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Abstract. Let K be a local field andk an algebraically closed field. We prove the
finiteness of isomorphism classes of semisimple Galois representations ofK into GLd(k) with
bounded Artin conductor and residue degree. We calculate explicitly the number of totally
ramified finite abelian extensions ofK with bounded conductor. Using this result, we give an
upper bound for the number of certain Galois extensions ofK.

Introduction. Let K be a local field, i.e., a complete discrete valuation field with finite
residue fieldF. Fix a separable closureKsep of K and letGK be its absolute Galois group.
Let k be an algebraically closed field of characteristicp ≥ 0. The purpose of this paper is
to prove a finiteness result for semisimple Galois representations ofGK into GLd(k) with
restricted ramification and residue degree, and to investigate them quantitatively.

For any continuous representationρ : GK → GLd (k)
�−→ GLk(V ) (we consider GLd(k)

as a discrete group), we define (the exponent of) itsArtin conductor n(ρ) as follows.

n(ρ) =
∞∑
i=0

1

(G0 : Gi)
dimk(V /V Gi ) ,

whereGi is thei-th lower ramification subgroup ofG = Gal(L/K), andL is the finite Galois
extension ofK corresponding to Kerρ. We denote byV Gi theGi -invariant subspace ofV .

It is known thatn(ρ) is an integer if chark �= charF (cf. [Tag02, Introduction]), and that
we haven(ρ) = 0 if and only if ρ is unramified, andn(ρ) = dimk(V /V G0) if and only if ρ

is tamely ramified. So the Artin conductor ofρ measures the ‘depth’ of the ramification ofρ.
Denote byf (ρ) the residue degree ofL/K. In Section 1 we prove the following:

THEOREM 1. Let K be a local field and d a positive integer.
(1) For any positive integers f and N , there exist only finitely many isomorphism

classes of semisimple continuous representations ρ : GK → GLd (k) with n(ρ) ≤ N and
f (ρ) ≤ f .

(2) If chark = p > 0 and K is a finite extension of Qp, then for any positive integer f

there exist only finitely many isomorphism classes of semisimple continuous representations
ρ : GK → GLd(k) with f (ρ) ≤ f .
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This has been pointed out by Taguchi in [Tag] without proof. For a finite groupG there
exist only finitely many (in particular≤ |G|) isomorphism classes of irreducible representa-
tions ofG overk. Hence Theorem 1 is equivalent to the following:

THEOREM 1′. Let K be a local field.
(1) There exist only finitely many finite Galois extensions of K in Ksep which corre-

spond to the kernels of representations as in (1) of Theorem 1.
(2) If chark = p > 0 and K is a finite extension of Qp, then there exist only finitely

many finite Galois extensions of K in Ksepwhich correspond to the kernels of representations
as in (2) of Theorem 1.

Furthermore in Section 2, we prove the finiteness for the set of certain Galois extensions
of a local fieldK (Theorem 2), which is stronger than Theorem 1′ since for a representationρ
as in Theorem 1 the Artin conductor ofρ is bounded in terms of the valuation of its different
(cf. Lemma 1.1).

THEOREM 2. Let K be a local field and d a positive integer.
(1) For any positive integers f and N , there exist only finitely many finite Galois ex-

tensions L of K in Ksepsuch that νK(DL/K) ≤ N , f (L/K) ≤ f and that Gal(L/K) can be
embedded in GLd (k).

(2) If chark = p > 0 and K is a finite extension of Qp, then for any positive integer f

there exist only finitely many finite Galois extensions L of K in Ksepsuch that f (L/K) ≤ f

and that Gal(L/K) can be embedded in GLd(k).

This is proved by local class field theory andramification theory. It can also be proved
in another way by using local class field theory, Serre’s mass formula and group theory.

The Galois extensions ofK as in (1) (resp. (2)) of Theorem 1′ satisfy the conditions
in (1) (resp. (2)) of Theorem 2. Hence Theorem 2 implies Theorem 1. However,(1) of
Theorem 1 is derived from a weaker theorem in group theory ([Sup76, Chap. V, §19, Theorem
6]) than what is needed to prove Theorem 2. In fact, it is appropriate for giving an effective
upper bound for the number of finite Galois extensions ofK corresponding to irreducible
representations (see Proposition 1.3 and Section 3).

