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Abstract. Let K be a local field and an algebraically closed field. We prove the
finiteness of isomorphism classes of semisimple Galois representatighisitaf GL; (k) with
bounded Artin conductor and residue degree. We calculate explicitly the number of totally
ramified finite abelian extensions &f with bounded conductor. Using this result, we give an
upper bound for the number of certain Galois extensions .of

Introduction. Let K be alocal field, i.e., a completésdrete valuation field with finite
residue fieldF. Fix a separable closu&®®Pof K and letG ¢ be its absolute Galois group.
Let k be an algebraically closed field of characterigiic- 0. The purpose of this paper is
to prove a finiteness result for semisimple Galois representatiofgointo GL, (k) with
restricted ramification and residue degree, and to investigate them quantitatively.

For any continuous representation G — GLy (k) 3 GLy (V) (we consider Gl.(k)
as a discrete group), we define (the exponent of\ite conductor n(p) as follows.

[e¢)
1 : G;
n(p) = ; Gor G me(V/ VD,
wheregG; is thei-th lower ramification subgroup @ = Gal(L/K), andL is the finite Galois
extension ofk corresponding to Kew. We denote by ¢ the G;-invariant subspace df .
Itis known thatz(p) is an integer if chak # charF (cf. [Tag02, Introduction]), and that
we haven(p) = 0 if and only if p is unramified, and(p) = dim,(V/V%0) if and only if p
is tamely ramified. So the Artin conductor pfmeasures the ‘depth’ of the ramificationaf
Denote byf (p) the residue degree @f/ K. In Section 1 we prove the following:

THEOREM 1. Let K bealocal field and d a positive integer.

(1) For any positive integers f and N, there exist only finitely many isomorphism
classes of semisimple continuous representations p : Gx — GLg(k) with n(p) < N and
flp) = f.

(2) Ifchark = p > Oand K isafinite extension of Q,, then for any positive integer f
there exist only finitely many isomor phism classes of semisimple continuous representations
p: Gx — GLy(k) with f(p) < f.
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This has been pointed out by Taguchi in [Tag] without proof. For a finite g@tipere
exist only finitely many (in particulag |G|) isomorphism classes of irreducible representa-
tions of G overk. Hence Theorem 1 is equivalent to the following:

THEOREM 1. Let K bealocal field.

(1) There exist only finitely many finite Galois extensions of K in K5€Pwhich corre-
spond to the kernels of representations asin (1) of Theorem 1.

(2) Ifchark = p > Oand K is afinite extension of Q,, then there exist only finitely
many finite Galois extensions of K in K5¢Pwhich correspond to the kernels of representations
asin (2) of Theorem 1.

Furthermore in Section 2, we prove the finiteness for the set of certain Galois extensions
of alocal fieldK (Theorem 2), which is stronger than Theorehsihice for a representatign
as in Theorem 1 the Artin conductor pfis bounded in terms of the valuation of its different
(cf. Lemma 1.1).

THEOREM 2. Let K bealocal field and d a positive integer.

(1) For any positive integers f and N, there exist only finitely many finite Galois ex-
tensions L of K in K3*Psuchthat vk (Dr,x) < N, f(L/K) < f andthat Gal(L/K) can be
embedded in GL,; (k).

(2) Ifchark = p > Oand K isafinite extension of Q,, then for any positive integer f
there exist only finitely many finite Galois extensions L of K in KS®Psuchthat f(L/K) < f
and that Gal(L/K) can be embedded in GL (k).

This is proved by local class field theory aramification theory. It can also be proved
in another way by using local class field theory, Serre’s mass formula and group theory.

The Galois extensions & as in(1) (resp. (2)) of Theorem 1 satisfy the conditions
in (1) (resp. (2)) of Theorem 2. Hence Theorem 2 implies Theorem 1. Howeirof
Theorem 1 is derived from a weaker theorem in group theory ([Sup76, Chap.V, §19, Theorem
6]) than what is needed to prove Theorem 2. In fact, it is appropriate for giving an effective
upper bound for the number of finite Galois extension&ko€orresponding to irreducible
representations (see Proposition 1.3 and Section 3).

