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Abstract
We prove that the stable endomorphism rings of rigid objects in a suitable Frobenius category
have only finitely many basic algebras in their derived equivalence class and that these
are precisely the stable endomorphism rings of objects obtained by iterated mutation. The
main application is to the Homological Minimal Model Programme. For a 3-fold flopping
contraction f : X → Spec R, where X has only Gorenstein terminal singularities, there is an
associated finite dimensional algebra Acon known as the contraction algebra. As a corollary
of our main result, there are only finitely many basic algebras in the derived equivalence class
of Acon and these are precisely the contraction algebras of maps obtained by a sequence of
iterated flops from f . This provides evidence towards a key conjecture in the area.

Mathematics Subject Classification Primary 16E35; Secondary 16E65 · 14E30

1 Introduction

This paper focuses on a fundamental problem in homological algebra: given a basic algebra
A, find all the basic algebras B such that A and B have equivalent derived categories. We
will give a complete answer to this question for a class of finite dimensional algebras arising
from suitable Frobenius categories.

By a well known result of Rickard [33], the above problem is equivalent to first finding all
the tilting complexes over A and then computing their endomorphism rings. One approach
to the first of these problems is to use mutation; an iterative procedure which produces new
tilting complexes from old. The naive hope is that starting from a given tilting complex, all
others can be reached using mutation. However, for a general algebra, tilting complexes do
not behave well enough for this to work. There are two key problems:

(1) The mutation procedure does not always produce a tilting complex.
(2) It is often possible to find two tilting complexeswhich are not connected by any sequence

of mutations.
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Both problems have motivated results in the literature; the first prompting the introduction
of the weaker notion of silting complexes [3,27] and the second resulting in restricting to
a class of algebras known as tilting-discrete algebras [2,4]. In this paper, we will combine
these ideas to provide a class of examples of finite dimensional algebras for which the derived
equivalence class can be completely determined.

1.1 Algebraic setting and results

From an algebraic perspective, the algebras we consider arise in cluster-tilting theory, where
the objects of study are rigid objects in some category C and the algebras of interest are
their endomorphism algebras. More precisely, let E be a Frobenius category such that its
stable category C = E is a k-linear, Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated
category with shift functor denoted�. This ensures E has the conditions usually imposed for
cluster-tilting theory, but we shall add two additional assumptions:

(1) E has at least one but a finite number of maximal rigid objects, and;
(2) �2 ∼= id.

Utilizing the strong links between rigid objects and the silting theory of their endomorphism
algebras developed in [1] leads to the following, which is our main result.

Theorem 1.1 (Corollary 3.13) With the conditions above, for any rigid object M of E, the
basic algebras derived equivalent to EndE(M) are precisely the stable endomorphism alge-
bras of rigid objects obtained from M by iterated mutation. In particular, there are only
finitely many such algebras.

For maximal rigid objects, the conditions on E above ensure that any two such objects
are connected by a sequence of mutations and so we obtain the following corollary of The-
orem 1.1.

Corollary 1.2 (Corollary 3.14) With assumptions as in Theorem 1.1, for any maximal rigid
object M of E, the basic algebras derived equivalent to EndE(M) are precisely the stable
endomorphism algebras of maximal rigid objects in E. In particular, there are only finitely
many such algebras.

Moreover, the standard derived equivalences between these algebras can be thought of
simply as mutation sequences (or equivalently, paths in the mutation graph of rigid objects)
in a way made precise in Corollary 3.16. In this way, we are able to produce a ‘picture’ of
the derived equivalence class of these algebras (see Example 3.15).

1.2 Geometric corollaries

Although the algebraic conditions in Theorem 1.1 may seem restrictive, a large source of
examples can be found in the Homological Minimal Model Programme (see Sect. 4 or
[38]). This is an algebraic approach to the classical Minimal Model Programme and our
main application of Theorem 1.1 is to study the derived equivalence classes of contraction
algebras appearing in this setting.

Given an algebraic variety X , the goal of the Minimal Model Programme is to find and
study certain birational maps f : Y → X , known as minimal models. Minimal models of
X are not unique but Kawamata [23] showed any two minimal models are connected by a
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sequence of codimension two modifications called flops. For this reason, maps which give
rise to flops, known as flopping contractions, are of particular interest.

For a 3-fold flopping contraction f : X → Xcon, Donovan–Wemyss introduced an alge-
braic invariant, known as the contraction algebra of f . If the map contracts a single curve,
this finite dimensional algebra recovers all the previously known numerical invariants [11,17]
and has even been used to prove that those numerical invariants can not classify flops com-
pletely [7]. It is further conjectured by Donovan–Wemyss that, in the setting of smooth
minimal models, the contraction algebra, or more precisely its derived category, completely
determines the geometry.

Conjecture 1.3 Suppose that f : X → Spec R and g : Y → Spec S are smooth minimal
models of complete local isolated cDV singularities with associated contraction algebras
Acon and Bcon. Then R ∼= S if and only if Acon and Bcon are derived equivalent.

The ‘only if’ direction is already known to be true by combining results from [38] with
the main result of [15], but the ‘if’ direction remains a key open problem in the Homological
Minimal Model Programme. This conjecture is the main motivation for studying the derived
equivalence classes of contraction algebras.

The connection between flops and cluster-tilting theory has been explored in [38], where
it is shown that, for certain flopping contractions f : X → Spec R, the contraction algebra is
the stable endomorphism algebra of a rigid object in some Frobenius category associated to
R. In particular, the setting there satisfies the conditions of Theorem 1.1 and thus, we obtain
the following result.

Theorem 1.4 (Theorem 4.12) Suppose that f : X → Spec R is a 3-fold flopping contraction
where R is complete local and X has at worst Gorenstein terminal singularities. Writing
Acon for the associated contraction algebra, the following statements hold.

(1) The basic algebras in the derived equivalence class of Acon are precisely the contraction
algebras of flopping contractions obtained by iterated flops from f .

(2) There are only finitely many basic algebras in the derived equivalence class of Acon.

Minimal models are a special case where the contraction algebras correspond to maximal
rigid objects, and this leads to the following analogue of Corollary 1.2. In many ways, this
corollary can be viewed as the 3-fold analogue of [4, 5.1].

Corollary 1.5 (Corollary 4.13) Suppose that f : X → Spec R is a minimal model of a com-
plete local isolated cDV singularity and write Acon for the associated contraction algebra.
Then the following statements hold.

(1) The basic algebras in the derived equivalence class of Acon are precisely the contraction
algebras of the minimal models of Spec R.

(2) There are only finitely many basic algebras in the derived equivalence class of Acon.

This provides a large class of algebras with finite derived equivalence classes. Even in the
more restricted setting of Conjecture 1.3, combining [30, 5.5] and [38, 4.10(2)] shows that
the quivers of the associated contraction algebras form seven infinite families.

In the process of proving the above, we also establish the following.

Theorem 1.6 (Theorem 4.14) Suppose that f : X → Spec R and g : Y → Spec S are
minimal models of complete local isolated cDV singularities with associated contraction
algebras Acon and Bcon. If Acon and Bcon are derived equivalent then there is a bijection

{minimal models of Spec R} ↔ {minimal models of Spec S}.
Further, the bijection preserves both iterated flops and contraction algebras.
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This gives the first concrete evidence towards Conjecture 1.3, as it shows that Spec R and
Spec S must at least have the same number of minimal models and further that the simple
flops graphs of their minimal models must be isomorphic.

1.3 Conventions

Throughout, k will denote an algebraically closed field of characteristic zero. For a ring A,
we denote the category of finitely generated right modules by modA. For M ∈ modA, we let
addM be the full subcategory consisting of summands of finite direct sums of copies of M
and we let projA := addA be the category of finitely generated projective modules. Finally,
Kb(projA) will denote the homotopy category of bounded complexes of finitely generated
projectives and Db(A) := Db(modA) will denote the bounded derived category of modA.

