
J .  M ath . K yoto  U n iv . ( JM KYAZ)
28-1 (1988) 153-163

On the Finsler group and an almost symplectic
structure on a tangent bundle

By

YO Shill ir0 I CHIJY6

In the preceding paper [5], the present author has found a  L ie  group F(n)
which is called the Finsler group and has investigated a  tangent bundle T(M )
admitting an F(n)-structure in the sense of the theory of G-structure. Especially
it has been shown that the base manifold M is a Finsler manifold if and only if

T (M )  admits an F(n)-structure satisfying a certain condition. Therefore, an F(n)
-structure which is defined o n  T (M ) a s  a  reduction of the standard tangent

structure has been called an  almost Finsler structure. M oreover, in the case
where a  non-linear connection is assigned on T(M), the almost Finsler structure
has been studied in detail. For example, it has been shown that any G-connection
relative to the almost Finsler structure in  the present case is nothing but a  so-
called linear connection o f F insler type whose induced Finsler connection is
metrical.

In  th e  present paper, first, we m inutely study almost Finsler structures
without the assignment of a  non-linear connection, and  find  a  necessary and
sufficient condition for T(1\71) to adm it an  almost Finsler structure, which is
expressed in  terms of some quantities in the base manifold M.

Since the Finsler group F(n) is a  subgroup o f  the symplectic group, T (M )
admits an  almost symplectic structure i f  it adm its an  almost Finsler structure.
So, in this case, we can introduce a  spec ia l 2 -fo rm  on  T (M ). In  §2 , w e  are
concerned with this 2-form and deal with the case where the 2-form is closed
or has an  integrating factor. The 2-form, anyway, plays an important role in
the development of the theory of almost Finsler structures.

Lastly, §3 is devoted to consideration o n  almost Ham ilton vectors with
respect t o  th e  almost symplectic structure derived  from  th e  almost Finsler
structure. In  the case of Finsler manifolds, Hamilton vectors and Hamilton
systems are treated and Hamilton functions are shown concretely.

Throughout the paper, we use the following indices and notation:
A , B , C , ..., P , Q , R , ... run over the range {l, 2, 3, ..., 2n};
a ,  b , c , . . . ,  i ,  j ,  k , . . .  run over the range (I, 2 , 3 , ..., n );
a ,  b , . . . ,  i ,  j ,  . . .  stand for a+n , b+ n , •••, i+n, j+n, ••• respectively;
W ith respect to any canonical coordinate system in a tangent bundle,
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(.0) _ ( x a,  x a) =  ( x a  j a) e., and the notation a, and 5i stand for a/axi
( and a/ay i respectively.

§ 1 .  The homogeneous almost F insler structure 3*.

Let M  be an n-dimensional differentiable manifold, {(U , x i)} be a system of
local coordinate neighbourhoods which covers M . Th en , th e  tan gen t bundle
T(M) over M is covered by the system o f canonical local coordinate neighbour-
hoods { ( _ 1 ( U ) ,

 (x i, _yi))} where r is the natural projection T(M)-->M.
As is well-known, T(M) admits the standard tangent structure ..9- 0 a n d  its

0
structure tensor Q is given by Q=(

0
E,, 0

)
with respect to  the canonical local

coordinate (x i, y i)  ( [1  ], [ 2 ]).
In the preceding paper [ 5 ] the Finsler group is introduced as  a  linear Lie

group such that

F(n)= { (SAA  AO )
A e0(n), S eS y m m (n)} .

  

And, if T (M ) admits an F(n)-structure as a reduction of 3 0 , j. e., T(M) admits
an  F(n)-structure depending on  .3o ,  the structure is called a n  almost Finsler
structure and is  denoted  by  3 . I f  T (M ) admits a n  almost Finsler structure
satisfying the homogeneity condition, the structure is called a homogeneous almost
Finsler structure and is denoted by g * •  The condition for T (M ) to  admit the
structure 3 *  is given by the following:

( 1 ) T (M ) adm its an F(n)-structure in the sense of the theory of G-structures
([ 3 ], [ 6 ], [14]), i. e ., in  any two canonical local coordinate neighbour-
hoods (n - 1 (U ) ,  (x i, _yi)) and ( r ' ( U ) ,  (x i, y i) ) ,  there exist adapted 2n-
frames {Z A }  and {Z n }  respectively which satisfy the condition ZA -=P 1,3IZB

((P IE F (n )) in  r - 1 (U) nir - i( U )  if r - 1 (U) Mr - '( U)*O .