In Section 3 we estimate the number of finite Galois extensions ofK which correspond
to the kernels of irreducible continuous representationsρ : GK → GLd (k) with n(ρ) ≤
N and f (ρ) ≤ f . For this, first we calculate explicitly (Proposition 3.5) the number of
totally ramified finite abelian extensions ofK with conductor≤ u in terms of the number of
subgroups ofU1

K/Uu
K , whereUu

K is theu-th higher unit group ofK. Using this result and
Serre’s mass formula, we have an upper bound for the number of such finite Galois extensions
of K (Theorem 3.9). From this we have an upper bound for the number of isomorphism
classes of irreducible representations (Corollary 3.10).

Now we explain the motivation of this paper. The finiteness problem of modp Galois
representations with bounded Artin conductor has been considered in the global field case
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(cf. Khare ([Kha00]) and Moon ([Moo00])) motivated by a conjecture of Serre [Ser87]. Clas-
sically many results for the finiteness of such representations ofGQ were already known for
some primesp (for the references, see Moon [Moo00, Introduction]). In the general settings
Moon and Taguchi proved the finiteness for semisimple modp Galois representations with
solvable image for arbitraryp and for arbitrary global field ([MT01]). In the algebraic func-
tion field case, in [BK] Böckle and Khare show the finiteness for almost all the case without
the assumption that the images of representations are solvable. In this paper we consider the
finiteness of modp Galois representations of a local field. Theorem 1 is an analog in the local
field case.

Effective upper bounds have also been studied for the number of isomorphism classes
of mod p Galois representations. In [Moo03], Moon gave an explicit upper bound for the
number of isomorphism classes of monomial modp Galois representations of the rational
field Q with bounded Artin conductor outsidep. It is an open problem to have an explicit
upper bound for the number of isomorphism classes of representations as in Theorem 1 in the
local field case. However in Section 3 we give an upper bound for the number of isomorphism
classes of irreducible ones following the line of the proof of Proposition 1.3.

I would like to express my sincere gratitude to Professor Yuichiro Taguchi who proposed
the theme of this paper to me, and gave suggestions on the proof of Theorem 1 and valuable
advice for the composition of this paper. I also thank the referee for many comments. In
particular, he provided a new proof of Theorem 2, which is more sophisticated and shorter
than the original one.

NOTATION. Throughout this paper,K denotes a local field with finite residue field
F = Fq . Fix a separable closureKsepof K, and we assume that all separable extensions of
K are contained inKsep. We denote byGK the absolute Galois group Gal(Ksep/K) of K. k

denotes an algebraically closed field. Unless otherwise mentioned, the characteristic ofk is
arbitrary.

1. Proof of Theorem 1. First we recall a lemma, which states the relationship among
the valuation of the different, the conductor of a finite Galois extension of local fields, and the
Artin conductor, and which is a key to the proof of Theorem 1.

LEMMA 1.1 ([MT01], Lemma 3.2). Let K be a local field, and l the characteristic
of F. Let L/K be a finite Galois extension with ramification index e ≥ 2, G its Galois
group, and let uL/K be the supremum of the real numbers u ≥ 0 such that Gu−1 �= 1. If
ρ : G → GLd(k) is a faithful representation, then n(ρ), the different DL/K of L/K, and
uL/K have the following relations.

(1) νK(DL/K) ≤ uL/K ≤ 2νK(DL/K),
(2) uL/K ≤ n(ρ) ≤ duL/K ,

where νK is the normalized discrete valuation of K .

In this paper, we call the aboveuL/K theconductor of L/K.
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REMARK 1.2. In [MT01, Lemma 3.2] the above lemma is stated whenk = F̄p. But
the statement still holds for arbitrary field. The proof is the same as in the case ofk = F̄p.

