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Analytical solutions to the plane problems in terms of stresses for thin annular domains
under compression loading are well known in several papers. Moreover, the large majority of
the two-dimensional problems in the theory of elasticity are reducible to the solution of their
boundary value problems. The two-dimensional photoelasticity methods easily provide the
stress tensor components on the boundary, from one photograph only. The Beltrami-Michell
equations with the Dirichlet photoelastic data state a well-posed hybrid problem in stress
terms. It has been shown that the results obtained from the hybrid method developed in
this paper, are applicable to any irregular shaped photoelastic domain of interest. Successful
results have been obtained for more complicated forms and loads. The correctness of the
results for the circular ring is confirmed and will be discussed in details.
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1. Introduction

The analysis of an annular thin disk subjected to diametral compression is often regarded as a
problem of reference for verification and validation of theoretical or experimental techniques for
stress or strain investigation of a study case, as done in (Navneet Kumar and Khobragade (2011)
and Sciammarella and Gilbert (1973). Analytical solutions to the plane problems in terms of
stresses for such annular domains under compression loading are well known in several papers
(Nomura et al., 2008; Filon, 1924). However, the concern of this paper is to show another way
that exists in addition to those reference works listed by Tokovyy et al. (2010) for evaluating
the stress state acting in a thin ring subject to diametral compression. Although the method
developed in this study is not limited exclusively to this shape of structure, successful results
have been obtained for more complicated forms and loads.

Moreover, the large majority of the two-dimensional problems in the theory of elasticity are
reducible to the solution of their boundary value problems. We shall be concerned only with
those solutions in which the components of the stress tensor are continuous and single-valued
throughout the region Ω ∪ Γ (Ω is the volume and Γ is the envelope surface) together with
their first and second partial derivatives with respect to field variables. Moreover, the harmonic
state of the stress invariant satisfies the Laplace equation, and is usually used to determine
the interior potential of the stress sum if boundary values are known. It is well-known that
each stress component is governed by the Beltrami-Michell equation (Timoshenko and Goodier,
1970). In fact, the source function of each Beltrami-Michell equation is expressed in terms of
partial derivatives of the second order of the stress sum harmonic function. Therefore, the plane
stress resolution is reduced to solving two Dirichlet problems successively.

In spite of some apparent disadvantages, photoelasticity often serves as a useful complement
to numerical analyses, especially for validation of complex stressed models or when the boundary
conditions are difficult to model. The two-dimensional photoelasticity methods easily provide the
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stress tensor components on the boundary, from one photo only (see Kuske, 1979). The Beltrami-
Michell equations with the Dirichlet photoelastic data state a well-posed hybrid problem in terms
of stress, as done by Rezini (1984). The purpose of the present study is summarized as follows:
the Beltrami-Michell equations are discretized in terms of finite difference equations to provide
harmonic solutions of each stress component in any irregular shaped photoelastic domain.
To realize this objective, the present paper is organized in sections. In Section 2, the statement

of the problem and the expressions of stresses in two dimensions are reviewed in a convenient
form for the analysis purpose. The photoelasticity proceeding and its associated boundary values
will be briefly described in Section 3. The numerical resolving of the photoelastic boundary value
problem in any domain geometries is presented in Section 4. Before conclusion, the results will
be discussed in details in Section 5.

2. Statement of the stress problem

The difficulty in analysis of stresses and strains in structural engineering depends on the comple-
xity of the form and load of the structure parts and of the given specific conditions. Furthermore,
from the strength of material point of view, the state of stresses is more useful for engineers. The
equilibrium equation, the compatibility condition, and the material law are the three fundamen-
tal concepts of the theory of structures (Boresi et al., 2011). However, the theory of elasticity
proposes two strategies to minimize the analysis. The first one provides analytical solutions to
plane strain and plane stress problems and can be obtained by using several techniques which
use functions to reduce the unknown of governing equations. The stresses are written in terms
of this new function (Ugural and Fenster, 2011).
According to the plane stress assumption in the absence of body forces, this problem is

governed by the necessary and sufficient equilibrium conditions (Hetnarski and Ignaczak, 2011).
The planar version of the equilibrium conditions are conveniently written with Greek indices as
follows

σαβ,β = 0 (2.1)