( 2 ) In  each 7r- '( U ) ,  the adapted frame {Z A } = {Z a , Za } has the following
components

Z„=7.,a/axi-Fr:M ayi, Z i =r i„a/ayi,

where det rf, 1+0 and r;; is positively homogeneous of degree 0 for yi and

is positively homogeneous of degree 1 for yi.■
In  th e  present paper we mainly treat th e  homogeneous almost Finsler

structure 3*.

F(n) is a  subgroup o f  the symplectic group Sp(n). Hence, i f  T (M ) admits a
homogeneous almost Finsler structure g * ,  T (M ) also admits an almost symplectic
structure, i.e ., T (M ) adm its a  non-degenerate 2-form ([ 3 ], [ 7 ], [ 9 ]). B y
.52=coA BdxAAdxfi (0)BA=--(0A,3) we denote the 2-form and call it an  almost Finsler
2-form associated with .3*.

Now we put
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(r
0 -1 13; 0' 0 —ai i

rl: ( i t  ,87)' j — ( J PQ) = G ii 0 )'

XX ,

then g i j  and /3̀; are positively homogeneous of degree 0 for yi, and a i j  and 137 are

positively homogeneous of degree 1 for yi. Since am.9 .---Jp42/31,473% we have

(1.1) f2=aiidxiAdxj-2giidxiAdY),

( W A B ) = ( a i i  
— g i

n
j ) .g i j

In  this case, we can define a singular inner product of rank n by

<Z a ,  Z b>=-6 ab, <Za, Z> 0 , <Z ei, ZT,>-=0.

Due to the property of the Finsler group F(n), we can easily verify that this is
the globally defined one on T (M ). Moreover we have

alayi>=0, <a/ay , aiay>=0,

namely, g i i dxiC)dxi is a singular Riemann metric of rank n valid on T (M ).  And
g i i is nothing but a generalized metric defined on M in the sense of Mor [10].

Next, wAB is a skew-symmetric tensor field on T (M ). So, after direct calcula-
tion, we can see, in  each r -1 (U) n 1( U )  where U n U # ,  th e  following trans-
formation rules of gii and a ij hold:

__ aiP aiq
aXi aXi

(1.2)
{ g ii= gP q

— ak"P ai'q — axt, a.xq n, _ a2xP .  axq
aii — aPq axi axi g P q  aXi aXiaXm  Y + g P q  aXiaen Y axi •

Thus we obtain

Theorem 1. I f  a  tangent bundle T (M ) adm its a  homogeneous almost Finsler
structure, then T (M ) admits an almost symplectic structure whose associated 2-form is given

by Q=aiidxiAdxj-2g i i dxiAdyi. H ere, a ij i s  a  quantity  such that aji-= —ai j  a n d  is

positively homogeneous o f  degree 1 for y , g i j  i s  a  generalized metric o f M , a n d  th e
transformation rules o f a ij an d  g ij a re given by (1.2).

N ow , le t XT be a  non-linear connection defined on  T (M ) ([ 6 ]. [ 8  ]) and
be the components o f ST with respect to the caninical local coordinate (xi, yi).

Then J T  satisfies the transformation rule

axP ° aig arx- P  
a x ,, x.d =  a r i a e

By using this equation, we can show easily that p ii ,
o + g in z g7 — g iin g r is a

155

skew-symmetric quasi tensor on M [ 6 ] and is positively homogeneous o f degree
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1 for y i. Hence, if we put N'i = -T1 gi'n13,,i, th en  w e  can  show directly that

gives T (M )  a non-linear connection and satisfies aii=œ g i n ,N7-1-gi n ,N r. Thus
we obtain

T h e o r e m  2 .  L et g= (g i i )  and  a= (aii) be th e  quantities defined i n  Theorem 1.
O n T (M ), there always exists a  non-linear connection N  satisfying the condition

(1.3) a= — gN +tNg.

