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Abstract. We prove some results about the first Steklov eigenvalue d1 of the biharmonic operator
in bounded domains. Firstly, we show that Fichera’s principle of duality [9] may be extended to
a wide class of nonsmooth domains. Next, we study the optimization of d1 for varying domains:
we disprove a long-standing conjecture, we show some new and unexpected features and we suggest
some challenging problems. Finally, we prove several properties of the ball.

1. Introduction

For any open bounded domain Ω ⊂ Rn (n ≥ 2) with Lipschitz boundary, consider the fourth
order Steklov boundary eigenvalue problem

(1)





∆2u = 0 in Ω
u = 0 on ∂Ω
∆u− duν = 0 on ∂Ω

where d ∈ R and uν denotes the outer normal derivative of u on ∂Ω. By a solution of (1) we mean
a function u ∈ H2 ∩H1

0 (Ω) such that

(2)
∫

Ω
∆u∆v dx = d

∫

∂Ω
uνvν dS ∀v ∈ H2 ∩H1

0 (Ω) .

An eigenvalue of (1) is a value of d for which (2) admits nontrivial solutions, the corresponding
eigenfunctions. Let d1 (Ω) be defined by

(3) d1 (Ω) = inf
u

∫

Ω
|∆u|2 dx

∫

∂Ω
u2

νdS

where the infimum is taken over all functions u ∈ [
H2 ∩H1

0 (Ω)
] \H2

0 (Ω). If the infimum in (3) is
achieved then d1 (Ω) is the first (smallest) eigenvalue of (1) and the corresponding minimizer u is
the first eigenfunction.

Elliptic problems with parameters in the boundary conditions are called Steklov problems from
their first appearance in [24]. In the case of the biharmonic operator, these conditions were first
considered by Kuttler-Sigillito [17] and Payne [20] who studied the isoperimetric properties of the
first eigenvalue d1. As pointed out by Kuttler [15, 16], d1 is the sharp constant for L2 a priori
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estimates for solutions of the (second order) Laplace equation under nonhomogeneous Dirichlet
boundary conditions. More recently, the whole spectrum of the biharmonic Steklov problem was
studied in [8] where one can also find a physical interpretation of d1 and of the Steklov boundary
conditions. We also refer to [4, 5, 10] for some related nonlinear problems and for the study of the
positivity preserving property of the biharmonic operator under Steklov boundary conditions. In
this paper we study the first Steklov eigenvalue d1 from several points of view.

In Section 2.1 we state that a function u ∈ [H2 ∩ H1
0 (Ω)] \ H2

0 (Ω) which achieves equality in
(3) exists provided the domain Ω is either smooth (C2) or satisfies a geometric condition which is
fulfilled if Ω has no “reentrant corners” (for instance, if Ω is convex).

With a suitable scaling, one sees that d1(kΩ) = k−1d1(Ω) for any bounded domain Ω and any
k > 0 so that d1(kΩ) → 0 as k → ∞. This fact suggests that d1(Ω) becomes “smaller” when the
domain Ω becomes “larger”. Problem 1.9 in [8] raises the question whether the map Ω 7→ d1(Ω) is
monotone decreasing with respect to domain inclusion. On one hand, in view of the validity of such
property for several “similar” maps (for instance, the first Dirichlet eigenvalue of −∆), it would be
reasonable to expect a positive answer. On the other hand, since functions in the space H2∩H1

0 (Ω)
allow no truncations and no trivial extensions outside Ω, it also appears reasonable to expect a
negative answer. In Section 2.2 we show that the answer is negative.

Due to the above mentioned homogeneity, one is then led to seek domains which minimize d1(Ω)
under suitable constraints, the most natural one being the volume constraint. It is known since
Faber-Krahn [7, 13, 14] that under such constraint the minimizer for the first Dirichlet eigenvalue
of −∆ is a ball. Smith [22] stated that the same holds true for d1, at least for planar domains.
But, as noticed by Kuttler and Sigillito, the argument in [22] contains a gap, see the “Note added
in proof” at p.111 in [23]. A few years later, Kuttler [15] proved that a (planar) square has a first
Steklov eigenvalue d1 which is strictly smaller than the one of the disk having the same measure;
the estimate by Kuttler was recently improved in [8]. Therefore, it is not true that d1(Ω∗) ≤ d1(Ω)
where Ω∗ denotes the spherical rearrangement of Ω. For this reason, Kuttler [15] suggested a
different minimization problem with a perimeter constraint; in [15, Formula (11)] he conjectures
that a planar disk minimizes d1 among all domains having fixed perimeter. He brings numerical
evidence that on rectangles his conjecture seems true, see also [18]. In Section 2.2 we show that
also this conjecture is false and that no optimal shape for d1 exists since its infimum is zero under
perimeter constraint in any space dimension n ≥ 2. Our argument shows that cylinders with “small
holes” have arbitrarily small d1. In Problem 1 we suggest a new different optimization problem
under the convexity constraint.

The question of stability of the first eigenvalue for small geometric perturbations of the disk is
discussed in Section 2.3. In Theorem 6 we prove that the first eigenvalue of the Steklov problem
on circumscribed regular polygons converges to the first eigenvalue of the disk, when the number of
edges goes to infinity, hence no ”Babuska paradox” holds. Finally, we state that, although the ball
has no isoperimetric property, it is a stationary domain for the map Ω 7→ d1(Ω) in the class of C4

domains under smooth perturbations which preserve measure.
This paper is organized as follows. In the next section we state our main results; those are divided

in three subsections (existence of minimizers, shape optimization, stability and stationarity of the
ball). In Section 3 we set up the functional analytic framework. Sections 4-9 are devoted to the
proofs of the main results.

2. Main results

2.1. Existence of minimizers. We start with a definition taken from [1]:
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Definition 1. We say that an open domain Ω ⊂ Rn satisfies the outer ball condition if for each
p ∈ ∂Ω there exists an open ball B ⊂ Rn \Ω such that p ∈ ∂B. We say that it satisfies the uniform
outer ball condition if the radius of the ball B can be taken independently of p ∈ ∂Ω.

It is clear that if ∂Ω is smooth (C2) or if Ω is convex, then Ω satisfies the uniform outer ball
condition. The following existence result for a minimizer of d1 (Ω) holds true:

Theorem 1. Assume that Ω ⊂ Rn is an open bounded domain with Lipschitz boundary which
satisfies the uniform outer ball condition. Then d1 (Ω) admits a positive minimizer u ∈ [H2 ∩
H1

0 (Ω)]\H2
0 (Ω) which is unique up to a constant multiplier.

