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On the Finite Element Method for
Singularly Perturbed Reaction-Diffusion Problems

in Two and One Dimensions*

By A. H. Schatz and L. B. Wahlbin

Abstract. Second order elliptic boundary value problems which are allowed to degenerate into
zero order equations are considered. The behavior of the ordinary Galerkin finite element
method without special arrangements to treat singularities is studied as the problem ranges
from true second order to singularly perturbed.

1. Introduction. Consider the problem of finding u = u(x) = u(xx, x2; e) such that

(1.1.a) -e2Au + b(x,u; e) =f(x; e)    in31,
(l.l.b) we<£,
where 91 is a bounded plane domain, 0 < e < 1 a parameter and where u E %
designates some boundary conditions.

Allowing the full range of e we obtain pointwise local and global error estimates
for the ordinary Galerkin finite element method with a family of quasi-uniform,
unrefined meshes. These estimates are used to investigate the performance of the
method.

Assumptions. We shall now more precisely describe the problems (1.1) that will be
included in our analysis. For the moment we list basic minimal assumptions
sufficient to derive our main results below. In applications of these, further condi-
tions may be imposed.

For the domain 91 we assume either

(1.2.a) 91   is a convex polygon with straight edges,

or

(1.2.b) 391   is of classe1,1.
The boundary conditions are, for ease of exposition, restricted to Dirichlet or

Neumann type, i.e.,

(1.3.a) u = F   on 391,
or

(1.3.b) T~ = F   on9*-
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48 A. H. SCHATZ AND L. B. WAHLBIN

In the rest of this introduction we shall furthermore treat only homogeneous
conditions, F = 0. The nonhomogeneous case will be given in Section 9.

When applying our main results we shall treat the Dirichlet problem, leaving the
generally better behaved Neumann case to the reader.

For the function b(x, u; e) it is essentially required that db/du is positive
uniformly in u. The nonlinear case will be given in Section 12, and for the remainder
of this introduction we shall consider the linear case. Thus, (1.1.a) is replaced by

(l.l.a)lin L£u = -e2Aw + a(x; e)u = f(x; e)   in 91,

where a(x; e) is measurable and, with positive constants a0, ax,

(1.4) 0<a0<a(x;e)<ax,       xG9l,0<e<l.

The functions/(x; e) are assumed to be uniformly bounded in L2(9t),

(1.5) \\f\\L7<C,       0<6<1.

Numerical Method. For the numerical solution of (l.l.a)lin, (l.l.b), we introduce a
quasi-uniform family of partitions of 91, with elements of diameter comparable to a
parameter «, 0<«< 1/2, and finite element function spaces SA. The detailed
description of these matters is given in Section 3. We find the Galerkin approxima-
tion uh E o>h via

(1.6) ^£(«*,x)-£2(v«i,Vx) + K,x) = (/-x),    forx^S,,

where (v, w) = /a v • w. For simplicity in the analysis it is assumed throughout this
paper that the mesh domains coincide with the basic domain 91 and that all integrals
are evaluated exactly.

Main Results. We now display the two fundamental estimates of this paper. First,
we have the global result that there exists a constant C, independent of e, u and «,
such that, Theorem 6.1,

(1.7) \\u- uh\\L (6l)<ln(C+ e/«)min ||u - XII£„(«.)•

This result is localized as follows. Let x0 G 91, let D be a disc of radius d around x0
and set Qd — D D 91. There exist positive constants c,, c2 and C, independent of e,
u, h, x0 and d, such that if d 3= cxh, Theorem 7.1,

(1.8)     \(u-uh)(x0)\<tí/2(d/h)

X jln(C + e/A)min||«-xllz. (a,, +
I xeSA

C e-c2d/(e + h)^u '*H¿,

The results in the nonlinear problem are quite similar, see Section 12.
Comparison With Some Other Finite Element Work. Let us comment on these

estimates in the light of previous work on Galerkin finite element methods. In (1.7),
when e ~ 1 we recover an almost best approximation result in the maximum norm
for elliptic projections derived in Schatz and Wahlbin [25]. (For certain "higher
order" element spaces, the logarithmic factor can be replaced with a constant C; this
we have not included in the present work since it would considerably lengthen it.)
Taking formally e = 0, we recognize the almost best approximation property of the
L2 projection; see Descloux [7] or Douglas, Dupont and Wahlbin [8].
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SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS 49

In the local estimate (1.8), for e of unit size we have (modulo logarithmic factors
which are again there to shorten the analysis) the local estimates of [24]. When
formally e = 0, the reader may compare with the exponential decay results for the L2
projection given in [7] and [8].

The present unified proof is based on the techniques of Nitsche and Schatz [21]
and those of [25].

Example of Local Best Approximation. We now give an example of how the local
estimate (1.8) can be applied to a Dirichlet problem in our general, possibly
nonsmooth, situation. Let ñ0 C ß, C 91 be domains with dist(S20, 3fi,) = d > 0. By
Theorem A.l(i), which is a straightforward energy estimate, and by (1.5),

II" - «»Hi**) < Cmin(l, «2A2)H/llL2(a, < Cmin(l, h2/e2).

Note next the following elementary inequalities.

mm(l,h2/E2)e~cd^+h)/d

h2/e2d for e and d of unit size,

h2e-cd/2ye2d < Ch2    fOT \/2 > E > h, d > -eln(l/e),

e-cd/ih/¿ ^Ch2 for e < «, d ^ -«ln(l/«).

Substituting the above in (1.8), we have for d either of unit size or d>
const max( e ln( 1 /e), « ln( 1 /« )),

(1.9) ||«-«J|^(ao)<CtaV2(l/Ä)nün||«-xll£„(Ql) + CA2bi1/2(l/Ä).
xeS*

We conclude that, under our minimal smoothness assumptions (1.2), (1.4), (1.5), the
Galerkin solution performs in a locally optimal fashion on subdomains, up to the
order «2 determined by the second term on the right. For e small, these subdomains
can be close to regions where the solution is very rough.

In Section 10 we shall give further explicit estimates under additional smoothness
assumptions.

Remark 1.1. The factor «2 in (1.9) can be replaced by hr for piecewise polynomial
element spaces of degree r — 1, provided either 0 < e < c/ln(l/«) or, for a result
uniformly in the full range 0 < e < 1, if data in the problem are smoother.

Matched Asymptotic Expansions. One classical method of obtaining approxima-
tions to (l.l.a)lin, (1.1 .b) for small e is via matched asymptotic expansions. We start
by recalling salient points concerning these techniques. Comparing them with our
estimates for the Galerkin method, one can determine, in terms of « and e, which of
the two approximations is asymptotically better. We shall do this only from the
point of view of global maximum norm estimates. We consider the homogeneous
Dirichlet problem (in which the boundary layer is more pronounced than in a
Neumann problem). Further smoothness conditions have to be imposed. Assume
that
(1.10) 391   is of class S2'a, some« > 0,
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50 A. H. SCHATZ AND L. B. WAHLBIN

and

(1.11) a(x; e),   f(x;e)EQ2,   uniformly in e.

Let 3(x) denote the distance from x to 391 along the normal to 391, let x' denote the
point where the normal meets 391, and let \p(x) be a smooth cutoff function
isolating a layer around 391. Set

The functions a and / could be evaluated at the current e, or at e = 0. The first term
on the right is called the "regular expansion", the second term is the "boundary
layer correction". We have given only the first term of each; the second term of the
boundary correction is hard to compute in general. The terminology "outer" and
" inner" expansions is also frequently used.

The problem of making such expansions rigorously valid as approximations to u
for small e has been studied, e.g., in Besjes [4], Eckhaus [9, Section 2.5.3], [10, Section
7.1.1] and Lions [14, Chapter II]. The thickness of the boundary layer can be argued
to be 0(e ln(l/e)), cf. Baranger [1]. Under the assumptions (1.10) and (1.11) one
effortlessly verifies, using a "normal-tangential" coordinate system in a strip around
the boundary, that Le(u — ue) = 0(e). Since u — ue = 0 on 391 and A(m — ue) < 0
( > 0) at an interior positive maximum (negative minimum), it follows that

(1.13) \\u-u.W^)<aïxO(t)<Ce.

We shall next see that, under the smoothness assumptions (1.10) and (1.11),

(1.14) \\u-uh\\Lxm<Cs\n(C + e/h)h2e-2-s   forS>0.

By (1.7) it suffices to estimate II m — xll/, for suitable x> and, for typical finite
element spaces Sh, this quantity is bounded by C«2||w||e2. To estimate ||w||g2, one
has by classical Schauder estimates, cf. e.g., Bers, John and Schechter [3, Part II, 5.6],

||«||e2<Cae-2(||/||e. + 11 m II e.).
By [3, Part II, 5.2, Lemma 1], ||«||e„ < ¡i\\u\\e7 + Qr"/*2-^!!«!!^ whereupon
choosing ju = e2/2Ca and using that II m IIL   < aö ' II / II ¿ >

||i/||e2<Cse"2"í,       5>0,

which proves (1.14). The ideas above are taken from Besjes [4, Theorem 6].
Comparing (1.13) and (1.14) one sees that it is favorable to switch from the finite

element solution to the matched asymptotic expansion when e goes below 0(«2/3).
Other combinations of uh and ue may be used, e.g., a uniform almost hr accuracy of
uh on interior domains, cf. (1.9), may be combined with the resolution of the
boundary layer afforded by ue. From the point of view of interior accuracy the finite
element solution would then be employed until e ~ hr.

Still other combined uses of the asymptotic expansion and the finite element
method on a fixed mesh can readily be envisioned: If, in a problem with smooth
data, the quantities ue and Leue are easily computable, then the Galerkin method
could be employed to find an approximation (u — ue)h to(u — uc). Our main results
estimate the error in this. Since, for small e, u — ue exhibits a weaker boundary layer
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than u does, the deviation in the approximation (u — ue)h + ue for u might be
smaller than that in uh. We leave it to the interested reader to pursue this idea of
subtracting the singularity in more detail.

We emphasize again that the asymptotic expansion is not valid unless data in the
problem are somewhat smooth.

Some Numerical Analysis Work on Reaction-Diffusion Problems. Let us now briefly
comment on other work in the numerical analysis of (l.l.a)Un, (l.l.b). This work is
mostly done in one-dimensional situations and with enough smoothness present to
guarantee asymptotic expansions for small e. Fitting the form of the boundary layer
is considered (for one-dimensional convection-diffusion equations; the ideas are
analogous) in Hemker [12] and Miranker [18, Section 11]. An automatic mesh-refine-
ment procedure is given in Reinhardt [22].

Another circle of ideas, first given for convection-diffusion equations in the
well-known paper by Ihn [13], is pursued in one-dimensional cases in Shiskin and
Titov [26], Miller [17] and Niijima [19], [20]. Computations are done on a mesh
independent of e (as with us), say a uniform mesh, and specially designed finite
difference schemes are used. The concept of convergence uniformly in e is formalized
as follows.

Convergence Uniformly in e. A family of approximations uh, 0 < « < 1/2, con-
verges uniformly to u in the norm (or seminorm) ||| ||| to order p. if,- with a constant
C independent of e and «,

sup   HI«-Ml ^C«".
0<e<l

The specially constructed finite difference approximations alluded to above were
shown to converge uniformly in e to various orders in the meshnorm ||| v \\\ = \\\ v \\\ h
= max{\v(x)\ : x meshpoint}. It appears hard to extend these methods to two-
dimensional situations since they are all based on an ability to solve the equation
with constant coefficient a(x; e) by quadrature. (A dimension-splitting procedure
might be feasible.)