In Section 3 we estimate the number of finite Galois extensions which correspond
to the kernels of irreducible continuous representatipnsGg — GLg4(k) with n(p) <
N and f(p) < f. For this, first we calculate explicitly (Proposition 3.5) the number of
totally ramified finite abelian extensions &f with conductor< « in terms of the number of
subgroups o’U}</U“, whereUg is theu-th higher unit group oK. Using this result and
Serre’'s mass formula, we have an upper bound for the number of such finite Galois extensions
of K (Theorem 3.9). From this we have an upper bound for the number of isomorphism
classes of irreducible representations (Corollary 3.10).

Now we explain the motivation of this paper. The finiteness problem of jm&hlois
representations with bounded Artin conductor has been considered in the global field case
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(cf. Khare ([Kha00]) and Moon ([Moo00])) motivated by a conjecture of Serre [Ser87]. Clas-
sically many results for the finiteness of such representatiodkyifvere already known for

some prime9p (for the references, see Moon [Moo00, Introduction]). In the general settings
Moon and Taguchi proved the finiteness for semisimple mpd@alois representations with
solvable image for arbitrary and for arbitrary global field ((MTO1]). In the algebraic func-

tion field case, in [BK] Bdckle and Khare show the finiteness for almost all the case without
the assumption that the images of representations are solvable. In this paper we consider the
finiteness of mog Galois representations of a local field. Theorem 1 is an analog in the local
field case.

Effective upper bounds have also been studied for the nhumber of isomorphism classes
of mod p Galois representations. In [Moo03], Moon gave an explicit upper bound for the
number of isomorphism classes of monomial mo@alois representations of the rational
field Q with bounded Artin conductor outsige It is an open problem to have an explicit
upper bound for the number of isomorphism classes of representations as in Theorem 1 in the
local field case. However in Section 3 we give an upper bound for the number of isomorphism
classes of irreducible ones following the line of the proof of Proposition 1.3.

I would like to express my sincere gratitude to Professor Yuichiro Taguchi who proposed
the theme of this paper to me, and gave suggestions on the proof of Theorem 1 and valuable
advice for the composition of this paper. | also thank the referee for many comments. In
particular, he provided a new proof of Theorem 2, which is more sophisticated and shorter
than the original one.

NOTATION. Throughout this paperk denotes a local field with finite residue field
F = F,. Fix a separable closu&*®Pof K, and we assume that all separable extensions of
K are contained irk S®P. We denote byG ¢ the absolute Galois group GatS¢P/K) of K. k
denotes an algebraically closed field. Unless otherwise mentioned, the charactelisc of
arbitrary.

1. Proof of Theorem 1. First we recall a lemma, whichates the relationship among
the valuation of the different, the conductor of a finite Galois extension of local fields, and the
Artin conductor, and which is a key to the proof of Theorem 1.

LEmMmMA 1.1 ([MTO1], Lemma ). Let K be a local field, and [ the characteristic
of F. Let L/K be a finite Galois extension with ramification index e > 2, G its Galois
group, and let u; ¢ be the supremum of the real numbers u > 0 such that Gl £ 1. If
p G — GLy(k) is a faithful representation, then n(p), the different Dy x of L/K, and
ur,x havethe following relations.

(1) vk (Dr/g) <ur/x <2vk(Dr/k),

(2) ur/x <n(p) <dupx,
where vk isthe normalized discrete valuation of K .

In this paper, we call the abowg ,x the conductor of L/K.
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REMARK 1.2. In[MTO1, Lemma 2] the above lemma is stated whenr= F ,. But
the statement still holds for arbitrary field. The proof is the same as in the case &f,.

It is sufficient for the proof of Theorem 1 to prove the theorem in the case where
is irreducible, sincei(p’) < n(p) if p’ is an irreducible subrepresentation @f Precisely
speaking, we prove the following:

PrROPOSITION 1.3. Let K bealocal field and d a positive integer.

(1) For given positive integers f and N, there exist only finitely many isomorphism
classes of irreducible continuous representations p : Gx — GLy(k) with n(p) < N and
with f(p) < f.

(2) Ifchark = p > Oand K isafinite extension of Q,, then for any positive integer f
there exist only finitely many isomorphism classes of irreducible continuous representations
p: Gg — GLy(k) with f(p) < f.