Theorem 1 is already known in the case ∂Ω ∈ C2, see [4, 8, 9].
Next, we recall from [8, 9] an alternative characterization of d1(Ω). Let

C2
H

(
Ω

)
:=

{
v ∈ C2

(
Ω

)
; ∆v = 0 in Ω

}

and consider the norm defined by ‖v‖H := ‖v‖L2(∂Ω) for all v ∈ C2
H

(
Ω

)
. Then define

H := the completion of C2
H

(
Ω

)
with respect to the norm ‖·‖H .

Since Ω is assumed to have a Lipschitz boundary, by [12] we infer that H ⊂ H1/2 (Ω) ⊂ L2 (Ω).
Therefore, the quantity

δ1 (Ω) := inf
h∈H\{0}

∫

∂Ω
h2dS

∫

Ω
h2dx

is well defined. This minimization problem was previously studied in [8, 9] assuming that ∂Ω ∈ C2.
Here we prove

Theorem 2. If Ω ⊂ Rn is an open bounded domain with Lipschitz boundary, then δ1(Ω) admits a
minimizer h ∈ H\{0}. If we also assume that Ω satisfies the uniform outer ball condition then this
minimizer is positive, unique up to a constant multiplier and δ1 (Ω) = d1 (Ω).

2.2. Shape optimization. We are here interested in studying the map Ω 7→ d1(Ω) when Ω varies
in suitable classes of domains. We first consider a class of cylinders:

Theorem 3. Let Dε = {x ∈ R2; ε < |x| < 1} and let Ωε ⊂ Rn (n ≥ 2) be such that

Ωε = Dε × (0, 1)n−2 ;

in particular, if n = 2 we have Ωε = Dε. Then,

lim
ε→0+

d1 (Ωε) = 0.

This statement has several important consequences. Firstly, it shows that d1(Ω) has no optimal
shape under the constraint that Ω is contained in a fixed ball:

Corollary 1. Let BR = {x ∈ Rn; |x| < R}. Then, for any R > 0

inf
Ω⊆BR

d1 (Ω) = 0

where the infimum is taken over all domains Ω ⊆ BR such that ∂Ω ∈ C∞ if n = 2 and ∂Ω is
Lipschitzian if n ≥ 3.
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The difference of regularity between dimensions n = 2 and n ≥ 3 is that ∂Ωε ∈ C∞ whenever
n = 2 while ∂Ωε is just Lipschitzian whenever n ≥ 3; in the latter case, Ωε satisfies the uniform
outer ball condition with radius R = ε.

A second consequence of Theorem 3 is that it disproves a conjecture by Kuttler [15] which states
that the disk has the smallest d1 among all planar regions having the same perimeter; this forces
us to propose two alternative problems suggested by Theorem 3 and Corollary 1:

Problem 1. Denote by B the unit ball in Rn. Consider the following minimization problems:

(4) inf
Ω∈MB

d1 (Ω)

where MB is the family of all convex domains Ω ⊂ Rn such that |Ω| = |B| and

(5) inf
Ω∈PB

d1 (Ω)

where PB is the family of all convex domains Ω ⊂ Rn such that |∂Ω| = |∂B|.
Does there exist an optimal shape for the minimization problems (4) and (5)? If an optimal shape

for (4) exists, we know it is not the ball.

Theorem 3 also gives an answer to Problem 1.9 in [8] and shows that the map Ω 7→ d1 (Ω) is not
monotone decreasing with respect to domain inclusion.

Finally, Theorem 3 raises several natural questions. Why do we consider an annulus in the plane
and the region between two cylinders in space dimensions n ≥ 3? What happens if we consider an
annulus in any space dimension? The quite surprising answer is given in

Theorem 4. Let n ≥ 3 and let Ωε = {x ∈ Rn; ε < |x| < 1}.
(i) If n = 3 then

lim
ε→0+

d1 (Ωε) = 2.

(ii) If n ≥ 4 then
lim

ε→0+
d1 (Ωε) = n.

Theorems 3 and 4 highlight a striking difference between dimension n = 2, dimension n = 3 and
dimensions n ≥ 4. This difference may find some explanation in the capacity of a domain whose
behaviour strictly depends on the space dimension. But more surprises are in order... Since the set
Ωε is smooth, by Theorem 2 it follows that d1(Ωε) = δ1(Ωε). Moreover, since our proof of Theorem
4 uses radial harmonic functions h = h(r) (r = |x|), we may rewrite the ratio defining δ1(Ωε) as

∫

∂Ωε

h2dS
∫

Ωε

h2dx

=
(h(1))2 + εn−1(h(ε))2∫ 1

ε
(h(r))2rn−1dr

.

In this setting, we can treat the space dimension n as a real number. Then, we prove

Theorem 5. Let ε ∈ (0, 1), let Kε = {h ∈ C2([ε, 1]); h′′(r) + n−1
r h′(r) = 0, r ∈ [ε, 1]} and, for all

n ∈ [1,∞), let

γε(n) = inf
h∈Kε\{0}

(h(1))2 + εn−1(h(ε))2∫ 1

ε
(h(r))2rn−1dr

.
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Then,

lim
ε→0

γε(n) =





2 if n = 1
0 if 1 < n < 3
2 if n = 3
n if n > 3 .

Theorem 5 shows that dimensions n = 1 and n = 3 are “discontinuous” dimensions for the
behaviour of γε. This is due to the asymptotic behaviour of some trial functions, see the proof. But
we have no physical explanation of this fact.

2.3. Stability and stationarity of the ball. The convergence of the spectrum of elliptic operators
with Dirichlet boundary conditions on varying domains can be handled, in general, via the Mosco
convergence of the corresponding functional spaces, see [6, Chapters 4-6]. In our case two difficulties
occur: on the one hand the spaces under consideration are H2 ∩H1

0 (Pk) and, in view of Babuska’s
paradox [3], it is not clear whether a suitable Mosco convergence holds for the entire spaces and, on
the second hand, the Steklov boundary condition (producing a boundary integral in the denominator
of the Rayleigh quotient) requires a strong geometric convergence (namely a very fine topology) in
order to preserve the perimeter.

We show that we do have stability of the first eigenvalue on the sequence of regular polygons
converging to the disk:

Theorem 6. Let n = 2 and let {Pk} be a sequence of regular polygons with k edges circumscribed
to the unit disk D centered at the origin. Then

lim
k→∞

d1(Pk) = d1(D) = 2.

For any multi-index α = (α1, ...αn) ∈ Nn let |α| =
∑

i αi and for any real smooth function u
defined in Rn, let

∂αu =
∂|α|u

∂xα1
1 · · · ∂xαn

n
.

Then, for any k ≥ 1 denote by

Ck
b (Rn;Rn) =

{
θ = (θ1, ..., θn) : ∂αθi ∈ C0 ∩ L∞ (Rn) for any 1 ≤ i ≤ n and 0 ≤ |α| ≤ k

}

the Banach space endowed with the norm

‖θ‖Ck
b

= max
0≤|α|≤k

1≤i≤n

sup
x∈Rn

|∂αθi(x)| .