2 Preliminaries

2.1 Silting theory

In this subsection we recall silting and tilting theory for a finite dimensional k-algebra �.
Note that for such a �, the bounded homotopy category Kb(proj�) is a k-linear, Hom-finite,
Krull–Schmidt triangulated category.

Definition 2.1 A complex P ∈ Kb(proj�) is called:

(1) presilting (respectively pretilting) if Hom�(P, P[n]) = 0 for all n > 0 (respectively
for all n �= 0).

(2) silting (respectively tilting) if P is presilting (respectively pretilting) and further the
smallest full triangulated subcategory of Kb(proj�) containing P and closed under
forming direct summands is Kb(proj�).

We will write silt� (respectively tilt �) for the set of isomorphism classes of basic silting
(respectively tilting) complexes in Kb(proj�). Note that � ∈ tilt � and that all T ∈ silt�
have the same number of indecomposable summands [3, 2.8].

2.1.1 Derived equivalences

Tilting objects are of interest due to the following well-known theorem, connecting them
with derived equivalences.

Theorem 2.2 [33]For each tilting complex T := ⊕n
i=1 Ti inK

b(proj�) there exists a triangle
equivalence Db(�) → Db(End�(T )) sending Ti �→ Hom�(T , Ti ). Moreover, a basic finite
dimensional algebra � is derived equivalent to � if and only if there exists T ∈ tilt � such
that � ∼= End�(T ).

If we restrict to standard derived equivalences, the connection with tilting theory becomes
even stronger.

Definition 2.3 A triangle equivalence F : Db(�) → Db(�) is called standard if it is isomor-
phic to

RHom�(T,−)

for some complex T of �-�-bimodules. In this case, we call T a two-sided tilting complex.
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It is shown in [34, 4.1] that the composition of standard equivalences is again standard
and further, the inverse of a standard equivalence is also standard. Moreover, for any tilting
complex T ∈ Db(�), it is shown in [25] that there exists a two-sided tilting complex T such
that T ∼= T in Db(�). This induces a standard equivalence

RHom�(T,−) : Db(�) → Db(End�(T ))

which maps T �→ End�(T ). It was further shown in [26, 2.1] that such a T is unique in a
suitable sense. For our purposes, the following suffices.

Proposition 2.4 [35, 2.3] Suppose that �, � and �′ are k-algebras and that T (respectively
T ′) is a two-sided tilting complex of �-�-bimodules (respectively �-�′-bimodules) with
End�(T ) ∼= End�(T ′). Then T�

∼= T ′
� if and only if there exists an isomorphism γ : � → �′

such that

T ∼= γ�′ ⊗�′ T ′

in the derived category of �-� bimodules.

In particular, for any tilting complex there is a unique (up to algebra isomorphism) standard
equivalence induced by the tilting complex.

2.1.2 Mutation

Although silting complexes do not necessarily induce derived equivalences, the advantage of
silting over tilting complexes is that they have a well-behaved notion of mutation. To define
this we require the following.

Suppose thatD is an additive category and S is a class of objects in D.

(1) Amorphism f : X → Y is called a right S-approximation of Y if X ∈ S and the induced
morphism Hom(Z , X) → Hom(Z , Y ) is surjective for any Z ∈ S.

(2) A morphism f : X → Y is said to be right minimal if for any g : X → X such that
f ◦ g = f , then g must be an isomorphism.

(3) A morphism f : X → Y is a minimal right S-approximation if f is both right minimal
and a right S-approximation of Y .

There is also the dual notion of a (minimal) left S-approximation.

Definition 2.5 [3, 2.31] Let P ∈ Kb(proj�) be a basic silting complex for �, and write
P := ⊕n

i=1 Pi where each Pi is indecomposable. Consider a triangle

Pi
f−→ P ′ → Qi → Pi [1]

where f is a minimal left add(P/Pi )-approximation of Pi . Then μi (P) := (P/Pi ) ⊕ Qi is
also a silting complex, known as the left mutation of P with respect to Pi .

Right mutation is defined dually and is denoted μ−1
i as it is inverse to left mutation [3,

2.33].1 For general�, themutationof a tilting complexmaynot be a tilting complex.However,
it is well known (see e.g. [3, 2.8]) that if � is a symmetric algebra, i.e. � ∼= Homk(�, k) as
�-� bimodules, then any silting complex is a tilting complex and hence any mutation of a
tilting complex is again a tilting complex. This will be the case in our setting later.

To help control mutations, Aihara–Iyama introduced a partial order on silt� [3], which
generalised the partial order on tilting modules from [32].

1 Note that this notation for left/right follows [3] and [4], but is opposite to the conventions in [1].
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Definition 2.6 Let P and Q be silting complexes for�. If Hom�(P, Q[i]) = 0 for all i > 0,
then we say P ≥ Q. Further, we write P > Q if P ≥ Q and P � Q.

This order can determine whether two silting complexes are related by mutation.

Theorem 2.7 [2, 3.5] Suppose that T ,U are two basic silting complexes for � with T ≥ U.
If there are only finitely many basic silting complexes P such that T ≥ P ≥ U, then U
is obtained by iterated left mutation from T or equivalently, T is obtained by iterated right
mutation from U.

The following result, which is implicit in the literature, will be useful for tracking silting
complexes through derived equivalences.

Lemma 2.8 Let � and � be finite dimensional k-algebras and F : Db(�) → Db(�) be a
triangle equivalence. Then the following statements hold.

(1) F maps silting complexes to silting complexes.
(2) F preserves the silting order.
(3) If P is a silting complex for �, then

F(μi (P)) ∼= μi (F(P)) and F(μ−1
i (P)) ∼= μ−1

i (F(P)).

Proof (1) A standard result of Rickard [33, 6.2] states that F restricts to an equivalence

Kb(proj�) → Kb(proj�).

Using that equivalences are fully faithful andmust preserve generators easily establishes
that the properties of silting complexes are also preserved.

(2) Again, this is a simple consequence of the fully faithful property of equivalences.
(3) Since F is a triangle equivalence, it preserves both triangles and minimal left/right

approximations. Thus, the exchange triangle defining μi (P) is mapped under F to the
exchange triangle definingμi (F(P)) and so the first statement, and similarly the second,
follow.

2.1.3 Two-term silting complexes

Two-term silting complexes are an important class of silting complexes that have connections
with cluster-tilting theory. We recall their definition here.

Definition 2.9 A presilting complex P ∈ Kb(proj�) is called two-term if the terms are zero
in every degree other than 0 and −1, or equivalently by [2, 2.9], if � ≥ P ≥ �[1].

We denote the set of isomorphism classes of basic two-term silting (respectively presilting,
tilting) complexes as 2-silt� (respectively 2-presilt�, 2-tilt�). The following shows that
mutation of two-term silting complexes is particularly well behaved.

Proposition 2.10 [1, 3.8] Suppose P and Q are basic two-term silting complexes for �.
Then P and Q are related by a single mutation if and only if they differ by exactly one
indecomposable summand.
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2.1.4 Silting-discreteness

This subsection recalls silting-discrete algebras, first introduced in [2].

Definition 2.11 A finite dimensional algebra � is said to be silting-discrete if for any P ∈
silt� and any � > 1, the set

�-siltP� := { T ∈ silt� | P ≥ T ≥ P[� − 1] }
is finite. Further, � is called 2-silting-finite if 2-siltP� is a finite set for any P ∈ silt�.

Notice that 2-silt�� = 2-silt�. The key advantage of silting-discrete algebras is the
following, first shown in [2, 3.9] but provided here with a proof for convenience.

Proposition 2.12 If� is a silting-discrete finite dimensional algebra then any silting complex
T ∈ Kb(proj�) can be obtained from � by finite iterated mutation.

Proof Choose a silting complex T . By [2, 2.9], there exists integers m > n such that �[n] ≥
T ≥ �[m]. We now split the proof into two cases: when n ≥ 0, and when n < 0.