Next, let N  and Kr be any two non-linear connections satisfying the condition
(1. 3). T h e n  ' —N is  a  (1 , 1 ) quasi tensor field on M  and is positively homo-
geneous of degree 1 for y i. Now, k=(k i i ) = g(1%-r — N) is a  (0, 2) quasi tensor field
on M  and is positively homogeneous of degree 1 for y i and satisfies

tk=(tIV  — tN)g=(a+ g1)— (a+ gN )=k .

That is, k  is a symmetric quasi tensor field.
Conversely, let N  be a non-linear connection shown in Theorem 2 and k  be

any symmetric (0 , 2 ) quasi tensor field and be positively homogeneous of degree
I  for y i. Then R =N +g - lls satisfies

g t g N  t  Ng = a

Thus we obtain

T h e o r e m  3 .  In  a  tangent bundle admitting a  homogeneous almost Finsler structure,

l e t  N  be a  non-linear connection satisfying the condition (1. 3). I f  is another non-linear

connection satisfying the condition (I . 3), then S i is w ritten as T =N + g - '1c where k  is

a  (0 , 2) symmetric quasi tensor field on  M  and is positively homogeneous o f  degree I f o r
y t. And the converse is also true.

Now let us consider the converse of Theorem I. T h a t is  to  say, we assume
that a manifold M  admits a generalized metric g  and a skew-symmetric quantity
a= (a i i )  which is positively homogeneous of degree 1 for y i  and satisfies the
transformation ru le  (I . 2 ). In  this case, S2=aiidxiAdxj-2giidxiAdyi is  a globally
defined non-degenerate 2-form on T ( M ) .  First, we consider a  local coordinate
neighbourhood (U, x i). W ith  respect to  the generalized metric g ,  it is easy to
find , in  U , n  linearly independent local covariant quasi vectors o l  such that

g i j = E  01(4. That is, g=tua where a =(07). Now, we put z-= ( z ) = a ' .  O f course,
-=1

01 and r  are positively homogeneous of degree 0 for y i .  Let N  be a non-linear
connection shown in Theorem 2 , i. e ., N  satisfies a= — gN -FiNg. Then we can
define, on 7- 1 ( U ),  local 2n-frame IZ A I  by

Z a =r!,(afaxi—Nrafaym),

The quantities a , r, N  and IZ A I  always exist on Ir- 4 (U ). However, they can not
be determined uniquely. Next, let (Ü , ii)  be another local coordinate neighbour-
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hood such that U n U # .  T h e n , on (ir- 1 (U), j t ) ) ,  we can define similarly

a, r, N  and {Za }, which we denote by ;I, g  and {2 A } respectively. Now, on

7r (U  )  n r - i( U ), we can consider these quantities in terms of the local canonical

coordinate system (xi, y i ) ,  which we denote by A , p, and { 2 4  respectively.
Then, we see

2.—te,(al3xi—g73laym), 2 .a=pLalayi.
Now, in n- '( U ) 7r - 1 (U ) , {ZA } and {2 A }  have, of course, the relation

I'', P I
2 A= 1 3 Z B  where (P )=(  _ t)eGL(2n, R).p b  p b

First, Z a =P rZ n i d-P7Z,,, can be rewritten as

1.t,alayi=P7z-„(alaxi—N'i alay)d-Pfralay t.

Hence we have P7= 0 and Pf'=(;',.",u. Secondly, 2,=P7Z „,-I-P7Z z  can  be re-
written as

pi„(alaxi—g;"alaym)=P7ri(3/axi—N;'a/ayr)+1)71-'„,alayi.