PROOF. First we show(1) of this proposition. As mentioned in Introduction, for a finite
group there exist only finitely many isomorphism classes of irreducible representatiéns of
overk (cf. [Ser77, Chap.18, 82, Corollary 3]). Hence it is sufficient to show that there exist
only finitely many finite Galois extensions of K corresponding to the kernels pfs. If L
is such a Galois extension &f, its Galois groupG = Gal(L/K) can be considered as a
subgroup of GL(k). Let G’ be the inertia subgroup @. Then by [Sup76, Chap.V, 8§19,
Theorem 6], there exists an abelian normal subgreélpof G’ with (G’ : G") < J(d),
whereJ (d) is a positive integer depending only dnlLet K’ be the inertia field of./K. By
the assumption, there exist only finitely many si¢hY K. Let K” be the intermediate field
of L/K' corresponding t&;”. By Lemma 1.1 we haveg/ (Dg» k) < n(p) < N. Since
[K” : K'] = (G’ : G") < J(d), we havevg/(Dgr/x) < J(d)N. Thus there exist only
finitely many suchk” /K’ by Serre’'s mass formula ([Ser78]). From Lemma 1.1 we also have

upkr < 2vgr(Dpyxr) < 2[K" : K'ln(p) < 2J(d)N,

whereu /x» is the conductor of the abelian extensiofk”. Hence by local class field theory
there exist only finitely many such/K”. This provedq1) of this proposition.

Now we derive(2) of this proposition from(2) of Theorem 2(2) of Theorem 2 implies
that there are only finitely many finite Galois extension&atorresponding to the kernels of
representations as if2) of this proposition. Hence we have the desired result from the fact
stated first in the proof ofl) of this proposition. ]

REMARK 1.4. For instance we can takkd) = d!([[%o (d? — i))?, wherer =
[log, d?] ([Sup76, Chap. V, §19]). Herg:] means the largest integer less than or equal to
a.

2. Proof of Theorem 2. In this section, we present a proof of Theorem 2, which was
suggested by the referee. The original proof is summarized in Remark 2.1.

Let L be a finite Galois extension & as in Theorem 2, i.e., such that its Galois group
G = Gal(L/K) is embedded into GL(k). Let0 < x1 < x2 < --- < x, be all the upper
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breaks ofG:
GZG_1>GO>GX1>...>er+1=1’

where, for anyr € R.g, G* is thex-th ramification subgroup af in the upper numbering.
Here,x is said to be ampper break of G if G* # G**, whereG** := ., G”.

Let K; be the intermediate field af /K corresponding taG* (xo := 0). Note that
Ko/K is an unramified extension arki;1/K; is a totally ramified abelian extension for
every 0< i <r. Sincef(L/K) < f, there are only finitely many possibilities &f. It is
sufficient for the proof of Theorem 2 to show that there are only finitely many possibilities of
K;41 foreachk;, 0 <i < r, and that is bounded.

We first consider the cagd) of Theorem 2. By the assumptiory (Dz,x) < N and
(1) of Lemma 1.1yx; andug,,,/k; are bounded in terms @f. Hence, from local class field
theory, there are only finitely many possibilities &f, for eachK;, 0 < i < r. From
[Kat88, Chap. 1, B, Proposition], we know that; is a rational number whose denominator
d(x;) can be taken as ¥ d(x;) < d. Hence there are only finitely many possibilitiesxpf
In particular, is bounded in terms af andN. Thus we have proved) of Theorem 2.

Next we consider the cag@) of Theorem 2. In this case we have ckat p. Then the
conductorug,,,/k; is bounded in terms op and the absolute ramification indexk;/Q))
by [Moo00, Lemma 21] and Lemma 1.1. Thus we obtain inductively that there are only
finitely many possibilities of; 1 for eachkK;, 0 < i < r. Since thep-length of Glg (k) is
bounded in terms af (cf. [M0000, §3]), andG* / G*i+1 is elementaryp-abelian(1 < i < r),
it follows thatr is bounded in terms af. Hence we have prova@) of Theorem 2.