Considering the form of the boundary layer term in (1.12), one realizes that, in a
general Dirichlet problem, the finite element method on a quasi-uniform family of
meshes cannot converge uniformly in e in the global norm || ||¿ ,&). The estimate
(1.9) gives an interior uniform convergence result of order almost r, provided
u E Qr(iïx). For a smooth problem, the method embodied in (1.13) and (1.14), i.e.,
switching from the Galerkin approximation uh to the matched expansion uf when
e < 0(«2/3), gives a "method" of uniform order almost 2/3 in the global maximum
norm.

Pollution Absorbent Mesh. The local estimate ( 1.8) suggests an interpretation of the
error at a point as governed by local approximability of u and, for e and « small, a
decaying pollution effect from remote rough spots, including the boundary layer.
For e < «, the influence of pollution from the singularly perturbed zone extends a
distance «ln(l/«) rather than the shorter distance Eln(l/E). The situation is
analogous to the fairly well-known case of the centered difference scheme on a
uniform mesh. If one computes with the Galerkin method for small e, the fact that
the distance «ln(l/«) can be taken in terms of the local mesh size motivates the
practical recipe of "sacrificing" a few more closely spaced elements around the
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boundary for the purpose of reducing the absolute size of the polluted area. (The
object is not to resolve the boundary layer, which would demand a mesh changing
with e.) Numerical calculations in Section 11, in particular Examples 11.5 and 11.6,
give some encouragement to this idea, which is trivial to implement.

L2 Estimates. For the finite element method in a Dirichlet problem, global
estimates uniformly in e can be derived in the L2 norm. Under the assumption (1.2)
on 91, and under conditions on a(x; e) and/(x; e) allowing, e.g., jump discontinui-
ties, but not imposing any boundary conditions on f(x; e), we show in Theorem A.2
that

(1.15) ||M-MJ|¿2(ÍJl)<Cmin(^«",«2£-3/2)

so that we have uniform convergence of order \. Other bounds are given in Theorem
A.l.

Remark 1.2. Switching to üe '■— f(x)/a(x) when e < «, one can prove that, under
the same conditions on a(x; e) and/(x; e) as in Theorem A.2, the right-hand side in
(1.15) can be replaced by Cmin(y£, «2e_3/2).

Extensions of Present Work. We comment here briefly on some simple extensions
of the present investigation that we have not included for reasons of length. Two
such results were already given in Remarks 1.1 and 1.2.

(i) The local estimate (1.8) is only influenced by quasi-uniformity conditions in
terms of a local meshsize on üd and the size or variation of a(x; e) on £ld. It could
thus be applied to analyze certain meshrefinements and also to problems with
turning points, a(x0; e) = 0, away from the turning point: if a(x; e) ~ a on Qd, the
result (1.8) holds with e replaced by e/ v'a • Further, we could allow e to vary over the
domain.

(ii) The estimates (1.7) and (1.8) extend in a straightforward manner to many
situations in which the problem -Lu + v = g, g E%, enjoys H2 regularity for g in
L2. As an example, one has the case of 91 a rectangle with mixed boundary
conditions, of Dirichlet or Neumann type on each side. Third-type boundary
conditions could also be treated.

(iii) The term -e2Aw in (1.1.a) could be replaced by

-e2V • (Kx(x; e)v«) + K2(x; e)- Vu

with Kx positive and | K2 | < ey with y > 1.
Outline of the Paper. Sections 2-9 are concerned with the fundamental estimates

(1.7) and (1.8) in the linear case. In this, Sections 2-5 are preparatory. In Section 2
some estimates for the continuous problem are collected. The assumptions on the
finite element spaces are displayed in Section 3. Simple global energy error estimates
are derived in Section 4 and Section 5 is concerned with local energy estimates for
the discrete problem and for the error.

In Section 6 we then prove the global best approximation result of (1.7) and, in
Section 7, its localization (1.8). Modifications necessary to derive the analogous
results in the one-dimensional case are given in Section 8; there are no logarithmic
factors in these estimates. Nonhomogeneous boundary conditions are treated in
Section 9.
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The local estimate is made explicit, for smooth Dirichlet problems, in Section 10.
Numerical illustrations occupy Section 11 and the nonlinear case is given in Section
12.

In Appendix 1 the uniform global L2 estimate (1.15) and other L2 estimates are
derived in Dirichlet problems.

Some Notation. We fix notation that shall be used throughout the paper. We
employ the conventional spaces Lp(ti), Wk(ü), Hk(Q) = W2k(ü) and ß*(ö) and
their norms; as usual, Hk(ti) denotes the closure of 6^°(fi) in the Hk(C¡) norm. For
brevity we write

Hello =11»II liW

and, when ñ = 91, the basic domain, we sometimes leave out the region so that

Il v|| Wk = || v|| w*m   and    ||«|| = llo||Í2(ft).

We also use the notation | v |^*(B) for the corresponding seminorms, with the same
conventions as for the full norms.

As special notation we let
(1.16) %X=HX(<&)   or   #W
according to whether a homogeneous Neumann or Dirichlet problem is under
consideration. Correspondingly, with Sh a " basic" finite element space and Sh those
functions in Sh that vanish on 391, we let SA = Sh or Sh depending on the boundary
condition, cf. Section 3.

The symbol Le shall always designate the linear operator Lcv — -e2Aü + a(x; e)v,
and A (v, w) shall stand for the bilinear form

Ae(v, w) = e2 /  Vu • Vw + /
Jen Ja

avw.
ft ■'a

Finally, with S20 Ç £2, c 91 we set

(1.17) 3^ (Q0,Q,) = dist(3ß0\39l,3ßl \39i).

Acknowledgement. We thank L. Bales and P. Chavez for their generous help in the
numerical calculations.

2. Some Estimates for the Continuous Problem. In this section we establish some
results for the problem Lev = -e2Av + a(x; e)v = g in 91, v E 95, subject to the
conditions (1.2), (1.3) and (1.4). The weak form of this is to find v G %x such that

(2.1) Ae(v,w) = e2(vv,Vw) + (av,w) = (g,w)    îor w E %x,

where %x — H]  and %x = H]  in the cases of homogeneous essential Dirichlet
boundary conditions and natural Neumann conditions, respectively.

We first collect some a priori estimates.

Lemma 2.1. There exists a constant C such that, for v the solution of (2.1 ),

(2.2) lloll^CHgll,

(2.3) Hc||w.<j||*H,

(2.4) llo||wi<4ll«ll   for0<e<\.£
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Proof. We have from (2.1),

e2|| Vüll2 + a0\\v\\2<Ac(v, v) = (g, v) < Hgll ||t)II
so that Hüll <aö'||g|| and, consequently, ||Vü|| < öq 1/2e_1|lgll. This proves (2.2)
and (2.3).

We next recall, cf. e.g. Grisvard [11, Theorems 3.2.1.2, 3.2.1.3 and 4.3.1.4] that, for
the boundary conditions and types of domains under consideration, v E H2 (for
g G L2 ) and

(2.5) ||o||„2<C||-Ao + o||.

Hence, by use of (2.2),

||ü||„2<^||Leü|| + c(^-+l)||ü||<-^||g||

which completes the proof of the lemma.
We next derive a result concerning exponential decay for functions which satisfy

Lcu = 0 in a subregion of 91.

Lemma 2.2. There exist positive constants c and C such that the following holds:
Let ß0 Ç ß, Ç 91 with, cf. (1.17), d = 3 * (ß0, ß,) > 0, and let v G % Lp = 0 on

ß,. Then,for0<e^ 1,

(2-6) ll©llQo + rfllVt)||0o<CfL<î-/,||o||0l,

(2.7) llVüllo^Ce-^IIVülla,.

Proof. Let D and Dp+S be two concentric discs of radii p and p + 8, respectively,
with center in ß0, and let w G Gq(Dp+s) be such that

(2.8) a = l   onDp,    ll«lle»(iV+i)<C«-*,       k = 0,1,2,

with C independent of p, 8. Set Br — 91 D Dr and assume that Lp = 0 on Bp+S. We
have

(2.9) E2||wVü||2 + a0||wü||2 ^ E2(vu, w2Vü) + (au, w2ü)

= Ae(v, w2u) — 2e2(wVu, (vw)ü).

Since Lp = 0 on Bp+S and v E 93, we find that Ae(v, w2ü) = 0 so that, using (2.8),

E2||<oVull2 + a0ll"ell2<TllwVü||2 + -^||u||2

and, consequently, with K independent of e, p and 8,

(2.10) Hvt>Ha,«:fllt>HVi,

(2.11) ll»k<T l|0|lW
We shall now show that

(2.12) ||üII0o< Ce""/'||o||0i.

Assume first that

(2.13) d^4Kee.

p+í
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IVü||2fi      +^||Wu||2

We obtain via iteration of (2.11) with 8 = Kee, p = 8,28,.. .,N8,

(2.14) llüll^e-'llull^^llull^,
where, to guarantee that Lp — 0 on B^N+ X)S, we insist that

(N+l)8<d,   i.e.,(Kee)(N+\)<d.
Clearly, with (2.13), the largest such integer N satisfies

1      dN >-—
2Ke   e

Now cover ß0 in a locally finite way with discs of radius 8. Upon squaring and
summing (2.14), (2.12) obtains, under the condition (2.13), with c = (2Ke)~x and C
depending on the disc-covering procedure. Since (2.12) is trivial for d<4Kee, it
follows in general.

To show the full inequality (2.6), one first takes (2.10) into account, setting there
8 = d/2, and one then proceeds as for (2.12).

For (2.7), one uses (2.9) to obtain

£2||<oVü||2 + a0||wü||2 < -2e2(vw • Vu, wu)

so that

Il Vu || Bp<^ Il Vu || w

One then continues essentially as before.
This proves the lemma.
We conclude this section with the following technical local regularity result for

functions satisfying Leu = 0 in a subset.

Lemma 2.3. There exists a constant C such that the following holds:
LetQ0 C ß, Ç<?lwithd= 3* (ß0, ß,) > 0, and let v G 95, Lp = 0o«ß,. Then

(2.15) e2||o||ff2(0o)<c(^||Vü||ßi + ||ü||i2|),       0<e<l.

Proof. It is clearly enough to show (2.15) with the left-hand side replaced by the
seminorm | u \H2^a (. Reasoning as in the proof of Lemma 2.2 and using notation
therefrom, it suffices to prove

(2.16) E2|u|„2(fl8)<c(y||vullfi36+Ilu||ß3s),   withS = ¿/3.

Let u be as in (2.8), with p = 8, and let further M denote the mean-value of v over
B2S, i.e.,

M = (meas B2S)     J   v.
Jr..

It is well known that

(2.17) ||u-M||fi2i<C5||vu||fi3s,

where C does not depend on 8.
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We now first treat the case of Dirichlet boundary conditions. Assume first that
supp co does not intersect 391. Then by (2.5),

(2.18) E2|U w2(«8) £2|U M H2(BS) E2 | co(u — M) \H2

C||e2A(co(u - Ai)) + e2co(u - Af)||

C£2||(Aco + co)(u-M)|| + Ce2||vw-vu|| + C||«e2Au|

A/||fi2s + -^||Vu||fl2s + C||Wu||,
< Cel il

where, in the last step, we also used that Leu = 0 on the support of co. Taking (2.17)
into account, (2.16) obtains.