If n ≥ 0, the set {Q ∈ silt� | � ≥ Q ≥ T } ⊆ (m + 1)-silt�� and hence is finite by
the silting-discrete assumption. Thus, by Theorem 2.7, T is obtained from � by iterated left
mutation.

If n < 0, the set (1−n)-silt�[n]� = {Q ∈ silt� | �[n] ≥ Q ≥ �} is finite as� is silting-
discrete. Using Theorem 2.7, this shows�[n] can be obtained by iterated right mutation from
�. Further, {Q ∈ silt� | �[n] ≥ Q ≥ T } ⊆ (m − n + 1)-silt�[n]� is also finite, showing T
can be obtained from �[n] by iterated left mutation, again using Theorem 2.7. Combining
these mutation sequences proves the result.

The following result establishes equivalent conditions for an algebra to be silting-discrete.

Theorem 2.13 [4, 2.4] Let � be a finite dimensional algebra. Then the following are equiv-
alent:

(1) � is silting-discrete.
(2) � is 2-silting-finite.
(3) 2-siltP� is a finite set for any silting complex P which is given by iterated left mutation

from �.

2.2 Cluster-tilting theory

Throughout this subsection, C will denote a k-linear Hom-finite, Krull–Schmidt, 2-Calabi–
Yau triangulated category with shift functor �. The property 2-Calabi–Yau (2-CY) means
that there are bifunctorial isomorphisms

HomC(M, N [2]) ∼= DHomC(N , M)

for all M, N ∈ C where D := Homk(−, k).

Definition 2.14 Let M ∈ C.

(1) M is called rigid if HomC(M, �M) = 0.
(2) M is called maximal rigid if M is rigid and if M ⊕ X is rigid for some X ∈ C, then

X ∈ add(M).
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Write rig C for the set of basic rigid objects in C and write mrig C for the set of basic
maximal rigid objects (both taken up to isomorphism). Further, if S is a collection of objects
in C, we write rig S for the intersection S ∩ rig C. The mutation of these objects is defined
similarly to the mutation of silting complexes.

Definition 2.15 Suppose that M := ⊕n
i=1 Mi is a basic rigid object in C with each Mi

indecomposable. Consider a triangle

Mi
fi−→ Vi → Ni → �Mi

where fi is a minimal left add(M/Mi )-approximation of Mi . Then νi (M) := (M/Mi )⊕ Ni

is also a rigid object, known as the left mutation of M with respect to Mi . We call the triangle
an exchange triangle.

Right mutation is defined dually and we denote it by ν−1
i . As with silting complexes, right

and left mutation are inverse operations.

Lemma 2.16 Forany rigid object M := ⊕n
i=1 Mi ∈ Candany i ,νiν

−1
i M ∼= M ∼= ν−1

i νi M.

Proof For lack of a reference, we sketch the proof. To show this, it is enough to show that,
if fi is a minimal left add(M/Mi )-approximation of Mi in the exchange triangle

Mi
fi−→ Vi

gi−→ Ni → �Mi , (2.A)

then gi is a minimal right add(M/Mi )-approximation of Ni and vice versa.
This is very similar to [16, 5.7, 5.8]: begin by assuming fi is a minimal left add(M/Mi )-

approximation of Mi . Applying HomC(M/Mi ,−) to the exchange triangle (2.A) and using
that M is rigid gives an exact sequence

HomC(M/Mi , Vi )
gi◦−−−−→ HomC(M/Mi , Ni ) → 0.

This shows that gi is a right add(M/Mi )-approximation. There is an isomorphism
(
Vi

gi−→ Ni

) ∼=
(
W ⊕ Z

(g′,0)−−−→ Ni

)

where g′ is right minimal andW , Z ∈ add(M/Mi ). Completing these maps to triangles gives
(

Mi
fi−→ Vi

gi−→ Ni → �Mi

)
∼=

((
W ′ f ′

−→ W
g′
−→ Ni → �Mi

)

⊕
(
Z

id−→ Z
0−→ 0 → �Z

))

and hence by the uniqueness of cocones, Mi ∼= W ′ ⊕ Z . Since Mi is indecomposable, either
W ′ or Z must be zero. If W ′ is zero, Mi ∼= Z and so Mi ∈ add(Z) ⊆ add(M/Mi ) which is
a contradiction. Hence, Z ∼= 0 and so gi is right minimal, as required. The other direction is
a dual argument.

For maximal rigid objects M and N , it is shown in [39, 3.3], generalising [22, 5.3] for
cluster-tilting objects, that M is a mutation of N if and only if M and N differ by exactly one
indecomposable summand. An easy consequence of this is that left and right mutation must
coincide in this case.

For a rigid object M ∈ C, we will write mut(M) for the collection of basic rigid objects
which can be obtained from M by iterated left or right mutation. The relationship between
cluster-tilting theory and silting theory relies on the following subcategory of C.
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Definition 2.17 Given M ∈ C, define M ∗ �M to be the full subcategory of C consisting of
the objects N such that there exists a triangle

M1
f−→ M0

g−→ N → �M1 (2.B)

where M1, M0 ∈ add(M).

It is easy to show that if M is rigid, then for any triangle such as (2.B), g is a right add(M)-
approximation and further, by possibly changingM0 andM1, we can choose g to be minimal.
The following theorem is a slight generalisation of [1, 4.7], similar to that of [10, 3.2].

Theorem 2.18 [1, 4.7] Let C be a k-linear Hom-finite, Krull–Schmidt, 2-CY triangulated
category and M be a rigid object of C. If � := EndC(M), there is a bijection

rig (M ∗ �M) ←→ 2-presilt�

which preserves the number of summands. For a rigid object N , consider the triangle

M1
f−→ M0

g−→ N → �M1

such that g is a minimal right add(M)-approximation. Applying HomC(M,−) to f gives
the corresponding 2-term presilting complex.

Proof As the proof is so similar to [1, 4.7], just replacing C with M ∗ �M throughout, we
only give a sketch of the proof and highlight where adaptations are required.

It is well known (see e.g. [29, 2.3]) that the functor HomC(M,−) induces an equivalence
add(M)

∼−→ proj�. This can be used exactly as in [1, 4.6] to show that the map described in
the statement gives a bijection

{objects in M ∗ �M} ←→ {complexes P−1 → P0 in Kb(proj�)}
where both sides are taken up to isomorphism. The claim that a rigid object N ∈ M ∗ �M
is sent to a presilting complex then follows exactly as in [1, 4.7], making repeated use of the
equivalence add(M)

∼−→ proj�.
Finally, given a two-term presilting complex P , this is necessarily of the form

HomC(M, M1)
f ◦−−−→ HomC(M, M0)

for some M1
f−→ M0 in add(M) and the object in M ∗ �M associated to P is N :=

cone( f ). The proof that N is rigid relies on showing that if a map M0
p−→ �2M1 satisfies

HomC(M, p) = 0, then p = 0. In [1] they use an equivalence C/[�M] ∼−→ mod� which
holds for any cluster-tilting objectM , andwhichwas generalised in [10, 2.1] to an equivalence
(M ∗�M)/[�M] ∼−→ mod� for any rigid object M . However, this is not directly applicable
here as it is unclear that �2M1 ∈ M ∗ �M . Instead, we can appeal to the general result (see
e.g. [5, VI.3.1]) that for any M ′ ∈ add(M) and any N ∈ C, the functor HomC(M,−) induces
an isomorphism

HomC(M ′, N ) ∼= Hom�(HomC(M, M ′),HomC(M, N )).

The proof then proceeds exactly as stated in [1, 4.7].

Remark 2.19 (1) Since the bijection preserves the number of summands, rigid objects in
M ∗�M with the same number of summands asM must correspond to silting complexes.
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(2) If M is maximal rigid, it is shown in [39, 2.5] that all rigid objects of C lie in M ∗ �M
and so this bijection restricts to

mrig C ←→ 2-silt�.

