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1 IntroductionMixed �nite element approximations play a central role in a variety of problems of con-tinuum mechanics. Perhaps the most prominent example concerns �nite element methodsfor problems with the constraint of incompressibility, such as the Stokes or Navier-Stokesequations for viscous Newtonian uids, and analogous problems in elasticity. There exists alarge body of literature devoted to the development of stable and convergent �nite elementschemes for this class of problems; comprehensive surveys may be found in the monographsby Brezzi and Fortin [7] and by Girault and Raviart [14].Another popular mixed problem which arises particularly in the context of elasticity isthat obtained from the Hellinger-Reissner variational principle. In this problem it is not aconstraint which produces a mixed or saddle-point problem; rather, such a problem arisesfrom the fact that both the stress and the displacement are treated as unknown variables.Details of �nite element approximations of this class of problems may be found in the workby Brezzi and Fortin cited earlier, as well as in a number of papers devoted to this subject(see, for example, Johnson and Mercier [25], Arnold, Brezzi and Douglas [1], Arnold, Douglasand Gupta [2], Arnold and Falk [3], Pitk�aranta and Stenberg [30] and Stenberg [40, 41]).There is now a sizeable literature on the numerical approximation of variational inequali-ties (see, for example, the works by Glowinski, Lions and Tr�emoli�eres [16] and by Hlav�acek etal [21]), which includes investigations of variational inequalities arising in plasticity. Analysesof �nite element approximations of the elastoplastic problem have enjoyed limited but steadyattention, in contrast to the voluminous literature devoted to computational and algorithmic2



aspects of this problem. Havner and Patel [19] and Jiang [22] analysed approximations ofthe so-called rate problem; this is an elliptic variational inequality in which the primaryunknowns are the velocity, rather than the displacement, and the plastic multiplier. Reddyand Gri�n [33] and Han [17] have considered �nite element approximations of the holo-nomic or time-independent problem which arises as a typical step when time-discretizationis introduced in the full problem. These works are all displacement-based. Mercier [27] andOden and Whiteman [28] have both studied �nite element approximations of versions of theclosely related Hencky problem of plasticity. Johnson [23] has considered a formulation ofthe elastoplasticity problem in which stress is the primary variable, and has derived errorestimates for the fully discrete (that is, time and space) problem (see also related work byHlav�acek [20] and a summary account in [21]).With regard to work on mixed variational problems in the form of variational inequalities,little has appeared. Johnson [24] has considered fully discrete �nite element approximationsin the context of plasticity, and Brezzi, Johnson and Mercier [9] have treated �nite elementapproximations of the time-independent Hencky problem for elastoplastic plates. Brezzi,Hager and Raviart [8] studied problems which arise in the context of the obstacle problemfor a membrane, and the unilateral contact problem. The variational inequalities in all theseworks arise as a result of the problems being posed on convex subsets; that is, these arevariational inequalities of the �rst kind.In an earlier work Reddy [31] has considered the problem of mixed variational problemswhich take the form of variational inequalities. This work was motivated by mixed varia-tional problems which arise in elastoplasticity; these are mixed problems either because ofthe constraint of plastic incompressibility, or because the problem is of Hellinger-Reissnertype, so that the stress is treated explicitly along with the displacement and plastic strain.Furthermore, the problems take the form of variational inequalities of the second kind; thatis, these are inequalities because of the presence of a nondi�erentiable functional. The issuesof existence and uniqueness of solutions to these problems have been addressed in [31].The aim of this contribution is to return to that work, and to consider �nite element ap-proximations. The problem is of some importance in engineering applications, and the par-3



ticular model treated here forms the basis for one approach to large-scale �nite element codesfor the simulation of elastoplastic behavior [12, 34]. The variational inequality considered inthe present work is time-independent, and arises typically either when time-discretization isintroduced into the time-dependent problem, or alternatively when the applied forces varylinearly with time { the problem of proportional loading { so that the problem reduces toone which is time-independent. To place matters in proper perspective, it may be worthmentioning that the problem considered here is a more general version of the Hencky prob-lem, which has been the subject of much investigation in recent times (see [42] and referencestherein), and which di�ers from the present problem in that it applies to isotropically elastic,perfectly plastic materials; neither of these restrictions are present in the problem consideredhere.While the problem treated here is motivated by applications in elastoplasticity, there areclearly other areas in which it would be of interest, for example, problems involving frictionalcontact [11]. Furthermore, as indicated earlier, a study of �nite element approximations ofmixed variational inequalities of the second kind, that is, those involving a nondi�erentiablefunctional, appears to be lacking.The plan of the rest of this work is as follows. In Section 2 we give full details of theelastoplastic problem. In Section 3, we present some of the mixed formulations for the elasto-plastic problems: these come about due to the constraint of plastic incompressibility, and/oras a result of inclusion of the stress as a variable (the so-called Hellinger-Reissner formula-tion, in the context of elasticity). These problems are special cases of an abstract problem,which is then formulated in Section 4; the main results of [31], which concern existence anduniqueness of solutions to these problems, are reviewed here for use in subsequent sections.We consider �nite element approximations for the abstract mixed variational inequalityproblem in Section 5. We prove some convergence results, together with error estimates.In Section 6 we apply the results of Section 5 to the elastoplastic problems formulated inSection 4. We elaborate on the error estimates of �nite element approximations.The main result on the solvability of the abstract mixed variational inequality is provedin [31] by introducing a regularizing sequence. In applications, the regularizing sequence4



technique is also used for numerical computations. A regularization method depends on asmall parameter " > 0, and convergence is obtained when " goes to 0. However, as " ! 0,the conditioning of a regularized problem deteriorates. So there is a tradeo� in the selectionof the regularization parameter. Theoretically, to obtain more accurate approximations, weneed to use smaller values of ". On the other hand, if " is too small, the numerical solutionof the regularized problem cannot be computed accurately. Thus, it is highly desirable tohave a-posteriori error estimates which can provide computable error bounds once solutionsof the regularized problems have been found. We derive such a-posteriori error estimates inthe last section.2 The elastoplastic problemWe consider the problem of quasistatic behaviour of an elastoplastic body which occupies abounded domain 
 � Rd with Lipschitz boundary �. The plastic behaviour of the materialis assumed to be describable within the classical framework of a convex yield surface coupledwith the normality law. We adopt the equivalent form of the ow law in which the dissipationfunction, rather than the yield function, is employed. This formulation has been studied insome detail both theoretically and computationally in the works [32, 34].Full details of the formulation considered here are presented in [31]. As indicated inthat work, this formulation may be arrived at by approximating rates, for example, by anEuler backward di�erence. The e�ect of this assumption would be that the rate problemis approximated by a sequence of incremental problems, in the sense that it is required todetermine the response of the body to forces at time t0 + �t, given the complete state ofthe body at time t0. The boundary value problem which we consider arises in a typicaltime-step.Alternatively, the problem considered here arises when there is proportional loading;that is, the applied forces vary linearly with time, so that a time discretisation is renderedunnecessary. This is in fact similar to the formulation adopted in [17, 33].The elastoplastic material under consideration is assumed to undergo nonlinear kinematichardening; the nonlinear term takes the form of an exponential decay, and is one which is in5



current use in numerical treatments of this class of problems (see, for example, [38]). Theassumption of a hardening material, apart from the fact that it represents realistic materialbehaviour, serves also to allow for a complete analysis within a Sobolev space framework,the special case of perfect plasticity requiring that the displacements be sought in the spaceBD(
) of functions of bounded deformation (see, for example, the text [42] and referencestherein).Of special interest here is the classical assumption of no volume change accompanyingplastic deformation. This is an assumption which is conventionally accommodated by ex-pressing the yield condition in terms of the stress deviator. We treat this constraint explicitlythrough the introduction of a Lagrange multiplier.Under these circumstances the equations governing the problem are [31]:the equilibrium equation div� + b = 0; (2.1)the constitutive equations � = C(�� p); (2.2)� � �D � �D0 2 @D(p); (2.3)the strain-displacement relation �(u) = 12 (ru+ (ru)T ); (2.4)and the condition of plastic incompressibilitytr p := I � p = 0; (2.5)or pkk = 0. Here and henceforth summation is implied on repeated indices, unless otherwisestated. Equations (2.1){(2.5) are required to hold on 
; we take the boundary condition tobe u = 0 on �: (2.6)In the above, � denotes the stress tensor, �D := � � 1d (tr�)I the stress deviator, b is thebody force, � is the strain tensor, u the displacement vector and p is the plastic strain tensor.6



