) � c3‖ûh‖21,2,Ω � c3
1
c̃2
‖uh‖21,2,Ωh

= c3

and hence

ah(uh, uh) � c3
c21
− c2c̃

α+2h1/2−α/r.

Now, if we choose r > 2α, we see that there exists h0 > 0 such that for every
h ∈ (0, h0) the estimate (4.33) holds. �

Lemma 12. Let the assumptions of Lemma 10 be satisfied and let h0, c̃ be as
in Lemma 11. Then there exists c > 0 such that

(4.34) ah(uh, uh) � c‖uh‖21,2,Ωh

for every h ∈ (0, h0) and uh ∈ Hh with ‖uh‖1,2,Ωh
� c̃.

����	. Let uh ∈ Hh, ‖uh‖1,2,Ωh
� c̃ and let us put

wh =
uh

‖uh‖1,2,Ωh

c̃.
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As ‖wh‖1,2,Ωh
= c̃ we have ah(wh, wh) � c1, where c1 is the constant from Lemma 11.

If we multiply this inequality by the term c̃−2‖uh‖21,2,Ωh
, which is greater or equal

to 1, according to assumption (2.9 c) we find that

c1
c̃2
‖uh‖21,2,Ωh

� ah(wh, wh)‖uh‖21,2,Ωh

1
c̃2

=

(∫

Ωh

|∇wh|2 dx+ κ
∑

S∈sh

|S|
m∑

µ=1

βµ|wh|α+2(xS,µ)

)‖uh‖21,2,Ωh

c̃2

= b̃h(uh, uh) +

(
κ

∑

S∈sh

|S|
m∑

µ=1

βµ|uh|α+2(xS,µ)

)(‖uh‖1,2,Ωh

c̃

)−α

� b̃h(uh, uh) + dh(uh, uh) = ah(uh, uh)

and so estimate (4.34) holds with the constant c = c1c̃−2. �

Theorem 4.1. Let assumptions (T1)–(T9), (2.5) and (2.9) be satisfied and let
h0 be as in Lemma 11. Then for every h ∈ (0, h0) the discrete problem (2.12) has a
unique solution uh ∈ Hh. Moreover, there exists a constant c > 0 such that

(4.35) ‖uh‖1,2,Ωh
� c

for every h ∈ (0, h0).

����	. The existence and uniqueness of the approximate solutions can be

established in the same way as in Theorem 4.13 from [8], if we replace the reference
to Lemma 4.8 in [8] by our Lemma 12. The boundedness of the approximate solutions

can be derived in a similar way as well:

Let c̃ be again the constant from Lemma 11. If ‖uh‖1,2,Ωh
< c̃ nothing is to be

proved. Therefore we will assume that ‖uh‖1,2,Ωh
� c̃. Since uh is the approximate

solution, in view of Corollary 2 and Lemma 12,

c1‖uh‖21,2,Ωh
� ah(uh, uh) = Lh(uh) � c2‖uh‖1,2,Ωh

,

where c1 and c2 are the constants from estimates (4.34) and (4.10), respectively. It
means that for every h ∈ (0, h0)

‖uh‖21,2,Ωh
� max

(
c̃,
c2
c1

)
.

�
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Lemma 13. Let {wn} ⊂ H1(Ω), {vn} ⊂ H1(Ω) and let w, v ∈ H1(Ω) be such

functions that wh ⇀ w, vh ⇀ v weakly in H1(Ω) as n→∞. Then

(4.36) |d(wn, vn)− d(w, v)| → 0 as n→∞.

����	. We have

|d(wn, vn)− d(w, v)| = κ
∣∣∣∣
∫

∂Ω
(|wn|αwnvn − |w|αwv) dS

∣∣∣∣(4.37)

� κ

∫

∂Ω

(∣∣|wn|αwn − |w|αw
∣∣|vn|

)
dS

+
∫

∂Ω
(|w|α+1|vn − v|) dS = I1 + I2.

Similarly as in the proof of Lemma 1.20 from [8] we get an estimate of I1:

0 � I1 � (α+ 1)
∫

∂Ω
|wn − w|(|wn|α + |w|α)|vn| dS.

Due to the compact imbedding H1(Ω) ↪→↪→ Lq(∂Ω) for q � 1, we have wn → w,
vn → v strongly in Lq(∂Ω). But it means that for any q � 1 the norms

{‖wn‖0,q,∂Ω}∞n=1, {‖vn‖0,q,∂Ω}∞n=1 are bounded by some constant c(q) > 0. Let
us now choose p1, p2, p3 � 1 in such a way that 1p1 +

1
p2
+ 1

p3
= 1. The double use of

the Hölder inequality gives

0 � I1 � (α + 1)‖wn − w‖0,p1,∂Ω(‖wn‖α
0,αp2,∂Ω + ‖w‖α

0,αp2,∂Ω)‖vn‖0,p3,∂Ω(4.38)

� 2(α+ 1)(c(αp2))αc(p3)‖wn − w‖0,p1,∂Ω → 0 as n→∞.