Further, the bijection respects mutation in this case as mutation on both sides corresponds
to differing by exactly one indecomposable summand.

(3) If C has only finitely many maximal rigid objects, Theorem 2.18 can be used along with
[1, 2.38, 3.9], to show that, for any maximal rigid object M ,mut(M) = mrig C. This is
exactly as in [1, 4.9], but where we replace cluster-tilting with maximal rigid.

Theorem 2.18 can also be used to show the following, which will show that if there are
only finitely many basic maximal rigid objects in some category, there must also be only
finitely many basic rigid objects.

Lemma 2.20 Let C be a k-linear Hom-finite, Krull–Schmidt, 2-CY triangulated category.
If there exists a maximal rigid object in C, then any basic rigid object M ∈ C is a direct
summand of some basic maximal rigid object.

Proof Let N ∈ C be a basic maximal rigid object and write � := EndC(N ). Let φ denote
the corresponding bijection from Theorem 2.18. Now take any basic rigid object M ∈ C.
By [39, 2.5], M is contained in rig (N ∗ �N ) and thus φ(M) ∈ 2-presilt�. Hence, by [8,
3.1], there exists P ∈ 2-presilt� such that φ(M) ⊕ P is a two-term silting complex for �.
Mapping back across the bijection, and using Remark 2.19(2), shows that M ⊕ φ−1(P) is
maximal rigid object which gives the result.

3 The derived equivalence class

3.1 Main results

The following setup will be used throughout this section.

Setup 3.1 Suppose E is a Frobenius category such that its stable category E is a k-linear,
Hom-finite, Krull–Schmidt, 2-CY triangulated category with shift functor �. Additionally
assume that:

• �2 is isomorphic to the identity functor on E.
• E has at least one but only finitely many basic maximal rigid objects.

Remark 3.2 (1) Thefirst additional assumptionmeansE is a 0-Calabi–Yau category, but aswe
wish to view E as a category with cluster-tilting theory plus some additional conditions,
we write the assumptions as above.

(2) By Lemma 2.20, the second assumption further implies that E has only finitely many
basic rigid objects.

A large source of examples of this setup will come from a geometric setting, described in
Sect. 4. For an infinite family of examples, see Sect. 4.5.

The first additional assumption gives two important results, the first of which is the fol-
lowing. This was first proved in the setting of hypersurface singularities, but the proof works
generally.
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Proposition 3.3 [9, 7.1] Let C be a k-linear, Hom-finite, 2-CY triangulated category with
shift functor � such that �2 ∼= id. Then for any N ∈ C, the algebra � := EndC(N ) is a
symmetric algebra i.e. � ∼= D� as bimodules.

Proof For any M, N ∈ C, HomC(M, N ) has the structure of an EndC(M)-EndC(N )-
bimodule. Further, the bifunctoriality of the isomorphisms

HomC(M, N ) ∼= DHomC(N , �2M)

coming from the 2-CY property ensure they are isomorphisms of EndC(M)-EndC(N )-
bimodules. Taking M = N and using that �2 ∼= id gives the desired result.

The key advantage of this result is that it means any silting complex for these endomor-
phism algebras will in fact be a tilting complex. In particular, the left or right mutation of any
tilting complex at any summand, as in Definition 2.5, will again be a tilting complex. This
leads to the second important consequence of our assumption on �.

Proposition 3.4 With the setup of 3.1, let M := ⊕n
i=1 Mi be a rigid object of E and write

� := EndE(M).Mutate M at the summand Mi via the exchange sequence (2.A) and consider
the two-term complex

P :=
(
0 →

⊕

j �=i

HomE(M, Mj )
)

⊕
(
HomE(M, Mi )

fi◦−−−−→ HomE(M, Vi )
)
.

Then P is isomorphic to the tilting complex μi� and there is a ring isomorphism

End�(P) ∼= EndE(νi M).

Proof The fact that P is a tilting complex and has the required endomorphism ringwill follow
directly from [15, 4.1] if we can show that the conditions there hold. In particular, we need
to show that, for any j ∈ Z, the maps

HomE(Vi , �
j (M/Mi ))

−◦ fi−−−→ HomE(Mi , �
j (M/Mi ))

and

HomE(� j (M/Mi ), Vi )
gi◦−−−−→ HomE(� j (M/Mi ), Ni )

are surjective. Using the assumption �2 ∼= id, we need only consider j = 0, 1. When j = 0
this follows as both fi and gi are add(M/Mi )-approximations ( fi by definition and gi by
Lemma 2.16). When j = 1, rigidity of M and νi M show that all the terms are zero and hence
the maps are surjective as required. Finally, we see that P must be μi� by Proposition 2.10,
as P is a two-term silting complex differing from � by precisely the i th summand.

Combining Proposition 3.4 and Theorem 2.2 shows that, for any basic rigid object M ,
there is a derived equivalence

Db(EndE(M)) → Db(EndE(νi M)),

μi EndE(M) �→ EndE (νi M).

By iterating this result, it is easy to see that the stable endomorphism algebras of the elements
in the setmut(M) are all derived equivalent algebras.

Using the above two results allows us to mutate freely and to investigate how mutation
of rigid objects and mutation of tilting complexes interact. Under the setup of 3.1, fix a
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basic rigid object M := ⊕n
i=1 Mi ∈ E and let � := EndE(M). Note that each sequence of

mutations from M produces a rigid object N ∈ mut(M) along with an induced ordering of
the summands of N . To record this data, we introduce the following directed graph which
we denote mut(M):

• the vertices are ordered tuples N = (N1, . . . , Nn), where N := ⊕n
i=1 Ni ∈ mut(M)

and the order of the summands is induced by some sequence of mutations from M . Two
tuples N and N

′
are identified precisely when Ni ∼= N ′

i for each i ∈ {1, . . . , n};
• there is an arrow si : N → N

′
if N and N ′ differ in precisely the i th summand, and

N ′ ∼= νi N .

Note that each vertex has n arrows s1, . . . , sn starting at the vertex (corresponding to left
mutations) and n arrows s1, . . . , sn incident at the vertex (corresponding to right mutations).

Note that ifM and N are related bymutation, thenmut(M) andmut(N )will be isomorphic
graphs. In particular, for any maximal rigid object, the mutation graph will be the same and
so we just denote this mrig(E).

The idea behind the results in this paper is that combinatorial paths inmut(M)will control
not only mutation of rigid objects but also tilting complexes of �.

Definition 3.5 A path in mut(M) is a symbol sεm
im

. . . sε1
i1

with i1, . . . , im ∈ {1, . . . n} and
εi ∈ {−1, 1}, along with a specified starting vertex N . The path si starting at N should be
thought of as the path travelling along arrow si from vertex N and the path s−1

i should be
thought of travelling backwards along the arrow si incident to N . Longer paths are composed
right to left as with function composition. A path is called positive if all the εi equal 1.

Notation 3.6 When the ordering is clear from the context, such as when N is defined via
a sequence of mutations from our fixed M , we will abuse notation and drop the overline
notation for the corresponding vertex of mut(M). Moreover, “a path starting at M” will
always refer to a path starting from M = (M1, . . . , Mn), where M := ⊕n

i=1 Mi is the fixed
ordering used to definemut(M).

Example 3.7 In the geometric setting introduced later, there exists an example of E where
mrig(E) is the figure on the left below; we write Min ...i1 := νin . . . νi1M to ease notation and
note that, in this example, M2121 ∼= M1212 and the induced orderings are the same. The path
α := s1s1s2s

−1
1 starting at vertex M1 is shown in the diagram on the right, where you travel

along the first edge in the opposite orientation.