The stress function formulation is based on the idea representing the stress fields that satisfy
the equilibrium equations. It is clear that equations (2.1) represent the necessary and sufficient
condition for the existence of the function ψ, such that in absence of body forces the components
of stresses are its partial derivates of thesecond order

σαβ = −
∂2ψ

∂xα∂xβ
+ δαβ

∂2ψ

∂xκ∂xκ
(2.2)

where α, β, κ = 1, 2 and the Kronecker delta δij define the components of the identity matrix.
Note that the summation over the repeated Greek indices should be done. The Airy stress func-
tion ensures that the stresses according to (2.2) satisfy equilibrium conditions (2.1). This is a
necessary condition but not sufficient. The function ψ should also ensure that the compatibi-
lity and boundary conditions are satisfied. The introduced harmonic stress function obeys the
Laplace potential. We use the notation Iσ = ∇

2ψ, where Iσ is evidently the first invariant or
the trace of the stress tensor σ, equal to the stress sum. It is known that the linear invariant of
stress (or strain) is a harmonic function in the absence of body forces

Iσ = tr (σ) = ∇
2ψ (2.3)

From a formal contribution of the 2D Laplace-Operator ∇2 in equation (2.3), we obtain the
Laplace potential equation of the stress sum

∇
2Iσ = ∇

2(σζ + σξ) = 0 (2.4)
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where ζ-ξ is any orthonormal basis, By the contribution of the operator ∇2 in (2.2) with the
help of equation (2.3) and rearrangement, we arrive at the Beltrami-Michell equations

σαβ,κκ = −Iσαβ + δαβIσκκ (2.5)

in which the comma in the subscript indicates partial derivative with respect to the corresponding
variables following further on; this notation will be applied in this paper.
This was the second strategy of the theory of elasticity which provides solutions in terms

of stress only if the boundary values are known. Note that Beltrami-Michell equations (2.5) are
independent of the elastic constants. By examining the three-dimensional kinematic relations,
it is found that the exact condition of the state stress in the two-dimensional problems of the
elasticity for thin plates exists only if either Poisson’s ratio is set equal to zero (ν = 0) or the
surface dilatation is constant and, does not exist except under theses conditions.
This is an important assessment for the photoelasticity especially since it provides that there

exists geometric similarity, material isotropy, linearity and similar applied loading of photoelastic
specimen and its original. Then the stress distribution per unit load will be identical for each
other. In the work by Muskhelishvili (1975) it is emphasized that for the elastic plane on the
assumption that the holes contours are free from loading, the stress state does not depend on
the elastic characteristics of the material.

From equation (2.5), the following Poisson equations are available to determine the compo-
nents of the Cartesian stress tensor individually

∇
2σx = −Iσ,xx ∇

2σy = −Iσ,yy ∇
2τxy = −Iσ,xy (2.6)

3. Photoelasticity proceeding and associated boundary values

The major task of the numerical treatment of the photoelastic data is the determination of
stresses in all interior points of the specimen. However, the photoelastic experiment provides an
incomplete solution; only two experimental results (σ1−σ2) are proportional to the isochromatic
order N , and θ for each point, while three stress component parameters are needed to completely
define the stress state, sketched in as follows

σ =

[

σx τxy
sym. σy

]

⇔

{

N : isochromatic order
θ : slope; isoclinic parameter

The principal stress element (Fig. 1) is used in the prediction of failure surfaces. Potential failure
surfaces are the planes on which the maximum normal or maximum shear stress acts; in other
words, in the principal planes and the plane of maximum shear.

Fig. 1. Principal stress element configuration
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The equilibrium of the principal element (Fig. 1) provides the following expressions

σm =
σ1 + σ2
2

τmax =
σ1 − σ2

2
(3.1)

The principal stress σ1 is by convention the major and σ2 the minor one (σ1 > σ2). The
following fundamental equation, (3.2), of photoelasticity, called the stress-optic law (Ramesh,
2000), which stipulates that the relative retardation N , isochromatic fringe order, at each point
in the model is directly proportional to the difference of principal stresses (σ1−σ2) at the point

σ1 − σ2 =
Nfσ

t
= κN (3.2)

where κ is an experimental constant, quotient of the stress-optical coefficient fσ, a constant
that depends upon the model material and the wavelength of light employed (Ramesh, 2000),
and t is the model thickness. We can rewrite the tensor as

τ =
1

2

[

Iσ κN

κN Iσ

]

(3.3)