The next statement shows continuity of the map Ω 7→ d1 (Ω) under smooth perturbations:

Theorem 7. The map Ω 7→ d1 (Ω) is continuous with respect to C2 diffeomorphism of Rn in the
sense that for any fixed domain Ω0 with C2 boundary we have: for any ε > 0 there exists δ > 0
such that for any θ ∈ C2

b (Rn;Rn) with ‖θ‖C2
b

< δ we have |d1 ((I + θ) (Ω0))− d1 (Ω0)| < ε. Here I

denotes the identity map in Rn.

Finally, let us explain what we mean by a stationary domain:

Definition 2. Let k ≥ 1 and let Ω0 ⊂ Rn be an open bounded domain with ∂Ω0 ∈ Ck. We say that
Ω0 is a stationary domain with respect to Ck

b (Rn;Rn) volume preserving deformations if for any
map γ ∈ C1

(
[0, 1] ; Ck

b (Rn;Rn)
)

such that

γ (0) = I and |γ (t) (Ω0)| = |Ω0| ∀t ∈ [0, 1] ,
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we have
d

dt
d1 (γ (t) (Ω0))|t=0 = 0.

We prove the following

Theorem 8. The unit ball B ⊂ Rn is a stationary domain with respect to C4
b (Rn;Rn) volume

preserving deformations.

The volume preserving assumption in Theorem 8 is crucial: indeed, we know that kd1 (kB) =
d1 (B) so that the unit ball is not a stationary domain with respect to such a kind of deformations.

3. Preliminaries

We first endow the space H2 ∩H1
0 (Ω) with a Hilbert structure:

Lemma 1. Assume that Ω is a Lipschitz bounded domain which satisfies the uniform outer ball
condition. Then the space H2∩H1

0 (Ω) becomes a Hilbert space when endowed with the scalar product

(6) (u, v) :=
∫

Ω
∆u∆v dx ∀u, v ∈ H2 ∩H1

0 (Ω).

Proof. Since H2∩H1
0 (Ω) is a closed subspace of H2(Ω), it is a Hilbert space when endowed with the

scalar product of H2(Ω). In view of the assumptions made on Ω, we know that elliptic regularity
estimates hold for the second order Poisson equation

(7)
{ −∆u = f in Ω

u = 0 on ∂Ω.

In particular, if f ∈ L2(Ω) and u ∈ H1
0 (Ω) is a solution to (7), then u ∈ H2 (Ω) and

‖u‖H2 ≤ C ‖f‖L2

for a suitable constant C independent of f , see [1]. Hence, by the Closed Graph Theorem it follows
that the norm defined by (6) is equivalent to the norm induced by H2(Ω) so that H2 ∩H1

0 (Ω) is a
Hilbert space also when endowed with (6). ¤

We now consider the following linear variational problem: given F ∈ (
H2 ∩H1

0 (Ω)
)′ find u ∈

H2 ∩H1
0 (Ω) such that

(8)
∫

Ω
∆u∆v dx− d

∫

∂Ω
uνvν dS = 〈F, v〉 ∀v ∈ H2 ∩H1

0 (Ω).

Since Ω is a bounded Lipschitz domain, by [19, Theorem 6.2, Chapter 2], we deduce that the
boundary integral in (8) makes sense and that the linear map

(9) H2 ∩H1
0 (Ω) → (

L2(∂Ω)
)n

u 7→ ∇u|∂Ω

is well defined and compact. On the other hand, the normal derivative to a Lipschitz domain is
defined almost everywhere on ∂Ω so that uν ∈ L2 (∂Ω) for any u ∈ H2 ∩ H1

0 (Ω). Then, we can
prove

Lemma 2. Let F ∈ (
H2 ∩H1

0 (Ω)
)′

. Then problem (8) admits a solution u ∈ H2 ∩ H1
0 (Ω) if and

only if 〈F, u∗〉 = 0 for any solution u∗ of (2).
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Proof. Let T, Z be the linear operators implicitly defined by

〈Tu, v〉 =
∫

Ω
∆u∆v dx ∀u, v ∈ H2 ∩H1

0 (Ω)

〈Zu, v〉 =
∫

∂Ω
uνvν dS ∀u, v ∈ H2 ∩H1

0 (Ω).

Then, T ∈ L (
H2 ∩H1

0 (Ω); (H2 ∩H1
0 (Ω))′

)
, namely T is a linear continuous operator. By the Riesz

Representation Theorem in Hilbert spaces we know that T is an isomorphism, i.e. T−1 exists and
T−1 ∈ L (

(H2 ∩H1
0 (Ω))′; H2 ∩H1

0 (Ω)
)
. Moreover, the compactness of the map (9) implies that Z

is a compact linear operator from H2 ∩H1
0 (Ω) into

(
H2 ∩H1

0 (Ω)
)′.

Next, consider the compact linear self-adjoint operator K : H2 ∩H1
0 (Ω) → H2 ∩H1

0 (Ω) defined
by K = T−1Z. If we denote by I the identity in H2 ∩H1

0 (Ω) we have for any d 6= 0 and µ = d−1

(10) K − µI = −µT−1 (T − dZ) .

Problem (8) is equivalent to find u ∈ H2 ∩ H1
0 (Ω) such that (T − dZ) u = F and, by (10), to

(K − µI)u = −µT−1F. By the Fredholm alternative applied to K we infer that this equation is
solvable if and only if T−1F ∈Ker(K∗ − µI)⊥ =Ker(K − µI)⊥ . In view of (10), this means

(
T−1F, u∗

)
= 0 ∀u∗ ∈ Ker (K − µI) = Ker (T − dZ)

and, in turn,
〈F, u∗〉 = 0 ∀u∗ ∈ Ker (T − dZ) .

Finally, it is clear that u∗ ∈Ker(T − dZ) if and only if u∗ solves (2). This completes the proof. ¤

4. Proof of Theorems 1-2

Proof of Theorem 1. Let {um} be a minimizing sequence for d1 (Ω) with ‖∆um‖L2(Ω) = 1 so that
{um} is bounded in H2 (Ω). Up to a subsequence, we may assume that there exists u ∈ H2∩H1

0 (Ω)
such that um ⇀ u in H2 (Ω), see Lemma 1. Then, since Ω is Lipschitzian and satisfies the uniform
outer ball condition, the map in (9) is compact and we deduce that (um)ν → uν in L2 (∂Ω).

On the other hand, since {um} is a minimizing sequence, ‖∆um‖L2(Ω) = 1 and ‖(um)ν‖L2(∂Ω) is
bounded then d1 (Ω) > 0, uν is not identically zero on ∂Ω and

‖uν‖−2
L2(∂Ω) = lim

m→∞ ‖(um)ν‖−2
L2(∂Ω) = d1 (Ω) .