M

M1

M21

M121

M2121

M212

M12

M2

s1

s1

s2

s2

s1
s1

s2
s2

s1

s1

s2

s2

s1
s1

s2
s2

M

M1

M21

M121

M2121

M212

M12

M2

1

4
3

2

Not only will paths in mut(M) correspond to mutation sequences, but also to derived
equivalences between the algebras of interest. Combining Proposition 3.4 with Theorem 2.2,
for each arrow si : N → N

′
in mut(M) there exists a derived equivalence
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Fi : Db(EndE(N )) → Db(EndE(N ′))
μi (EndE(N )) �→ EndE(N ′) (3.A)

where, giving EndE(N ) the induced ordering HomE(N , N1), . . . ,HomE(N , Nn) from N ,
the j th summand of μi (EndE(N )) maps to HomE(N ′, N ′

j ). Fix such a derived equivalence
Fi for each arrow si . For example, we could choose Fi to be the unique (up to algebra isomor-
phism) standard derived equivalence associated to μi (EndE(N )), as discussed in Sect. 2.1.1.

Notation 3.8 Consider a path α := sεm
im

. . . sε1
i1

in mut(M) starting at a vertex N . Then,
writing � := EndE(N ) set:

(1) ναN := ν
εm
im

. . . ν
εi
i1
N and μα� := μ

εm
im

. . . μ
ε1
i1

�.

(2) Fα := Fεm
im

◦ · · · ◦ Fε1
i1

: Db(�) → Db(EndE(ναN )).

Example 3.9 Consider the path α := s1s1s2s
−1
1 from Example 3.7. Using that right and left

mutation are equal for maximal rigid objects, the object at the end of the path is

ναM1 := ν1ν1ν2ν
−1
1 M1

∼= ν1ν1ν2ν
−1
1 ν1M

∼= ν2ν
−1
1 ν1M

∼= M2

as in the diagram. Similarly, but with no cancellation now as left and right mutation are
different,

μαEndE(M1) := μ1μ1μ2μ
−1
1 EndE(M1).

The following is the main technical result of this section.

Proposition 3.10 Under the setup of 3.1, choose a rigid object M := ⊕n
i=1 Mi in E and

let α := sεm
im

. . . sε1
i1

be a path in mut(M) starting at N. Writing � := EndE(N ) and
� := EndE(ναN ), the following hold.

(1) Fα(μα�) ∼= � in Db(�).
(2) End�(μα�) ∼= � as k-algebras.

Proof Note that (2) follows easily from part (1) since Fα is an equivalence. We will prove
part (1) by induction on m.

BaseCasem = 1: Ifα := si , then the result follows from our choice of the Fi . Ifα := s−1
i

for si : ν−1
i N → N , then the assumption given on Fi is that

Fi (μiEndE(ν−1
i N )) = �. (3.B)

But then,

F−1
i (μ−1

i �) ∼= μ−1
i F−1

i (�) (by Lemma 2.8)

∼= μ−1
i

(
μiEndE(ν−1

i N )
)

(by (3.B))

∼= EndE(ν−1
i N ),

as required.
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Inductive Step: Let β := sεm−1
im−1

. . . sε1
i1

so by the inductive hypothesis, Fβ(μβ(�)) ∼=
EndE(νβN ). Then,

Fα

(
μα(�)

) ∼= Fεm
im

(
Fβ

(
μ

εm
im

μβ(�)
))

∼= Fεm
im

(
μ

εm
im

Fβ

(
μβ(�)

))
(by Lemma 2.8)

∼= Fεm
im

(
μ

εm
im

EndE(νβN )
)

(using inductive hypothesis)

∼= �

where the last isomorphism holds by applying the base case to the path sεm
im

from νβN to
ναN .

This has the following easy corollary.

Corollary 3.11 Under the setup of 3.1, let M := ⊕n
i=1 Mi be a rigid object of E and � :=

EndE(M). Then, any tilting complex obtained from � by finite iterated mutation (either left
or right at each stage) has endomorphism algebra isomorphic to one of

{EndE(N ) | N ∈ mut(M)}.
Proof. If T is a tilting complex for � obtained by iterated mutation then

T ∼= μ
εm
im

. . . μ
ε1
i1

�

for some i1, . . . , im ∈ {1, . . . n} and εi ∈ {−1, 1}. This defines a path α := sεm
im

. . . sε1
i1

in
mut(M) starting at M for which T ∼= μα�. Then by Proposition 3.10

End�(T ) ∼= End�(μα�) ∼= EndE(ναM).

Using this result, to completely determine the basic algebras in the derived equivalence
class, we just need to show that every basic tilting complex for such a � can be obtained by
iterated right or left mutation from �. By Lemma 2.12, this will follow from showing � is
silting-discrete.

Theorem 3.12 Under the setup of 3.1, let M ∈ E be a rigid object and� := EndE(M). Then
� is a silting-discrete algebra.

Proof We will check condition (3) of Theorem 2.13, namely that 2-siltP� is a finite set for
any silting object P which is given by iterated left mutation from �.

By Theorem 2.18, two-term silting complexes for � are in bijection with certain rigid
objects ofE lying inM ∗�M . However, recall fromRemark 3.2(2) that our setup ensures that
there are only finitelymany rigid objects inE and hence inM∗�M . Thus, 2-silt�� = 2-silt�
is finite.

Now suppose T is a silting (and hence in this case tilting by Proposition 3.3) complex
obtained by iterated left mutation of�. Thus, T ∼= μα� for some positive pathα inmut(M)

starting at M . If α ends at the rigid object N , then writing � := EndE(N ), the associated
equivalence

Fα : Db(�) → Db(�)

maps T to � by Proposition 3.10. Thus, applying Lemma 2.8 to Fα, there is a bijection

{P ∈ silt� | T ≥ P ≥ T [1]} ←→ {Q ∈ silt� | � ≥ Q ≥ �[1]}.
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By definition, the left hand side is 2-siltT�, while the right hand side is 2-silt�. But since
� is also the endomorphism algebra of a rigid object in E, the first argument shows 2-silt�
must be finite and hence so is 2-siltT�.

The following is our main result. Part (1) is a consequence of Theorem 3.12 showing how
to view all tilting complexes combinatorially inmut(M) and part (2) is a consequence of the
fact this viewpoint allows us to control the endomorphism rings of the tilting complexes via
Proposition 3.10.

Corollary 3.13 In the setup of 3.1, choose a rigid object M ∈ E and write � := EndE(M).
Then the following statements hold.

(1) Any tilting complex of � is isomorphic to μα� (defined in Notation 3.8) for some (not
necessarily positive) path α in mut(M) starting at vertex M.

(2) The basic algebras derived equivalent to � are precisely the algebras

{EndE(N ) | N ∈ mut(M)},

of which there are only finitely many.

Proof (1) Take T ∈ tilt �. Since � is silting-discrete by Theorem 3.12, Proposition 2.12
shows

T ∼= μ
εm
im

. . . μ
ε1
i1

�

for some i1, . . . , im ∈ {1, . . . n} and εi ∈ {−1, 1}. This defines a path α := sεm
im

. . . sε1
i1

starting at M for which T ∼= μα� by definition.
(2) Suppose � is a basic algebra derived equivalent to �. Then � ∼= End�(T ) for some

basic tilting complex T ∈ tilt � by Theorem 2.2. However, by part (1) this shows
� ∼= End�(μα�) for some path α starting at M and hence by Proposition 3.10, � ∼=
EndE(ναM) as required. Finally, the set is finite since, by Remark 3.2(2), our setup
ensures that there are only finitely many basic rigid objects in E, and hence inmut(M).

Recall from Remark 2.19(3) that, as there are only finitely many basic maximal rigid
objects in E, mut(M) = mrig E for any maximal rigid object M ∈ E. Therefore, when
restricted to maximal rigid objects, part (2) of Corollary 3.13 specialises to the following.