In case supp co intersects 391, take M = 0 in (2.18) and estimate the term
e2 II u || B /82 via Poincaré's inequality as Ce2 II Vu II B /8.

For the Neumann problem we separate, for technical reasons, the cases ( 1.2.a) and
(1.2.b). For a smooth boundary we use the well-known a priori estimate, cf. e.g. [11,
Corr. 2.2.2.6],

<C||-Aw + w\
3h>
9« H"2<a®.)

The work then proceeds as in (2.18), except that an additional term

-r-(w(u
on

M)) - £'
//'/2(3<3l)

3<o
~\m~

(v-M)
//'/2(3«.)

has to be included. Since the /71/2(39t) norm can be bounded by the Hx norm, the
proof is easily completed.

For the case of a Neumann problem on a convex straightedged polygonal domain,
we have, for w with dw/dn = 0on 391, cf. (2.5),

llw||//2< C||-Aw + vf ||.

We may apply this tow — u(v — M) provided (i), (ii)(a) or (ii)(b) below hold:
(i) supp w C C 91,
(ii) w is a radially symmetric function centered on 391 in such a way that

(a) supp w avoids any vertex, or,
(b) to is centered at a vertex and supp co avoids any other vertex.

The domain Bs can be covered with a bounded number of sets where co = 1 with co
of the types described. Proceeding as in (2.18), we infer that (2.16) holds also in this
case.

This completes the proof of the lemma.

3. The Approximating Spaces. We shall briskly list our hypotheses for the finite
element spaces. The assumptions A.1-A.5 below are standard and well known for
quasi-uniform partitions and corresponding spaces occurring in practice, cf. e.g.
Ciarlet [6]. The last assumption, A.6, is perhaps less standard.

Let 0 < « ^ 1/2 be a parameter and let 91 = U^/t/1 be partitions of 91 into
finite elements t*. We are, for technical simplicity, assuming exact subdivisions of
91. For curved polynomial boundaries we have isoparametric modifications in mind;
for more general boundaries we refer to Zlamal [29]. We insist that the family of
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meshes is quasi-uniform, i.e., that there exist positive constants c0 and C0, indepen-
dent of « and /', such that, with p) denoting the diameter of the largest inscribed disc
of t/1, c0h < p\ < diameter(T*) < C0«. This condition is implicitly contained in the
assumptions below.

A.l. There exists a constant C such that, for u G Wx1(t¡h), 0 < « < 1/2, i =
!,...,/(«),

/   J © | < C{*- » II f> II il(^, + | O | h.Í(^)} ■
'9t¿

This condition is easily verified for quasi-uniform meshes of the usual kinds.
Let Sh be finite-dimensional subspaces of W^(9t) such that, for x m Sh,

X |ta G (22(tva). Corresponding to our convention (1.16), we introduce Sh = {x E Sh:
X = 0 on 391} and set

(3.1) SA = SA   or   Sh

according to whether homogeneous Dirichlet or Neumann conditions are under
consideration.

A.2. (Inverse property.) There exists a constant C such that, for x G Sh, 0 < « <
1/2, i = 1,..., 1(h),

llxll ̂ )<c«"-'-2<,/"-1^llxll^(^,

for 0 < m =£ / < 2, 1 < <? < p < oo.
We next consider approximation properties of the finite element spaces.
A.3. (Local approximation.) There exist constants c and C such that the following

holds: Given a function u (with u = 0 on 391 in the Dirichlet case), there exists
X G $h such that for 0 < « < 1/2, i = 1,...,/(«),

II« - xll¿2(T,*) + "I v - X|V(t<*) < CA2IIo||¿,2^*),

where

*,* =   U  t/, diSt(liA,T/)<C«.

We introduce the piecewise seminorm

(3.2) |oL;-*=(2|oRk*(t*,)   ',        l </><«>

with the usual modification for/? = oo.
A.4. (Global approximation.) There exists a constant C such that, given a function

u (with u = 0 on 391 in the Dirichlet case), there exists x G SA such that, for
0 < h < 1/2,

II» _ XII z., + h\v - x\w\ + "2\v ~X\wf-k< Cn21| o || „,2.

Note that a similar global approximation result in L2 and Hx follows from A.3.
Given a domain ß < 91, set SA(ß) = SA | ß and, cf. (1.17),

(3.3) S*(0) = {x e SA: 3* (suppX,ß) >0},

and also

(3.4) e%(Q)= {uGe°°(ß):3+(suppu,ß)>0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



58 A. H. SCHATZ AND L. B. WAHLBIN

A.5. (Superapproximation.) There exist constants c and C and an integer L such
that the following holds for 0 < « ^ 1/2:

Let ß0 < ß, < 91 with d > ch, where d = 3 ± (ß0> ßi)-   Let "£6" (ß0) with

II«II»1(00)<A¿-',       / = 0,...,L.

Then, for any x G %h, there exists \p E S^ (ßt) such that

llco2x - *IIq, + «ll"2x - ^11^0,) < cA«2{cr2iixllL2(fi|) + iT1 |xU-(o,)}-

Our last assumption is the following Sobolev type inequality on Sh.
A.6. There exist constants c and C such that the following holds for 0 < « < 1/2:
Letß0<ß, =£ 91 with d > ch, where d= 3^. (ß0, ß,). Then, for any x G Sh,

\\xh^0)^C(ln(d/h))X/2{\\x\\HHai) + d-x\\x\\LAaù}.

A proof of this, for specific Sh and ß0 = ß, = 91 (in which case d ~ 1 can be
taken), was given in Wendland [28, Theorem 8.3.3], cf. also Schatz-Thomee-Wahlbin
[23, Lemma 1.1]. These proofs are easily extended to most practical cases and they
are also simple to localize by use of local extension operators and scaling arguments.
Note also that, when d ~ h, A.6 is a consequence of A.2.

4. Global Energy Error Estimates. For v E%, define P¡¡v E §>h by

(4.1) ^e(u-F¿u,x)=0    forXGSA,

cf. the conventions (1.16), (3.1). We shall show some straightforward results; more
complete L2 estimates are given in the Appendix.

Lemma 4.1. There exists a constant C such that, for 0 < e < 1, 0 < «

(4.3)

Proof. Set e — v — Pj¡v. Using (4.1) we find, for any x G SA,

E2\\Ve\\2 + a0\\e\\2<Ae(e,e) =Ae(e,v-X)

and hence,

(4.4) £2IIVi>ll2 + a0\\e\\2 < C{e2||v(u - X)H2 + II© - xll2}-
We first treat the case e > ch, with c to be determined. Taking x = Pxhv in (4.4) we

have, as is well known, || v(u - x)ll < CHoH^i and ||o — xll < C«||u||wi so that

llVell^cjllull2,, +^l|u||2J<C||u||2,,.

The first estimate in (4.2) follows. Using, in a global fashion, the approximation x
from A.3 we also obtain the second inequality of (4.2).

We continue with a duality argument. Let w be the solution of

Lw — e,       w E 95.

<i,
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Then, for any x G SA,

Hell2 = At(w - x,e)
so that, with x as in A.3, utilizing (2.4),

Ikll2 < C^HvcllAllwll^ + C|kHA2||w||ff2} < cJaHvcII Hell + \ll«ll2j.

Hence, for e> ch with c = 2C, Il e || < Ch \\ Ve ||, from which (4.3) follows via (4.2).
It remains to consider the case £ < ch. By (4.4) with x = FAu we have also

||e||2<C(£2 + A2)||u||2il<CA2||u||2¥,,

which establishes the first part of (4.3). The second part is deduced by using x from
A.3.

To show (4.2) we use the inverse property A.2. For x G SA,

||Ve||<Hv(u-x)ll + CA-1||FAeu-xll

< llv(o - x)H + ca-'Hu - xll + CJT1 II«II.
With suitable choices of x, as before, and taking (4.3) into account we verify (4.2).

This completes the proof of the lemma.

5. A Local Energy Estimate for the Discrete Problem and a Local Energy Error
Estimate. We shall first prove a discrete analogue of Lemma 2.2.

Lemma 5.1. There exist positive constants cx, c2 and C such that the following holds
forO<e< 1,0 < A <£:

Let ß0 C ß, C 91 with d > c,A, where d = 3 ̂  (ß0, ß,). Ifvh G SA(ß,) is such that

(5.1) At(vh,X) =0   for x G S*(ß,) (cf. (3.3) for notation),
then

(5-2) ll»»llQ0 + allVoÄ|la0<Ce-^A«+*)||oJla|.

Comparing to Lemma 2.2, we have here the restriction d> cxh. Further, when
£ « A, the decay exponent is not d/e but merely d/h.

Using this lemma, we shall then establish the following local error estimate.

Lemma 5.2. There exist positive constants cx, c2 and C such that the following holds
for0<e< 1,0<A<1:

Le/ß0 C ß, C <3lwith d > cxh, whered = 3 + (ß0,ß,). Letv G %andvh E SA(ß,)
be such that

(5.3) At(v-vh,x) =0   /0rXeS**(Q,).
Then

(5.4) llo-oA||ffl(oo)<C    min    (llv(o - X)ll0l + ^llo - xllo.)

+ ^«-^/(t+A)llo-oAHo,

In particular, the result holds for vh — P¡p, cf. (4.1).
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Proof of Lemma 5.1. We follow the proof of Lemma 2.2.
Let D and D +s be two concentric discs of radii p and p + 8, respectively, with

center in ß0, and let co G &o(Dp+s) be such that

(5.5) co=l    onDp,        \\ u \\ et(Df+t) < C8~',       1 = 0,...,L.

Set Br = 91 n Dr and assume that

(5.6) Ae(vh,X)= 0   for XeS*(Sp+8),

and furthermore that 8 > ch. The dependence of c on previously displayed constants
can be traced in the proof below, but we leave this to the reader.

Using (5.6), we have by a simple calculation,

e2||coVuJ|2 + a0||couJ|2 <£2(vüa,co2Vüa) + (auA,co2uA)

= Ae(vh, co2uA) - £2(coVuA,2(vco)uJ

= ^£(uA,co2uA-X) -£2(coVuA,2(vw)uA)    for  xeSA*(5p+4).

By the superapproximation hypothesis A.5 we thus find,

(5.7) e21| coVuA ||2 + a0 II cou„ II2 < Ce2 II Vu, Il Bp+í( J II VuA II Bp+s + ^||oA II Bp+s )

+^II^IUp+s(tIIV^iivs + ^ii^iivs)

E2
+ Cyll«V0j|||0AHVi

Note now that, since 8> ch,

(5-8) ^IIVuAllßp+älluA||ßp+s<^||VuA||2Bp+s + ^||uA||2p+
fi + S

Further, by use of the inverse hypothesis A.2, for 8 > ch, c large enough,

A2 „ Ch(5-9) tIM*.JIvo Vl |2
g   ""Ä"Äp + ,H  V"A"V» g    M^MBp+

Also,

(5.10) £f ||<oVoA|| ||oA|| Vt<|IIWoJ' + ̂ KII^.