Hence we have P7=a7p; and PT=a7,'N'i rT:,—(7',"Sr;"te,;. Putting A = ( P ) ,  we see

tAA.--t (0 71) (a t e ) =t f i g p=t t i tLit e =t (4) (214) = E n ,

i. e . ,  A e 0 (n ) . Next, putting B = ( P ) ,  we see, by virtue of Theorem 3,

B=aNrA — agp=aNz-A — aNrA — ag - VcrA

= —ortrkrA= —trkrA

where k  is a  symmetric matrix. So, putting S  — trk r, w e have tS=S, i .  e .,
A  0

S eS y m m (n ). Thus w e get ( )=
\

(S A  A )
 w h e r e  AŒ 0(n) and S e  Symm(n).

That is to say, (13 )OEF(n). And, for the relations

Z a =riaa/axi—z-1,NNIaym a n d  Z5=T!,alay i ,

we have seen already that det Iria l#0 and rir, is positively homogeneous of degree
0  for y i ,  and rA rr  is positively homogeneous of degree 1 for y .  Moreover,

0 -- t(, - i)r - 1 =taa=g  and ( _ N r  r )
1

 =( 0
uN

6 =  ( 6 a )  . So, we have
a

=1

=gmiNr— giniN;"=aii.

Thus, as the converse of Theorem 1, we obtain

Theorem 4 . Assume that a manifold M  admits a generalized metric g i i  and a

E (a7- cei= 1
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skew-symmetric quantity a i i  which  is positively hom ogeneous of  d eg r ee  1 f or y i and  satisfies
the transformation ru le (1 . 2 ). T hen  T ( M )  adm its a  homogeneous almost Finslei structure
whose associated almost F ins ler 2-form  is given  by

aiidxiAdxj-2giidxiAdyi.

§ 2 .  Fins le r  structures.

L e t  T (M ) b e  a tangent bundle adm itting a  homogeneous almost Fins ler
structure. Applying th e exterior differentiation d  to  the almost Fins le r 2-form
f 2=aiidx iA d x j-2g i idx iA dy i, we get

clf2=akaiidxkAdxiAdxj-1- (akaii±2aigik)dykAdxiAdxi

—25kgodykAdxiAdyi.

So, the condition for Q to be closed can be written as

Ibkgii - 5igik =0,

k aii+2dig tk — k aii - 2aigik =0,

akaii +aicti k+ai aki -=0.

The first condition means that g i i  is  a Fins ler metric [10]. The second condition
leads us to k a i i =a i g i k—ai g i k . Since aii  is positively homogeneous of degree 1 for
yi, we obtain

(2.1)

Conversely, let gi i  b e  a  Finsle r  metric and a i i  b e  the quantity given by (2.1).

From the well-known equation y m k g i n i = 0 ,  we get _k aii=aigik — aigik . Hence, the
second condition is clearly satisfied. In  this case, moreover, we see

ak a ij-i-a ia jk + a jak i

-= Yi n  (akaigi m—aka jg ira+ d ia igk in — amakgjrn+aiakgint — aiaigkra)

=0.

That is, the third condition is also satisfied. Thus we obtain

Theorem 5 .  L e t T (M )  be a tangent bundle admitting a homogeneous almost Finsler

structure. The almost Finsler 2 -fo rm  Q =a i id x iA d x j-2 g iid x iA d y i i s  c lo s ed  i f  and  only
i f  g i i  i s  a Finsler m etric an d  aii is  g iv en  b y  aii= yrn(a i gim —aigi m ).

In the case of Theorem 5, we have

Q=ym(digi n i —aigi,n) dxiAdxi-2giidxiAdyi

-=d (2ymg,n iclx)).

That is, Q is the well-known exact form [14]. In the paper [ 5 ], we have called
this D the Finsler form associated with a Finsler metric and denote it by D* •
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Since Q* is determined by a  Finsler metric only, it seems to us that Theorem 5
tells us a new definition and a new treatment of a  Finsler manifold.