It is sufficient for the proof of Theorem 1 to prove the theorem in the case whereρ

is irreducible, sincen(ρ′) ≤ n(ρ) if ρ′ is an irreducible subrepresentation ofρ. Precisely
speaking, we prove the following:

PROPOSITION 1.3. Let K be a local field and d a positive integer.
(1) For given positive integers f and N , there exist only finitely many isomorphism

classes of irreducible continuous representations ρ : GK → GLd (k) with n(ρ) ≤ N and
with f (ρ) ≤ f .

(2) If chark = p > 0 and K is a finite extension of Qp, then for any positive integer f

there exist only finitely many isomorphism classes of irreducible continuous representations
ρ : GK → GLd(k) with f (ρ) ≤ f .

PROOF. First we show(1) of this proposition. As mentioned in Introduction, for a finite
group there exist only finitely many isomorphism classes of irreducible representations ofG

overk (cf. [Ser77, Chap.18, §2, Corollary 3]). Hence it is sufficient to show that there exist
only finitely many finite Galois extensionsL of K corresponding to the kernels ofρ’s. If L

is such a Galois extension ofK, its Galois groupG = Gal(L/K) can be considered as a
subgroup of GLd(k). Let G′ be the inertia subgroup ofG. Then by [Sup76, Chap. V, §19,
Theorem 6], there exists an abelian normal subgroupG′′ of G′ with (G′ : G′′) ≤ J (d),
whereJ (d) is a positive integer depending only ond. Let K ′ be the inertia field ofL/K. By
the assumption, there exist only finitely many suchK ′/K. Let K ′′ be the intermediate field
of L/K ′ corresponding toG′′. By Lemma 1.1 we haveνK ′(DK ′′/K ′) ≤ n(ρ) ≤ N . Since
[K ′′ : K ′] = (G′ : G′′) ≤ J (d), we haveνK ′′(DK ′′/K ′) ≤ J (d)N . Thus there exist only
finitely many suchK ′′/K ′ by Serre’s mass formula ([Ser78]). From Lemma 1.1 we also have

uL/K ′′ ≤ 2νK ′′(DL/K ′′) ≤ 2[K ′′ : K ′]n(ρ) ≤ 2J (d)N ,

whereuL/K ′′ is the conductor of the abelian extensionL/K ′′. Hence by local class field theory
there exist only finitely many suchL/K ′′. This proves(1) of this proposition.

Now we derive(2) of this proposition from(2) of Theorem 2.(2) of Theorem 2 implies
that there are only finitely many finite Galois extensions ofK corresponding to the kernels of
representations as in(2) of this proposition. Hence we have the desired result from the fact
stated first in the proof of(1) of this proposition. �

REMARK 1.4. For instance we can takeJ (d) = d!(∏2r−1

i=0 (d2 − i))d , wherer =
[log2 d2] ([Sup76, Chap. V, §19]). Here[a] means the largest integer less than or equal to
a.

2. Proof of Theorem 2. In this section, we present a proof of Theorem 2, which was
suggested by the referee. The original proof is summarized in Remark 2.1.

Let L be a finite Galois extension ofK as in Theorem 2, i.e., such that its Galois group
G = Gal(L/K) is embedded into GLd (k). Let 0 < x1 < x2 < · · · < xr be all the upper
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breaks ofG:

G = G−1 > G0 > Gx1 > · · · > Gxr+1 = 1 ,

where, for anyx ∈ R>0, Gx is thex-th ramification subgroup ofG in the upper numbering.
Here,x is said to be anupper break of G if Gx �= Gx+, whereGx+ := ⋃

y>x Gy .
Let Ki be the intermediate field ofL/K corresponding toGxi (x0 := 0). Note that

K0/K is an unramified extension andKi+1/Ki is a totally ramified abelian extension for
every 0≤ i ≤ r. Sincef (L/K) ≤ f , there are only finitely many possibilities ofK0. It is
sufficient for the proof of Theorem 2 to show that there are only finitely many possibilities of
Ki+1 for eachKi , 0 ≤ i ≤ r, and thatr is bounded.