Reporting (5.8)-(5.10) into (5.7),

(5.11) i^||vuA||2p + Û0||uA||2p<^IIVuA||5p+s + c(^ + ^)||uA||2p+2

Iterating the gradient term once more and using inverse properties,

Xllv^ll^4(c£cTll^l|2V28 + c(^ + f)iiuAii2p+3s)

S2 + A2\„     ll2<C\-   —   IKnW
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Similarly, iterating part of the L2 term in (5.11), using the above,

5«0*>'U<f(^+l)ll,'*,lU<c(£^)«^"U
Inserting these two inequalities in (5.11) and changing notation, we thus have

^2IIVuAH2p + a0||uA||2p<c(^)||uA||2p+s.

Consequently, with K independent of e, A, p and 8,

K                                         )Je2 + A2
II Vu„ II Bp < j II vh || Bp+s,       II vh || Bp < K--8-1| vh || Bp+s;

in the case of £ < A, the first inequality has to be separately established. This is easy
using first the inverse hypothesis A.2 and then the second inequality above.

The proof is now concluded as the proof of Lemma 2.2, cf. (2.10), (2.11) et seq.
We leave the details.

Proof of Lemma 5.2. Again it suffices to verify the result with ß0 and ß, replaced
by Bp and Bp+2S where 8> ch, cf. the proof of the previous lemma. Let co G
^0 (^p + 2«)>

co = l    onDp+s,       \\U\\e,(Dp+2t)<C8-',       1 = 0,1.

With v = cou, vh = FA(cou),

(5.12) II»-»*II»'(*„)< Hô-ôA||H. + llt3A-uA||H.(Bp).

Here, by Lemma 5.1, since Afvh - vh, x) = 0 for x G S*(Fp+s),

(5.13) \\vh - vh\\H,w<^e-^h>\\vh - vh\\„+t8
C
8<ie--/(.+*)(||«-«4||       +||0-ÜA||      ).

It remains therefore to estimate the quantity

llv(ô-ôA)||+|||ô-t5A||.

From Lemma 4.1, using that 8 3* ch, we have the bound

C||o||í/,+-y||i5||í/1<C||ü~ll//.<C||V«llBp+2, + fllo||Bp+M.

Combining this with (5.13) and (5.12) completes the proof, upon writing v - vh =
(o - x) - (oA - x) for x G SA(Ö,).

6. Global Almost Best Approximation in the Maximum Norm. We shall prove the
following result.

Theorem 6.1. Assume that (1.2), (1.4) and A.1-A.6 of Section 3 hold. Let u be a
continuous function, with u = 0 on 391 in the Dirichlet case, and let uh E §A be such
that

(6.1) ^e(«-KA,x) = 0   /orXeSA
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(i.e., uh = FAw). There exists a constant C, independent of e, h, u and uh such that, for
0<e<l,0<A<¿,

(6.2) Il m - uh\\L m < lnlC + j-) min ||u - xWi^m-

Note that, by Green's theorem,

(6.3) Ae(u - uh, x) = s2 2 (/> - uh)àX +<f>(u- «j|*l

+ (a(u-uh),x),

so that (6.1) makes sense for u continuous.
The rest of this section will be devoted to the proof of this theorem. By a density

argument we may assume that u is continuously differentiable.
Let x0 be an arbitrary point in 91, and let t0 denote an element such that x0 E t0.

By use of the inverse property A.2 we have,

(6.4) | (u - u„)(x0)\<\u(x0) | +| uh(x0) \<\ u(x0) | +CA-,||«A||To

<cii«iiLoo + ca-1iiu-MaiiTo.

Here,

(6.5) *-I|l«-M*llt6 = A~1    sup    iu-uh,4>).
*eß?(T0)

11*11 = 1

For each such fixed <#>, let u solve

(6.6) Lp = <p   in9l,uG®,
and let vh denote P¡p. The notation for </>, u and vh will be fixed for the rest of the
proof.

We next derive two simple preliminary results concerning u and vh.

Lemma 6.1. There exists a constant C, independent of e, h and <j>, such that

(6-7) M + ]lv*^{c'h/e,

(6.8) Hvu|| + ||VuA||<4lnl/2(C + ^)-

Proof. Since

(6.9) £2llvu||2 + a0||u||2 <At(v,v) = (<t>, v),

and a similar inequality holds for oA, the first bound in (6.7) is clear.
For the second part of (6.7), we first consider u. We have ||u|| = (u, u/||u||) and

letting Lcw = ü/||ü||, w G 9J, hence,

Hull =Ae(v,w) = (<f>,w).
Using Sobolev's inequality in the form \\w\\L   < C||w|| J/s21|w||1/2 and also that
11*11,,, <CA||*|| =CA,

(<i»,w)<CA||w||1/22||)v||1/2
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which by Lemma 2.1 is bounded by Ch/e. This shows that Hull < Ch/e, and, since
by Lemmas 4.1 and 2.1 II o — oA || < Ch II u || H\ < Ch/e, we obtain (6.7).

For (6.8), we start with oA, using the analogue of (6.9). With ß' the intersection of
91 with a disc of radius max(CA, e) around jc0, we find from A.6 and (6.7),

£2HuA||2/,<(*,UA)<C||<>||Lil|uA||Lw

<CAln1/2(c + J)(||uA||//,(ß,) + i||uA||i2,)

^CAln'/2(c + f)||uA||„,+^ln'/2(c + f).

By this,

llujl„,^ln'/2(c + |).

Since also, by Lemmas 4.1 and 2.1, ||o — oA||wi < CAHull #2 < Ch/e2, we have
completed the proof of the lemma.

We return now to (6.5). Using A.l (applied to gradients) we infer, via (6.1) and
(6.3),

(6.10) (u - u„,<¡>) = Ae(u - uh, v) = At(u -u„,v- vh) = At(u, v - vh)

= -£22\fhuHv-vh) + <^>    u-^(v-vh)\ + (au,v-vh)
i      \     ri ' I

«CHHllLJc2|o-oA|H,2.* + e2A-1||v(o-oA)||£i + ||o-oA||Li},

cf. (3.2) for notation. Here, with x as in A.4,

I » - vh \ivr <lv - x In/," + I x - »A \w^
<C\\v\\W2 + Ch~x\\x-vh\\^

<C\\v\\W2 + Cft-'llo-xlliri + CA-1Ho-oA||w.;

<C\\v\\W2+ CA-'IIo-OaII^..
Therefore, from (6.10),

(6.11) |A-'(a-«*,♦) |

< CIIhII^A-'IIoII^ + e2A-2||u - vh\\w¡ + h~x\\v - vh\\L].

We next introduce some notation. Let

Qj= {xE6l:2-J<\x-x0\<2-J+x},

Q'j = ß,_, U ß,. U Qj+,,       U'J = ü'j_, U ßj U Si'j.
Assume, for simplicity in writing, that 91= U°°=1 ßy. Let /+ be such that 2~J* <
C^A < 2~J' + \ with C„ sufficiently large, to be determined, and let ß* = {x G 91:
| jc -x0\< 2~J'} so that 91- (U^,ßy) U ß„. Set further dj = 2~j, d* = 2~J\
Also, the notation 2*11 uII wk(Q) shall mean 2^, llull^*^ , + Hull Wk(üt).
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Returning now to (6.11), we shall estimate the three terms on the right. For the
first we have, by Cauchy's inequality and using Lemmas 2.1 and 2.3,

(6.12)        e2h-l\\v\\W2 = e2h-l2*\\v\\whaj)<Ce2h-l2*dj\\v\\H2,üj

J* J*
<C+Ce2h~x 2 HvuH^ + CA-1 2 djWvWay

We note now that

1/2J, \ [/¿
¿e-2"V£        <in>/2(c+e.).

For, since exp(-2c2 x/e) is increasing with x, we may estimate the sum inside the
square root by / = fx* + x exp(-2c2~x/e) dx. Substituting 2~x/e = y we have, since
2--/*<CNtA*£2~--/* + l,

/.log2/1/2%-2^
•'C*h/4e y

and the result readily follows.
Hence, by the exponential decay result of Lemma 2.2 and by Lemma 6.1, for C„,

large enough,

(6.13)   £2A-' 2 llVcllo^Ce2*-1 2 «~^AHvo||ß;
j=i j=i

1/2

<Ce2A-' 1    2e-2cd^A      llvu||<ln(c + |).

Introducing the notation

(6.14) ^=h-x2*dj{U\\aj+\\vh\\a),

we thus infer from (6.12) and (6.13),

(6.15) £2A-1Hü||H/2<CE2A-12*^.||u||//2(í¡;)<ln(c + ^) + CS".

For the third term on the right of (6.11), we immediately see that it is bounded by
C3". Therefore, by (6.15),

(6.16) \h~l(u - «„,</>) |< C\\u\\J^a(c + |) + ?T+ £2A"2||u - vh\\w}).

For the last term here, we use the local energy error estimate of Lemma 5.2 and find,
for any x G SA,

(6.17) £2A-2||u - vh\\w¡ < C£2A-22*c/yHu - vh\\Hi,aj)

«Ce^-^^llo-xllfl^+llü-XlIo;)

+ C£2A"22*e"c^/(E+',)||u - ©J|0, = 2f + 2?.

Here, by the local approximation hypothesis A.3 and by (6.15)

(6.18) 2* < Ce2h~x2*dj\\v\\H2ia,;)<ln(c + j) + C<5.
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Further, using Lemmas 4.1, and 2.2, 2.1,

(6.19) 2* < Ce2h'2(le'2cä^c+h))l/2\\v - VJ

<Ce2ln1/2(c + ^)l|u||H2<ln1/2(c + ^).

Reporting (6.19) and (6.18) into (6.17), and the result of that operation into (6.16),

(6.20) |A-1(M-MA,<#.)|<CH«lli.oo{ln(c + |) + Ï }.

It remains to show that

(6.21) 9'=A-12*ciy.(||ollay+lloA||0/)<C.
Admitting this for a moment, we would then have

|A-'(M-uA,<i»)|<C||«||LJn(c + ^)

so that from (6.4), (6.5),

||«-«A||Loo<ln(c + |)||«||Leo.

Writing u — uh = (u — x)~ (uh ~ x) f°r X e §a would then conclude the proof.
To verify (6.21) we proceed as follows. Since ||u|| + ||uA|| < C it suffices to

estimate

«-S^OHI^+lloJIo,).
y=i

For C* large enough we may again invoke exponential decay results, now from
Lemmas 2.2 and 5.1. Thus,

J* J,
?r< c+ ça-1 2 ^-«"^'iioiio; + ch~x2 ^«~^/(e+A)iioAiio-

y=i j=\

«C+CÄ-'el 2 (j)2«-2^/«       ||0||

+ca-'(e + a)  2 (-^M <?-2cv<«+*)
/\j^x\e + hj j

<C+ CA_1e||o|| + CA_l(e + A)l|oJ|.

Applying Lemma 6.1 and separating the cases e < h and £ > A, we deduce (6.21).
This completes the proof of the theorem.

7. A Pointwise Local Error Estimate. We shall establish the following result.

Theorem 7.1. Let x0 E 91, with (1.2), let D be a disc of radius d > 0 around it, and
set Qid = D n 91. Let u be a continuous function, with u = 0 on 391 in the Dirichlet
case. Assume that A.1-A.6 of Section 3 hold. Let uh E SA(B¿) be such that

(7.1) Ae(u-uh,X) = 0   /0rXGS*(ßJ.