REMARK 2.1. Compared with the above proof of Theorem 2, the original proof was
somewhat longer but more elementary. The difference is to use a structure theorept{/iof GL
instead of the ramification subgroups in the upper numbering. Here we summarize the original
proof: LetG = Gal(L/K) be as in Theorem 2 and Ié&fy be the inertia subgroup @f. By
the theorem of Larsen-Pink ([LP]) (this is equal to the theorem of Mal’cev, Kolchin [Sup76,
Chap. V, 819, Theorem 7] sineg is solvable), there exist normal subgrous H> of Hp
such that

(1) H2 C H1 C Ho,

(2) (Ho:Hy) < J(d),

(3) Hi1/H> s abelian with order prime tp,

(4) H»is ap-group,
whereJ (d) is a positive integer which depends only @énWhen chak = 0, this means that
Hy = 1 andH; is abelian. Now suppose that clia= p > 0. Since thep-length of Gl (k)
is bounded, there exists a filtratig#; }><; <, of subgroups ofG of bounded length such
that H;,1 is normal inH; and H; / H; 11 is elementaryp-abelian for any > 2. LetK; be the
intermediate field of. /K corresponding t@7;. In the case of1) of Theorem 2, there are only
finite number ofK; 1 for eachK; by Serre’s mass formula (resp. local class field theory) for
i = 0 (resp.i > 0)and Lemma 1.1. In view of the proof ¢f), it is sufficient for the proof
of (2) to show that for each field extensid1/K; the valuation of its different is bounded
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inductively. ForK;;+1/K; (i > 1), we have already explained in the proof of Theorem 2. For
K1/Kp, since chak = 0, we can bound the valuation of the differentif/ Ko in terms of
J(d) (cf. [Ser79, Chap. Ill, 86, P. 58, Remarks].

3. Estimate for the number of L. In this section, we give an upper bound for the
number of finite Galois extensioris of K corresponding to the kernels of irreducible con-
tinuous representations with bounded Artin conductor and residue degree. This is done by
examining each step of the proof of Proposition 1.3. Then we easily have an upper bound for
the number of isomorphism classes of such representations.

Letp : Gk — GLy(k) be anirreducible representation as in Proposition 1.3, and let the
notation be as in the proof of Proposition 1.3. It is clear from the proof of Proposition 1.3 that

(the number ofL) < (the number of tower& c K’ c K" C L which satisfy(x)) ,
where(x') is as follows:
K'/K is unramified with K’ : K] < f,
vk (Dryk’) < N,
K" /K'is atotally ramified Galois extension wifk” : K'] < J(d),
L/K" is a totally ramified abelian extension

(+)

From the conditior(x") and the proof of Proposition 1.3, easily we have the following:

LEMMA 3.1.
(1) [L:K"] < (q) —1)gf@/@ON=-D
(2) wup/kr <2J(d)N.

Hence we calculate the number of totally ramified extensiotisK’ andL /K" satisfy-
ing the conditions of Lemma 3.1 respectively.

First we prove a lemma. This is useful to count the number of totally ramified finite
abelian extensions @& with conductor< u.

Let KY" be the maximal unramified extension Kfin K SP, and letk,, be the composi-
tum of all the finite abelian extensions &fin KS¢Pwith conductor< u. Note thatkg = K.
For any totally ramified finite abelian extensiohsand L’ of K, we define an equivalence
relationL ~ L' by Ny kUL = Np//g U/, whereNy  x denotes the norm map &f/ K .

LEMMA 3.2. The correspondence L — KY'L gives a hijection between the set of
equivalence classes of totally ramified finite abelian extensions of K with conductor < u and
the set of intermediate fields of K,/ KY'.

PROOF. Since the reciprocity map : K* — Gal(K3/K) maps Np,x Uy to
Gal(K2/KY"L), the map in question is well-defined. First we prove the surjectivity of the
map. For every intermediate field of K,/K"Y, by [Iwa86, Chap. ll, Lemma 3.4], there
exists a totally ramified extensiab/K such thatM = KYL andK"" N L = K. We have
Uk /(Ug)" = (G2/(GP)* = Gal(K, /K" by [Ser79, Chap. XV, §2, Theorem 2]. Here
the first isomorphism is induced by the reciprocity mapSo K, /K" is a finite extension,



FINITENESS OF GALOIS REPRESENTATIONS 73

and GalM /K'Y = Gal(KYL/K'YN 3 Gal(L/K), which impliesL/K is a finite abelian
extension. Thus this map is surjective.

Next we show the map is injective. LEY K be a totally ramified finite abelian extension.
For every prime element; of L, we have

K> = (Np/knp) x Uk, NpjxL™ = (Np/xnr) x NpyxUr .