We first consider the case(1) of Theorem 2. By the assumptionνK(DL/K) ≤ N and
(1) of Lemma 1.1,xi anduKi+1/Ki are bounded in terms ofN . Hence, from local class field
theory, there are only finitely many possibilities ofKi+1 for eachKi , 0 ≤ i ≤ r. From
[Kat88, Chap. 1, 1.9, Proposition], we know thatxi is a rational number whose denominator
d(xi) can be taken as 1≤ d(xi) ≤ d. Hence there are only finitely many possibilities ofxi.
In particular,r is bounded in terms ofd andN . Thus we have proved(1) of Theorem 2.

Next we consider the case(2) of Theorem 2. In this case we have charF = p. Then the
conductoruKi+1/Ki is bounded in terms ofp and the absolute ramification indexe(Ki/Qp)

by [Moo00, Lemma 2.1] and Lemma 1.1. Thus we obtain inductively that there are only
finitely many possibilities ofKi+1 for eachKi , 0 ≤ i ≤ r. Since thep-length of GLd(k) is
bounded in terms ofd (cf. [Moo00, §3]), andGxi /Gxi+1 is elementaryp-abelian(1 ≤ i ≤ r),
it follows thatr is bounded in terms ofd. Hence we have proved(2) of Theorem 2.

REMARK 2.1. Compared with the above proof of Theorem 2, the original proof was
somewhat longer but more elementary. The difference is to use a structure theorem of GLd(k)

instead of the ramification subgroups in the upper numbering. Here we summarize the original
proof: LetG = Gal(L/K) be as in Theorem 2 and letH0 be the inertia subgroup ofG. By
the theorem of Larsen-Pink ([LP]) (this is equal to the theorem of Mal’cev, Kolchin [Sup76,
Chap. V, §19, Theorem 7] sinceG is solvable), there exist normal subgroupsH1,H2 of H0

such that
(1) H2 ⊂ H1 ⊂ H0,
(2) (H0 : H1) ≤ J̃ (d),
(3) H1/H2 is abelian with order prime top,
(4) H2 is ap-group,

whereJ̃ (d) is a positive integer which depends only ond. When chark = 0, this means that
H2 = 1 andH1 is abelian. Now suppose that chark = p > 0. Since thep-length of GLd(k)

is bounded, there exists a filtration{Hi}2≤i≤r of subgroups ofG of bounded lengthr such
thatHi+1 is normal inHi andHi/Hi+1 is elementaryp-abelian for anyi ≥ 2. LetKi be the
intermediate field ofL/K corresponding toHi . In the case of(1) of Theorem 2, there are only
finite number ofKi+1 for eachKi by Serre’s mass formula (resp. local class field theory) for
i = 0 (resp.i > 0) and Lemma 1.1. In view of the proof of(1), it is sufficient for the proof
of (2) to show that for each field extensionKi+1/Ki the valuation of its different is bounded
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inductively. ForKi+1/Ki (i ≥ 1), we have already explained in the proof of Theorem 2. For
K1/K0, since charK = 0, we can bound the valuation of the different ofK1/K0 in terms of
J̃ (d) (cf. [Ser79, Chap. III, §6, P. 58, Remarks].

3. Estimate for the number of L. In this section, we give an upper bound for the
number of finite Galois extensionsL of K corresponding to the kernels of irreducible con-
tinuous representations with bounded Artin conductor and residue degree. This is done by
examining each step of the proof of Proposition 1.3. Then we easily have an upper bound for
the number of isomorphism classes of such representations.

Let ρ : GK → GLd(k) be an irreducible representation as in Proposition 1.3, and let the
notation be as in the proof of Proposition 1.3. It is clear from the proof of Proposition 1.3 that

(the number ofL) ≤ (
the number of towersK ⊂ K ′ ⊂ K ′′ ⊂ L which satisfy(∗′)

)
,

where(∗′) is as follows:

(∗′)




K ′/K is unramified with[K ′ : K] ≤ f,

νK ′(DL/K ′) ≤ N,

K ′′/K ′ is a totally ramified Galois extension with[K ′′ : K ′] ≤ J (d),

L/K ′′ is a totally ramified abelian extension.

From the condition(∗′) and the proof of Proposition 1.3, easily we have the following:

LEMMA 3.1.
(1) [L : K ′′] ≤ (qf − 1)qf (2J (d)N−1),
(2) uL/K ′′ ≤ 2J (d)N .