1/2
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Assume further that (1.4) holds on Ud. Then there exist positive constants cx, c2 and C,
independent of e, h,u,uh,x0 and d, such that, for d > cxh,0 < e ^ 1, 0 < A < |,

(7.2) |(M-MA)(x0)|<Cln1/2(|)|ln(c + |)nnn||M-xllL^)

+ Ie-^/(^)||„-«A||£2(0rf)}.

Proof. First change the form Ac so that (1.4) holds on 91, with the same a0 and ax
as for ßd. This is easily done.

Let D" and D' be discs concentric with D and of radii \/4d and l/2d,
respectively, and set ß" = 91 D D", ß' = 91 D D'. Let co G Q%(D) be such that
(7.3) (0=1    onD',        llwll^o)«!).

Set finally « = cow and ma = Fa(coh). Note that, in the Dirichlet case, « = 0 on 391.
Then

(7.4) | (m - ka)(x0) 1 = 1 (« - «*)(*<>) N (" - "a)(xo) I +1 ("a - "*)(*<>) I •
Here, by Theorem 6.1,

(7.5) \{ü-üh)(x0)\^\n[c + \)\\ü\\L^ln{c + \)\\u\\LM

For the function üh — uh in SA(fi¿) we have by (7.3),

A£üh-uh,x) = o  forXeS*(ß').
Using then the Sobolev inequality A.6 and Lemma 5.1, and also (7.3),

I ("a - "*)(*o) I*1 C(lnc7/A)1/2|||MA - «JI#i(o«) + ^H"a - Mß"j

^(lnd/h)X/2e-«i/^\\üh- uh\\ü,

^(lnd/h)X/2\\üh-ü\\ü.+ C{Xnd^h)W\-^+hnu-uh\\a..

Here the first term on the right is bounded, using again Theorem 6.1, as

C(\nd/h)X/2\\üh-ü\\L^\n[c + ^)ln(d/h)X/2\\u\\L^üä).

Combining the above we have proven (7.2) with x = 0. Writing u — uh = (u — x)
— ("a — x) f°r X e §a verifies it as stated.

8. Outline of the One-Dimensional Case. We consider the problem of finding
« = u(x) such that

(8.1)        -£2«" + a(x; e)u =f   in 91 = [/, J], a finite interval, u E 95,
where the analogue of (1.4) holds and where u G 95 designates homogeneous
Dirichlet or Neumann conditions at x = I and x = J. In the present case there is no
additional work incurred by allowing different boundary conditions at the two
endpoints.

The finite element spaces %h typically consist of piecewise polynomials of a certain
degree on a quasi-uniform mesh, the polynomials on different subintervals being
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connected by continuity constraints across nodes. For a Dirichlet condition at x = I
or J, it is assumed that the functions in SA vanish there.

The analogues of hypotheses A.1-A.5 of Section 3 are easy to verify in practice;
A.6 will not be needed in the one-dimensional situation. In A.2, the factor in front of
(q~x — p~x) is 1 instead of 2.

The results of Sections 2, 4 and 5 have no changes in statement; their proofs are
often somewhat simpler, especially in Section 2.

We shall now outline how Theorem 6.1 would be proved, with (6.2) replaced by

(8.2) II" — "a II Lnm < C nun II m - x II L„m-

For another approach to the same result, see Wahlbin [27]. (The corresponding local
result is given in (8.3) below.) We have, referring to analogous estimates in Section 6,

(6.4)' | (u - uh)(xQ) |< Clinic + CA-'/2||M - «A||v

One then proceeds as in (6.5), (6.6). Lemma 6.1 will now have the following
inequalities:

(6.7)' llu|| + ||uA||< jC/l,/2/el/2>

(6.8)' llo'll + Ho;II <CA'/2/e3/2.
To see this, consider, e.g., u. By use of the one-dimensional Sobolev inequality
Il g IIL. < C(Hg'||1/2llgll,/2 + Hgll), we have

e2\\v'\\2 + aJv\\2<(<t>,v)<H\\Lj\\v\\Lœ

<CA'/2||<í.||Lil|u||1/2||u'H1/2+Hu||)

cÍ^||u||1/2)(e,/2IIu'||,/2) + CA1/2||u||

hV2 \4/3       1 a
^llull'/2 +^£2Hu'H2 + CA + ^|

Thus

^||0||2<C(A1/26-1/2||t3||V2)4/3 + A)

from which (half of) (6.7)' follows. The proofs of (6.7)' and (6.8)' are easily
completed.

Now continue as in Section 6. This time,

(6.11)'   |A-'/2(M-Ua,<í»)|

< C || « || ¿Je2*"'/2 || ull „,2 + £2«-V2||ü _ 0jwl + „-1/211« _ 0jLtY

Here, trivially from the equation Lp = <i>,

¿h-l'2\\v\\Wf<h-l/2H\\L, + h-x/2ax\\v\\Lx <C + h-x/2ax\\v\\w

Setting now

(6.14)' ^'=h-x/2i*dy2{u\\a + uh\\Qx
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we immediately see that A~l/2||u||L < C3"'. Also the last term on the right of
(6.11)' is bounded by C3'. Thus,

(6.16)'     | A-'/2(M - «A,*)|< Cllulljl +V + £2A"3/2||u - vh\\w]).

Using the local energy error estimates of Lemma 5.2, we find

(6.17)'   e2A-V2||„ - vh\\wl < e2h-y22*dy2\\v - oA||H.(ßy)

< Ce2h-^22*(dy2\\v- xllff.(0;) + ¿71/2llu - xllo;)

+ C£2A-3/22*¿71/2Hu - üa||0, = 2f + 25.

Here, by local approximation, A.3, and since ev" = av outside ß,, using also
Lemma 2.1,

(6.18)' 2f < CE2A-1/22*i/j/2llu||H2(Q;)
er

< Ce2 II o II „2 + ÇA"'/2 2 </2llu||a; < C + C5)'.
y=i

Further, by use of Cauchy-Schwarz' inequality and by Lemmas 4.1 and 2.1,

(6.19)' l*2 « Ce2A~2 IIo - uAH < Ce2 || uIIH2 < C.

Thus, from (6.16)' via (6.17)' and (6.18)', (6.19)',
(6.20)' | A-'/2(m - u„, <b) \< CIMIjJl + ?T'}.

It remains to show that

(6.21)' 9"'<C.
This now goes as follows. By use of the exponential decay results and of (6.7)',

ST
S)'<C+ Ch~x/2 2 dy2e-cd^\\v\\a,

y-i

+ CA^|/22^1/V^/<E+A)HuA||S2;

/     d \x/2
<c + ca-'/2£'/2 27^"C^A      lloll

Id \x/2
+ CA-'/2(e + A),/2   2 T~Tl^e~Cdj/U+h)       II"*»

\ j (* + *) /
<C.

This completes the proof of (8.2).
For the local result corresponding to Theorem 7.1, one obtains it with (7.2)

replaced by

(8.3)     \(u-uh)(x0)\

< c\ min || u - x H ,^d) + ^Cd/U+h) » « - «* H Moi ■
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To see this one proceeds as in the proof of Theorem 7.1. The inequality (7.4) is as
before, whereas, by (8.2),

(7.5)' \(ü-üh)(x0)\*¿C\\ü\\La¡<C\\u\\La¡IQay

In (7.6) we use instead the one-dimensional Sobolev inequality

\g(x0)\<C]fd\\g'\\a„ + -jL\\g\\a„

so that, by Lemma 5.1 and (7.3),

_C
fd(7.6)'       | (üh - uh)(x0) \<-^e-<d^Hh - uh\\a,

<jr\\üh- filio.+ -§-«"e-/(,+*)ll«-«»II0"
ya ya

The proof is then completed as in Section 7.

9. Nonhomogeneous Boundary Conditions. We shall show how Theorems 6.1 and
7.1 carry over to nonhomogeneous conditions (1.3).

Let us first consider Neumann boundary conditions, i.e., du/dn = F on 391. The
weak form of (l.l.a)Hn is to find u G Hx such that with, as before, Afv, w) =
e2(Vu, Vw) + (au, w) and with (u, w>= /aa vwds, we have

At(u, u) + e2(F, u)= (/, u)   for all u G Hx.

The Galerkin solution uh is found as uh E Sh (with no imposed boundary condition)
such that

Ae(uh,x) + e2{F,x)=(f,x)    forxeS/,.
Here we shall not consider further approximation of (F, x)- Hence,

Alu-uh,x) = Q   forXG5Ä
and the results of Theorems 6.1  and 7.1 are clearly true without any change in
statements or proofs.

The case of essential Dirichlet conditions is somewhat more technical. We seek to
approximate u, the solution of

Leu=f   in 91,       u = F   on 391.
The approximation uh in Sh is found via

¿,(«*,x) = 0   forXeS„,       uh = Fh   on 391

where Sh denotes those functions in Sh that vanish on 391 and where Fh, an
approximation to F, is the restriction to 391 of some function in Sh. Then

(9.1) Ae(u~ uh,x) = 0    forx G 5A, where ma = FAon39l.

The result of Theorem 6.1 now goes as follows: With appropriate notations and
conditions from there, if (9.1) holds, then

(9.2) H"-wA||i^l)<ln(c + !)     irün      II« ~ xll /,„<*).
X = uh on ö3l
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For the localization of this we have, with notations and conditions taken from
Theorem 7.1 (but not repeated here): If uh E Sh(üd) with (in self explanatory
notation)

(9.3) Ae(u-uh,X) = 0   forxe5*(Bj,

then

(9.4) |(M-UA)(*0)|<ln(c + f)ln'/2(f)

x j      "ft ,    II" - xll^(0-, + -de~Cld/(t+h)U - "»»W
x^sh(üd) a

In the rest of this section we shall show how proving (9.4) can be reduced to the
previous case of a homogeneous Dirichlet condition. The analysis leading to the
global estimate (9.2) is similar and simpler and we leave it to the reader.

By a density argument, we may assume that u E Q2(üd). Set T = Qd D 391; we
shall assume T nonempty and leave the (much easier) case of empty T to the reader.
Designate F = u |r, the boundary values of u, and FA = uh |r.

We may assume that the circle of radius d around x0 cuts 391 in two points only;
otherwise use smaller but comparable discs. First, extend F — Fh from T to 3ßd so
that

(9-5) WF-Fh\\LM)=\\F-Fh\\Lm(r);

this is easily done since only two values of F — Fh are given on the circular arc of
3ßd\l\

Define next 4> by

FE(^-w) = 0    inß^,       x^-u = Fh-F   ondttd.

Then
(9.6) 4> = Fh   onT

and, by the maximum principle and (9.5),

(9.7) H-»\\imlQ,)<\\F-FjL.iry

Hence,

(9.8) | (u - «*)(*o)l<l (« - *)(*o) I +1 (* - "a)(*o) I
< 11^--F» II L„(r) +I (*-"*)(*(>) I-

Here,

(9.9) Ae(t-uh,x) = 0    forXG5*(ß,).

Let <¡>h be any function in Sh(£ld) with (¡>h = Fh on T, and set
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Note that tj = 0 on T and that 6 E Sh(üd). Since, by (9.9), Ae(r¡ - 6, x) = 0 for
X G 5A* (ßd), we have from Theorem 7.1

(9.10) \(^-uh)(x0)\ = \(r¡-e)(x0)\<ln(c + l)tí/2(f]j

X {Nil 1,(0,)+ ¿e-ei-/(,+*)lln-«Hl,

Here, by (9.7),

(9.11) Hi? 11^.(0,) =11*-** 11^(0,)
< H"-^11^(0,)+ II«"** 11^(0,)

< Ilf -FJL„fT) + Hii-fcIItao(o¿).
By a similar argument,

(9.12) ¿N-«111*0,, = ¿II*-«Jli(h,>

«¿^-"ll^o + ̂ ll"-«*!^^,)

< y^ Il F - FAII £ao(r) + -1| « - «A || Mo^.