The subdi�erential @D of D is de�ned to be the set@D(p) = f� 2Md : D(q) � D(p) + � � (q � p) 8q 2Mdg;where Md is the set of all real symmetric d� d matrices, and � � q = �ijqij.The quantity C is a fourth order tensor of elastic coe�cients, which has the symmetryproperties Cijkl = Cjikl = Cklij; (2.7)and we assume that Cijkl 2 L1(
); (2.8)and that C is pointwise stable: there exists a constant c0 > 0 such thatCijkl(x) �ij�kl � c0�ij�ij; 8 � 2Md; a.e. in 
: (2.9)Equation (2.3) characterises nonlinear kinematic hardening, as mentioned earlier, andthis is represented by the term �0 appearing there. This term is the back-stress, which weassume to be given by �0(p) = h(jpj)p; (2.10)where h(�) is a scalar-valued hardening function (see, for example, [38]). The function h(�)is assumed to be of the form h(�) = h0 + h1e���; (2.11)where h0; h1 and � are scalars whose values depend on the material constitution. Here � isa constant with � > 0; (2.12)furthermore, it is assumed that h0; h1 2 L1(
), and thath0(x) � �0 > 0; h1(x) � 0; a.e. in 
; (2.13)for some constant �0. We will also require the assumption that a constant � 2 (0; 1) existssuch that h1(x) < �h0(x)e2; a.e. in 
; (2.14)7



this is a reasonable approximation for a wide range of materials. The consequences of theapproximations embodied in this hardening law are discussed in [31].The function D : Md ! [0;1], which is known as the dissipation function, is a gauge,that is, D(q) � 0; D(0) = 0; (2.15)D is convex and positively homogeneous: (2.16)For realistic models of plasticity it is necessary to assume further thatD(q) = 0 if and only if q = 0; (2.17)D is continuous; (2.18)and that D(q) <1 for all q 2 Md: (2.19)The properties (2.15){(2.19) ensure that D is a norm on Md. Furthermore, the propertiesof convexity and positive homogeneity imply thatjD(p)�D(q)j � D(p� q);and since all norms on Md are equivalent, it follows thatD is Lipschitz continuous on domD: (2.20)Remark 2.1 The property (2.20) is true under rather weak assumptions. Indeed, let@0D(p) = (� 2Md : lim infq!p D(q)�D(p)� � � (q � p)jq � pj2 > �1):One has @0D(p) � @D(p). It is proved in [36] that for a proper, lower semicontinuous functionD, if j�j � k, � 2 @0D(p) at any point p 2 Md where @0D(p) exists, and if D(p0) < 1 atsome p0 2Md, then D(p) <1; 8 p 2Md;D is Lipschitz continuous on Md:8



The relationship between the dissipation function and the possibly more familiar yieldfunction may be summarised as follows (see [37], Section 15, for further details, and [13] fora discussion and further developments in the context of plasticity).Lemma 2.2 Set K = f� 2Md : � � q � D(q) for all q 2Mdg:Then D(p) = sup�2K � � p; (2.21)K = @D(0); (2.22)� 2 @D(p) , p 2 NK(�): (2.23)The set K is convex, and is referred to as the region of admissible (generalised) stresses;its boundary is known as the yield surface. Here NK(�) denotes the normal cone to K at �.The function D, by virtue of its properties as a gauge and the property (2.18), admits apolar function f :Md ! [0;1], de�ned byf(�) = supq 6=0 � � qD(q) : (2.24)This function is known in the present context as the canonical yield function: it is a gauge,and also has the property f(�) = 0 if and only if � = 0: (2.25)It derives its name as a yield function from the fact that its level set at unity describes K:K = f� : f(�) � 1g: (2.26)For � 2 K and � 2 @D(p), � � p = f(�)D(p): (2.27)We also observe from (2.25) and (2.26) that� 2 intK ) NK(�) = f0g ) f(�) < 1: (2.28)The polar function f is also a norm on Md. Since all norms on Md are equivalent therethen exists a constant c > 0 such thatj�j � c f(�) � c; 8� 2 K; (2.29)9



where j � j denotes the Euclidean norm on Md. Thus it follows in particular from (2.3) andLemma 2.2 that j (� � �0)D j � c: (2.30)Example. A simple and popular example is that corresponding to the von Mises yieldcondition, for which K = f� 2Md : j�j � kg;where � = �D � �D0 and k is a positive scalar; thenD(q) = kjqj = kpqijqij ; (2.31)and the canonical yield function is given byf(�) = j�jk :3 The variational problemsAs a prelude to presenting the variational formulations of the elastoplastic problem of thelast section, we de�ne the spaces V = [H10 (
)]d;Q = fq = (qij) : qij 2 L2(
); qji = qijg; and Q0 = fq 2 Q : tr q = 0g;where H10 (
) is the space of distributions which together with their �rst derivatives are inL2(
), and whose traces on � vanish. Both V and Q are Hilbert spaces with inner products(u; v)V = Z
 @ui@xj @vi@xj dx and (p; q)Q = Z
 p � q dx = Z
 pijqij dx;and norms jjvjjV = (v; v)1=2, jjqjjQ = (q; q)1=2. Furthermore, Q0 is a closed subspace of Q.We de�ne the product space V = V �Q which is a Hilbert space with the inner product(u; v)V := (u; v)V + (p; q)Qand norm jjujjV = (u; u)1=2V , where u = (u; p) and v = (v; q). We also de�ne V 0 = V �Q0, aclosed subspace of V . The topological dual of a Hilbert space X is denoted by X�.10



We de�ne the operator A1 : �V ! �V � byhA1�u; �vi = Z
 [C (�(u)� p) � (�(v)� q) + �0(p) � q] dx= Z
 [Cijkl(�ij(u)� pij)(�kl(v)� qkl) + (�0(p))ijqij] dx; (3.1)the linear functional l : V ! R; hl; vi = Z
 b � v dxand the functional j : V ! R; j(v) = Z
D(q(x)) dx; (3.2)where as before u = (u; p) and v = (v; q). The functionals l(�) and j(�) are easily shownto be bounded and, from the properties of D; j(�) is a convex, positively homogeneous,non-negative continuous functional. Note that, however, in general, j is not di�erentiable.As with the dissipation function D, convexity and positive homogeneity of j imply thatj is Lipschitz continuous on V : (3.3)We remark also that the Lipschitz continuity of j is assured under weaker assumptions, asimplied by Remark 2.1.The classical problem de�ned by (2.1) { (2.5) is formally equivalent to ([31])Problem P1: Find u = (u; p) 2 V 0 such thathA1u; v � ui+ j(v)� j(u)� hl; v � ui � 0; 8 v 2 V 0:We also have the following result.Theorem 3.1 [31] Problem P1 has a unique solution. 2This result depends in particular on the fact that the operator A1 is Lipschitz continuousand strongly monotone. That is, there are constants �0; �1 > 0, such thatjjA1u� A1vjjV � � �1jju� vjjV ; (3.4)hA1u� A1v; u� vi � �0jju� vjj2V ; (3.5)for all u; v 2 V . 11