Corollary 3.14 In the setup of 3.1, choose a maximal rigid object M ∈ E and write � :=
EndE(M). Then the basic algebras derived equivalent to EndE(M) are precisely the stable
endomorphism algebras of maximal rigid objects in E. In particular, there are only finitely
many such algebras.
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Example 3.15 Returning to Example 3.7, we set � := EndE(M) and �im ...i1 :=
EndE(Mim ...i1). Corollary 3.13 shows that the diagram

�

�1

�21

�121

�2121

�212

�12

�2

s1

s1

s2

s2

s1
s1

s2
s2

s1

s1

s2

s2

s1
s1

s2
s2

can be thought of as a ‘picture’ of the derived equivalence class of�. The vertices are precisely
the basic algebras in the derived equivalence class and the (not necessarily positive) paths
starting at a given vertex control all of the tilting complexes of that algebra. Further, the end
vertex of a path determines the endomorphism algebra of the associated tilting complex and
thus we think of each path as a derived equivalence induced by that tilting complex. If we
recall from Sect. 2.1.1 that any tilting complex induces a unique standard derived equivalence
(up to algebra isomorphism), we obtain the following result.

Corollary 3.16 Under the setup of 3.1, choose a rigid object M ∈ E and write � :=
EndE(M). If the Fi of (3.A) are chosen to be standard equivalences, then the following
statements hold.

(1) For any path α : N → N
′
in mut(M) the derived equivalence Fα : Db(EndE(N )) →

Db(EndE(N ′)) given in Notation 3.8 is a standard equivalence mapping the tilting
complex μαEndE(N ) to EndE(N ′).

(2) Up to algebra isomorphism, any standard equivalence from Db(�) is obtained by com-
position of the Fi and their inverses.

Proof (1) Take a path α : N → N
′
inmut(M). If � := EndE(N ) and� := EndE(N ′), then

as in Notation 3.8, α corresponds to a tilting complex μα� and a derived equivalence

Fα : Db(�) → Db(�)

μα� �→ �

using Proposition 3.10. If the Fi are standard equivalences, then Fα must also be and
hence Fα is the unique (up to algebra isomorphism) standard equivalence associated to
the tilting complex μα�.

(2) Take any standard equivalence F : Db(�) → Db(�). Then F−1(�) is a tilting complex
for� and so by Propositions 2.12 and 3.12, F−1(�) ∼= μα� for some pathα inmut(M)

starting at M . By part (1), Fα is also a standard equivalence induced by μα� and hence
F and Fα must be the same up to an algebra isomorphism by Proposition 2.4.

In this way, we can say the diagram in Example 3.15 not only contains all the basic
members of the derived equivalence class but also all the standard equivalences between
them (up to algebra isomorphism) and that these correspond precisely to the paths. In this
way, we have a complete picture of the derived equivalence class of these algebras.
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Remark 3.17 In this setting, there is no way of telling when two paths give rise to the same
derived equivalence. To be able to say this, we would need to define explicit standard equiva-
lences and then understand how to compose them.This idea is explored in [6]where additional
structure coming from the geometric setting is used in order to choose the Fi explicitly.

4 Geometric application

In this section, we apply the results from the previous section to certain invariants of 3-fold
flopping contractions, known as contraction algebras.

4.1 Complete local setup

For our purposes, a 3-fold flopping contraction is a projective birational morphism f : X →
Xcon between Gorenstein normalC-schemes of dimension three satisfyingR f∗OX = OXcon ,
and which further is an isomorphism in codimension one. When the base of the flopping
contraction is affine and complete local, contraction algebras have a very explicit construction
and so we begin with this case.

Setup 4.1 Take f : X → Spec R to be a 3-fold flopping contraction where R is complete
local and X has at worst Gorenstein terminal singularities.

The condition on X in this setup is satisfied when X is smooth but also allows for some
mild singularities. Moreover, the condition also forces Spec R to have at worst Gorenstein
terminal singularities and hence to be an isolated cDV singularity [31].

Definition 4.2 A three dimensional complete localC-algebraR is a compound Du Val (cDV)
singularity if R is isomorphic to

C�u, v, x, y�/( f (u, v, x) + yg(u, v, x, y))

where C�u, v, x�/( f (u, v, x)) is a Du Val surface singularity and g is arbitrary.

We will sometimes wish to assume further that X is Q-factorial (see [38, §2] for a defini-
tion) but will only do so if explicitly stated.

Definition 4.3 A 3-fold flopping contraction f : X → Spec R where R is complete local
and X has at worst Q-factorial terminal singularities is called a minimal model of Spec R.

For a cDV singularity, it is well known that there are only finitely many minimal models
[24] and one goal of theHomologicalMinimalModel Programmewas to provide an algorithm
that can produce all the minimal models from a given one, similar to how all maximal rigid
objects can be obtained via iteratedmutation fromagivenmaximal rigid object in our previous
setting. The key observation is that the maximal Cohen–Macaulay modules of R link the
two settings.

Definition 4.4 Let (R,m) be a commutative noetherian local ring and choose M ∈ modR.
Then define the depth of M to be

depthR(M) = min{i ≥ 0 | ExtiR(R/m, M) �= 0}.
We say that M ismaximal Cohen–Macaulay (CM) if depthR(M) = dim(R) and write CM R
for the full subcategory of modR consisting of maximal Cohen–Macaulay modules.

123



1174 J. August

The following summary theorem asserts that E := CMR satisfies all but the last condition
of Setup 3.1. For details, and full references, see e.g. [9, §1].

Proposition 4.5 If R is a complete local isolated cDV singularity, CMR is a Frobenius
category. Moreover, the stable category CMR is a Krull–Schmidt, Hom-finite, 2-Calabi–
Yau triangulated category with shift functor � satisfying �2 ∼= id.

In particular, rigid objects in CMR can be defined as in Definition 2.14. Moreover, in
Theorem 4.11, we will see that CMR also satisfies the last condition of Setup 3.1 and thus
we will be able to apply our main results to this setting. However, for this to be useful in
studying the geometry, the rigid objects need to have connection with the geometry. This
link comes about via the contraction algebras; an invariant of 3-fold flops introduced by
Donovan–Wemyss [11,13].

4.2 Construction of the contraction algebra

In the setting of 4.1, the contraction algebra attached to f has a very explicit construction,
detailed in [12, 3.5], but provided here for convenience.

It is well known that in the setup of 4.1, Spec R has a unique singular point m and the
preimage C := f −1(m) consists of a chain of curves. In particular, giving C the reduced

scheme structure, we have C red = n∪
i=1

Ci where Ci ∼= P1.

For each i , let Li be the line bundle on X such that Li ·C j = δi j . If the multiplicity of Ci

is equal to 1, setMi := Li . Otherwise, defineMi to be given by the maximal extension

0 → O⊕(ri−1)
X → Mi → Li → 0

associated to a minimal set of ri − 1 generators of H1(X ,L∗
i ) as an R-module [37, 3.5.4].

Then, by [37, 3.5.5],

OX ⊕
n⊕

i=1

M∗
i

is a tilting bundle on X . Associated to this is the algebra A := EndX (OX ⊕ ⊕n
i=1M∗

i )

which is derived equivalent to the category of coherent sheaves on X . Pushing forward via
f gives f∗(OX ) ∼= R and, for each i , f∗(M∗

i )
∼= Ni for some R-module Ni . Since f is a

flopping contraction, there is an isomorphism [37, 3.2.10]

A ∼= EndR
(
R ⊕

n⊕

i=1

Ni

)
.

Definition 4.6 The contraction algebra associated to f is defined to be

Acon := EndR
(
R ⊕

n⊕

i=1

Ni

)/

[R] ∼= EndR
(
R ⊕

n⊕

i=1

Ni

)

where [R] denotes the ideal of all morphisms which factor through add R.

Remark 4.7 The contraction algebra Acon can also be defined as the representing object of a
certain deformation functor of the curves in C , but we will not need this here.
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4.3 Summary of results from the homological minimal model programme

The following key proposition provides the link between contraction algebras and cluster-
tilting theory.