Using (9.12) and (9.11) in (9.10) and combining with (9.8) shows that

A(M-«A)(x0)|<ln(c + ^)ln1

X (lIF-FJI^r, + !!«-<.

+ — p_C2<'/(f + '')||,,   —   ,,     II+ ¿e l|M       «»lli.2(0,)J-

Since u = F,uh = 4>h = Fh on T, where <j>h is otherwise arbitrary in Sh(Qd),

IIF-FA||^(r)+||«-^||^(0)<2        min        II« ~ xIIl„(0,)-
XSSh(Qj)

X = uhon Qdnd^Si

This proves (9.4) under the condition (9.3).
We leave the translation of the one-dimensional estimates to the case of nonhomo-

geneous boundary conditions to the reader.

10. More Explicit Local Error Estimates. In this section we shall explicate the local
estimate (1.8) under certain smoothness assumptions effectively reducing the non-
smoothness in the problem to the boundary layer. We shall only consider the
homogeneous Dirichlet case.

We make the following three assumptions:
(1) (Local behavior of u.) There exist positive constants C and c, independent of e,

such that with d(x) = dist(x, 391),

(10.1) A)  U{x)
-cd(x)/e

1  +--
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If data in the problem, including 391, are sufficiently smooth, the estimate (10.1)
is a consequence of Besjes [4, Theorem 13].

(2) There exists a constant c such that

(10.2) II / II ta>(ft) < C   independent of 0 <£< 1.

We note that then (see Lemma A. 1 in the Appendix)

(10.3) \\u\\L   < — \\f\\L   «C.

Finally, we need a local maximum norm approximation estimate for Sh.
(3) There exist constants c and C such that the following holds. Given a function u

with u = 0 on 391 there exists x G Sh such that for 0 < A < 1/2, /' = 1,... ,/(A),

(10.4) || u-xllz^^CA2 \\v\\e2(-h

where f,A = Udist(T^)<£cA t/.
Setting e(x) = u(x) — uh(x), the following is the main result of this section.

Theorem 10.1. Assume (1.2), (1.4), A.1-A.6 of Section 3 and (1), (2), (3) above.
There exist positive constants c,, c2, c3 and C, independent of h and e, such that with
d(x) = dist(x, 391), the following holds.

(i)Ife<h,then

(10.5) \e(x)\<C\ri/2(^)h2   ford(x)>c2hlnl/h

and

(10.6) |e(x)|<C   ford(x) <c2hlnl/h.

If furthermore e < c,A/ln 1/A, then

(10.7) |«?(jc)|<Cln'/2i|) {A2+ <?-<"'/*}    forc2h<d(x).

(ii) Ife^h, then

(10.8) |e(x)|<ln'/2i|)ln(c + |)A2   ford(x) ^ c2e\nl/e

and

(10.9) \e(x)\<ln(c + j-)^    foranyd(x).

Remark. In a one-dimensional problem, the factors lnl/2(c//A) and ln(C + e/h)
would not be present.

Before giving the proof of the theorem, we display, in Figure 10.1, the error
estimates obtained. Factors \nx/2(d/h), ln(C + e/h) and constants are skipped. The
shaded regions are intended to suggest (small) areas where our information is less
precise.
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e < h/ln1/h
(10.7)

hlnl/h :lnl/e dist(x,3ß   )

Figure 10.1
Local error estimates according to Theorem 10.1

Proof of Theorem 10.1. The easier estimates are (10.6) and (10.9). Repeating (1.7),

(10.10) |e(x)|<ln(c + !) min ||« - xWlx-
xes„

For (10.6), take x = 0 and use (10.3) and that e/h < 1. For (10.9), using (10.4) and
(10.1) one has immediately

minllK-xll/,   ^CA2||M|
xes„

Ch2

The remaining results are based on the local estimate (1.8). Taking there d
equalling the present d(x) = dist(x, 391), we have for d > c'h,

(10.11) \e(x)\<Ctá/2U)\ln(c + l)mm\\u~x\\L^Qd)

+ -e~c"d/(e+h)\\u - u  II iT ¿e l|M        "AllL2(S2,)r.

where dist(ßd, 391) » c'd/2.
Note now the elementary inequality

(10.12) € <\    ioxd >c2e\n\/e,       cc2>2.
£

We further estimate d~'||u - uh\\L2,0d) by C||m - uj^ <ln(C + e/h), cf.
(10.10) et seq. Using then (10.4) and (10.1) in a local fashion, (10.11) gives for
d > c'h,

(10.13)     |e(x)|<Cln'/2(^)ln(c + ^)JA2(l+^) -I- g-c"d/'e+h){
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For £ < A and d> c2hml/h > c2elnl/e, (10.12) and a similar argument for the
last term give, since e/h < 1,

\e(x)\<CW2(d/h)h2
for cc2 > 2, c"c2 > 2. This is (10.5).

For (10.7), one easily finds that d > c(c2, cx)e\n l/£,and hence the result again
follows from (10.13) and (10.12).

Lastly, (10.8) also follows from (10.13) by similar arguments.
This proves the theorem.

11. Numerical Examples. In this section we shall elucidate some simple numerical
examples via our theory, and vice versa.

Example 11.1. Let

u(x) = x- 1 -*<?-'/*+ <?"*/',

so that u solves the problem

(11.1)
— e2u" + u = x -
u(0) = u(l) = 0.

l-xe~x/e,       0<jc<1,

The function u is simply a hnear term superimposed on a decaying exponential
exhibiting, for small e, a boundary layer of width £ln l/e at x = 0. Note that the
coefficients and right-hand side in (11.1) are nice functions, uniformly in 0 < e < 1.

We solved this problem numerically for a range of e's, employing uniform meshes
of size A = .05 and A = .025 and, in each of these cases, using piecewise linear and
Hermite cubic approximations.

In Table 11.1 we exhibit the maximum norm error (determined at meshpoints
only) and the meshpointyft where it occured.

Table 11.1
Maximum error for a range of e's

£
5°
5"'
5"2
5"3
5-4
5^5
5"6

PIECEWISE LINEARS

.05
.15 -4
.96 - 3
.27- 1

.21

.26

.27

.27

h = .025
.37 - 5
.24-3
.60- 2

.12

.26

.27

.27

HERMITE CUBICS

.05
.76- 8
.34-5
.83 -3
.33 - 1
.78 - 1
.82- 1
.82- 1

.025
.50- 9
.26-6
.90-4
.94-2
.68 - 1
.82- 1
.82- 1

We shall now investigate the cases e » A, e ~ h and e « A in more detail.
e » A. For e large compared to A, the estimates (10.8) and (10.9) show that we may

expect the global maximum norm error to behave like 0(h2/e2), for piecewise
linears. In the case of Hermite cubics, since we know u(x) explicitly, it is easy to
derive an 0(h4/e4) estimate from (1.7). Computing global rates of convergence from
Table 11.1, we find them as in Table 11.2.
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Table 11.2
Computed rates of convergence (global)

Piec. Lin. Herrn. Cub.

5"
5-'
5"2

2.0
2.0
2.2

3.9
3.7
3.2

For smaller £, the computed global rates deviate considerably from 2 and 4. In
particular, for very low e, there is no decrease in error with A.

£ ~ A: We next offer a sketch, in Figure 11.1, of the case e = 5~3 when, by Table
11.1, all maximal errors occur at the first meshpoint in the respective meshes.

.9 0

-1

EXACT

X   PL  h=.05

+   PL  h=.025

t   HC  h=.05

•  HC   h=.025

Sketching of the approximate
data points is discontinued
when these become indisting-
uishable from the curve of
the exact solution.

Figure 11.1
The transition region when A > e — A/ln(l/A)
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Note now that for A = .025, A/In 1/A = .0068 < e = .008 < A. Thus, the situa-
tion sketched in Figure 11.1 essentially takes place in a shady region in Figure 10.1.
For d(x)^c'h our local estimate (1.8) may be applied (in its one-dimensional
version (8.3)) to give

(11.2) \e(x)\<Cmin\\u-x\\,[x-d/2,x+dm + C
g-cid/h

{d/h

(Here we used Theorem A.2 of Appendix 1 to derive the slightly sharper form of the
last term.) Of course, Figure 11.1 looks, en gros, to be governed by local approxima-
bility and a decaying term depending only on d/h, but it is hard to say which term
rules at a specific point. Also, there are two choices for estimating the first term on
the right of (11.2): with y = 2 or 4 we have

X'W
Cx[-\ e~cd/h    (x = interpolant of u),

C2e~cd/h (x = linear part),

and the relative sizes of C, and C2 become important in this range.
For d(x) ** c2Aln 1/2 (= c2 X 0.15), the estimate (10.5) takes over and predicts

that the influence of the fast decaying term is essentially over. In our case, we
happen to know that both terms in (11.2) are fast decaying, but in general this would
not be true.

At any rate, even to come this far we have used more specific information about u
than we are likely to rigorously secure in a practical two-dimensional problem. Thus,
our conclusion is that while the local error estimate (1.8) gives some qualitative
insight in the behavior of the approximation close to the boundary layer when
A/In 1/A < £ < A, Figure 10.1 does well to leave that range as a shady area.

e « A: When e moves well into the range e < A/In 1/A, we expect from (the
one-dimensional, and also the Hermite cubic analogue of) (10.7) that the error
should behave as, for d > c2A,

\e(x)\<C(hy + e'c'd/h),       y = 2 or 4.

In our present case, perfect information and Appendix 1 again permit a sharper
estimate,

\e(x)\<C\e-«'/'-T-^=\ <C
{d/h   J      " {d/h  '

In other words, the error at meshpoints should depend only on the meshpoint
number, not on e or A (for e < c,A/ln 1/A, d(x) > c2h).

The numerical solution bears out this prediction, as is seen in great detail in Table
11.3.
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Table 11.3
The exponentially decreasing pollution in its purest form

Meshpoint #

5 PL

PL

.05

.025

.05

.025

5~6   PL    .05
.025

5~4   HC   .05
.025

5~5   HC    .05
.025

5~6   HC    .05
.025

.27

.25

.27

.27

.27

.27

.78

.68

.82
82-

.82

.82

.70

.66

.72

.72

.72

.72-

.19-

.16-

.20-

.20-

.20-

.20-

3

.19

.17

.19

.19

.19

.19

.53

.43

.57

.56

.57

.57

.49

.43

.51

.51

.52

.52

15-2
11-2

.16

.16

.16

.16

.65

.49

.71 - 5

.70- 5

.71 -5

.71 -5

.25-5

.16- 5

.30-5

.29- 5

.30-5

.30-5

14

85-8
54-8

98-8
96-8

98-8
98-8

.42

.22

.53

.52

.54

.54

\9

.10

.60

.13

.13

.13

.13

.66- 1

.30- 1

.89 - 1

.94- 1

.91 - 1

.98- 1

Example 11.2. We illustrate our assertation that, away from the boundary layer,
local approximability governs asymptotically, in a somewhat less trivial example
than the previous. For this purpose, let

u(x) = e~x/t + ex - x(e + e~x/e) - 2(1 - x),

so that m solves the equation

-eV' + u = (-e2 + l)ex - x(e + e~x/e) - 2(1 - x).