The main concern here is not with variational inequalities of the form of Problem P1,but rather with mixed variational problems associated with P1. Two such mixed variationalproblems are considered in [31]: the �rst isProblem P2. Find u = (u; p) 2 V and � 2 � such that8><>: hA1u; v � ui+ j(v)� j(u) + b1(v � u; �) � hl; v � ui; 8 v = (v; q) 2 V ;b1(u; �) = 0; 8� 2 �; (3.6)where � = L2(
) and the bilinear formb1 : V � �! R; b1(v; �) = � Z
 � tr q dx: (3.7)The second mixed variational inequality considered in [31] may be obtained by extendingto the case of elastoplastic materials the classical Hellinger-Reissner variational problem [7]for elasticity, and at the same time relaxing the constraint of plastic incompressibility. LetE be the elastic compliance tensor, inverse to C. The tensor E is bounded, symmetric andpointwise stable. We set � = Q, � = � � Q; and for � = (�; p) and � = (�; q) in � de�nethe operator A2 byA2 : �! ��; hA2�; �i = Z
 [(E� + p) � � + (�0(p)� �) � q] dx: (3.8)De�ne N = V ��, the new space of Lagrange multipliers, where � = L2(
), and the bilinearform b2 : ��N ! R,b2(� ; n) = � Z
 � � �(v) dx� Z
 � trq dx; n = (v; �); � = (�; q): (3.9)Problem P3: Find � = (�; p) 2 � and m = (u; �) 2 N such that8><>: hA2�; � � �i+ j(� )� j(�) + b2(� � �;m) � 0; 8 � = (�; q) 2 �;b2(�; n) = hg; ni; 8n = (v; �) 2 N; (3.10)where the linear functional g : N ! R is de�ned by hg; ni = R
 b � v dx.There are many mixed �nite element methods in elasticity which take as a variationalbasis not the appropriate reduction of Problem P3, which is (after setting p = q = 0 through-out): 12



�nd (�; u) 2 �� V such thatZ
E� � � dx� Z
 �(u) � � dx = 0; 8 � 2 �; (3.11)Z
 �(v) � � dx = Z
 b � v dx; 8 v 2 V; (3.12)but instead the version of the Hellinger-Reissner formulation in which the di�erentiabilitycondition on the displacement is transferred to the stress. For this purpose it is necessaryto de�ne the spacesW = [L2(
)]d and H = f� = (�ij) : �ji = �ij; �ij 2 L2(
); div � 2 Wg;where div � is the vector with components @�ij=@xj (with summation implied on j). Thespace W has the standard L2 product norm, while H is endowed with the normjj� jj2H = jj� jj2� + jjdiv � jj2W :It is straightforward to derive the alternative Hellinger-Reissner formulation for elasticity inthe form: �nd (�; u) 2 H �W such thatZ
E� � � dx + Z
 u � div � dx = 0; 8 � 2 H; (3.13)Z
 v � div� dx = � Z
 b � v dx; 8 v 2 W: (3.14)This problem has formed the basis of most investigations of mixed �nite element methodsfor elasticity problems [1, 2, 25, 30, 40, 41], though the formulation (3.11) { (3.12) is favoredin many engineering applications (see, for example, [29]). An exception is the work [39], inwhich the abstract conditions for stability in the works cited above are given an interestingmechanical interpretation. Numerical examples are also given in [39].The appropriate generalization to elastoplasticity isProblem P4: Find � = (�; p) 2 H = H �Q and m = (u; �) 2 L = W � � such that8><>: hA2�; � � �i+ j(� )� j(�) + b3(� � �;m) � 0; 8 � = (�; q) 2 H;b3(�; n) = hg; ni ; 8n = (v; �) 2 L; (3.15)where A2 : H ! H�; hA2�; �i = Z
 [(E� + p) � � + (�0(p)� �) � q] dx; (3.16)13



and b3(� ; n) = Z
(v div � � � tr q) dx: (3.17)Problems P2 - P4 can be conveniently studied as special cases of an abstract mixedvariational inequality, which we now formulate.4 The abstract problemLet 	 and N be two Hilbert spaces, A an operator from 	 to its dual 	�, b : 	�N ! Ra bilinear form, and j : 	 ! R a functional. The bilinear form b is assumed to have thefollowing properties:(i) b(�; �) is bounded, so that there exist bounded linear operators B; BT de�ned byB : 	! N�; hB ; ni = b( ; n) and BT : N ! 	�; hBTn;  i = b( ; n)for all  2 	 and n 2 N . BT is thus the adjoint operator of B. The kernels of B and BTare de�ned byKerB = f 2 	 : B = 0g and KerBT = fn 2 N : BTn = 0g:(ii) There exists a constant � > 0 such thatsup 2 	 b( ; n)jj jj	 � � jjnjjN=KerBT ; 8n 2 N: (4.1)The operator A is assumed to be Lipschitz continuous on 	 : that is, there exists a constant�1 > 0 such that jjA�� A jj	� � �1jj��  jj	; 8�;  2 	: (4.2)For any given �1 2 (KerB)?, let ~A : 	! 	� be the operator de�ned by~A� = A (�+ �1) for all � 2 KerB: (4.3)The operator ~A is required to be strongly monotone on Ker B : that is, there exists aconstant �0 > 0 such thath ~A�� ~A ; ��  i � �0jj��  jj2	; 8�;  2 KerB: (4.4)14



We assume also thatj is convex, nonnegative and continuous, but not di�erentiable. (4.5)Remark 4.1 The assumption (4.4) replaces that of strong monotonicity of A on KerB,which was assumed in [31] (see (3.3) in that work). The strong monotonicity of A on KerBis an insu�cient assumption, since it is readily established, as in the analysis of the auxiliaryproblem (3.8) in [31], that A is actually required to be strongly monotone on the a�neset �1 + KerB. The assumption (4.4) guarantees this. Note that the condition of strongmonotonicity of A on 	 implies (4.4).The mixed problems de�ned in Section 3 are all particular cases of the following generalProblem P. Given f 2 	� and g 2 N� , �nd (�;m) 2 	�N such that8><>: hA�;  � �i+ j( )� j(�) + b( � �;m) � hf;  � �i; 8  2 	 ;b(�; n) = hg; ni; 8 n 2 N : (4.6)This problem is approached in [31] by introducing a regularized version of the problem,which reduces the inequality (4.6)1 to an equation. We introduce the family of functionalsj" : 	! R parametrized by " 2 (0; 1] , and with the following properties:j" is convex and di�erentiable, with Gâteaux derivative j 0" : 	! 	�; (4.7)j"( )! j( ) as "! 0; uniformly with respect to  2 	; (4.8)jjj 0�( )jj	� � c; 8 2 	: (4.9)The constant c is required to be independent of " and  2 	 .The regularized problem then takes the following form.Problem P": Find �" 2 	 and m" 2 N such that8><>: hA�";  � �"i+ j"( )� j"(�") + b( � �"; m") � hf;  � �"i 8 2 	 ;b(�"; n) = hg; ni 8n 2 N : (4.10)
15



Since j" is di�erentiable, the inequality (4.10)1 reduces to a variational equationhA�";  i+ hj 0"(�");  i+ b( ;m") = hf;  i; 8 2 	: (4.11)Then we haveTheorem 4.2 Assume that conditions (4.1) { (4.5) and (4.7) { (4.9) hold, and that g 2ImB, the range of B. Then(a) there exists a unique solution (�"; m") 2 	� (N=KerBT ) to Problem P";(b) there exists a solution (�;m) 2 	 � N to Problem P. Furthermore, � is unique, and isthe strong limit of �" as "! 0. 2In [31], this theorem is proved for the case KerB = f0g, and when the condition (4.8) isreplaced by the less general condition0 � j"( )� j( ) � c1"; 8 2 	:It follows readily from the proof in [31] that the result holds with the somewhat moregeneral assumptions (4.1) and (4.8). The weaker assumption (4.8), in particular, allowsthe possibility of treating more general types of yield conditions, such as nonsmooth yieldfunctions (see, for example, [5]).In [31], it is shown that Problem P2 satis�es the conditions of Theorem 4.2, that it has asolution (u; p; �) 2 V � �, and that (u; p) is unique. It is also shown that Problem P3 has asolution (�; p; u; �) 2 ��N , with (�; p) being unique. Furthermore, it may be proved thatthe Lagrange multiplier u is unique, though not the multiplier �.To obtain similar results for Problem P4, which was not treated in [31], we need to showthat A2 is Lipschitz continuous on H = H�Q, and that ~A2 is strongly monotone on KerB3,de�ned byKerB3 = f(�; q) 2 H : Z
 v � div � dx = 0; 8 v 2 W and Z
 � tr q dx = 0; 8� 2 �g= f(�; q) 2 H : div � = 0 and tr q = 0; a.e. in 
g: (4.12)We also have to show that the Babu�ska-Brezzi condition holds: that is, that a constant� > 0 exists such that sup�2H b3(� ; n)k � kH � � k n kL=KerBT3 : (4.13)16