Next, let there be given a scalar field a(x , y ) o n  T (M ),  which is positively
homogeneous of degree 0 for yi. I f  T (M ) admits a  homogeneous almost Finsler
structure whose associated 2-form is given by f2=a i i dxiAdxj-2g i i dxiAdyi, then
T(M) also admits another 2-form P u t t i n g -iii =e,30 g i i  and a' i j =ecr('-v)aii

we have b=a i idxjAdxj-2,-giidxiAd_yi. Of course, Tgi i  is a generalized metric. With
respect to a j j , it is easy to verify

- a ig p Figa 2 i , P a i g
ajj apq 

 ax i ax i  g P q d x  ax iax m  Y gPq axiax m  Y dxi

Thus T(M) admits another homogeneous almost Finsler structure whose associated
2-form is T2  itself. The condition for T2 to be closed is given by

(1 )  ki ;  is a  Finsler metric ( 2 ) Ym •

T h e  condition ( 1 ) implies that the generalized metric g i i is conformal to a
Finsler metric. From the condition ( 2 ), we have

(2.2)

Conversely, let f 2=aiidx iA dx j-2giidx iA dy i be a  2-form on T (M ). I f  there exists
such a scalar field c =a(x , y )  that a(x , y )  is positively homogeneous o f degree 0
for y i, e g ii is a  Finsler metric and the relation (2.2) holds, then
ecrj j =ym{d j (e g j m ) —dj (e"g j m )}  holds good and 612 becomes closed. Thus we obtain

Theorem 6 .  Let f2=a i i dxiAdxj-2g i i dxiAdyi be the almost Finsler form  associated
w ith  a  hom ogeneous a lm ost Finsler structure defin ed  o n  a  tan gen t bund le T ( M ) .  Let

a=a(x , y )  b e a sca la r field  o n  T (M ) which is positively hom ogeneous of  degree 0 fo r  yi.

In  o rd er th a t eq2 b e  c lo s ed , i t  is  n e c e s sa r y  and su fficien t tha t e g i ; i s  a Finsler metric
and the relation (2.2) holds good.

L e t  g  be a  Finsler metric, Q* be the Finsler form associated with g, and
c =c (x )  be a scalar f ie ld  o n  M . Then Tg= e g  is a  Finsler metric. So, let T2* be
the Finsler form associated with Then we have T2* = e ),(2* e'(x ) yin (ai a g

a j a gi m ). Therefore, the condition F2*=e ) .(2* is w ritten  a s  ai ag i m —aiag i m =0.

Applying th e differentiation bk  and multiplying gik  to this equation, we have
di a=0 , i. e ., a  is constant. Conversely, if a is constant, it is evident that .F2- *=e0f2*.
Thus we obtain

Theorem 7 .  Let g and Tg b e Finsler metrics defined on M  and be conformal to each
other, namely, Tg=e '( ') g .  Let .f2* and -.6* b e  the Finsler fo rm s a sso c ia ted  w ith  g and

respectively. T hen  S2*=e'(' ) .(2* holds true if  and on ly  i f  i s  homothetic to g.

§ 3 .  Hamilton vector fields in T(M).

L e t V  be a vector field in T (M ) and Q  be the standard tangent structure
tensor. W ith respect to  a  loca l canonical coordinate, V  and  Q  are written as
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0\V =vi(x, y)alaxi+vi(x, y)alayi and  Q = ( Q .) =

/ 0

 0 ) •

derivation Y v  Q ,  we have

Now, calculating the Lie

Therefore. if Y v Q = 0  holds, V  must take the form

V=vi(x)0/axi+(yma n i vi(x)+ui(x))a/ayi.