Moreover, by weak lower semicontinuity of the norm, we also have

‖∆u‖2
L2(Ω) ≤ lim inf

m→∞ ‖∆um‖2
L2(Ω) = 1

and hence u ∈ [
H2 ∩H1

0 (Ω)
] \H2

0 (Ω) satisfies

‖∆u‖2
L2(Ω)

‖uν‖2
L2(∂Ω)

≤ d1 (Ω) .

This proves that u is a minimizer for d1 (Ω) . Uniqueness up to a constant multiplier follows by
arguing as in [4]. ¤

Proof of Theorem 2. In the first part of this proof, we just assume that Ω is a domain
with Lipschitz boundary. Let {hm} ⊂ H\ {0} be a minimizing sequence for δ1 (Ω) with ‖hm‖H =
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‖hm‖L2(∂Ω) = 1. Up to a subsequence, we may assume that there exists h ∈ H such that hm ⇀ h

in H. By regularity estimates [11, 12], we infer that there exists a constant C > 0 such that

‖h‖H1/2(Ω) ≤ C ‖h‖L2(∂Ω) ∀h ∈ H

so that the sequence {hm} is bounded in H1/2 (Ω), hm ⇀ h in H1/2 (Ω) up to a subsequence and,
by compact embedding, we also have hm → h in L2 (Ω) . Therefore, since {hm} is a minimizing
sequence, ‖hm‖L2(∂Ω) = 1 and ‖hm‖L2(Ω) is bounded then δ1 (Ω) > 0, h ∈ H\ {0} and

‖h‖−2
L2(Ω) = lim

m→∞ ‖hm‖−2
L2(Ω) = δ1 (Ω) .

Moreover, by weak lower semicontinuity of ‖·‖H we also have

‖h‖2
L2(∂Ω) = ‖h‖2

H ≤ lim inf
m→∞ ‖hm‖2

H = 1

and hence h ∈ H\ {0} satisfies
‖h‖2

L2(∂Ω)

‖h‖2
L2(Ω)

≤ δ1 (Ω) .

This proves that h is a minimizer for δ1 (Ω).
In the rest of the proof, we make the further assumption that Ω satisfies the outer ball condition.

Under this condition, by Theorem 1 we have the existence of a minimizer for d1 (Ω) . The fact
that δ1 (Ω) = d1 (Ω) follows by arguing as in [8, Section 5]: in particular, there is a one-to-one
correspondence between minimizers of δ1(Ω) and d1(Ω) so that uniqueness of a minimizer for δ1(Ω)
up to a constant multiplier follows from Theorem 1. ¤

5. Proof of Theorem 3

For any ε ∈ (0, 1) let wε ∈ H2 ∩H1
0 (Dε) be defined by

(11) wε(x) =
1− |x|2

4
− 1− ε2

4 log ε
log |x| ∀x ∈ Dε.

Then we have
∆wε = −1 in Ωε

and

|∇wε (x)|2 =
( |x|

2
+

1− ε2

4 log ε

1
|x|

)2

∀x ∈ Ωε

so that ∫

Ωε

|∆wε|2 dx = π
(
1− ε2

)

and

(12)
∫

∂Ωε

(wε)
2
ν dS = 2π

(
1
2

+
1− ε2

4 log ε

)2

+ 2πε

(
ε

2
+

1− ε2

4ε log ε

)2

=
π

8
1

ε log2 ε
+ o

(
1

ε log2 ε

)
→ +∞ as ε → 0+.
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It follows immediately that

lim
ε→0+

d1 (Ωε) ≤ lim
ε→0+

∫

Ωε

|∆wε|2 dx

∫

∂Ωε

(wε)
2
ν dS

= 0.

This completes the proof of the theorem for n = 2.
We now consider the case n ≥ 3. Let

uε (x) =

(
n∏

i=3

xi (1− xi)

)
wε (x1, x2) ∀x ∈ Ωε

where wε is as in (11); note that uε vanishes on ∂Ωε and uε ∈ H2 ∩H1
0 (Ωε). Then, we have

∆uε = −
n∏

i=3

xi (1− xi)− 2wε (x1, x2)
n∑

j=3

n∏
i=3
i 6=j

xi (1− xi)

(with the convention that
∏

i∈∅ βi = 1) and
∫

Ωε

|∆uε|2 dx ≤ 2
∫

Ωε

n∏

i=3

x2
i (1− xi)

2 dx + 8
∫

Ωε

w2
ε (x1, x2)

n∑

j=3

n∏
i=3
i6=j

x2
i (1− xi)

2 dx ;

hence, since |wε(x)| < 1
2 for all x ∈ Dε, there exists C > 0 such that

(13)
∫

Ωε

|∆uε|2 dx ≤ C ∀ε ∈ (0, 1) .

On the other hand, we have

|∇uε|2 =
n∏

i=3

x2
i (1− xi)

2

[(
∂wε

∂x1

)2

+
(

∂wε

∂x2

)2
]

+
n∑

j=3


(1− 2xj)

2 w2
ε (x1, x2)

n∏
i=3
i6=j

x2
i (1− xi)

2




and since wε vanishes on ∂Dε we obtain
∫

∂Ωε

(uε)
2
ν dS =

∫

∂Ωε

|∇uε|2 dS ≥
∫

∂Dε×(0,1)n−2
|∇uε|2 dS

≥
∫

∂Dε

(wε)2ν dS ·
n∏

i=3

∫ 1

0
x2

i (1− xi)
2 dxi → +∞

as ε → 0+ in view of (12). Therefore, by (13) we obtain

lim
ε→0+

d1 (Ωε) ≤ lim
ε→0+

∫

Ωε

|∆uε|2 dx

∫

∂Ωε

(uε)
2
ν dS

= 0

which proves the theorem also when n ≥ 3.



10 DORIN BUCUR, ALBERTO FERRERO, FILIPPO GAZZOLA

6. Proof of Theorems 4-5

In Theorem 4 we assume that n ≥ 3 is an integer, so that by Theorem 2 we know that d1 (Ωε) =
δ1 (Ωε) for any ε ∈ (0, 1) and that δ1 (Ωε) admits a unique minimizer hε up to a constant multiplier.
By the symmetric structure of Ωε, we deduce that hε is necessarily radially symmetric. Moreover
by Theorem 1.8 in [8], hε is not a constant function. Therefore

δ1 (Ωε) = inf
h

∫

∂Ωε

h2dS
∫

Ωε

h2dx

where the infimum is taken among all radial functions h ∈ C2
(
Ωε) which are harmonic in Ωε. If we

put r = |x| then any radial harmonic function h = h(r) belongs to the space Kε and δ1 (Ωε) = γε(n)
for integer n, where Kε and γε are defined in the statement of Theorem 5. Therefore, if we prove
Theorem 5, also Theorem 4 follows.