The functional j is as in Problems P2 and P3, and its ful�lment of properties (4.7){(4.9) inrespect of the von Mises condition has been established in [31].Lipschitz continuity of A2 on H follows from the fact thathA2� � A2� ; �i � c (k � � � kQ + k p� q kQ) k � kQ�Q; (4.14)as has been established in [31], and using also the fact that k � kQ�k � kH for � 2 H.Whereas A2 is strongly monotone on ��� (for Problem P3), it is not strongly monotoneon H = H�Q. Instead, we show that (4.4) holds. We have, given �1 = (�1; p1) 2 (KerB3)?,with ~A2� = A2(�1 + �), and for �; � 2 KerB3,h ~A2� � ~A2� ; � � � i = hA2(� + �1)� A2(� + �1); � � �i= Z
 fE(� � �) � (� � �) + [�0(p+ p1)� �0(q + p1)] � (p� q)g dx� �0 �k � � � k2� + k p� q k2Q�= �0 (k � � � k2H + k p� q k2Q)= �0 k � � � k2H ; (4.15)for some constant �0 > 0. Here we have used the fact that div� = 0 and div � = 0, since�; � 2 KerB3, and also the inequality[�0(q)� �0(r)] � (q � r)� h(�h0 + h1e��jqj)q � (�h0 + h1e��jrj)ri � (q � r) + (1� �)h0jq � rj2� (1� �)�0jq � rj2(see also Lemma 2 in [31]).Finally, it is straightforward to show [40] that the Babu�ska-Brezzi condition (4.13) holds.Thus Problem P4 has a solution � 2 H, n = (u; �) 2 L, and � is unique. It may furthermorebe established that u is unique.For the convergence analysis of �nite element solutions later, we introduce a formulationequivalent to (4.6). For this, we need the notion of the subdi�erential @j : 	! 2	�, de�nedby @j(�) = f�� 2 	� : j( ) � j(�) + h��;  � �i; 8 2 	g:17



We observe that the problem (4.6) is equivalent to the problem of �nding � 2 	, m 2 Nand �� 2 	� such that8>>>><>>>>: hA�;  i+ h��;  i+ b( ;m) = hf;  i; 8 2 	;b(�; n) = hg; ni; 8n 2 N;�� 2 @j(�): (4.16)Remark 4.3 From the equivalent formulation (4.16), it is easily seen that if �� 2 	� isunique, then m 2 N is unique in N=KerBT . In the case when there is no constraint, sucha �� 2 	� is indeed unique (see [17], Proposition 4.2). For the mixed problem P, however,the uniqueness of �� (and hence that of m 2 N=KerBT ) depends on both b and j. It isnot di�cult to see that we have uniqueness for �� if and only if the following condition issatis�ed:If �� 2 @j(�), then there is no m0 2 N=KerBT such that �� +BTm0 2 @j(�). (4.17)Usually, however, the condition (4.17) cannot be veri�ed, or is not easily veri�ed.For a mechanical interpretation of the non-uniqueness of m, see [31].Remark 4.4 In the case of plasticity with the von Mises yield condition (see earlier, equa-tions (2.31) and (2.3)), we have 	 = V = V �Q, and j is given byj(v) = Z
 k jqj dxwhere k is bounded, measurable and nonnegative. Then (4.16)3 is equivalent to the twoconditions (with �� = (u�; p�)):p�(x) = k p(x)jp(x)j if p(x) 6= 0 and jp�(x)j � k if p(x) = 0; (4.18)which hold a.e. in 
. Whereas we have uniqueness when p(x) 6= 0, 8 x 2 
, in generalwe have no a-priori control over the solution p, and p� fails to be unique. This is easy toappreciate if it is observed, from (2.3), that p� is equivalent to the quantity �D��D0 (p) (= �Dwhen p = 0), and (4.18)2 expresses the fact that this lies in the set of admissible stresses,which on its own does not determine �D or p� uniquely.18



Note also that by application of the arguments leading to (2.29) we have uniform bound-edness of fp�g: jp�(x)j � k a.e. in 
: (4.19)Remark 4.5 In certain other applications (cf. [15], [18]), 	 = [H1(
)]d or [H10 (
)]d, and jis of the form j( ) = Z
 k jr j dx (4.20)where k is bounded, measurable and nonnegative. It can be proved that �� 2 @j(�) isequivalent to the two conditions��(x) = k r�(x)jr�(x)j if r�(x) 6= 0 and j��(x)j � k if r�(x) = 0:Once again, the uniqueness of �� depends on the form of b (cf. the condition (4.17) above).We still have uniform boundedness of f��g, though.5 Finite element approximation of the abstract mixed variationalinequalityTo study �nite element approximations of the mixed problems of Section 3, we �rst considerthat of the abstract Problem P. Let 	h � 	 and Nh � N be �nite dimensional subspaces,h > 0 being a discretization parameter. We assume thatlimh!0 inf h2	h k �  hk	 = 0; 8 2 	;limh!0 infnh2Nh kn� nhkN = 0; 8n 2 N:The �nite element approximation to the abstract Problem P isProblem Ph. Find �h 2 	h and mh 2 Nh, such that8><>: hA�h;  h � �hi+ j( h)� j(�h) + b( h � �h; mh) � hf;  h � �hi; 8 h 2 	h;b(�h; nh) = hg; nhi; 8nh 2 Nh: (5.1)Let Zh(g) = f�h 2 	h : b(�h; nh) = hg; nhi; 8nh 2 Nhg19



and introduce the discrete operators Bh and BTh through the relationb( h; nh) = hBh h; nhi = hBTh nh;  hi; 8 h 2 	h; 8nh 2 Nh:The kernels of Bh and BTh are de�ned byKerBh = f h 2 	h : b( h; nh) = 0 8nh 2 Nhg; (5.2)KerBTh = fnh 2 Nh : b( h; nh) = 0 8 h 2 	hg: (5.3)For any given �1h 2 (KerBh)?, we will also require the operator ~Ah : 	h ! 	�h de�ned by~Ah�h = A(�h + �1h) for all �h 2 KerBh: (5.4)Applying Theorem 4.2 to Problem Ph we haveTheorem 5.1 Assume that the conditions of Theorem 4.2 hold, with the exception that thecondition (4.1) is replaced by its discrete counterpartsup h2	h b( h; nh)k hk	 � khknhkN=KerBTh ; 8nh 2 Nh; for some kh > 0; (5.5)and the condition (4.4) is replaced by the condition that a constant �0 > 0, independent ofh and independent of the function �1h used in de�ning ~Ah in (5.4), exists such thath ~Ah�h � ~Ah h; �h �  hi � �0jj h � �hjj2	 for all �h;  h 2 KerBh: (5.6)Then, if Zh(g) 6= ;, Problem Ph has a solution (�h; mh) 2 	h � Nh, �h being unique.Furthermore, (�h; mh) 2 	h � Nh is a solution of Problem Ph if and only if there exists a��h 2 	�h, such thathA�h;  hi+ h��h;  hi+ b( h; mh) = hf;  hi; 8 h 2 	h;b(�h; nh) = hg; nhi; 8nh 2 Nh; (5.7)��h 2 @hj(�h);where @hj(�h) = f��h 2 	�h : j( h) � j(�h) + h��h;  h � �hi; 8 h 2 	hg: (5.8)20