We take £ = 5  3 and work with Hermite cubics. The analogues of (10.5), (10.8)
predict

| e(x) |= 0(h4)   for d(x) > const max(Aln 1/A, £ln 1/e).

In Table 11.4 we present the errors for x = .25, .5 and .75, and also the global
error, for a range of A's, and calculate rates of convergence.

Table 11.4
Calculated rates of convergence

h
20"'

40"'

80-'

160"'

.25

Error

.775 - 4

.453 - 8

.435 - 10

.272 - 11

Rate

14

6.7

4.0

Error

.606 - 7

.895 - 9

.559 - 10

.349 - 11

Rate

6.1

4.0

4.0

.75
Error

.184- 7

.118- 8

.718- 10

.449 - 11

Rate

4.0

4.0

4.0

GLOBAL
Error

.33 - 1

.94- 2

.16-2

.19- 3

Rate

1.8

2.6

3.1

We see that the expected local rate A4 eventually appears. If one calculates
e-d/hy ^d/h one sees that, due to the miniscule errors, it probably influences the
errors for x = .25, A = 20"1, 40"1, 80"1 and for x = .5, A = 20"1, 40_1. This is the
explanation why the asymptotic range appears later in the left part of the table. We
also remark that the global error always occurred at the first meshpoint, as expected.
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Example 11.3. We give a two-dimensional example of the pollution effect in its
purest form.

We solved the problem, e = .001,

-e2Am + u = 0,       0«*, >><1,

u(x, y) = e~~x/e + e~y/c   on the boundary,

which has the obvious exact solution. We used triangular linear elements. The mesh
was essentially the product of a uniform subdivision in the ^-direction with A = .05,
and a subdivision {xJ+x}l° in the x-direction, xJ+i = .01 j + .002j2. Thus, the
x-mesh was slightly refined towards the origin. There were 361 interior nodes and
800 elements.

In Figure 11.2 we display the errors at meshpoints in a subregion of the unit
square. We leave it to the reader to analyze it along the lines of Example 11.1; the
picture is clear.

/ • • • • •

/

•      t 4 t • • •

V'' /        / / /
SCALE  FOR   ERRORS:

/

7///    /     /      /• • • • •
. 1

Figure 11.2
A two-dimensional example of the pollution effect in its pure form
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Example 11.4. This example shows that, when a(x) vanishes, the exponential
decrease of pollution is lost.

Consider the transmission problem

-e2m" + a(x)w = a(x)(3x - 1),       0 < x < 2,

«(0) = u(2) = 0,
where

With F = e~1/e, the exact solution is

-1 -F2+ 10F

0<jc< 1,
1 <x<2.

«(•*)
+ 3 x, 0 1.

E+   1  -F2(£-  1)

(e + 5F(1 - e))e~(x~X)/' + (5 + 5e - Ee)e~(2~x)/t + 3x - 1,

l*£x<2.

We choose e = 8.10  6.
Thus, on [0,1], the solution is merely a linear function; on [1,2], near 1 there is a

boundary layer of the usual kind but weak in magnitude whereas at 2, there is a
stronger boundary layer.

On [1,2], where a(x) = 1, our theory suggests exponential decay in error as
e-dist(x,P)/h away from^ = 12, respectively. On [0,1], where o(x) = 0, our present
theory does not apply. However, local error estimates for nonperturbed Dirichlet
problems, Schatz-Wahlbin [24], say that

| (u - uh)(x) |< C min ||u - xN^ + C<Tx/2\\u - «J|L (/)

^Cd-x/2\\u-uh\\L2(Ij)

and so predict no exponential decay in error.
Computing with Hermite cubics for A = 40_1 (and hence a meshpoint placed at

x = 1), the following errors ensued, reported here at every second meshpoint, Table
11.5.

Table 11.5
Damping of pollution depending on the positivity of the coefficient a(x)

mesh pt. #   0 10 12 14 16

0 .6-3 .1-3 .2-2 .2-2 .3-2 .4-2 .4-2 .5-2 .5-2

20
-5

22 24

.2-8 .2-8
26

.3-7
28

.3-6
30

.4-5
32

.5-4
34

.7- 3
36 38 40

The decrease in error away from x = 2 (meshpoint 40) is easily discerned; to the
right of x = 1 (meshpoint 20) the exponential decay is less noticeable, since the
boundary layer is very weak here. However, on [0,1], in spite of the fact that the
solution here is perfectly approximable by Hermite cubics, pollution is rampant all
through and does not decay.
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The same pattern occurs if x = 1 is placed inside a mesh interval, the errors then
being magnified by roughly a factor 5 on [0,1], but staying the same on [1,2] except
near 1, as expected.

Example 11.5. Pollution absorbent mesh. One may draw a limited practical
conclusion from our analysis. Say that we have a problem on [0,1] and desire
"good" accuracy on [.1, .9] uniformly in £, with a fixed mesh. The nature of the local
error, in particular the pollution term which only depends on the number of
meshpoints away from the boundary for low £, suggests putting a few extra
meshpoints inside [0, .1] and [.9,1], for the purpose of absorbing the pollution. Thus
the aim is not actually to resolve the boundary layer, which would demand a
mesh refinement depending on e (and would possibly be bothersome in many
two-dimensional codes if a large number of e's are to be investigated).

Observe that, from the asymptotic point of view as A -» 0, since [.1, .9] is a fixed
interior subinterval, there would be no problem of high accuracy if the solution is
smooth. We are having in mind moderate to large mesh sizes here.

We illustrate the principle in the problem of Example 11.2 (and we use our a
priori knowledge that a boundary layer occurs only at the left). Taking a mesh with
10 subintervals, the problem was run for a range of e's, and with two different
meshes. First, a uniform mesh, and secondly, a mesh with 4 pieces of length .025 in
[0,. 1 ] and 6 parts of length . 15 in [. 1,1 ].

The results are given in Table 11.6; the error was calculated only at meshpoints.

Table 11.6
Uniform mesh vs. pollution absorbent mesh

f

5°
5-'
5-2
5~3
5-4
5"5
5-6

IMI'.,[.u]
Uniform Mesh

.30 -6

.42-4

.55 - 2

.62- 1

.81 - 1

.82- 1

.82 - 1

Pollution Absorbent Mesh

.16-5

.11 - 3

.12 - 2

.90-4

.10- 2

.14 - 2

.15 - 2

We conclude that the pollution absorbing idea works. For the error uniformly in e
over [.1,1], sup0<e<1 lkllL [XX], we have obtained a 50-fold reduction over the
uniform mesh.

Example 11.6. Comparison with some specially designed finite difference schemes. In
the one-dimensional case, Miller [17], Niijima [19], [20] and Shiskin and Titov [26]
have investigated special three-point finite difference schemes which converge uni-
formly in £ with respect to the maximum norm over meshpoints but which do not
attempt to resolve the boundary layer for small e. The construction in [17] and [26],
where the same scheme is analyzed, is based on exponential fitting, whereas the two
schemes in [19] and [20] are motivated by Liouville-Green transformations. We refer
the reader to the papers mentioned for details.
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In [20] the three schemes were compared when applied to the problem (t =
2x/(x + 1))

-eV' 4
(x+1)

-4

(x + l)4

-(1 +e(x+ l))u

(1 + e(x+ 1) +47r2£2)cos(2ir/)

,    2t     ,  i\ • ,*    \  ,   3(l + e(* + l))e~lA
-2we2(x + l)sin(2wi) + -i-i-"-

l - e~x/c

u(0) = 2,       «(!) = -!.

0<x< l,

This problem has the exact solution

u(x) = -cos(2wr) +
3(. t/e _ t>-\/*\

l-e"1/«

We shall reproduce, in Table ll.7, the results for the uniform step 1/32 in the
finite difference schemes. In the table we adjoin the results for the Galerkin method
with Hermite cubics, applied with a pollution absorbent mesh (on the left only)
constructed as follows. With H = 1/32, the interval [0, H] was divided into four
uniform subintervals, to absorb pollution, and the rest, [H,l], was partitioned into
twelve equal pieces. Thus, the number of unknowns in each problem was similar.
The maximal error was taken over each meshpoint in the three difference methods
and, for the Galerkin method, over the meshpoints in [H, l] (including x = H).

Note that we are comparing the general purpose Galerkin method to highly
specialized numerical methods, available only in one-dimensional smooth cases.

Table 11.7
Comparison with some special difference schemes

\  iio
I0
10
10
io-3
IO
10

1.5
-2
-2.5

3.5
4

Miller [17]

.65- 2

.71 - 2

.26 - 2

.40- 3

.41 - 4

.39 - 5

.66 -6

Niijima[19]

.48 -2

.77 - 2

.66 - 2

.28 - 2

.97 - 3

.31 - 3

.10- 3

Niijima [20]

.62-4

.26 - 4

.28- 4

.27 -4

.86 - 5

.32 - 5

.30- 5

Galerkin HC

.34- 2

.11 - 1

.80- 3

.38 - 3

.22 - 2

.30- 2

.31 - 2

The large errors for rather moderate e are due to the very abrupt change in mesh
size.

For further comparison it might be remarked that, for a uniform step of length
1/16, the quantity maxemax71 e(yA) | was .25 - 1, .21 — 1 and .20 — 3 in the
difference schemes [17], [19] and [20], respectively.

We leave it to the interested reader to investigate how methods involving matched
asymptotic expansions (and combinations of such with finite element methods)
compare; this is easy to do in most examples above.
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12. A Nonlinear Problem. We show how our results apply to a nonlinear problem.
Let u solve

/]2 ,x -e2Au + b(x,u; e) = f(x;e)     in 51,
u = 0 on 951,

where b(x, 0; e) = 0,b is absolutely continuous in u, and with some constant aQ > 0,

(12.2) -T- (x,u;e) 3= a0 > 0    for x G §1, 0 < e < 1, u E Rx.
ou

Further assume that db/du is bounded above on compact w-intervals.
The result of Lemma A. 1 of the Appendix extends to this situation and thus

L™     aQ

The existence of a unique solution to (12.1) can be obtained by monotonicity
methods, see Brezis [5] or Lions [15].

We thus have an easily computable bound for | u | that is independent of e. We
assume in general that we know bounds u0 and ux such that

(12.3) u0<u(x;e)^ux    forx e 51, 0 < e < 1.

To find an approximation uh by the finite element method we first change
b(x, u; e) to b(x, u; e) where

b(u) =

M"o) +  g7j("o)(«-"o)       forW<M0,

b(u) for w0 < w *£ ux,

M"i) + 3^("i)(«-"i).    foru>«,.

This modification is necessary in order to apply our theory when db/du may grow
with | u | , at least in an effortless way. It is probably not necessary in practical
computations but it is very easy to incorporate if desired.

We define the approximate solution uh E SA by

(12.4) e2(v«a,Vx) + {b(uh), x) = (/,x)    forxeS,.
The existence of uh is again guaranteed by monotonicity methods.

In the range given in (12.3), b and b coincide and thus u — uh satisfies

(12.5) e2(v(u-uh),vx) + (a(u-uh),x) = 0    forXe§A,

where

fl(jc;e)={ a^í^í + í1 -tMx))dt.