A n d  th e  converse is also true. H e r e ,  vi(x)a/axi+yma n i vi(x)a/ayi is called the
complete lift of a vector field v(x)=vi(x)a/axi to the tangent bundle T (M ) and is
denoted by (v (x ))c, and ui(x)a/ayi is called the vertical lift of a vector field u(x)
=u 1(x)0/axi to T (M ) and is denoted by (u (x ))v  ( [6 ] , [1 4 ] ) . Hence we obtain

Theorem 8 .  L et V  b e  a  vector f i e ld  in  a  tangent bundle T ( M )  and  Q  b e  the
standard tangent structure ten sor o f  T ( M ) .  2 v Q = 0  h o ld s  g o o d  i f  a n d  o n ly  i f
V = (v(x))c-F(u(x))v where (v (x ))c  i s  the complete l i f t  o f  a  vector fie ld  v (x ) in  M  and
(u (x ))v  is  the vertical l i f t  o f a vector field u (x ) in  M.

Now, w e suppose that the tangen t bundle T ( M )  admits a  homogeneous
almost Finsler structure ..5r*• L et V be a  vector field in T(M ). in what follows,
we consider the case where the local 1-parameter group of local transformations
generated by V  preserves the structure 9 * . The condition to be demanded is
written as 2 v Q -= 0  an d  Y v Q = 0 .  By virtue o f Theorem 8 ,  it is enough to
consider the two cases where V  is the complete lift o r V is the vertical lift of a
vector field in the base manifold M.

First, we consider the case where V is the complete lift of a vector field v(x)

in  M . Now, let us calculate YuccuAB = 0  for (WAB)= (07i = ( g i i 0  ) .  Using(coi; — g,

the relations

awAB  ,  ay. , ay.
y v w ,,B = y  - -t- W D B T  WADFixa a X B

and vc=vi(x)a/axi+fa m vi(x)a/ayi, after some calculation, we get

2va0;;=0,

Yvccub=vhdh,gii+famvhhgii4-divhghi+gmajvh=Yvgii,

vccoi;=.-vhahaii+ yman j vhjhaii+divhahi±aihaivh

a2v h m a 2 v h m

+ g i h  aXiaeng i h  axiaxm Y

where y v g i i is  the well-known formula o f the L ie  derivative of the generalized
metric g i i  [13].

As is well-known ( [4  ] , [1 1 ] , [1 2 ]) , in  a  manifold admitting a  symplectic

structure whose associated 2-form is Q, a vector field V satisfying 2 v Q = 0  is called
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a Hamilton vector. And similarly, in a manifold admitting an almost symplectic
structure whose associated 2-form is Q, a vector field V  satisfying 2 vQ=0 is said
to be an almost Hamilton vector. Now we obtain

Theorem 9 . L et T ( M )  b e a  ta n g en t b u n d le  a d m itt in g  a  h om ogen eou s  a lm o st
Finsler structure .9- * ,  l e t  Dr=cri i dxiAdxj-2giidxiAdyi be the alm ost F ins ler fo rm  a sso -
cia ted  w ith  ,F* , and let v =v i(x )alax i b e a  vector field  in  the base manifold Al. Then, the
complete l i f t  o f v  i s  an alm ost Hamilton vector o f .9- *  if and  on ly i f
(1) y  is  a  K illin g  v ecto r  fie ld  o f  the generalized m etric gii,

azvh
(2) vhahaii+ y rnam vh5haii+aivhal,i+aihaivh+ gilt a i d e a x i a x my m = o

hold good.

In the case where 0/Q =0, i . e ., g i i  i s  a  Finsler metric and aii= ym (aigi —

D i g ) ,  the left hand side of the condition (2 ) of Theorem  9  can be rewritten,
after some calculation due to ym5hgi n .,= 0 ,  as

a 2 ,,.. a2 g •vh y in s  v h  " n v i n
aXhaXi aXhaXi hat,gih— Yrnamvhaigth,

+ ymaivhdhgim—ymaivhai g hin+ y nap haigh m— ymaiv hahg im

a2vh a.vh  
+ yin gi h  a x ia x .  Y  gill ax iax m •

Thus we can rewrite the condition (2 ) as

0 i(Y m -Yvgim) — ai(Y m 2 vgim)= 0 .