To study the convergence of the �nite element solution, we �rst derive an error estimatefor �� �h. We will denote a solution of (4.16) by f�; ��; mg.Theorem 5.2 Assume the conditions of Theorems 4.2 and 5.1 hold. For any �h 2 	h, setI(�h; �; ��) = j(�h)� j(�)� h��; �h � �i:Then there is a constant c > 0, independent of h, such thatk�� �hk	 � c " inf�h2Zh(g) �k�� �hk	 + jI(�h; �; ��)j1=2�+ infnh2Nh km� nhkN# : (5.9)Proof. For any �h 2 Zh(g),k�� �hk	 � k�� �hk	 + k�h � �hk	: (5.10)Now write �h = �0h + �1h, where �0h 2 KerBh, �1h 2 Zh(g) \ (KerBh)?, and de�ne ~Ah asin (5.4) by this �1h. Observe that �h � �1h 2 KerBh. Thus, by property (5.6) we have�0 k�h � �hk2	 = �0 k�0h � (�h � �1h)k2	� h ~Ah�0h � ~Ah(�h � �1h); �h � �hi= hA�h � A�h; �h � �hi= hA�h; �h � �hi+ hA�� A�h; �h � �hi+ hA�; �h � �hi:We add the two inequalitieshA�h; �h � �hi+ j(�h)� j(�h) � hf; �h � �hi;hA�; �h � �i+ j(�h)� j(�) + b(�h � �;m) � hf; �h � �ito obtainhA�h; �h � �hi+ hA�; �h � �i+ j(�h)� j(�) + b(�h � �;m) � hf; �h � �i;that is, hA�h; �h � �hi � hA�; �h � �i+ j(�h)� j(�) + b(�h � �;m)� hf; �h � �i:21



Hence �0 k�h � �hk2	 � hA�; �h � �i+ j(�h)� j(�) + b(�h � �;m)� hf; �h � �i+ hA�� A�h; �h � �hi+ b(�h � �h; m)= j(�h)� j(�)� h��; �h � �i+ hA�� A�h; �h � �hi+ b(�h � �h; m� nh)for any nh 2 Nh, and so�0 k�h � �hk2	� jI(�h; �; ��)j+ �1k�� �hk	k�h � �hk	 + kbk k�h � �hk	km� nhkN :Thus k�h � �hk	 � c hk�� �hk	 + jI(�h; �; ��)j1=2 + km� nhkNi ; 8nh 2 Nh: (5.11)Combining (5.10) and (5.11), we get the desired error estimate. 2In the special case when KerBh � KerB, b(�h � �h; m � nh) = 0 in the proof above.Then we haveProposition 5.3 If we further assume that KerBh � KerB, thenk�� �hk	 � c inf�h2Zh(g) �k�� �hk	 + jI(�h; �; ��)j1=2� :The nature of the bound on the term jI(�h; �; �h)j will depend on the particular formtaken by the functional j. In elastoplasticity j is Lipschitz continuous (see (3.3)), and sojI(�h; �; ��)j � c k�� �hk	: (5.12)To bound inf�h2Zh(g) k�� �hk	 by the more standard approximation quantity inf h2	h k��  hk	,we need the following result ([7], p.55).Lemma 5.4 Assume that the discrete inf-sup condition (5.5) holds; theninf�h2Zh(g) k�� �hk	 �  1 + kbkkh ! inf h2	h k��  hk	:22



An obvious consequence of Theorem 5.2 and Lemma 5.4 is the following convergenceresult for �h.Theorem 5.5 Under the assumptions of Theorem 5.2, if (5.12) holds and if1kh inf h2	h k��  hk	 ! 0 as h! 0; (5.13)then �h ! � in 	 as h! 0:If the pair f	h; Nhg of �nite element spaces is such that kh is bounded away from 0,independently of h, then the condition (5.13) is automatically satis�ed. In order to haveconvergence, however, we do not require kh to be bounded away from 0, as long as kh doesnot tend to 0 too fast (in the sense that (5.13) holds).Now we consider the convergence ofmh. Here it is necessary to turn again to the motivat-ing problems for further information about the behavior of the sequence f��hg. We identify	�h with 	h and view 	�h as a subspace of 	�: for any  �h 2 	�h, we extend  �h from 	�h to 	�by setting h �h;  i = 0, 8 2 	?h . Now in Problems P2 - P4, �h is the ordered pair (uh; ph)or (�h; ph), and we �nd that, from the Lipschitz continuity of D,��h 2 @hj(�h) ) kp�hk	� � c; for a constant c independent of h: (5.14)Hence, f��hg is weakly pre-compact in 	�: (5.15)Thus every subsequence of f��hg contains a subsequence weakly converging in 	�.Using the discrete inf-sup condition (5.5), the relation (5.7) and the boundedness of thesequence f��hg, we �nd thatkhkmhkN=KerBTh � sup h2	h b( h; mh)k hk	= sup h2	h 1k hk	 fhf;  hi � hA�h;  hi � h��h;  hig� c (kfk+ k�hk	 + k��hk	�) : (5.16)23



Since �h ! � in 	, fk�hk	g is uniformly bounded with respect to h. Thus, under theBabu�ska-Brezzi condition ([4, 6]) kh � k1 > 0; (5.17)we can modify mh by elements in KerBTh , the modi�ed multiplier being denoted once againby mh, such that fkmhkNg is uniformly bounded with respect to h. Therefore we can �nda subsequence fmh0g and an element ~m 2 Q, such thatmh0 ! ~m weakly in N; as h0 ! 0: (5.18)Since f��hg is weakly pre-compact in 	�, we can �nd a further subsequence of the subsequencef��h0g, still denoted by f��h0g, and a ~�� 2 	�, such that��h0 ! ~�� weakly in 	�: (5.19)From (5.19), the strong convergence �h ! �, the approximability of any  2 	 by �niteelement functions and the continuity of j, we get~�� 2 @j(�): (5.20)Now �xing a �nite element test function  h 2 [h0	h0, taking the limit in the �rst relationof (5.7) along the subsequence h0, and then approximating an arbitrary test function  2 	by  h, we obtain hA�;  i+ h~��;  i+ b( ; ~m) = hf;  i; 8 2 	: (5.21)From (5.20), (5.21) and Theorem 5.5, we then know that f�; ~��; ~mg is a solution of (4.16),in other words, f�; ~mg is a solution of Problem P.So far, we have provedTheorem 5.6 Under the assumptions of Theorem 5.5 together with the condition (5.17),we have mh0 ! ~m weakly in N;where mh0 is a suitably chosen solution of (5.1).Usually, we can say more about the convergence of the multipliers of the discrete problemsfor Problems P2 - P4. From the assumption that D is positively homogeneous (cf. (2.16)),24



we �nd that Z
D(qh(x)) dx � Z
D(ph(x)) dx+ hp�h; qh � phi; 8 qh 2 Qhis equivalent to the two relationshp�h; phi = Z
D(ph(x)) dx and hp�h; qhi � Z
D(qh(x)) dx; 8 qh 2 Qh: (5.22)Here 	h will be a product space of the form 	h = Xh�Qh, where Qh is the space of discreteplastic strains. Since D is a norm on Md (see Section 2) we haveZ
D(q(x)) dx � c kqk(L1(
))d�d ; 8 q 2 (L1(
))d�d;so that kp�hkL1(
) � c; for a constant c independent of h: (5.23)Indeed, if (5.23) is not true, we can �nd a subsequence fp�h0g and a q 2 (L2(
))d�d, suchthat kqk(L1(
))d�d = 1 and hp�h0; qi ! 1:Let �h0q 2 Qh0 be the (L2(
))d�d-projection of q to Qh0, then since hp�h0; q � �h0qi = 0; wehave hp�h0;�h0qi = hp�h0; qi ! 1: (5.24)On the other hand, since kq � �h0qk(L2(
))d�d ! 0 as h0 ! 0;the sequence f�h0qg is bounded in (L1(
))d�d. But then from (5.22), we gethp�h0;�h0qi � Z
D(�h0q(x)) dx � c k�h0qk(L1(
))d�d � cwhich contradicts (5.24).We incorporate the property (5.23) of elastoplasticity solutions in a more general assump-tion, namely, that, f��hg is pre-compact in 	�: (5.25)25