This means that the stress tensor τ relates the centre σm and the radius τmax of the Mohr circle.
Also in this stress state configuration, the first invariant of the stress tensor of equation (3.3) is
verified Iσ = 2σm. The stress tensor in relationship (3.3) is often used in order to separate the
principal stresses, when its trace is avaible as experimental or numerical data (Kuske, 1979).
To solve the set of partial differential equations (2.4) and (2.6), different kinds of stresses

must be available on the boundaries. On the free boundaries, the stress state is generally easy
to determine, while difficulties can arise in the loaded ones. The load types are various and
each case must be studied individually. When a concentrated load acts on the straight edge of a
semi-infinite plate, the stress distribution is purely radial. To have more details on several types
of boundary loads, we can refer to Frocht (1948). By definition, the boundaries which are free
from external shear and normal stresses will be referred to as free boundaries. The directions of
the principal stresses are therefore either tangent or normal to the boundary with the normal
stress assumed to be zero. It follows that at the points lying on the free boundaries, there is
only one principal stress which is tangent to the boundary.
Since the stress pattern provides the necessary data to calculate (σ1 − σ2) at each point of

the free boundary, where either σ1 or σ2 vanishes, the stress pattern gives directly the numerical
value of the remaining principal stress. The sign of the boundary stress can be easily determined
by considering the external loading or by pressure nail control on the boundary (see Wolf, 1976).
The required boundary potentials can be easily obtained from photoelastic study of the specimen
in which the principal stress sums can be found directly, because they are identical with the
principal stress differences on the free boundaries (Doyle, 2004)

(σ1 + σ2)
∣

∣

∣

∂Ω
= (σ1 − σ2)

∣

∣

∣

∂Ω
(3.4)

The equilibrium of forces on an element in plain stress gives a relationship among the Cartesian
stress components and the two principal stresses. The boundary equilibrium conditions and the
knowledge of photoelasticity of the stress sum σx + σy can be coupled to yield the following
system

σxnx + τxyny = tx τxynx + σyny = ty

(σx + σy)
∣

∣

∣

∂Ω
= κN(x, y)

∣

∣

∣

∂Ω

(3.5)

where nx, ny are the Cartesian components of the outward normal vector on the surface boun-
dary and tx, ty are the Cartesian components of the specified boundary traction. The traction
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would be zero for the free boundary, or specified at regions of load application. Knowing the incli-
nation angle θ (or the slope) at a given point on the edge and the tangential stress σB = κN(x, y)
at the same point (see Fig. 2), the components of the Cartesian stresses are computed using
separately the equilibrium conditions as follows

σx = σB cos
2 θ σy = σB sin

2 θ τxy = −σB sin θ cos θ (3.6)

Fig. 2. Tensile state on the free boundary and associated Cartesian stresses

4. Numerical processing on an irregular domain

The motivation of numerical processes to solve partial differential equations is to transform
them into algebraic equations by means of finite differences or finite elements, or others. The
simplest way is to replace the partial derivatives by discrete finite differences. FDM imposes
usually a regular grid on the region of interest where the domain edges coincide with the axis of
the coordinate system. This is one of the main disadvantages of FDM where complex geometries
cannot be directly resolved by fitting the mesh to the object boundary. The crucial feature of
the formulation is FDM discretisation of the homogeneous and mixed derivatives at irregularly
shaped boundaries. For this task, many procedures exist; e.g. McKenney et al. (1996) proposed
a fast Poisson-solver for complex geometries, Zhang (1998) developed a multigrid solution for
Poisson’s equation.
The Poisson-solvers list is long; a simple method to program is proposed for this task. The

finite difference approximation is based on a uniform mesh size, and the resulting system of
linear equations is solved by a residual method or multigrid method. A generalized approach is
proposed in this paper in order to redefine the finite difference formula taking into account the
irregular regions. A varying 5-point stencil is systematically used for the purpose of discretization
of the homogeneous and the mixed partial derivatives occurring in both the Laplace equation
and in the right-hand-side of the Poisson equation.
To approximate the solution to (2.4) and (2.6), a spatial discretization mostly in irregular

geometries, using centred, second order finite-differences as discussed below is used. Let Φ be a
generic grid variable used for the approximation. Using the 5-point stencil formula, the following
compact algebraic equation at the stencil centres can be written as