Hence we calculate the number of totally ramified extensionsK ′′/K ′ andL/K ′′ satisfy-
ing the conditions of Lemma 3.1 respectively.

First we prove a lemma. This is useful to count the number of totally ramified finite
abelian extensions ofK with conductor≤ u.

Let Kur be the maximal unramified extension ofK in Ksep, and letKu be the composi-
tum of all the finite abelian extensions ofK in Ksepwith conductor≤ u. Note thatK0 = Kur.
For any totally ramified finite abelian extensionsL andL′ of K, we define an equivalence
relationL ∼ L′ by NL/KUL = NL′/KUL′ , whereNL/K denotes the norm map ofL/K.

LEMMA 3.2. The correspondence L �→ KurL gives a bijection between the set of
equivalence classes of totally ramified finite abelian extensions of K with conductor ≤ u and
the set of intermediate fields of Ku/K

ur.

PROOF. Since the reciprocity mapρ : K× → Gal(Kab/K) maps NL/KUL to
Gal(Kab/KurL), the map in question is well-defined. First we prove the surjectivity of the
map. For every intermediate fieldM of Ku/K

ur, by [Iwa86, Chap. III, Lemma 3.4], there
exists a totally ramified extensionL/K such thatM = KurL andKur ∩ L = K. We have

UK/(UK)u
�−→ (Gab

K )0/(Gab
K )u = Gal(Ku/K

ur) by [Ser79, Chap. XV, §2, Theorem 2]. Here
the first isomorphism is induced by the reciprocity mapρ. SoKu/K

ur is a finite extension,
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and Gal(M/Kur) = Gal(KurL/Kur)
�−→ Gal(L/K), which impliesL/K is a finite abelian

extension. Thus this map is surjective.
Next we show the map is injective. LetL/K be a totally ramified finite abelian extension.

For every prime elementπL of L, we have

K× = 〈NL/KπL〉 × UK, NL/KL× = 〈NL/KπL〉 × NL/KUL .

Hence we have

ρL : UK → UK/NL/KUL

ρ̃
�−→ Gal(Kab/Kur)/Gal(Kab/KurL) ,

whereρ̃ is induced by the reciprocity map.
Let L, L′ be totally ramified finite abelian extensions ofK. SupposeKurL = KurL′.

Then we haveρL = ρL′ . Hence we haveNL/KUL = NL′/KUL′ . �

REMARK 3.3. As the case ofu → ∞ of the above lemma, the correspondenceL �→
KurL gives a bijection between the set of equivalence classes of totally ramified finite abelian
extensions ofK and the set of finite intermediate fields ofKab/Kur.

From Lemma 3.2, there is a one-to-one correspondence between the equivalence classes
of totally ramified finite abelian extensions ofK with conductor≤ u and the subgroups of
UK/Uu

K . Next we calculate the number of totally ramified finite abelian extensionsL′/K
with conductor≤ u andNL′/KUL′ = NL/KUL for a givenL as in Lemma 3.2.

LEMMA 3.4. The cardinality of the equivalence class of L is [L : K].
PROOF. Let

UK =
[L:K]⊔
i=1

aiNL/KUL

be the residue class decomposition ofUK moduloNL/KUL. Fix prime elementsπL andπL′
of L andL′ respectively. Then we haveNL′/KπL′ = aiNL/KuLNL/KπL for somei anduL,
whereuL ∈ UL. Thus we have

NL′/KL′× = 〈NL′/KπL′ 〉 × NL′/KUL′ = 〈aiNL/KuLNL/KπL〉 × NL/KUL

= 〈aiNL/KπL〉 × NL/KUL .