Also assuming KerBTh = f0g (5.26)as is the case for the applications in the next section. We can then further show thatmh ! ~m strongly in N; for a subsequence fmhg. From now on, we will use fmhg and f��hgto denote the convergent subsequences fmh0g and f��h0g.To prove the strong convergence of mh, we writek ~m�mhkN � k ~m� nhkN + knh �mhkN ; 8nh 2 Nh: (5.27)By the condition (5.17), knh �mhkN � 1k1 sup h2	h b( h; nh �mh)k hk	 :Now we have b( h; nh �mh) = b( h; ~m�mh) + b( h; nh � ~m)and so, from (4.16) with �� and m being replaced by ~�� and ~m, and (5.7), we getb( h; ~m�mh) = �hA�� A�h;  hi � h~�� � ��h;  hi:Thusknh �mhkN � 1k1 sup h2	h 1k hk	 n�hA�� A�h;  hi � h~�� � ��h;  hi+ b( h; nh � ~m)o� c hk�� �hk	 + k~�� � ��hk	� + k ~m� nhkNi :Combining with (5.27), we now havek ~m�mhkN � c �k�� �hk	 + k~�� � ��hk	� + k ~m� nhkN� ; 8nh 2 Nh: (5.28)We summarize this result in the followingTheorem 5.7 Under the assumptions made in Theorem 5.6, together with (5.25) and (5.26),for a subsequence fmhg, mh ! ~m strongly in N:Remark 5.8 Theorem 5.2 provides an error estimate for ���h. To estimate the convergenceorder, for some applications, it is inappropriate to use (5.12) to bound jI(�h; �; ��)j. Such is26



the situation when 	 = [L2(
)]d and j( ) = Z
 k j j dx. One needs to dig into the specialstructure of the �nite element space 	h, and try to construct an interpolant �h from the setZh(g) in such a way that no loss in the order of convergence is introduced. For some otherapplications, however, (5.12) readily leads to an optimal error estimate. As an example,when 	 = [H1(
)]3 and the non-di�erentiable functional j is of the form (4.20). ThenI(�h; �; ��) becomes I(�h; �; ��) = j(�h)� j(�)� Z
 k� � r(�h � �) dxfor some measurable vector function � satisfying j�(x)j � 1 a.e. in 
. In this case, theestimate jI(�h; �; ��)j � c kr(�h � �)kL1(
) � c k�h � �k	does not cause loss in the order of convergence, and the optimal error estimate isk�� �hk	 � c " inf�h2Zh(g) k�� �hk1=2	 + infnh2Nh km� nhkN#� c " 1 + 1pkh! inf h2	h k��  hk1=2	 + infnh2Nh km� nhkN# :
6 Application to the elastoplastic problemsWe return now to the mixed problems of Section 3, and apply the results of Section 5. Wediscuss in detail �nite element approximations of Problem P4 only, since the correspondingtreatments for Problems P2 and P3 follow in a similar way (and are in fact more straightfor-ward).The condition (4.17) takes a common form for all problems. Since in all casesj(�) = Z
D(p(x)) dx; (6.1)condition (4.17) states that there is no �0 2 �=KerBT such that�� 2 @j(�) , Z
 [D(q)�D(p)� (p� + �0I) � (q � p)] dx � 0 8 q 2 Q: (6.2)27



By setting q = 0 and q = 2p, and by using the fact (see (2.27)) that p� � p = D(p), we obtainthe condition Z
 �0tr p dx = 0: (6.3)The inequality (6.2) takes a slightly di�erent form in the elastic domain, which is de�ned by
e = fx 2 
 : p(x) = 0 a:e:g. From (6.2) it follows thatZ
e D(q) dx � Z
e p� � q dx+ Z
e �0tr q dx: (6.4)It is not easy to verify that there is no �0 6= 0 satisfying (6.3) and (6.4). On the other hand,in the fully plastic case, that is, when 
e = ;, it is a straightforward matter to verify (4.17).Also common to all the example problems is the question of the existence of a regularizingsequence j" satisfying (4.7) { (4.9). For the case of the von Mises yield condition (see (2.31))one may set j"(�v) = Z
D"(q) dx;where D"(q) = kqjqj2 + "2or D"(q) = 8><>: k (jqj � "=2); if jqj � ";k jqj2=(2"); if jqj � ";for example. We recall also from (3.3) that j is Lipschitz continuous.Going on now to �nite element approximations of Problem P4, we will assume for sim-plicity that the domain 
 is polygonal (resp. polyhedral) so that 
 is completely coveredby triangular (resp. tetrahedral) elements. We make the identi�cation 	 = H = H � Q,N = L = W � �, � = � = (�; p),  = � = (�; q), m = (u; �), n = (v; �), A = A2 andb(�; �) = b3(�; �).Suppose that we chooseHh � H,Wh � W ,Qh � Q and �h � �; thenHh = Hh�Qh � Hand Lh =Wh � �h � L. We de�neProblem P4;h. Find �h = (�h; ph) 2 Hh and mh = (uh; �h) 2 Lh such that8><>: hA2�h; �h � �hi+ j(�h)� j(�h) + b3(�h � �h; mh) � 0; 8 �h = (�h; qh) 2 Hh;b3(�h; nh) = hg; nhi; 8nh = (vh; �h) 2 Lh:(6.5)28



Various �nite element spaces have been constructed for the purpose of obtaining stableand convergent approximations for the purely elastic case (see [7]). For the purpose ofillustration we consider here the element introduced by Johnson and Mercier [25], in thecontext of the two-dimensional problem and assuming isotropic elasticity. In this case theoperator A2 takes the formhA2�; � i = Z
 " 12��D + p! � �D + 1�+ �(tr�) (tr �) + (�0(p)� �)D � q# dx; (6.6)where � and � are Lam�e's constants. The polygonal domain 
 is partitioned into triangularelements, and the Johnson-Mercier element is constructed as follows: a generic element Kis subdivided into three subtriangles Kj, j = 1; 2; 3, these having a common vertex at thecentroid of K. We then de�ne the space HK byHK = f� 2 H : � jKj 2 [P1(Kj)]2�2; j = 1; 2; 3g;where P1(Kj) is the space of the polynomials of degree � 1 on Kj, and the space Hh byHh = ��h 2 H : �hjK 2 HK; Z
 tr �h dx = 0� :The space Wh is simply de�ned byWh = fvh 2 W : vhjK 2 [P1(K)]2g; (6.7)and we de�ne Qh and �h byQh = fqh 2 Q : qhjK 2 [P1(K)]2�2g; �h = P 01; (6.8)where P 01 = fv 2 L2(
) : vjK is a polynomial of degree oneg. Then with this choice ofspaces it can be shown [25] that the elastic version of Problem P4;h (which is obtained bysetting ph = qh = 0) has a unique solution, and that, if � 2 (H2(
))2�2 and u 2 (H2(
))2,then jj� � �hjj0 � Ch2; jju� uhjj0 � Ch2; (6.9)where jj � jj0 denotes the product L2-norm. 29