Assume that n ≥ 1 and n 6= 2, the case n = 2 being already established in Theorem 3. It is
straightforward that any nonconstant h ∈ Kε, up to a constant multiplier, has the form

(14) ha(r) = r2−n + a ∀r ∈ [ε, 1] ,

for some a ∈ R. Hence, if we define

Nε(a) := (ha(1))2 + εn−1(ha(ε))2, Dε(a) :=
∫ 1

ε
(ha(r))2rn−1dr ,

then, by direct computation we obtain

(15) Nε(a) =
(
1 + εn−1

)
a2 + 2(1 + ε)a + (1 + ε3−n),

(16) Dε(a) =
∫ 1

ε
(r3−n + 2ar + a2rn−1) dr =

{
1−εn

n a2 + (1− ε2)a + 1−ε4−n

4−n if n 6= 4
1−ε4

4 a2 + (1− ε2)a− log ε if n = 4 .

Let gε(a) := Nε(a)
Dε(a) so that

γε(n) = min
a∈R

gε(a) .

To study this minimization problem, we need the following simple fact: let α, β, γ, λ, µ, ν ∈ R, then

(17) ϕ(s) =
αs2 + βs + γ

λs2 + µs + ν
=⇒ ϕ′(s) =

(αµ− βλ)s2 + 2(αν − γλ)s + (βν − γµ)
(λs2 + µs + ν)2

.

In the rest of this proof we distinguish several cases according to the value of n.

The cases 3 < n < 4 and n > 4. According to (15)-(16), in this case we have

gε(a) =

(
1 + εn−1

)
a2 + 2(1 + ε)a + (1 + ε3−n)

1−εn

n a2 + (1− ε2)a + 1−ε4−n

4−n

and, by (17), we have

(18) g′ε(a) = 0 ⇐⇒ Aεa
2 + Bεa + Cε = 0 ,

where

(19) Aε := (1 + εn−1)(1− ε2)− 2(1 + ε)(1− εn)
n

,



11

(20) Bε :=
2(1 + εn−1)(1− ε4−n)

4− n
− 2(1 + ε3−n)(1− εn)

n
,

(21) Cε :=
2(1 + ε)(1− ε4−n)

4− n
− (1 + ε3−n)(1− ε2) .

Since Aε > 0 for ε < 1, (18) shows that gε achieves its global minimum at

aε :=
−Bε +

√
B2

ε − 4AεCε

2Aε
.

Then, as ε → 0+, we have

Aε =
n− 2

n
+ o(1) , Bε = − 2

n
ε3−n + o

(
ε3−n

)
, Cε = −ε3−n + o

(
ε3−n

)
.

Since Aε > 0 for ε < 1, (18) shows that gε achieves its global minimum at

aε =
−Bε +

√
B2

ε − 4AεCε

2Aε
=

2
n− 2

ε3−n + o
(
ε3−n

)
.

Finally, we obtain

gε (aε) =
(1 + εn−1)a2

ε + 2(1 + ε)aε + (1 + ε3−n)
1−εn

n a2
ε + (1− ε2)aε + 1−ε4−n

4−n

=
4

(n−2)2
ε6−2n + o(ε6−2n)

4
n(n−2)2

ε6−2n + o (ε6−2n)

so that
lim

ε→0+
γε(n) = lim

ε→0+
gε(aε) = n ∀n ∈ (3, 4) ∪ (4,∞).

The case n = 4. In this case, by (15) and (16), we obtain

gε(a) =
(1 + ε3)a2 + 2(1 + ε)a + (1 + ε−1)

1−ε4

4 a2 + (1− ε2)a− log ε

and, according to (17), we have again (18) but now with

Aε := (1 + ε3)(1− ε2)− (1 + ε)(1− ε4)
2

=
1
2

+ o(1) ,

Bε := −2(1 + ε3) log ε− (1 + ε−1)(1− ε4)
2

= −1
2
ε−1 + o

(
ε−1

)
,

Cε := −2(1 + ε) log ε− (1 + ε−1)(1− ε2) = −ε−1 + o
(
ε−1

)
,

as ε → 0+. Since Aε > 0 for ε < 1, we know that gε attains its minimum at

aε =
−Bε +

√
B2

ε − 4AεCε

2Aε
=

1
2ε−1 + o(ε−1) +

√
1
4ε−2 + o(ε−2)

1 + o(1)
= ε−1 + o(ε−1).

Hence,

gε(aε) =
(1 + ε3)a2

ε + 2(1 + ε)aε + (1 + ε−1)
1−ε4

4 a2
ε + (1− ε2)aε − log ε

=
(1 + ε3)(ε−2 + o(ε−2))

1−ε4

4 ε−2 + o(ε−2)
and

lim
ε→0+

γε(4) = lim
ε→0+

gε(aε) = 4.
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The case n = 3. In order to compute Nε(a) and Dε(a), it is sufficient to replace n = 3 into (15)
and (16). Also Aε, Bε, Cε may be obtained by replacing n = 3 into (19) (20) (21). But now the
asymptotic estimates as ε → 0+ become

Aε =
1
3

+ o(1) , Bε =
2
3

+ o(1) ,

while Cε = 0 for any ε ∈ (0, 1). As in the previous cases, we infer that gε achieves its global
minimum at aε = 0 and

lim
ε→0+

γε(3) = lim
ε→0+

gε(0) = lim
ε→0+

2
1− ε

= 2.

The cases 1 < n < 2 and 2 < n < 3. In these cases, we obtain the following asymptotic
expansions as ε → 0+:

Aε =
n− 2

n
+ o(1) , Bε =

4(n− 2)
n(4− n)

+ o(1) , Cε =
n− 2
4− n

+ o(1) .

Note that Aε, Bε, Cε > 0 if 2 < n < 3 whereas Aε, Bε, Cε < 0 if 1 < n < 2. However, in both these
situations we have

aε =
−Bε +

√
B2

ε − 4AεCε

2Aε
= −1 + o(1)

as ε → 0+. Therefore, we obtain

lim
ε→0+

γε(n) = lim
ε→0+

gε(aε) = 0 ∀n ∈ (1, 2) ∪ (2, 3).

The case n = 1. In this case, we have Aε ≡ 0 and, as ε → 0+:

Bε = −2
3

+ o(1) , Cε = −1
3

+ o(1) .

Therefore, the function gε admits a maximum for a = −Cε/Bε = −1/2 + o(1) and no minimum.
This fact has a simple explanation: the function ha introduced in (14) is not correct if n = 1 since
minimizers for δ1 in intervals are constants, see [4, 8] for the details. This corresponds to the case
a = ∞ in (14). Since gε(a) tends to 2 at infinity, we have

lim
ε→0+

γε(1) = 2.