Proposition 4.8 Assuming the setup of 4.1 and with notation as above, the following hold.

(1) Each Ni lies in CMR and further, N := ⊕n
i=1 Ni is a rigid object in CMR.

(2) f is a minimal model if and only if N := ⊕n
i=1 Ni is maximal rigid in CMR.

Proof (1) As f : X → Spec R is crepant, [19, 4.14] shows that EndR(R⊕N ) lies in CMR

and hence, as Ni ∼= HomR(R, Ni ) is a direct summand, Ni also lies in CMR. Thus, N
is a modifying module in the terminology of [18, 4.1] and hence, by [18, 5.12], satisfies
Ext1R(N , N ) = 0 which is equivalent to N being rigid in CMR.

(2) By [19, 4.16], f is a minimal model if and only ifR⊕ N is amaximal modifying module
and thus if and only if N is a maximal rigid object in CMR by [18, 5.12].

This proposition shows that the construction in Sect. 4.2 actually gives a well-defined
map

{flopping contractions as in setup 4.1} → rig CMR (4.A)

which restricts to a map

{minimal models of Spec R} → mrig CMR. (4.B)

Since N := ⊕n
i=1 Ni is a rigid object in CMR, we can choose any summand Ni to mutate

at and produce a new rigid object νi N . Alternatively, consider the curveCi in the exceptional
locus corresponding to the summand Ni . Since f : X → Spec R is a flopping contraction
and R is complete local, choosing any such Ci , it is possible to factorise f as

X
g−→ Xcon

h−→ Spec R

where g(C j ) is a single point if and only if j = i . For any such factorisation, there exists
a certain birational map g+ : X+ → Xcon, satisfying some technical conditions detailed in
[38, 2.6], which fits into a commutative diagram

Xcon

Spec R

X X+

g+g

h

f f +

φ

where φ is a birational equivalence (see e.g. [28, p25] or [36, §2]). We call f + : X+ →
Spec R the simple flop of f at the curve Ci . Since f + is again a flopping contraction, it also
has an associated contraction algebra, constructed as in Sect. 4.2.

We can therefore consider two algebras obtained by ‘mutation’ from f :

(1) The algebra EndR(νi N ) obtained by mutating N at summand Ni .
(2) The contraction algebra EndR(M) associated to f +, where f + is the simple flop of f

at the curve Ci .
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The following proposition shows that these algebras are isomorphic.

Proposition 4.9 [38, 4.20(1)] Under the setup of 4.1, suppose that the contraction algebra
associated to f is EndR(N ). If f + is the flop of f at Ci , then the contraction algebra of f +
is EndR(νi N ).

Since f + will have the same number of curves in the exceptional locus as f , we can
consider iterated flops.

Notation 4.10 Let f be a flopping contraction as in Setup 4.1 and suppose there are curves
C1, . . . ,Cn in the exceptional locus of f . Given a sequence (i1, . . . , im)where i j ∈ {1, . . . n}
we obtain a flopping contraction fim ...i1 defined iteratively via:

(1) fi1 is the simple flop of the f at curve Ci1 .
(2) fi j ...i1 is the flop of fi j−1...i1 at the curve Ci j for 1 < j ≤ m.

We call the sequence (i1, . . . , im) a mutation sequence.

Repeated use of Proposition 4.9 shows that the contraction algebra of fim ...i1 is given by

EndR(νim . . . νi1N ).

In other words, the maps (4.A) and (4.B) respect mutation. Using this, and the fact there are
only finitely many minimal models, it is possible to show that the map in (4.B) is surjective
[38, 4.10]. Further, both maps can be seen to be injective [38, 4.4] which gives the following
result.

Theorem 4.11 [38, 4.10] If Spec R is a complete local isolated cDV singularity, then the
construction in Sect. 4.2 yields a bijection

{minimal models of Spec R} ←→ mrig CMR

which respects mutation. Here, two minimal models are identified if they are isomorphic as
R-schemes.

Since Spec R has only finitely many minimal models, a direct consequence of Theo-
rem 4.11 is that CMR must have only finitely many maximal rigid objects.

4.4 New results

Combining Proposition 4.5 and the remark after Theorem 4.11 shows that CMR and its
stable category satisfy the conditions in 3.1. Thus we can apply the results of the previous
section to obtain the following, which is our main geometric result.

Theorem 4.12 Let f : X → Spec R be as in Setup 4.1 with associated contraction algebra
Acon := EndR(N ).

(1) Acon is a silting-discrete algebra.
(2) The endomorphism algebra of the tilting complex T := μ

εm
im

. . . μ
ε1
i1
Acon is isomorphic

to the contraction algebra of fim ...i1 .
(3) The basic algebras derived equivalent to Acon are precisely the contraction algebras of

flopping contractions g : Y → Spec R, obtained by a sequence of iterated flops from
f . In particular, there are only finitely many such algebras.
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Proof Recall that Spec R is a complete local isolated cDV singularity and thus, by Propo-
sition 4.5 and the comments after Theorem 4.11, CMR and its stable category satisfy the
conditions in 3.1.

(1) As N is rigid in CMR by Proposition 4.8, the algebra

Acon := EndR(N )

is silting-discrete by Theorem 3.12.
(2) By Proposition 3.10, there is an isomorphism

EndAcon(T ) ∼= EndR(ν
εm
im

. . . ν
ε1
i1
N ).

However, in this setting right and left mutation are equal by [38, 2.25] and thus

EndAcon(T ) ∼= EndR(νim . . . νi1N ),

which is the contraction algebra of fim ...i1 , by repeated use of Proposition 4.9.
(3) Combining part (1), Proposition 2.12 and part (2) shows that the endomorphism alge-

bra of any basic tilting complex for Acon is isomorphic to the contraction algebra of
some flopping contraction obtained from f by a sequence of iterated flops. Applying
Theorem 2.2 gives the result.

In the special case of minimal models, it is well known that any two minimal models are
connected by a sequence of simple flops [23]. Thus, part (3) of Theorem 4.12 reduces to the
following.

Corollary 4.13 Let f : X → Spec R be a minimal model of a complete local isolated cDV
singularity. Writing Acon for the associated contraction algebra, the basic algebras derived
equivalent to Acon are precisely the contraction algebras of minimal models of Spec R.

Recall from Conjecture 1.3, that it is expected that the derived category of the contraction
algebras of Spec R completely controls the geometry. The following shows that, to some
extent, this is true.

Theorem 4.14 Suppose that f : X → Spec R and g : Y → Spec S are minimal models
of complete local isolated cDV singularities with associated contraction algebras Acon and
Bcon. If Acon and Bcon are derived equivalent then there is a bijection

{minimal models of Spec R} ←→ {minimal models of Spec S}.
Further, the bijection preserves both mutation and contraction algebras.

Proof Let M ∈ CMR be the maximal rigid object associated to f and let N ∈ CMS be the
maximal rigid object associated to g so that

Acon := EndR(M) and Bcon := EndS(N ).

Fix an ordering C1, . . . ,Cn of the curves in the exceptional locus of f , which fixes an
ordering on the decomposition M ∼= ⊕n

i=1 Mi such that Mi corresponds to curve Ci via the
construction in Sect. 4.2.

Since Bcon is basic and derived equivalent to Acon, Corollary 4.13 shows that Bcon must
be isomorphic to a contraction algebra for some minimal model of Spec R. In particular, as
any two minimal models are connected by a sequence of flops Bcon must be the contraction
algebra of

f ′ := fim ...i1 : X ′ → Spec R
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for some mutation sequence (i1, . . . , im) . Thus, writing M ′ := νim . . . νi1M ,

Bcon ∼= EndR(M ′)

by repeated use of Proposition 4.9. In particular, there exists a decomposition N ∼= ⊕n
i=1 Ni

such that, for all i = 1, . . . , n,

HomR(M ′, M ′
i )

∼= HomS(N , Ni )

as projective Bcon-modules. This also fixes a labelling D1, . . . , Dn of the curves in the
exceptional locus of g so that Ni corresponds to Di via the construction in Sect. 4.2.