The proof relies on the fact that the elastic version of A2 is KerBeh-elliptic, that KerBeh �KerBe, and that the discrete condition (5.5) holds, with a constant kh independent of h.Here, Be and Beh are de�ned through the bilinear formbe(�; v) = Z
 v div� dxby be(�; v) = hBe�; vi = hBeT �; vi; 8 � 2 H; v 2 W;and be(�h; vh) = hBeTh vh; �hi = hBeh�h; vhi; 8 �h 2 Hh; vh 2 Wh:The operator ~A2;h, de�ned by ~A2;h = A2(�h + �1h) for all �h 2 Hh, where �1h 2 (KerBh)?satis�es b(�1h; nh) = hg; nhi for all nh 2 Nh, is shown to be strongly monotone on Ker Bh inthe same way as the corresponding result is derived for ~A2 (see (4.15)).Properties of the operators Bh and BTh follow also by exploiting the properties of theelastic problem: it follows readily from the de�nition (3.17) of b = b3 and the propertiesof its elastic part, that KerBh � KerB, and that the bilinear form satis�es the discreteBabu�ska-Brezzi condition, with KerBTh = f0g. The property KerBh � KerB follows �rstlyfrom f�h 2 Hh : Z
 div�h � vh dx = 0 for all vh 2 Whg � f� 2 H : div � = 0gas in the elastic case, and secondly,fph 2 Qh : Z
 �h tr ph dx = 0; 8�h 2 �hg � fp 2 Q : tr p = 0g:Thus Problem P4;h has a solution (�h; ph) 2 Hh and (uh; �h) 2 Lh, and (�h; ph) is unique.Furthermore, it is possible to show that the multiplier uh is unique; setting qh = ph in (6.5),this problem reduces toZ
 "�Dh ��Dh2� + (tr�h) (tr �h)�+ � # dx+ Z
 uh �div �h dx = � Z
 ph ��h dx; 8 �h 2 Hh; (6.10)Z
 vh � div �h dx = � Z
 b � vh dx; 8 vh 2 Wh;(6.11)and this problem, which is a minor variation of the elastic problem, has a unique solution.30



In order to obtain an error estimate which extends to the present problem the estimate(6.9) which is valid for the elastic case, we return to Proposition 5.3, and set 	 = � where� has the same de�nition as in the previous problem. We also note that A2 is stronglymonotone on �, and setZh(g) = f�h 2 Hh : b3(�h; nh) = hg; nhi 8nh 2 Nhg:Then by following the steps taken in the proof of Theorem 5.2, using the inequality�1jj�h � �hjj2� � hA2�h � A2�h; �h � �hi; 8 �h; �h 2 Hhand noticing that KerBh �KerB, we �nd thatk� � �hk� � c inf�h2Zh(g) �k� � �hk� + kp� qhk1=2Q � :Applying Lemma 5.4, we then �nd that if � 2 (H1(
))2�2, p 2 (H2(
))2�2,k� � �hk0 � c h; kp� phk0 � c h:Note in particular the reduction in order; the elastic problem yields an error estimate ofO(h2). This reduction is due to the presence of the nondi�erentiable term.We may also obtain an error estimate for jju� uhjj0. We �rst write down the continuousanalogue of (6.10), that is,Z
 " 12��D � �D + 1�+ �(tr �) (tr �)# dx+ Z
 u � div � dx = � Z
 p � � dx; 8 � 2 Hwhich, together with (6.10), implies the relationZ
(vh � uh) � div�h dx= � Z
 "(p� ph) � �h + 12� (�D � �Dh ) � �Dh + 1�+ � tr(� � �h) tr�h + (u� vh) � div�h# dx;8 �h 2 Hh:Now from (5.2) of [25], sup�h2Hh (vh; div�h)k�hkH � � kvhk0:31



Hence we have, for all vh 2 Wh,� kvh � uhk0� sup�h2Hh 1k�hkH (vh � uh; div�h)= sup�h2Hh �1k�hkH Z
 "(p� ph) � �h + (�D � �Dh ) � �Dh2� + tr(� � �h) tr�h�+ � + (u� vh) � div�h# dx� c [kp� phk0 + k� � �hk0 + ku� vhk0] :As a result, from the triangle inequality we getku� uhk0 � c �kp� phk0 + k� � �hk0 + infvh2Wh ku� vhk0� � c h:
7 A-posteriori error analysis of regularizing sequencesBecause of the di�culty in dealing with the nondi�erentiable term j, one rarely solves the�nite element system (5.1) directly. In practice, there are several approaches to circumventthe di�culty caused by the non-di�erentiability. One approach is to introduce a Lagrangemultiplier for the non-di�erentiable term, and the problem (5.1) is solved by an iterativeprocedure, for detail, see, e.g., [15]. Here, we concentrate on another approach, namely, theregularization method. The idea of the regularization method is to approximate the non-di�erentiable term by a sequence of di�erentiable ones. The regularizing sequence techniquehas been used in proving Theorem 4.2 ([31]). Here, we use the technique as a numericalmethod to solve the mixed variational inequality. It is easy to give an a-priori error estimatewhich implies convergence of the regularization method (cf. [31]). Our main concern in thissection is to derive a-posteriori error estimates for solutions of the regularized problems. Wewill derive such an a-posteriori error estimate for solving Problem P2. For Problems P3 andP4, the same techniques presented here can be employed to give similar a-posteriori errorestimates.As in [17], we need a result from convex analysis (cf. [10]).Let V , � be two normed spaces, V �, �� their dual spaces. Assume there exists a linearcontinuous operator F 2 L(V;�), with transpose F � 2 L(��; V �). Let J be a function32



mapping V � � into R [ f+1g. Consider the minimization problem:infv2V J(v; Fv): (7.1)De�ne the conjugate function of J byJ�(v�; ��) = supv2V;�2� [hv; v�i+ h�; ��i � J(v; �)] : (7.2)Theorem 7.1 Assume that(i) V is a reexive Banach space, � a normed space.(ii) J : V � �! R [ f+1g is a proper, lower semicontinuous, strictly convex function.(iii) 9 u0 2 V , such that J(u0; Fu0) <1 and � 7! J(u0; �) is continuous at Fu0.(iv) J(v; Fv)! +1, as kvk ! 1, v 2 V .Then problem (7.1) has a unique solution u 2 V , and�J(u; Fu) � J�(F ���;���); 8�� 2 ��: (7.3)We will apply Theorem 7.1 to derive an a-posteriori error estimate for the regularizingtechnique for solving (3.6), that is, Problem P2, and its discrete version, in the context of thevon Mises yield condition. Instead of the Problem P2, rather, we consider a slightly moregeneral problem, namely, the constraint b1(u; �) = 0, 8� 2 � is replaced byb1(u; �) = hg; �i; 8� 2 �: (7.4)In this way, one will see more clearly how to employ the techniques presented here to derivea-posteriori error estimates for Problems P3 and P4. We choose the following regularizingfunction for the dissipation function:D"(q) = kqjqj2 + "2: (7.5)First, we need to rewrite the problem (3.6) in the form of (7.1). To do this, setS = fs = (sij) : sij = sji 2 L2(
); 1 � i; j � dg33



and identify S� with S. We make use of the spaces V; Q; � and V = V �Q used earlier inProblem P2, and de�ne the operator F : �V ! S byF �v = �(v); 8 �v 2 �V :Let Z(g) = fv 2 V : b1(v; �) = hg; �i; 8� 2 �g:We now de�ne the energy function on �V � S byJ(�v; s) = 8><>: Z
 h12 C (s� q) � (s� q) +H(jqj) + k jqj � b � vi dx; if v 2 Z(g);+1; otherwise; (7.6)where H(�) = 12 h0�2 + 1�2 h1(1� e���)� 1� h1� e���(cf. (2.10) and (2.11)). Then it can be shown that the problem (3.6) with the more generalconstraint (7.4), is equivalent to the minimization problem�u 2 �V ; J(�u; F �u) = inf�v2 �V J(�v; F �v):In order to use Theorem 7.1, we need to compute J�(F �s�;�s�), for s� 2 S�. We haveJ�(F �s�;�s�) = sup�v2 �V ;s2S [h�v; F �s�i � hs; s�i � J(�v; s)]= sup�v2 �V ;s2S [hF �v; s�i � hs; s�i � J(�v; s)]= supv2Z(g);s2S Z
 h�(v)�s� � s�s� � 12 C (s� q)�(s� q)�H(jqj)� k jqj+ bvi dx= 12 Z
 C�1s� � s�dx+ supv2Z(g) Z
[�(v) � s� + b � v] dx+K(js�j)] dx;where K(js�j) = T (t(js�j)); (7.7)with T (t) = (js�j � k) t�H(t);and t(js�j) = 0 if js�j � k, t(js�j) > 0 being the unique solution of the equation (the uniquesolvability is guaranteed by the assumption h0 > 0)(h0 + h1e��t) t = js�j � k if js�j > k:34