7. Proof of Theorem 6

We start with the following

Lemma 3. Let {Pk} be the sequence of polygons as in the statement of Theorem 6. If u ∈ H1
0 (Pk)

and ∆u ∈ L2(Pk) then u ∈ H2(Pk) and moreover there exists a constant C > 0 independent of u
and k such that

‖u‖H2(Pk) ≤ C‖∆u‖L2(Pk).

Proof. Using the notations of [1], for any k ≥ 3 we define the function βk such that

Pk = {(x, y) ∈ R2; (x, y) = (r cos θ, r sin θ) , 0 ≤ r < βk(θ) , 0 ≤ θ < 2π}
and the radii of the inscribed and circumscribed disk:

ρ0k = min
θ∈[0,2π)

βk(θ), ρ1k = max
θ∈[0,2π)

βk(θ).
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We prove some uniform estimates of the Lipschitz constant for βk. It is not restrictive assuming
that one of the vertices of the polygon Pk lies on the x1 axis so that it is enough to study the
function βk in the interval [0, 2π/k]. We have

βk(θ) =

√
1 + tan2 θ

cos π
k

(
tan π

k tan θ + 1
) ∀θ ∈

[
0,

2π

k

]
.

By elementary computations one sees that

β′k(θ) =
tan θ − tan π

k

cos π
k cos2 θ ·

√
1 + tan2 θ · (tan π

k tan θ + 1
)2 ∀θ ∈

(
0,

2π

k

)

and

β′′k(θ) =

(
tan2 π

k + 2
)
tan2 θ − 2 tan π

k tan θ + 2 tan2 π
k + 1

cos π
k cos4 θ (1 + tan2 θ)3/2 (

tan π
k tan θ + 1

)3
∀θ ∈

(
0,

2π

k

)
.

Since β′′k ≥ 0 in
[
0, 2π

k

]
and since βk is symmetric with respect to θ = π/k then βk achieves the

maximum slope as θ → 0+ and as θ → (
2π
k

)−, i.e.

Mk := sup
θ∈(0,2π/k)

|β′k(θ)| = lim
θ→0+

|β′k(θ)| = lim
θ→(2π/k)−

|β′k(θ)| =
tan π

k

cos π
k

.

Hence, the Lipschitz constant Mk for βk is uniformly bounded with respect to k. On the other
hand, we have

ρ0k = 1 and ρ1k =
1

cos π
k

.

Moreover, the uniform outer ball condition for Pk is satisfied by a radius R > 0 independent of k.
Finally, if we choose µ(x) := e−1/|x|2x, then there exists δ > 0 independent of k such that

µ · ν ≥ δ on ∂Pk.

Then [1, Lemma 4.6] and [1, Theorem 2.2] yield the desired estimate. ¤

For any k ≥ 3 let uk ∈ H2 ∩H1
0 (Pk) be a minimizer for d1(Pk) such that ‖∆uk‖L2(Pk) = 1. Then

by Lemma 3 we infer that there exists a constant C > 0 independent of k such that

(22) ‖uk‖H2(Pk) ≤ C‖∆uk‖L2(Pk) = C

and hence if the restriction of uk to the unit disk D is still denoted by uk then the sequence {uk}
is bounded in H2(D).

If {ukm} is an arbitrary subsequence then up to extract another subsequence we may assume that
ukm ⇀ u in H2(D). Our purpose is to prove that

(23)
∫

∂Pkm

(ukm)2νkm
→

∫

∂D
u2

ν

where νkm and ν denotes respectively the outer normals to ∂Pkm and to ∂D.
By Theorem 6.2, Chapter 2 in [19] we obtain

∇ukm |∂D → ∇u|∂D in (L2(∂D))2

so that

(24)
∫

∂D
(ukm)2ν →

∫

∂D
u2

ν .
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Therefore in order to prove (23) we only need to prove that

(25)
∫

∂Pkm

(ukm)2νkm
−

∫

∂D
(ukm)2ν → 0.

In the next lemma we prove that convergence in (25) occurs for the initial sequence {uk}.
Lemma 4. Let {uk} be a sequence of minimizers for d1(Pk) with ‖∆uk‖L2(Pk) = 1. Then

∫

∂Pk

(uk)2νk
−

∫

∂D
(uk)2ν → 0.

as k →∞.

Proof. Let Lk be an arbitrary edge of the polygon Pk and let Sk ⊂ ∂D be the corresponding arc.
Since the set of minimizers for Pk is a 1-dimensional vector space then uk is invariant under the
action of the group of symmetries of the polygon Pk. Therefore we have that

(26)
∫

∂Pk

(uk)2νk
= k

∫

Lk

(uk)2νk
and

∫

∂D
(uk)2ν = k

∫

Sk

(uk)2ν .

Up to rotations in the plane, it is not restrictive assuming that the edge Lk is horizontal so that
νk ≡ (0, 1) on Lk and hence

(27)
∫

∂Pk

(uk)2νk
= k

∫ tan π
k

− tan π
k

∣∣∣∣
∂uk

∂x2
(t, 1)

∣∣∣∣
2

dt.

On the other hand, we have

(28)
∫

∂D
(uk)2ν = k

∫ π
2
+π

k

π
2
−π

k

∣∣∣∣
∂uk

∂x1
(cos θ, sin θ) · cos θ +

∂uk

∂x2
(cos θ, sin θ) · sin θ

∣∣∣∣
2

dθ.

The rest of the proof is divided in several steps.
Step 1. We prove

I1k :=
∫

∂D
(uk)2ν − k

∫ π
2
+π

k

π
2
−π

k

∣∣∣∣
∂uk

∂x2
(cos θ, sin θ)

∣∣∣∣
2

dθ → 0

as k →∞. By (28) and Hölder inequality, we have

|I1k| ≤ k

[∫ π
2
+π

k

π
2
−π

k

[2|∇uk(cos θ, sin θ)|]2dθ

]1/2 [∫ π
2
+π

k

π
2
−π

k

|∇uk(cos θ, sin θ)|2[cos2 θ + (1− sin θ)2]dθ

]1/2

≤ 2
[
cos

(π

2
− π

k

)
+ 1− sin

(π

2
− π

k

)] ∫

∂D
|∇uk|2

and by trace inequality

≤ 2C
[
cos

(π

2
− π

k

)
+ 1− sin

(π

2
− π

k

)]
‖uk‖2

H2(D) → 0

as k →∞ since {uk} is bounded in H2(D).