With ax = sup{36(x, u; e)/du: u0 < u < tix, 0 < e <■ 1, x G 61} and a0 as in (12.2)
we have now

(12.6) 0<a0<a(x;e)<ax.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS 83

From (12.5) and (12.6) we see that the global and local error estimates of
Theorems 6.1 and 7.1 immediately apply. We can thus state the following

Theorem 12.1. Assume (1.2), (12.2), (12.3) and A.1-A.6 of Section 3. Let u be a
continuous function vanishing on 351 and solving (12.1) in the weak sense, and let
uh E §>h be given by (12.4).

There exists a constant C, independent of u, uh, e and h but depending on u0, ux
(through a0, ax) such that

II " - "a II lk(*) < ln(c + T ) min || ii - x II r <«,)•
v n i xe§h

Further, let x0 G 51, let D be a disc of radius d around x0 and set Qd — D D 51.
There exist positive constants cx, c2 and C, independent of u, uh, e, h, x0 and d such
that for d> c,A,
|(u-Mjk)(x0)|

<c^(í){Mc+í)aii«-x»i^)+¿«"^/(,+*)ii«-«*ii^,}-
Appendix 1. Some Global L2-Estimates in the Dirichlet Problem. We consider the

problem

,    ., |-e2Am + au=f    in5lCCF2,
U = 0 on 351

under the general basic assumptions (1.2) and (1.4). The finite element spaces are
subject to the conditions of Section 3. We remark that it is easier to treat the
Neumann problem in an analogous way, and we leave that case to the reader.

We shall derive estimates for \\u — uh\\ L under weak assumptions on /and a. Our
main result is Theorem A.2. Due to the form of the boundary layer and our wish to
allow data with jump discontinuities, a certain interpolation space between Hx and
L2 turns out to be useful. We proceed to define and discuss this space.

For 0 < 6 < 1, let He'°° = [Hx, L2]e x denote the space given by the norm

K(t,v)

where

sup
f>0

K(t,v)=        inf        lluoll^ + 'llu,

c0£L2,v,eH'

We refer to Bergh and Löfström [2, Chapter 3] for more information about these
concepts.

Of particular interest to us is the space //1/2°°. Even for smooth data in (A.l)but
with/|3Sl j= 0, the boundary layer precludes u from being in H9cc uniformly in £, for
0 > 1/2 (we shall not prove this). Thus, as it will turn out, Hx/2-x is a good choice.
Also, Hx/2-°° is a reasonable space to measure/in: For,/will then not be subject to
boundary conditions, and / is allowed to have jumps in 51. In fact, pondering the
reduced equation u = f/a, taking / in //'/2-°° seems to nicely tie in with the
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roughness from the boundary layer; it will also allow jumps in the coefficient a,
while still u E Hl/2-x, as we shall see.

To somewhat elucidate these spaces we state and prove the following simple result
which shows that Hx/2-Qa does not demand boundary conditions. (This is in contrast
to the Hilbertian interpolation space [Hx, L2]x/22 = H^2, cf.,e.g.,Lions and Mag-
enes [16, Chapter 1, Section 11, Theorem 11.7].)

Proposition A.l (Lions [14, Chapter II, Section 5, Lemma 5.1]).
Hx(<&) C Hx/2-°°(<&)

with continuous inclusion.

Proof. By use of local charts, it suffices to consider the case of 51 = {x = (x,, x2):
x2 > 0}. For u G Hx and t > 0, set

v0l{x) = u(x,, -j),       ulr(x) = v(x) - v0l(x).

Then

K,Hz.2<',/2IMIL2,

whereas vu E Hx with

\\vu\\¿,^rx/2\\v\\H,.

It follows that K(t, v) ^ Ctx/1 H u II „, and so u G /Y1/2-00.
In a similar way, if Y is a Lipschitz curve partitioning 51 into 51, and 512, and u is

smooth on 51, and 512, then u G Hx/2'x. To see this, smooth u across T by a
mollifier, cf. (A.3)-(A.6) below.

We next show two simple lemmas.

Lemma A.l.

+«/»,.-

Proof. In case u G 62(5l) the assertation is immediate by considering the sign of
A« at interior positive maxima or negative minima.

In general we proceed as follows: Multiply the equation (4.1) by up~ l,p even, and
integrate by parts to arrive at

e2f\ Vu\2(p- l)u"~2+ jau"= ffup~x.

Holder's inequality then gives

û0ii«ii£ < ii/ii/- iiaiir1.

and the lemma follows upon letting p tend to infinity.

Lemma A.2. //, in addition to (1.2) and (1.4), Va G Lx andf G Hx, then

ell «Il u« + Il tf II Hi < C(||/||¿. + \\(va)u\\L{).

Proof. Multiply the equation (A.l) by A« and integrate by parts to obtain

e2||AM||2 + \\{a~Vu\\2=f Vf- Vu- f(va)u Vu.
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Thus,

e||A«|| + ||v«ll<C(||v/|l + [IVfl«ll)
and, since ||w||H2 < C||Au|| for the domains under consideration, the lemma fol-
lows.

Corollary. If\\va\\L   < Candf G Hx, then
e||«ll„2+ \\u\\H,<C\\f\\fr.

We are now ready to state a first simple L2 error estimate. The general assump-
tions are (1.2) and (1.4) and those of Section 3.

Theorem A.l. (i) Forf E L2,

\u-uh\\.<

Cll/ll,,

^ll/l

0 < e=£ A,

A<e< 1.

(ii) //1| VaII¿8 < Candf E //,/2°°, then

C{h\\f\\x/2¡a¡,     0<£<A,
I«-«*IIl ,< CA2

1/3/2 "J  "l/2,oo ,       A<£< 1.

(iii)//Il Va II ¿   <C andf EH1, then

\U - «,,

ChWfWfr,       0<£<A,

— Il/llrf.,    A<e<l.

Proof. The first estimate in (i) is trivial; the second follows from Lemma 4.1 and
Lemma 2.1.

For (iii), use Lemma 4.1 and then the Corollary to Lemma A.2.
The estimates in (ii) now follow by interpolation. For the reader unfamiliar with

interpolation arguments involving the F-functional, we give the simple reasoning, in
the case 0 < £ < A. Write f = f0+f\ where /0 G L2, /, G Hx. Then u = u0 + w,
where w, solve Dirichlet problems with right-hand sides/. By linearity, using (i) and
(iii),

+ \\ux - Pfax || < Cll /0|| ,+CA H/, II fr.Pchu0\

Considering all possible /0 and /,, we see that II» — uh\\ < CK(h, f) and since

1/2,00
we are done.K(h,f)<{h\\f\

Remark A.l. By the same techniques it follows that, if II Vail,,   < C,

(A.2) ll«H./2,oc<C||/||1/2>00.

Finally we want to consider the case when a is not smooth, so that va does not
exist, and prove an analogue of Theorem A.l(ii) in this situation. The assumptions
on a and/will be such as to cover many practical situations. Thus let a G //'/2o° n
Lx, where we now may take Hx/2-°° = [Hx, F2]1/2oo (which might be technically
simpler for checking). Considering then the reduced equation u s f/a for small e, it
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is unlikely that u is smoother than in i/1/2-00 uniformly in e, and hence no better rate
of convergence than {h can be expected for small e. Thus, the estimate of case (ii) of
Theorem A. 1 ought to be the best result possible, and we shall (almost) obtain it.

Theorem A.2. Assume (1.2), (1.4) and the conditions on Sh in Section 3. Let
a E Hx/2<°° n L„. Then

I«-mJI,.<A"L,

Ci/A(ll/ll,/2,» +"/H zj.     0<e<Ä>

g£(ll/ll,/2,» + ll/lliJ>    *<«<!■

Proof. We shall need to smoothen the coefficient a. The class of a's considered
makes it possible to construct ä = ä(8) for 0 < 8 =£ 1 such that, with constants
uniform in 8,

a.
(A.3) 0<-^<á<2a1,

(A.4) \\a-ä\\Li^c{8,

(A.5) uvaii^c

(A.6) IIVall¿oo<|.

To see this, use a mollifier of standard type.
We shall give the details of the proof in the case 0 < £ < A and indicate the

modifications necessary for A < £ < 1.
First smooth a to ä = ä(h) (8 = h) and define it by

(A.7) -£2Am + M =/,       ü = 0   on 351;
then u — ü satisfies

(A.8)       -£2A(w- u) + ä(u- ü) = (ä-a)u,       u-ü = 0   on 351.
Write now (uh — P£u)

(A.9) u - uh = ü - Pehü + (u - u) - Peh(u - ü).

From (A.8) we find, using also Lemma A.l and (A.3), (A.4),

(A.10)      Ilu - oil ̂  C\\(a - a)u\\ < CU - flll^lliill^ < c{h\\f\\Lx
and similarly

(A.11) \\P£(u-ü)\\*zc{h\\f\\Lx.

By (A.9), (A.10) and (A.ll) it remains to estimate ü - P£ü. Let/ = /0 +/, with
f0 E L2,f] E Hl. Then ü = ü0 + üx where

-£2Am, + aa¡ =f„      «,. = 0   on 951, / = 0,1,
and

(A.12) Ü - P¿ü = (ü0 - P¿ü0) + (fi, - F««,).
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Then

(A.13) \\Ü0-P¿Ü0\\<\\Ü0\\ + HF^olKCII/JI
and, using Lemma 4.1 and Lemma A.2,

(A.14) IIw, - P'hüx\\ < Ch\\üx\\H¡ *z Ch(\\fx\\¿, + ||(vâ)«,ll).
Here, by (A.5), Lemma A.l and (A.6),

(A.15)    ||(và)iî1ll<ll(vâ)îi0|| + ll(và)ù||

<IIVu||LJI«ollL2+IIVäll/,2llölll<o<jll/oll/.2 + -§ll/ll^-
" \jh

Inserting (A.14) and (A.15) in (A.13) and considering all/0,/,,

IlÙ - ¿»«||<C(||/oII + A||/,||¿,) + 0^11/11^

<C\/ä(II/III/2,oo + II/I1xJ-
As noted above, this concludes the case 0 < £ < A.

In the case A < e < 1, one uses instead ä = ä(e) (8 = e). Then by Lemma 4.1,
Lemma 2.1 and arguments similar to the ones above, instead of (A. 10) and (A.l 1) we
find

IIC« - «) - P£(u - ")H < ch2\\u - ù\\„2

<^!ii(â-a)„nL2<^! ii/ii^.

The estimates in (A. 13) et seq. now run as follows, using in particular Lemma A.2.

TA2
||«0-F¿«0||<CA2IM„2< —1|/0||,£

TA2
\\ül-P£ul\\<Ch2\\äx\\„2<^-(\\fl\\^ + 11 Va«, II)

CA2<—(ll/ill»' + IIVfl«oll + IIV««ll)

^(ll/illjJ» + 7ll/oll+-F

Thus,

II« - f;«h<^(ii/0ii + e|| fx\\¿,) + ~\\f\\Lx

and the desired estimate follows.
Remark A.2. Corresponding to (A.2) one may establish in case a E [//', L2]x/2 x

n L_ that

Ml l/2,oo + l|«ll,  <C(||/||1/2i„ + ||«||, ),
uniformly in £.
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The techniques of Theorem A.2 can also be used to derive the result that

sq/£u-i
a

for a, f E Hx/2-œ n Lx, cf. Lions [14, p. 128, (5.15)] where the same estimate was
proven for a and 351 smooth and / G H^2.
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