Applying Theorem 2.18 and the remark afterwards, there are mutation preserving bijec-
tions

2-silt Bcon ←→ mrig CMR and 2-silt Bcon ←→ mrig CMS.

Bcon �→ M ′ Bcon �→ N

Further, Theorem 4.11 shows there are bijections

{minimal models of Spec R} ←→ mrig CMR

f ′ �→ M ′

and

{minimal models of Spec S} ←→ mrig CMS

g �→ N

which both respect mutation. Combining all of these provides amutation preserving bijection

{minimal models of Spec R} ←→ {minimal models of Spec S}
f ′ �→ g

as required. Thus for anymutation sequence ( j1, . . . , jl), our choice of indexing on the curves
ensures f ′

jl ... j1
�→ g jl ... j1 . Since the contraction algebra of both f ′ and g is Bcon, part (2) of

Theorem 4.12 shows the contraction algebra of both f ′
jl ... j1

and g jl ... j1 is

EndBcon(μ jl . . . μ j1Bcon)

and hence the bijection preserves contraction algebras.

4.5 Example

A large class of examples can be obtained from complete local cAm−1 singularities. These
can be written in the form

R := C�u, v, x, y�/(uv − f (x, y))

where m is the order of the polynomial f (x, y) considered as a power series. We will only
consider isolated singularities, which can be characterised using the irreducible factors of
f (x, y); namely, if f factors into n irreducible power series f1, . . . , fn , then R is isolated
precisely when ( fi ) �= ( f j ) for all i �= j . For these singularities, the maximal rigid objects
in CMR have been completely determined.
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s1
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s2

s2
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s1
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Fig. 1 The left hand side showsmrig(CMR) for an isolated cAm−1 singularity given by uv − f1 f2 f3. The
right hand side shows the ‘picture’ of the derived equivalence class of the contraction algebras where paths
determine tilting complexes

Acon := EndR(Mid) ∼= EndR(M(13)) ∼=
c

a

cl=0

la=0

l2+acacac=0

l

Bcon := EndR(M(23)) ∼= EndR(M(123)) ∼=
c

a

la=0

cl=0

l2=ac

am=0

mc=0

m3=ca

lm

Ccon := EndR(M(132)) ∼= EndR(M(12)) ∼=
c

a

cm=0

ma=0

m3+acac=0

m

Fig. 2 The quivers and relations of the contraction algebras of the minimal models of the cA2 singularity
given by uv − xy(x2 + y3)

Definition 4.15 SupposeC�u, x, x, v�/(uv− f1 . . . fn) is a cAm−1 singularity.Givenσ ∈ Sn ,
where Sn is the symmetric group on n objects, define

Mσ := (u, fσ(1)) ⊕ (u, fσ(1) fσ(2)) ⊕ · · · ⊕ (u, fσ(1) . . . fσ(n−1)).

Theorem 4.16 [20, 5.1] For a cAm−1 singularity R ∼= C�u, x, x, v�/(uv − f1 . . . fn), the
maximal rigid objects in CMR are precisely the objects {Mσ | σ ∈ Sn}. In particular, if R
is isolated then there are n! maximal rigid objects, and each has n − 1 summands.

In particular, if we choose n = 3 , there are six maximal rigid objects, each with two
summands and the mutation graph is shown in Fig. 1. Note that in this geometric setting,
it is shown in [21, §1, §7] that fixing the ordering of the summands of one rigid object in
CMR fixes an ordering on all the other rigid objects inmut(M), independent of themutation
sequences taken. Thus, each N ∈ mut(M)will appear precisely once as a vertex ofmut(M).

Going back to the n = 3 example, by Theorem 4.11 there are six minimal models of any
such Spec R, each with two curves in the exceptional locus. Choosing f1 = x , f2 = y and
f3 = x2+ y3 the contraction algebras associated to these minimal models are given in Fig. 2.
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By Corollary 4.13, these are the only basic members of a derived equivalence class.
Further, as in Example 3.15, we obtain a picture of this derived equivalence class, shown
on the right hand side of Fig. 1, which controls the tilting complexes and hence the derived
equivalences.

Remark 4.17 More generally, if Acon is the contraction algebra of a minimal model of an
isolated cAm−1 singularity given by uv− f1 . . . fn , then the quiver of Acon will be the double
of the An−1 Dynkin quiver, possibly with up to two loops at each vertex [20, 5.29].

4.6 Global setting

In this final subsection, we remove the restrictions in Setup 4.1 that the base of the flopping
contraction needs to be complete local, or even affine.

Setup 4.18 Take f : X → Xcon to be a 3-fold flopping contraction between quasi-projective
varieties where X has at worst Gorenstein terminal singularities.

In this more general setup, Donovan–Wemyss introduce a more general invariant given by
a sheaf of algebras [14]. As with the construction of the contraction algebra, the construction
involves a vector bundle V := OX ⊕ V0 on X satisfying

f∗EndX (V) ∼= EndXcon( f∗V).

Although this bundle may not be tilting (as it is in the complete local case) there is a technical
condition on V, detailed in [14, 2.3], which ensures that for any choice of affine open Spec R
in Xcon, the bundle V| f −1(Spec R) is a tilting bundle.

With this bundle V, they define the sheaf of contraction algebras to be

D := f∗EndX (V)/I
where I is the ideal sheaf of local sections that at each stalk at v ∈ Xcon factor through a
finitely generated projective OXcon,v-module (see [14, 2.8] for details).

Writing Z for the locus of points on Xcon above which f is not an isomorphism, [14, 2.16]
showed that the support of the sheaf D is precisely Z . In particular, in the setup of 4.18, the
condition on X ensures that Z = {p1, . . . , pn} where each pi is an isolated singularity and
thus

D ∼=
n⊕

i=1

Dpi

where Dpi is the OXcon,pi -algebra given by the stalk of D at pi . Specifically, in the setup of
4.18,D is a finite dimensional algebra which splits into a direct sum of algebras, one for each
point pi .

Alternatively, for each pi , it is possible to choose an affine neighbourhood Ri of pi which
contains no other p j . Localising if necessary, we can assume pi is the unique closed point of
Ri and setting Ui := f −1(Spec Ri ), we can consider the map fi := f |Ui . Further, we can
complete this map to obtain a map

f̂i : Ûi → Spec R̂i .

This map now satisfies the conditions of the complete local setup in 4.1 and thus we get an
associated contraction algebra Ai := End R̂i (Ni ) where Ni is a rigid object in CMR̂i .
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Theorem 4.19 [14, 2.24] The completion of Dpi is Morita equivalent to Ai .

As Dpi is a finite length module over OXcon,pi , there is an isomorphism D̂pi
∼= Dpi of

OXcon,pi -algebras, where D̂pi denotes the completion ofDpi . Combining this with our earlier
results gives the following.

Theorem 4.20 Under the setup of 4.18 every algebra derived equivalent to D is Morita
equivalent to an algebra of the form

n⊕

i=1

End R̂i (Mi )

where Mi ∈ mutR̂i (Ni ). In particular, there are only finitely many basic algebras in the
derived equivalence class.

Proof Any algebra derived equivalent to D must be of the form

n⊕

i=1

Bi

where Bi is derived equivalent toDpi . However, by Theorem 4.19 and the remark after, Dpi
is Morita equivalent to Ai := End R̂i (Ni ) and thus each Bi must be derived equivalent to
Ai . However, for each i , Corollary 3.13 shows that the only basic algebras in the derived
equivalence class of Ai are End R̂i (Mi ) for Mi ∈ mutR̂(Ni ) and thus Bi must be Morita
equivalent to one of these algebras.
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