Therefore we obtain

Theorem 10. Let g  be a Finsler metric o f a  manifold M , v =y i(x )alax i be a vector
fie ld  in  M  and .9- *  b e  the symplectic structure on T (M )  derived from  S2*=d(2.ymgmidxj).
Then vc i s  a Hamilton vector o f .9-*  if a n d  o n l y  i f  y  i s  a  K illin g  v e c to r  o f th e  Finsler

metric g.

It is  w ell-know n (IL I], Ill]) that, fo r any p-form, the relation Y v = i v d-Fdi t,
holds good where i v is the interior product by V  and cl is the exterior differential
operator. I f  zi is  a  K illing vector field  o f  a  Finsler m etric g ,  then we have
2 vc,(2*=0. O f course, clf2*=0 h o lds . So, w e  have diticQ*=0. That is, the so-
called Hamilton system p=c6 R A(vc)VxA is closed. Putting HA-=co n B (vc)B, we have

=  yr {(a m g i f —aig n i r )v m + gm ia r vm } , I i i = — gn i ivm .

The equation yr (i v  gi r = 0  leads us to H =  — y r  vm ai,4̀  mr—  Y r aivm  gm r. Then we have
p =œ d (g n i r y rv m ) . That is , i t  is  an exact form  and H = g n i r y re n  is  a Hamilton
function o f <9- * (114 J, [11], [12]). Thus we obtain

Theorem 11. Suppose that a manifold M  adm its a  Finsler metric g and  a K illing
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vector field v =v i(x )dlax i o f  g .  concerning the symplectic structure .9 - *  derived from
Q*=d(2ymgm idxi), H = g„„yrvin is the Hamilton function with respect to  the Hamilton
vector vc in  T (M ).

In the case of Theorem 11, the so-called Hamilton equation is written as

dxi 
d t ( = v i ) =  g im  ay -

.

dyiD T I  
(=  f a m Y " axn, y P(oh ,g7npœ am ghp)g ihg"' a y ,  •

I t  is  a  matter of course that the Hamilton function is constant along the
integral curve of the Hamilton vector vc.

Next, we consider the case w here V = u '. u  being a  vector field on M .
Calculating .29 uv wil e ,  we have

Y u vfoii= umbin crii+ gm i aiu"— g i m a j u",

_29u vw71 =umh,n gd ,

Thus we obtain

Theorem 1 2 .  L e t  T ( M )  be a tangent bundle admitting a  homogeneous almost
Finsler structure ..F*, let Q=criidxiA dxi-2giidxiA dyi be the almost Finsler form associated
with .9-* , and le t u=ui(x )alax i be a  vector field in the base m anifold M . T hen, the

vertical lift of  u is an almost Hamilton vector of .9- * if  and only if

(1) umkngii=- 0,

(2) umbmaii+ gm i ai um— g i f f i a jum=

hold good.

Here we consider the case where dQ=0, i. e., g  is a Finsler metric and Q-=0*•
By virtue of (2.1) we have

umkn aii+ gmiaium — gim aium

=um (Di g i n i —a gimalum — gi m a J ura.

L e t  V  b e  the covariant differentiation with respect t o  the Caftan's Finsler
connection P i ,  ([ 8 ], [13]). Using the condition umj,„g i i = 0  and the well-known

relation v k g1 i =0 , we have

(aigi n , — gi r l';„i um =O.

Hence, we can rewrite the condition (2) as  v i (g i m um) — v i (g i m um) =O. Therefore
we obtain

Theorem 1 3 .  L et g be a Finsler metric of  a m anif o ld  M , le t u=ui(x )alai be a
vector f ield in M  and let •9- *  be the homogeneous almost Finsler structure on T(M ) derived
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f rom  12*=d(2ymg m id x j) .  Then the vertical lif t of  u  is  a Hamilton vector of the symplectic

structure <9 - *  if  and only if

(I) umbn i gii= 0, (2) (gi„,u15) =  i(gi i n um)

hold good where y means the covariant differentiation with respect to the Carton's Finsler
* .

connection

In the case of Theorem 13, the Hamilton system p  is written as p= gi n i umclxi.

This p  is, naturally, a  closed 1-form, however, is not always an exact form.
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