The term I2 can be estimated with the use of the Hölder inequality as well. We have

0 � I2 � κ‖w‖α+1
0,2(α+1),∂Ω‖vn − v‖0,2,∂Ω(4.39)

� κ(2c(α+ 1))α+1‖vn − v‖0,2,∂Ω → 0 as n→∞.

Finally, (4.37), (4.38) and (4.39) already give the required result. �

Lemma 14. Let wn ⇀ w weakly in H1(Ω), vn → v strongly in H1(Ω). Then

(4.40) b(wn, vn)→ b(w, v) as n→∞.

����	. We have

(4.41) |b(wn, vn)− b(w, v)| � |b(wn, vn − v)|+ |b(wn − w, v)|.
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The boundedness of the norms ‖wn‖1,2,Ω and the strong convergence vn → v imply

that
|b(wn, vn − v)| � |wn|1,2,Ω |vn − v|1,2,Ω � c∗‖vn − v‖1,2,Ω → 0.

As b(., v) is a continuous linear functional on H1(Ω), the second term in (4.41) tends
to zero according to the definition of the weak convergence wn ⇀ w. �

Lemma 15. There exists a constant c > 0 such that

(4.42) |̃bh(wh, vh)− b(ŵh, v̂h)| � ch‖wh‖1,2,Ωh
‖vh‖1,2,Ωh

for every h ∈ (0, h0) and wh, vh ∈ Hh.

����	. We have

|̃bh(wh, vh)− b(ŵh, v̂h)| = |̃bh(wh, vh)− b(ŵh, v̂h)|(4.43)

� |̃bh(wh, vh)− b(wh, vh)|+ |b(wh, vh)− b(ŵh, v̂h)|

�
∫

ωh∪τh

|∇wh · ∇vh| dx

+ |b(wh, vh − v̂h)|+ |b(wh − ŵh, v̂h)|.

By [12], Lemma 3.3.12,

∫

ωh∪τh

|∇wh · ∇vh| dx � |wh|1,2,ωh∪τh
· |vh|1,2,ωh∪τh

(4.44)

� c1h‖wh‖1,2,Ωh
· ‖vh‖1,2,Ωh

.

As was shown in the proof of Lemma 5.1.2 in [13], there exists such a constant c2 > 0
independent of wh, h that

‖ŵh − wh‖1,2,Ω � c2h‖wh‖1,2,Ωh
.

This, the definition of the bilinear form b(., .) and Lemma 4 (with constant c3) give us

|b(wh, vh − v̂h)| � (‖ŵh‖1,2,Ω + ‖ŵh − wh‖1,2,Ω)‖vh − v̂h‖1,2,Ω(4.45)

� c3h(c3 + c2h)‖wh‖1,2,Ωh
‖vh‖1,2,Ωh

.

In the same way we get

(4.46) |b(wh − ŵh, v̂h)| � ‖wh − ŵh‖1,2,Ω‖v̂h‖1,2,Ω � c2c3h‖wh‖1,2,Ωh
‖vh‖1,2,Ωh

.

Estimate (4.42) now immediately follows from (4.43)–(4.46). �
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Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied and let h0 be
as in Lemma 11. Let u be the solution of problem (1.4) and uh (h ∈ (0, h0)) the
solution of problem (2.12). Then

(4.47) lim
h→0

‖ûh − u‖1,2,Ω = 0.

����	. I) We get from (4.35) and Lemma 4 a) that there exists a constant
c1 > 0 such that

(4.48) ‖ûh‖1,2,Ω � c1 for every h ∈ (0, h0).

Since the space H1(Ω) is reflexive and the imbedding of H1(Ω) into L2(Ω) is
compact, there exist a sequence {hn}∞n=1 and a function u ∈ H1(Ω) such that

hn ∈ (0, h0), hn → 0 as n→∞,(4.49)

ûhn ⇀ u weakly in H1(Ω) as n→∞ and

ûhn → u strongly in L2(Ω) as n→∞.

As a consequence of (4.49) we also get an estimate

(4.50) ‖ûhn‖0,2,∂Ω � c2 ∀n = 0, 1, . . . .

We will show that

ûhn → u strongly in H1(Ω) as n→∞

for any sequence {uhn} with {hn} ⊂ (0, h0), hn → 0, and that the limit function u
is a weak solution of the problem.
II) Let v ∈ C∞(Ω) be an arbitrary fixed function and vc ∈ H2(Ω∗) its Calderon

extension to Ω∗ (cf., e.g., [23]). Let vh be the Lagrange interpolation of the function vc

in the space Hh. By Theorem 2 from [30], there exists a constant c3 > 0 such that

(4.51) ‖v̂h − v‖1,2,Ω � c3h‖vc‖2,2,Ω∗

for every h ∈ (0, h0) and v ∈ C∞(Ω). As an easy consequence of (4.51) and Lemma 4
we get

‖v̂h‖1,2,Ω � ‖v‖1,2,Ω + c3h‖vc‖2,2,Ω∗ � c4‖vc‖2,2,Ω∗(4.52)

and

‖vh‖1,2,Ωh
� c5‖vc‖2,2,Ω∗ .(4.53)
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Moreover,

(4.54) v̂h → v strongly in H1(Ω) for h→ 0.