Hence we have

1

pL : Ux — Uk /Npx U — Gal(K®/K'")/Gal(K*/K""L),

wherep is induced by the reciprocity map.
Let L, L’ be totally ramified finite abelian extensions &f SupposeK"'L = KY'L'.
Then we have, = p;/. Hence we haveV, kU, = Nk Up'. a

REMARK 3.3. Asthe case af — oo of the above lemma, the correspondeice>
KYL gives a bijection between the set of equivalence classes of totally ramified finite abelian
extensions ok and the set of finite intermediate fields 5f°/ K V.

From Lemma 3.2, there is a one-to-one correspondence between the equivalence classes
of totally ramified finite abelian extensions &f with conductor< u and the subgroups of
Uk /U}. Next we calculate the number of totally ramified finite abelian extenslopg
with conductor< u andN;/,xU;» = Nk Uy foragivenL as in Lemma 3.2.

LEMMA 3.4. The cardinality of the equivalence classof L is[L : K].

PROOF. Let
[L:K]

Uk = |_| aiNL/kUL
i=1
be the residue class decompositiontf moduloN, ,xUr. Fix prime elements; andsw;,/
of L andL’ respectively. Then we hav¥;/ g m; = a; Ny guy Nk for somei anduy,
whereu; € Uyp. Thus we have

NpyxL'™ = (Npjkmp) x NyygUp = (@iNpjgkur Npjgmn) x Noyg Ul

= (aiNp/kmr) X Nk UL .

Hence there argL : K] totally ramified finite abelian extensiords/K with N/ /jx Uy =
Np,x Uy foreachL. O

Now we calculate the number of totally ramified finite abelian extensions efith
conductor< u. We say that a finite abeliap-group A is of type . = (A1, ..., A,) (Where
A > A2 > .- > A, > 1)if Alisisomorphic taZ/p*) & - -- & (Z/p’"). For afinite abelian
p-group A of type, we denote byy; (k; p) the number of subgroups df with order p*. If
the order ofd is p", it is well-known thatx, (k; p) = ax(n—k; p) for 0 < k < n (cf. [Mac95,
P. 181)).
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ProPOSITION 3.5. Let K be alocal field with finite residue field F,, where ¢ = 1",
and u a positive integer. Let A, be the type of U}< /Ug . Then the number of totally ramified
finite abelian extensions of K with conductor < u is

n(u—1)
o1(g =1 Y ey, (ki D).
k=0
Here, o1(q — 1) isdefined by )", d, where d runsthrough all the divisorsof ¢ — 1.

PrROOF. FromLemma 3.2 and Lemma 3.4, the number of totally ramified finite abelian
extensions ok with conductor< u is

Z J % (the number of subgroups 6fx / U with index ) .
1<j<|Uk/Ukgl

SinceUk /U S Vx U}(/U“ , WhereV is cyclic with orderg — 1, and| V| is coprime to
|UL /U], this is equal to

Z j x (the number of subgroups &f with index j)
1=<j=Iv]
x Z j' x (the number of subgroups 6f% / U% with index j")
1<j'<|Ug/ Uk

=oiq—1 Y lTa,0w@-1)-kD
O<k<n(u-1

=oig-1D Y o, k. O
O<k<n(u-1
REMARK 3.6. Note that we can calculate,, (k; 1) explicitly if A, is determined
(cf. [But87, 81]). If K is a finite extension of); with ¢ = vk () < [ — 1, then we have
the typex, easily sinceU}(/U,“( = DK/p’;{l for anyu > 1, whereOg is the valua-
tion ring of K andpg is the maximal ideal oDg. The type ofU}(/U;g is as follows: If

me+2<u<@m+Lle+1m=>0,wehaver, =m+1,....m+1, m,...,m ).In
—_— ————
n(u—1—me) n((m+Le—u+1)
particular, if K is absolutely unramified (i.evg (1) = 1), we haver,, = u —1,...,u —1)
—_—
n
foranyu > 1.

From Lemma 3.2 and Lemma 3.4, we can calculate the number of totally ramified finite
abelian extensions a&& explicitly in some cases.