4
∑

k=0

α

CkΦk =











0 Laplace

f
∣

∣

∣

(k=0)
Poisson

(4.1)
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Fig. 3. Irregular 5-point stencils; LHS for homogeneous, RHS for mixed derivatives

In this equation, the coefficients
α

Ck regulate the spacing to the boundary ∂Ω, and f represents
each right-hand-side of stress component equations (2.6). For grid points far away or close to
the boundary, the irregular 5-point discretization operator, introduced early by Shortley and
Weller (1938) and still by Sangdong Kim et al. (2011), is used. The coefficients of the finite
difference equations depend on the spacing to the boundaries. The Shortley-Weller coefficients
will be distinctly expressed by

α

C1 =
1

h2α1(α1 + α3)

α

C2 =
1

h2α2(α2 + α4)
α

C3 =
1

h2α3(α3 + α1)

α

C4 =
1

h2α4(α4 + α2)

α

C0 = −
4
∑

k=1

α

Ck

(4.2)

Crucial undertaking is to formulate the discretization of the right-hand-side of the Poisson
equation of shear stress, the last of equations (2.6) at the irregular boundaries. The motivation
of the following approach is to produce an accurate method for treating mixed derivatives.
Near the boundary, the approximation of the second order mixed derivatives requires a 9-point
stencil. A transformation by a rotation of 45◦ of the grid (stencil) to obtain a 5-point formula
is also recommended. Notice that the 2-dimensional Taylor series approach, according to the
approximation of mixed derivatives, leads to the similar form of Shortley-Weller’s coefficients
by turning over 45◦ the stencil as shown in Fig. 3b. The finite difference coefficients for mixed
derivates can be expressed in individual terms as follows

β

C1 =
1

2h2β1(β1 + β3)

β

C2 =
−1

2h2β2(β2 + β4)
β

C3 =
1

2h2β3(β3 + β1)

β

C4 =
−1

2h2β4(β4 + β2)

β

C0 = −
4
∑

k=1

β

Ck

(4.3)

The above symbols α, β are used respectively for the normal and inclined stencil. By definition,
the irregular 5-point difference star is present when at least one of its star boughs becomes
smaller than the mesh size h. The irregular difference star is the more general case and for the
regular star one, αk = βk = 1.

Direct or iterative methods are two different approaches that can be used for solving systems
linear equations. In this study, the direct method which produces an exact solution in a finite
number of operations is used. The advantages of this method are its numerical robustness and
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the fact that it always guarantees a solution for various complex problems without the necessity
of a convergence criterion. When solving successively the Laplace and the Poisson systems of
equations, the errors in the solutions arise only from rounding off the errors in the computational
calculation. This method is tested on several applications examples and is found to produce
accurate results.

5. Proceeding in annulus application

Methods for automatic determination of parameters in photoelasticity were validated for the
problem of a ring under diametrical load, as for example in Gao (2010), Zhang Dongsheng et al.
(2002, 2007). Concerning the choice of the results for validation, a particular work is selected as
the reference because of its more accurate results. Different methods were developed by Gerlach
(1968), later refined by Nurse and Allison (1972); and Redner (1974), who used a standard
polariscope with fixed filters. All relevant data for the photoelastic measurement are measured
electronically and are the input in a computer via an analogic-digital converter. A program
was developed by Gerlach (1968) which enabled complete evaluation of the stresses along the
line that had been measured on the model. The most important part of this program is the
determination of an isochromatic fringe order from the light intensity distribution (skeletonizing
of the fringe). For this, algorithms have been developed to allow exact determination of the
fringe order by using two measurements with different wavelengths of light. Other parts of the
program have to carry out the curve fit using the method of least squares and to determine the
stresses using the Shear-Stress-Difference method. The apparatus built by Gerlach (1968) along
with the program made quasi-automatic evaluation of photoelastic data possible. Although this
electrical measurement method is the most accurately method used, but it was more expensive.

The photoelastic stress field fringe patterns are shown in Fig. 4. Isochromatic parameters
[order] have been superimposed for convenience over the isoclinic parameters in the field along
the line that had been measured.