By virtue of the compactness of the imbedding of H1(Ω) into L2(∂Ω), (4.52) and
(4.54) we have

a) ‖v̂h‖0,2,∂Ω � c6,(4.55)

b) v̂h → v strongly in L2(Ω) for h→ 0.

III) Let us now choose r > 2α and let us put σ := 1/2−α/r > 0. In what follows
we will omit for simplicity the index n at h and suppose that h = hn → 0 as n→∞.
It is obvious that

ah(uh, vh) = b(ûh, v̂h) +
(
b̃h(uh, vh)− b(ûh, v̂h)

)
(4.56)

+ d(ûh, v̂h) +
(
dh(uh, vh)− d(ûh, v̂h)

)

= L(v̂h) +
(
Lh(vh)− L(v̂h)

)
.

On the basis of Lemma 10, (4.35) and (4.53) we have

(4.57) |dh(uh, vh)− d(ûh, v̂h)| � ch1/2−α/r‖uh‖α+1
1,2,Ωh

‖vh‖1,2,Ωh
→ 0.

It follows from Corollary 3 and (4.53) that

(4.58) |Lh(vh)− L(v̂h)| � ch‖vh‖1,2,Ωh
→ 0.

Finally, by Lemma 15 and (4.35), (4.53), we have

(4.59) |̃bh(uh, vh)− b(ûh, v̂h)| → 0 for h→ 0.

IV) It follows from the continuity of the functional L and from (4.54) that

(4.60) L(v̂h)→ L(v).

In virtue of Lemma 13,

(4.61) d(ûh, v̂h)→ d(u, v)

and due to Lemma 14,

(4.62) b(ûh, v̂h)→ b(u, v).
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Now, summarizing (4.57)–(4.62), we find out that the limit function u ∈ H1(Ω)

satisfies the identity
a(u, v) = L(v) ∀v ∈ C∞(Ω).

Since a(u, .) and L(.) are continuous linear functionals on H1(Ω) and C∞(Ω) is
dense in H1(Ω), the function u is the weak solution of the continuous problem.

V) We prove now the strong convergence ûh → u in H1(Ω). Obviously,

|ûh − u|21,2,Ω = b(ûh − u, ûh − u)(4.63)

=
(
b(ûh, ûh)− b̃h(uh, uh)

)
+ Lh(uh)− dh(uh, uh)

− [2b(ûh, u)− b(u, u)].

According to Lemma 15,

b(ûh, ûh)− b̃h(uh, uh)→ 0.

In virtue of Corollary 3, the continuity of the linear functional L on H1(Ω) and

the definition of the weak convergence we have

|Lh(uh)− L(u)| � |Lh(uh)− L(ûh)|+ |L(ûh − u)| → 0,

and thus
Lh(uh)→ L(u).

The combination of Lemma 10, Lemma 13 and (4.35) implies that

|dh(uh, uh)− d(u, u)| � |dh(uh, uh)− d(ûh, ûh)|+ |d(ûh, ûh)− d(u, u)| → 0,

i.e.,

dh(uh, uh)→ d(u, u).

Finally, on the basis of the definition of the weak convergence and the continuity

of the bilinear form b(., .) the last term in (4.63) converges to b(u, u). But this means
that |ûh − u|21,2,Ω → L(u) − d(u, u) − b(u, u) = 0, as u is the weak solution. The

convergence ‖ûh − u‖0,2,Ω → 0 follows immediately from (4.49).
In such a way we have proved the strong convergence ûhn → u in H1(Ω) as n→∞.
VI) Finally, since u is the only weak solution of the continuous problem and

the weakly convergent sequence {ûhn} was chosen arbitrarily, the whole system
{ûh}h∈(0,h0) converges strongly to u in H

1(Ω) as h → 0, which is what we wanted
to prove. �
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�������� �������. The above analysis represents the extension of re-

sults from [8] concerning the convergence of approximate solutions of the elliptic
problem with nonlinear Newton boundary conditions to the exact solution for the
case of a nonpolygonal domain with a curved boundary. We have shown here that

the approximation of the boundary by a piecewise linear curve does not effect the
convergence which has been proved above without any assumption on the regularity

of a weak solution.

Several problems still remain unsolved. It is, e.g., the influence of the approx-

imation of the boundary on error estimates (established in [9] for the problem in
a polygonal domain). In the papers [6], [8], [9], [10] concerned with the boundary

value problem equipped with nonlinear Newton boundary conditions, the analysis
was carried out for piecewise linear conforming finite element approximations. An

extension to higher order finite elements will be the subject of a future work. (See,
e.g., [26]). Another interesting topic is the use of nonconforming finite elements

for the numerical solution of our problem, which represents again one of the finite
element variational crimes.
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