Next, we deal with the term supv2Z(g) Z
[�(v) � s� + b � v] dx:We havesupv2Z(g) Z
[�(v) � s� + b � v] dx = Z
[�(u") � s� + b � u"] dx+ supv2Z(0) Z
[�(v) � s� + b � v] dx= 8>>>>><>>>>>: Z
[�(u") � s� + b � u"] dxif Z
[�(v) � s� + b � v] dx = 0; 8 v 2 Z(0);+1 otherwise:Applying (4.11) to the problem (3.6), we �nd thathA�u"; �vi+ hj 0"(�u"); �vi = hb; �vi; 8 �v 2 Z(0);that is, Z
"C (�(u")� p") � (�(v)� q) + h(jp"j) p" � q + kp" � qqjp"j2 + "2# dx = Z
 b � v dx;8 v 2 Z(0):Hence, � C (�(u")� p") + h(jp"j) p" + kp"qjp"j2 + "2 = 0; (7.8)Z
C (�(u")� p") � �(v) dx = Z
 b � v dx; 8 v 2 KerB: (7.9)With (7.9), we choose s� = �C (�(u")� p"); (7.10)then supv2Z(g) Z
[�(v) � s� + b � v] dx = Z
 [�C (�(u")� p") � �(u") + b � u"] dx:Therefore, with the choice (7.10) for the dual variable s�, we haveJ�(F �s�;�s�) = Z
"12 C (�(u")� p") � (�(u")� p")� C (�(u")� p") � �(u") + b � u" +K(jC (�(u")� p")j)# dx: (7.11)35



Now consider the di�erence J(�u"; F �u")� J(�u; F �u):By Theorem 7.1, an upper bound for the di�erence, with s� given by (7.10), isJ(�u"; F �u")� J(�u; F �u)� J(�u"; F �u") + J�(F �s�;�s�)= Z
 24k jp"j qjp"j2 + "2 � jp"jqjp"j2 + "2 +H(jp"j)� h(jp"j) jp"j2 +K(jC(�(u")� p")j)35 dx:In the derivation above, we used the relation (7.8). We then turn to a lower bound of thedi�erence. Taking �v = �u" in (3.6)1, we obtainZ
 [k jp"j � k jpj � b � (u" � u)] dx� Z
 [�C (�(u)� p) � ((�(u")� p")� (�(u)� p))� h(jpj) p � (p" � p)] dx: (7.12)Thus J(�u"; F �u")� J(�u; F �u)= Z
" 12 C (�(u")� p") � (�(u")� p") +H(jp"j) + k jp"j � b � u"� 12 C (�(u)� p) � (�(u)� p)�H(jpj)� k jpj+ b � u# dx� Z
 n12c0 j(�(u)� p)� (�(u")� p")j2 +H(jp"j)�H(jpj)� h(jpj) p � (p" � p)o dxwhere we have made use of (7.12).Now de�ne the functionH1(�) = H(�)� 12 h0�2 = h1 � 1�2 (1� e���)� 1� � e���� ;the part of H related to h1. ThenH 001 (�) = h1(1� ��) e��� � �e�2h1 > ��h0;
36



using (2.14). Hence,H(jp"j)�H(jpj)� h(jpj) p � (p" � p)= 12h0(jp"j2 � jpj2 � 2p � (p" � p)) +H1(jp"j)�H1(jpj)� h1e��jpjp � (p" � p)� h02 jp" � pj2 +H1(jp"j)�H1(jpj)�H 01(jp"j � jpj)� h02 jp" � pj2 � �h02 j jp"j � jpj j2� (1� �)h02 jp" � pj2:Thus J(�u"; F �u")� J(�u; F �u)� Z
 n12c0 j(�(u)� �(u"))� (p� p")j2 + 12 (1� �) h0jp� p"j2o dx� �� (jju� u"jj2V + jjp� p"jj2Q)where �� = 12 �0(1� �) min(1; Kc0c0 + �0(1� �)=2) ;the last inequality is obtained using the trick employed in proving Lemma 2.1 in [33].Combining the two bounds on the di�erence J(�u"; F �u") � J(�u; F �u), we then have thea-posteriori error estimate for the regularizing technique for solving the problem (3.6).Theorem 7.2 Under the assumptions made on the problem (3.6), the following inequalityholds: �� (jju� u"jj2V + jjp� p"jj2Q)� Z
" k jp"j "2qjp"j2 + "2 �qjp"j2 + "2 + jp"j�+H(jp"j)� h(jp"j) jp"j2 +K(jC(�(u")� p")j)# dx: (7.13)
To see more clearly the e�ectiveness of the a-posteriori error estimate (7.13), we considerthe simpler case when the material undergoes linear hardening, that is, when the functionh(�) in (2.11) is of the form h(�) = h0;37



and h0(x) � �0 > 0, a.e. in 
. We can computeK(js�j) = 12h0 [(js�j � k)+]2 ;where t+ = 8><>: t; if t � 0;0; if t < 0:In this special case of linear hardening, the a-posteriori error estimate assumes the simplerform �� (jju� u"jj2V + jjp� p"jj2Q)� Z
" k jp"j "2qjp"j2 + "2 �qjp"j2 + "2 + jp"j�� 12 h0jp"j2 + 12h0 h(jC (�(u")� p")j � k)+i2# dx; (7.14)where �� = 12 �0min(1; Kc0c0 + �0=2) :If (jC (�(u")� p")j � k)+ � h0jp"j; (7.15)then from (7.14) we have�� (jju� u"jj2V + jjp� p"jj2Q) � Z
 k jp"j "2qjp"j2 + "2 �qjp"j2 + "2 + jp"j� dxwhich indicates that (7.14) (and (7.13), at least when h1 is small) is a useful a-posteriorierror estimate. To prove (7.15), we notice that from (7.8),C(�(u")� p") = 0@h0 + kqjp"j2 + "21A p":Thus jC(�(u")� p")j = 0@h0 + kqjp"j2 + "21A jp"j;and so jC(�(u")� p")j � k = h0jp"j � k "2qjp"j2 + "2 �qjp"j2 + "2 + jp"j� :38



Obviously, 0B@h0jp"j � k "2qjp"j2 + "2 �qjp"j2 + "2 + jp"j�1CA+ � h0jp"j:Therefore, (7.15) follows.For the �nite element system (5.1), we can also use the regularization technique. Soinstead of solving (5.1), which is di�cult because of the presence of the nondi�erentiableterm, we solve a sequence of regularized problems:Find uh;" 2 Vh and ph;" 2 Qh, such that8><>: hAuh;"; vh � uh;"i+ j"(vh)� j"(uh;") + b(vh � uh;"; ph;") � hb; vh � uh;"i; 8 vh 2 Vh;b(uh;"; qh) = hg; qhi; 8 qh 2 Qh: (7.16)We can apply the results in Theorem 7.2 to the discrete problems, (5.1) and (7.16), to obtainthe a-posteriori error estimate�� (jju� u"jj2V + jjp� p"jj2Q)� Z
" k jph;"j "2qjph;"j2 + "2 �qjph;"j2 + "2 + jph;"j�+H(jph;"j)� h0jph;"j2 +K(jC(�(uh;")� ph;")j)# dx: (7.17)Note that the computable error estimate (7.17) can help one to determine whether asolution of the regularized problem can be accepted as the solution of the original �niteelement problem.8 AcknowledgementThe authors thank an anonymous referee for comments which led to an improvement in thepresentation of this paper.References[1] D N Arnold, F Brezzi and J Douglas, PEERS: a new mixed �nite element for planeelasticity. Japan Jour Appl Math 1 (1984) 347{367.39
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