After the change of variable θ = arccos t by (27) and Step 1, the statement of the lemma is
reduced to prove that

(29) k

∣∣∣∣∣
∫ sin π

k

− sin π
k

v2
k(t,

√
1− t2)√

1− t2
dt−

∫ tan π
k

− tan π
k

v2
k(t, 1)dt

∣∣∣∣∣ → 0
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as k →∞ where we put vk = ∂uk
∂x2

.
Step 2. We prove that

I2k := k

∣∣∣∣∣
∫ sin π

k

− sin π
k

v2
k(t,

√
1− t2)√

1− t2
dt−

∫ sin π
k

− sin π
k

v2
k(t,

√
1− t2) dt

∣∣∣∣∣ → 0

as k →∞. We have

I2k = k

∫ sin π
k

− sin π
k

t2v2
k(t,

√
1− t2)√

1− t2(1 +
√

1− t2)
dt ≤ k sin2 π

k
·
∫ sin π

k

− sin π
k

v2
k(t,

√
1− t2)√

1− t2
dt

= sin2 π

k
·
∫

∂D
v2
k ≤ sin2 π

k
·
∫

∂D
|∇uk|2 ≤ C sin2 π

k
· ‖uk‖H2(D) → 0

as k →∞.
Step 3. We show that

I3k := k

∣∣∣∣∣
∫ sin π

k

− sin π
k

v2
k(t,

√
1− t2) dt−

∫ tan π
k

− tan π
k

v2
k(t,

√
1− t2) dt

∣∣∣∣∣ → 0

as k →∞. By the symmetry properties of uk and Hölder inequality we have

I3k = 2k

∫ tan π
k

sin π
k

v2
k(t,

√
1− t2)dt ≤ 2k

(
tan

π

k
− sin

π

k

)1/q′
(∫ tan π

k

sin π
k

|vk(t,
√

1− t2)|2qdt

)1/q

and by trace inequality

≤ 2k
(
tan

π

k
− sin

π

k

)1/q′
‖vk‖2

L2q(∂D) ≤ Cqk
(
tan

π

k
− sin

π

k

)1/q′
‖vk‖2

H1(D)

(30) ≤ Cqk
(
tan

π

k
− sin

π

k

)1/q′
‖uk‖2

H2(D)

for some constant Cq > 0 depending only on q. Since n = 2, we may choose q > 2 so that (30)
tends to zero as k →∞.

Summarizing, by (29), Step 2 and Step 3, it remains to prove that

(31) I4k := k

∣∣∣∣∣
∫ tan π

k

− tan π
k

v2
k(t,

√
1− t2) dt−

∫ tan π
k

− tan π
k

v2
k(t, 1) dt

∣∣∣∣∣ → 0

as k →∞. We proceed as follows.

I4k = k

∣∣∣∣∣∣

∫ tan π
k

− tan π
k

[
vk(t, 0) +

∫ √
1−t2

0

∂vk

∂x2
(t, x2)dx2

]2

dt−
∫ tan π

k

− tan π
k

[
vk(t, 0) +

∫ 1

0

∂vk

∂x2
(t, x2)dx2

]2

dt

∣∣∣∣∣∣

≤ 2k

∫ tan π
k

− tan π
k

|vk(t, 0)|
(∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣ dx2

)
dt

+k

∫ tan π
k

− tan π
k

∣∣∣∣∣
∫ 1

0

∂vk

∂x2
(t, x2)dx2 +

∫ √
1−t2

0

∂vk

∂x2
(t, x2)dx2

∣∣∣∣∣ ·
∣∣∣∣
∫ 1

√
1−t2

∂vk

∂x2
(t, x2)dx2

∣∣∣∣ dt
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and by Hölder inequality

≤ 2k

(∫ tan π
k

− tan π
k

|vk(t, 0)|2dt

)1/2 (∫ tan π
k

− tan π
k

(∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣ dx2

)2

dt

)1/2

+k

(∫ tan π
k

− tan π
k

(
2

∫ 1

0

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣ dx2

)2

dt

)1/2 (∫ tan π
k

− tan π
k

(∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣ dx2

)2

dt

)1/2

.

Since the sequence {vk} is bounded in H1(D) then by Sobolev embedding H1(D) ⊂ L∞(D) we
have that {vk} is bounded in L∞(D) and hence using again Hölder inequality we obtain

I4k ≤ 2
√

2k‖vk‖L∞(D)

(
tan

π

k

)1/2
(∫ tan π

k

− tan π
k

(1−
√

1− t2)
∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣
2

dx2 dt

)1/2

+2k

(∫ tan π
k

− tan π
k

∫ 1

0

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣
2

dx2 dt

)1/2 (∫ tan π
k

− tan π
k

(1−
√

1− t2)
∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣
2

dx2 dt

)1/2

≤ Ck
(
tan

π

k

)1/2
(

1−
√

1− tan2 π

k

)1/2
(∫ tan π

k

− tan π
k

∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣
2

dx2 dt

)1/2

+2k‖vk‖H1(Pk)

(
1−

√
1− tan2 π

k

)1/2
(∫ tan π

k

− tan π
k

∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣
2

dx2 dt

)1/2

.

Since ‖vk‖H1(Pk) ≤ ‖uk‖H2(Pk) is bounded in view of (22) and
(

1−
√

1− tan2 π

k

)1/2

∼ π√
2
k−1 + o(k−1),

then in order to prove that I4k converged to zero as k →∞ it is sufficient to show that
∫ tan π

k

− tan π
k

(∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣
2

dx2

)
dt → 0

as k →∞. This follows immediately from the fact that

k

∫ tan π
k

− tan π
k

(∫ 1

√
1−t2

∣∣∣∣
∂vk

∂x2
(t, x2)

∣∣∣∣
2

dx2

)
dt ≤ 3

∫

Pk

∣∣∣∣
∂vk

∂x2

∣∣∣∣
2

dx ≤ 3‖uk‖H2(Pk) ≤ C

for some positive constant independent of k. ¤

By Theorem 2 we have for any k

d1(Pk) = δ1(Pk) = min
h∈H\{0}

∫

∂Pk

h2

∫

Pk

h2
≤ |∂Pk|

|Pk|

and hence

(32) lim sup
k→∞

d1(Pk) ≤ lim sup
k→∞

|∂Pk|
|Pk| = 2.



17

In particular we have that the sequence d1(Pk) is bounded.
By (24), (25) and Lemma 4 we have along a subsequence {ukm} satisfying ukm ⇀ u in H2(D) as

m →∞ ∫

∂Pkm

(ukm)2νkm
→

∫

∂D
u2

ν

which yields ∫

∂D
u2

ν > 0

since d1(Pkm) is bounded and∫

∂Pkm

(ukm)2νkm
= d1(Pkm)−1 ·

∫

Pkm

|∆ukm |2 = d1(Pkm)−1.