Hence there are[L : K] totally ramified finite abelian extensionsL′/K with NL′/KUL′ =
NL/KUL for eachL. �

Now we calculate the number of totally ramified finite abelian extensions ofK with
conductor≤ u. We say that a finite abelianp-groupA is of type λ = (λ1, . . . , λr ) (where
λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1) if A is isomorphic to(Z/pλ1) ⊕ · · · ⊕ (Z/pλr ). For a finite abelian
p-groupA of typeλ, we denote byαλ(k; p) the number of subgroups ofA with orderpk . If
the order ofA is pn, it is well-known thatαλ(k; p) = αλ(n−k; p) for 0 ≤ k ≤ n (cf. [Mac95,
P. 181]).
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PROPOSITION 3.5. Let K be a local field with finite residue field Fq , where q = ln,
and u a positive integer. Let λu be the type of U1

K/Uu
K . Then the number of totally ramified

finite abelian extensions of K with conductor ≤ u is

σ1(q − 1)

n(u−1)∑
k=0

lkαλu(k; l) .

Here, σ1(q − 1) is defined by
∑

d d, where d runs through all the divisors of q − 1.

PROOF. From Lemma 3.2 and Lemma 3.4, the number of totally ramified finite abelian
extensions ofK with conductor≤ u is∑

1≤j≤|UK/Uu
K |

j × (the number of subgroups ofUK/Uu
K with indexj) .

SinceUK/Uu
K

�−→ V × U1
K/Uu

K , whereV is cyclic with orderq − 1, and|V | is coprime to
|U1

K/Uu
K |, this is equal to
∑

1≤j≤|V |
j × (the number of subgroups ofV with indexj)

×
∑

1≤j ′≤|U1
K/Uu

K |
j ′ × (the number of subgroups ofU1

K/Uu
K with indexj ′)

= σ1(q − 1)
∑

0≤k≤n(u−1)

lkαλu(n(u − 1) − k; l)

= σ1(q − 1)
∑

0≤k≤n(u−1)

lkαλu(k; l) . �

REMARK 3.6. Note that we can calculateαλu(k; l) explicitly if λu is determined
(cf. [But87, §1]). If K is a finite extension ofQl with e = νK(l) < l − 1, then we have

the typeλu easily sinceU1
K/Uu

K

�−→ OK/pu−1
K for any u ≥ 1, whereOK is the valua-

tion ring of K andpK is the maximal ideal ofOK . The type ofU1
K/Uu

K is as follows: If
me + 2 ≤ u ≤ (m + 1)e + 1 (m ≥ 0), we haveλu = (m + 1, . . . ,m + 1︸ ︷︷ ︸

n(u−1−me)

, m, . . . ,m︸ ︷︷ ︸
n((m+1)e−u+1)

). In

particular, ifK is absolutely unramified (i.e.,νK(l) = 1), we haveλu = (u − 1, . . . , u − 1︸ ︷︷ ︸
n

)

for anyu > 1.

From Lemma 3.2 and Lemma 3.4, we can calculate the number of totally ramified finite
abelian extensions ofK explicitly in some cases.

EXAMPLES. (1) LetK be a local field with residue fieldFq . Then there areσ1(q−1)

tamely totally ramified finite abelian extensionsL of K. This is a consequence of Proposi-
tion 3.5, sinceL/K is tamely ramified if and only if its conductor is less than or equal to
1.



FINITENESS OF GALOIS REPRESENTATIONS 75

(2) Let K be a local field with residue fieldFq , whereq = ln, andu ≥ 1 a positive
integer. Suppose thatU1

K/Uu
K is an abelianl-group of typeλ = (λ1, λ2, . . . , λr ). There are

lk
[
r

k

]
l

totally ramified elementaryl-abelian extensions ofK with degreelk (0 ≤ k ≤ r)

and with conductor≤ u. Here,

[
r

k

]
l

:=
k∏

i=1

lr−i+1 − 1

li − 1
, is the l-binomial coefficient. This

is proved as follows: SinceU1
K/Uu

K is an abelian group of typeλ = (λ1, λ2, . . . , λr ), the
quotient group(U1

K/Uu
K)/(U1

K/Uu
K)l is isomorphic toFr

l . The number of subgroups ofUK

appearing asNL/KUL is equal to the number of(r − k)-dimensionalFl-subspaces ofFr
l ,

which is

[
r

r − k

]
l

=
[
r

k

]
l

.

Note that ifk > r then there exists no totally ramified elementaryl-abelian extension of
K with degreelk and with conductor≤ u. Thus the number of totally ramified elementary
l-abelian extensions ofK with conductor≤ u is

r∑
k=0

lk
[
r

k

]
l

.