Fig. 4. Photoelastic stress field fringe patterns of the annulus subjected to compressive forces; straight
line 3-3 indicates the inclined cross section by 15◦)

The stress integration can be started from the initial values, and the stress separation will
be accomplished according to numerical integration of one of both equilibrium equations

σx
∣

∣

i
= σx

∣

∣

0
−

i
∑

0

∆τxy

(∆x

∆y

)

σy = σx ±
√

(σ1 − σ2)2 − 4τ2xy (5.1)

The initial values of stress are obtained from the boundary values at the point from conditions
introduced by (3.6). For stress separation along the straight line, the last relation (5.1)2 is
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used. In this case, it is important to precise the difference between both procedures: in the
SSD-process, the stress component σy is determined one from another by means of the Mohr
circle statement; while the isoclinic parameter θ is used for the integration. It be noted that
determination of the isoclinic parameter θ in its physical range is still a difficult problem. A
number of full-field approaches have been proposed to determine it; see details in Ramesh et al.
(2011), Fernández (2011), Pinit and Umezaki (2005, 2007), and Pinit (2007). The cumulative
error in the integration process has also an effect on the stress separation. In the B-M BVP,
each stress component occurs from the value on the boundary as BVP separately. In addition,
it is noted that the annulus edge direction (slope) is the principal stress direction itself in the
case of a free boundary.

Fig. 5. Radial and tangential stress distributions along section 1 (Gerlach, 1968)

Fig. 6. Radial and tangential stress distributions along section 2 (Gerlach, 1968)

Fig. 7. Radial and tangential stress distributions along section 3 (Gerlach, 1968)
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Separating in resulting data in individual components usually provides stresses at only di-
screte locations. Techniques such as photoelasicity or thermoelasticity also suffer from this con-
sequence of the point-by-point or line-by-line approach. However, discrete data can be converted
into appropriate contours. As well as by FEM, post-processor concepts offer a suitable alternate
approach to differentiate or help to convert discrete data into maps, particularly for irregularly
geometrical shapes. In this purpose, the field results are presented in Figs. 8a,b. On account of
symmetry, the different stresses are given as half fields.

Fig. 8. Non-smoothed; (a) LHS: (σ1 + σ2)-maps, RHS: τxy-maps; (b) LHS: σx-maps, RHS: σy-maps

Generally, in the experimental analysis, the circular disk under diametral compression is
used as the standard model for verification of the performance of any developed method, since
the theoretical formula exists for the reconstruction, e.g. of the isochromatic parameters. It has
been shown that the results obtained from the hybrid method developed here, provides accurate
results for a circular ring.

6. Conclusion

The aim of this paper was to show an efficient additional method for stress separation (see a
review by Fernández, 2010). With a minimum cost, the method is faster in proceeding, compa-
red to those suggested in different works by Mahfuz et al. (1990), Jacob (1978) and Segerlind
(1971). Based on numerical solving of the B-M BVP of Dirichlet type, this method reduces the
photoelastic data to minimum, in order to separate the prevailing stresses. It is important to
notice that the direct method to solve the system of finite difference equations, despite the sparse
matrix, is more qualified to the nature of the experiment in general.

The results of the investigation have shown that the method is easy to use and resolve
engineering problems. This method is suitable for automation of the hybrid process of generating
stress component maps and enables building the whole stress tensor field. This method is simple
enough, so that it can be used with a few equipment elements.
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Wyznaczanie pierwszej wartości brzegowej w zagadnieniu fotoelastyczności cienkiego

pierścienia

Streszczenie

Analityczne rozważania płaskiego stanu naprężeń w cienkich strukturach pierścieniowych poddanych
obciążeniu ściskającemu są szeroko znane w literaturze. Co więcej, większość przypadków tego typu za-
gadnień teorii sprężystości daje się zredukować do problemu wyznaczania wartości własnych zagadnienia
brzegowego. Metody dwuwymiarowej fotoelastyczności umożliwiają łatwą identyfikację składowych tenso-
ra naprężeń na brzegu elementu w oparciu o pojedynczą fotografię. Równania Beltramiego-Michella warz
z parametrami fotoelastyczności Dirichleta pozwalają poprawnie sformułować hybrydowy model bada-
nego układu w kontekście poszukiwanych naprężeń. W pracy wykazano, że taki model jest stosowalny
do dowolnie nieregularnego kształtu próbki. Otrzymano bardzo dobre wyniki dla elementów o skom-
plikowanym obrysie i poddanych złożonemu stanowi obciążenia. W szczegółowej analizie potwierdzono
dokładność rezultatów dla pierścienia kołowego.
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