EXAMPLES. (1) LetK be alocalfield with residue field,. Then there are1(qg —1)
tamely totally ramified finite abelian extensiohsof K. This is a consequence of Proposi-
tion 3.5, sinceL /K is tamely ramified if and only if its conductor is less than or equal to
1.
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(2) LetK be alocal field with residue fieldl,, whereq = 1", andu > 1 a positive
integer. Suppose thal.‘}(/U}g is an abeliari-group of typex = (A1, A2, ..., A,). There are

1* [lr{} totally ramified elementary-abelian extensions ok with degreel* (0 < k < r)
!

r Kor-ivl g
} = ———, is thel-binomial coefficient. This
I

k -1

i=1
is proved as follows: Sincé/}{/U,“{ is an abelian group of type = (A1, A2,...,A,), the
quotient groupUg /U%)/(Ux /U is isomorphic toF;. The number of subgroups &fx
appearing asVy,x Uy is equal to the number af- — k)-dimensionalF;-subspaces of7,

and with conductox u. Here,[

r r
r—k|, |k,
Note that ifk > r then there exists no totally ramified elementagbelian extension of
K with degree/* and with conductox u. Thus the number of totally ramified elementary
[-abelian extensions d&& with conductor< u is

Sk H .
k=0 ki
Let A be a finitep-group of orderp”. It is known that the number of subgroups of order

Z (cf. [LSO3, Proposition B.1]). Thus we have
p

which is

p* (0 < k < n) is less than or equal t
the following:

COROLLARY 3.7. Let K bea local field with finite residue field F,, where g = [".
Then the number of totally ramified finite abelian extensions of K with conductor < u isless
than or equal to

nu—1)
o1(qg — 1) Z 1k [n(uk— 1)] .
k=0 l

We need to prepare another lemma for giving an upper bound mentioned at the beginning
of this section.

LEMMA 3.8. Let K bealocal field with residue field F,, .

(1) For any positive integers m and N, the number of totally ramified finite separable
extensions of K with degreem and with vz, (Dr,x) < N islessthan or equal to mq"’*’"“.

(2) If chark = 0, then for any positive integer m the number of totally ramified finite
extensions of K with degree m isless than or equal to mg™ k™).

PROOF. This is an easy consequence of Serre’'s mass formulaX}.€tesp. X, n) be
the set of totally ramified separable extensi@nef K with degreem (resp. with degree:
andvy (Dr,x) < N). From the mass formula we have

> g S X e =
q(an/H»l) - qUL(/DL/[()fl’n#»l
LeX, N LeXy
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This proveg1) of the lemma.
When chak = 0, we have the result sinee— 1 < v (D1 x) < e — 14 vi(e), where
e=e(L/K). O

Finally we have the following upper bound.

THEOREM 3.9. Let K be a local field with finite residue field F,, where g = [".
Then the number of finite Galois extensions of K corresponding to the kernels of continuous
irreducible representations p : Gx — GLg(k) with n(p) < N and with f(p) < f isless
than or equal to

f kn(2NJ (d)—1) J(d)
k i [kn(2NJ(d) — 1) . k(NJ(d)—j+1)
> ou(q —1)< > ll[ ; > a ! :
k=1 i=0 17N j=1
If K isa finite extension of Q,,, then we can replace the last factor Zj(d) kINJ(D)=j+D) py
ZJ@]qk/(vK(./)).

PROOF. This is an easy consequence of Lemma 3.1, Corollary 3.7 and Lemma 3.8,
since
(the number of tower& c K’ ¢ K” c L which satisfy(x'))
f
= Z (the number of tower&; c K” c L which satisfy(x')),
k=1
whereK is the unramified extension & in K>*Pwith degree. O

From this we also have an upper bound for the number of isomorphism classes of irre-
ducible ones.

COROLLARY 3.10. Let K bealocal field with finite residue field F,, where g = 1.
Then the number of isomor phism classes of irreducible continuousrepresentations p : Gx —
GLy (k) withn(p) < N andwith f(p) < f islessthan or equal to

/ kn(2N J(d)—1)
FI@ (! = Dg/ VDD (g — 1)( > [kn(ZNJ(d) - 1)} )
1

i
k=1 i=0

J(d)
y <quk(NJ(d)]+l)>.
=1
If K isa finite extension of Q,,, then we can replace the last factor Z“") kINJ(d)=j+D) py
T ) ;o kj (g ()
> =1 JatvEID.

PROOF. Let M be the maximum ofL : K], whereL runs through all the finite Galois
extensions o corresponding to the kernels pfs in question. Then from Lemma 3.1 we
haveM < fJ(d)(g/ — 1)g/@N/@-D |t s clear that the produc x (the number of
subgroups of5 ¢ which appear as the kernels p% in question) is an upper bound for the
number of isomorphism classes of thgse m]
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