Let A be a finitep-group of orderpn. It is known that the number of subgroups of order

pk (0 ≤ k ≤ n) is less than or equal to

[
n

k

]
p

(cf. [LS03, Proposition 1.6.1]). Thus we have

the following:

COROLLARY 3.7. Let K be a local field with finite residue field Fq , where q = ln.
Then the number of totally ramified finite abelian extensions of K with conductor ≤ u is less
than or equal to

σ1(q − 1)

n(u−1)∑
k=0

lk
[
n(u − 1)

k

]
l

.

We need to prepare another lemma for giving an upper bound mentioned at the beginning
of this section.

LEMMA 3.8. Let K be a local field with residue field Fq .
(1) For any positive integers m and N , the number of totally ramified finite separable

extensions of K with degree m and with νL(DL/K) ≤ N is less than or equal to mqN−m+1.
(2) If charK = 0, then for any positive integer m the number of totally ramified finite

extensions of K with degree m is less than or equal to mqmνK(m).

PROOF. This is an easy consequence of Serre’s mass formula. LetΣm (resp.Σm,N ) be
the set of totally ramified separable extensionsL of K with degreem (resp. with degreem
andνL(DL/K) ≤ N). From the mass formula we have

∑
L∈Σm,N

1

q(N−m+1)
≤

∑
L∈Σm

1

qνL(DL/K)−m+1
= m .
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This proves(1) of the lemma.
When charK = 0, we have the result sincee − 1 ≤ νL(DL/K) ≤ e − 1 + νL(e), where

e = e(L/K). �

Finally we have the following upper bound.

THEOREM 3.9. Let K be a local field with finite residue field Fq , where q = ln.
Then the number of finite Galois extensions of K corresponding to the kernels of continuous
irreducible representations ρ : GK → GLd (k) with n(ρ) ≤ N and with f (ρ) ≤ f is less
than or equal to

f∑
k=1

σ1(q
k − 1)

( kn(2NJ(d)−1)∑
i=0

li
[
kn(2NJ(d) − 1)

i

]
l

)( J (d)∑
j=1

jqk(NJ (d)−j+1)
)

.

If K is a finite extension of Qp, then we can replace the last factor
∑J (d)

j=1 jqk(NJ (d)−j+1) by∑J (d)
j=1 jqkj (νK(j)).

PROOF. This is an easy consequence of Lemma 3.1, Corollary 3.7 and Lemma 3.8,
since

(the number of towersK ⊂ K ′ ⊂ K ′′ ⊂ L which satisfy(∗′))

=
f∑

k=1

(the number of towersK ′
k ⊂ K ′′ ⊂ L which satisfy(∗′)) ,

whereK ′
k is the unramified extension ofK in Ksepwith degreek. �

From this we also have an upper bound for the number of isomorphism classes of irre-
ducible ones.

COROLLARY 3.10. Let K be a local field with finite residue field Fq , where q = ln.
Then the number of isomorphism classes of irreducible continuous representations ρ : GK →
GLd(k) with n(ρ) ≤ N and with f (ρ) ≤ f is less than or equal to

f J (d)(qf − 1)qf (2NJ(d)−1)
f∑

k=1

σ1(q
k − 1)

( kn(2NJ(d)−1)∑
i=0

li
[
kn(2NJ(d) − 1)

i

]
l

)

×
( J (d)∑

j=1

jqk(NJ (d)−j+1)
)

.

If K is a finite extension of Qp, then we can replace the last factor
∑J (d)

j=1 jqk(NJ (d)−j+1) by∑J (d)
j=1 jqkj (νK(j)).

PROOF. Let M be the maximum of[L : K], whereL runs through all the finite Galois
extensions ofK corresponding to the kernels ofρ’s in question. Then from Lemma 3.1 we
haveM ≤ f J (d)(qf − 1)qf (2NJ(d)−1). It is clear that the productM × (the number of
subgroups ofGK which appear as the kernels ofρ’s in question) is an upper bound for the
number of isomorphism classes of thoseρ’s. �
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