Finally we have

(33) lim inf
m→∞ d1(Pkm) = lim inf

m→∞

∫

Pkm

|∆ukm |2
∫

∂Pkm

(ukm)2νkm

≥ lim inf
m→∞

∫

D
|∆ukm |2

∫

∂Pkm

(ukm)2νkm

≥

∫

D
|∆u|2

∫

∂D
u2

ν

≥ 2.

Then (32), (33) imply that along the initial sequence we have

lim
k→∞

d1(Pk) = 2 = d1(D)

so that the proof of the theorem is complete.

8. Proof of Theorem 7

Let δ ∈ (
0, 1/(2n2)

)
, so that

|θ (x1)− θ (x2)| ≤ n2 ‖θ‖C2
b
|x1 − x2| ≤ 1

2
|x1 − x2| ∀x1, x2 ∈ Rn

for any θ ∈ C2
b (Rn;Rn) with ‖θ‖C2

b
< δ. Then by the Banach Fixed Point Theorem and the Local

Inversion Theorem we infer that the map I + θ is a diffeomorphism of Rn of class C2 for any
θ ∈ C2

b (Rn;Rn) which satisfies ‖θ‖C2
b

< δ. Put Ω = (I + θ) (Ω0) and assume that w is a minimizer
for d1 (Ω) which satisfies

(34)
∫

Ω

[∣∣D2w
∣∣ + |∇w|]2

dx ≤ 1,

∫

∂Ω
w2

νdS ≤ 1.

Let u ∈ H2 ∩H1
0 (Ω0) be given by u = w ◦ (I + θ) in Ω0. Then we have

∆u =
n∑

i,j=1

{[
n∑

k=1

(
∂2w

∂xk∂xj
◦ (I + θ)

)
∂(I + θ)k

∂xi

∂(I + θ)j

∂xi

]
+

(
∂w

∂xj
◦ (I + θ)

)
∂2(I + θ)j

∂x2
i

}
in Ω0

so that

(35) |∆u− (∆w) ◦ (I + θ)| ≤ C1

[
‖θ‖2

C2
b

∣∣(D2w
) ◦ (I + θ)

∣∣ + ‖θ‖C2
b
|(∇w) ◦ (I + θ)|

]
in Ω0

where C1 is a positive constant depending only on n. By (35) and Hölder inequality we have∫

Ω0

|∆u|2 dx ≤
∫

Ω0

|(∆w) ◦ (I + θ)|2 dx
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+2C1

[∫

Ω0

[
‖θ‖2

C2
b

∣∣(D2w
) ◦ (I + θ)

∣∣ + ‖θ‖C2
b
|(∇w) ◦ (I + θ)|

]2
dx

]1/2 [∫

Ω0

|(∆w) ◦ (I + θ)|2 dx

]1/2

(36) +C2
1

∫

Ω0

[
‖θ‖2

C2
b

∣∣(D2w
) ◦ (I + θ)

∣∣ + ‖θ‖C2
b
|(∇w) ◦ (I + θ)|

]2
dx.

On the other hand, since the determinant is a locally Lipschitz function with respect to any norm
in the space of matrices, for any ε ∈ (0, 1) we may choose δ ∈ (0, ε) small enough such that

(37)
∣∣det

(
J(I + θ)−1(y)

)− 1
∣∣ < ε ∀y ∈ Ω

for any θ with ‖θ‖C2
b

< δ. Combining (34), (36), (37) and using the fact that ‖θ‖C2
b

< δ < ε we
obtain ∫

Ω0

|∆u|2 dx ≤
∫

Ω
|∆w|2 dy + ε

∫

Ω
|∆w|2 dy

+2C1 (1 + ε)
(∫

Ω

[
ε2

∣∣D2w
∣∣ + ε |∇w|]2

dy

)1/2 (∫

Ω
|∆w|2 dy

)1/2

+C2
1 (1 + ε)

∫

Ω

[
ε2

∣∣D2w
∣∣ + ε |∇w|]2

dy

(38) ≤
∫

Ω
|∆w|2 dy + ε

(
1 + 4C1 + 2C2

1

)
=

∫

Ω
|∆w|2 dy + εC2.

On the other hand, after explicit computation of |∇u| we find

| |∇u| − |(∇w) ◦ (I + θ)| | ≤ C3 ‖θ‖C2
b
|(∇w) ◦ (I + θ)| on ∂Ω0

where C3 is a positive constant depending only on n.
Choosing δ ≤ 1/C3 so that 1−C3 ‖θ‖C2

b
> 0 for ‖θ‖C2

b
< δ, after integration over ∂Ω0, we obtain

(39)
∫

∂Ω0

u2
νdSx ≥

(
1− C3 ‖θ‖C2

b

)2
∫

∂Ω0

|(∇w) ◦ (I + θ)|2 dSx.

Using a local parametrization for ∂Ω0 we prove that there exists a positive constant C4 > 0 de-
pending only on Ω0 such that∫

∂Ω0

|(∇w) ◦ (I + θ)|2 dSx ≥
∫

∂Ω
|∇w(y)|2 dSy − C4 ‖θ‖C2

b
≥ 0 ∀ ‖θ‖C2

b
< δ

with δ > 0 small enough. Inserting this estimate into (39) and using the fact that ‖θ‖C2
b

< δ < ε

we obtain

(40)
∫

∂Ω0

u2
ν dSx ≥

∫

∂Ω
w2

ν dSy − ε (2C3 + C4) .

Then, by combining (38) and (40) we infer

(41) d1 (Ω0) ≤

∫

Ω0

|∆u|2 dx

∫

∂Ω0

u2
νdSx

≤

∫

Ω
|∆w|2 dy + εC2

∫

∂Ω
w2

νdSy − ε (2C3 + C4)
≤ d1 (Ω) + εC5

for a suitable constant C5 > 0 depending only on n and Ω0.
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On the other hand, we prove that there exists a constant C6 > 0 depending only on n such that
‖ (I + θ)−1 − I‖C2

b
< C6δ for any θ ∈ C2

b (Rn;Rn) with ‖θ‖C2
b

< δ. Reversing the roles of Ω and Ω0

by (41) we deduce that there exists a constant C7 > 0 depending only on n and Ω0 such that

d1 (Ω) ≤ d1 (Ω0) + εC7

and hence we obtain
|d1 (Ω)− d1 (Ω0)| < ε max {C5, C7}

for any Ω = (I + θ) (Ω0) with ‖θ‖C2
b

< δ and δ = δ (ε) > 0 small enough. This completes the proof
of the theorem. ¤

9. Proof of Theorem 8

Let B ⊂ Rn be the unit ball centered at the origin and let u0(x) = 1− |x|2 be the unique (up to
a constant multiplier) eigenfunction associated to d1 (B) (see [4]). For any θ ∈ C4

b (Rn;Rn) let uθ

be the unique positive solution of

(42)





∆2uθ = 0 in (I + θ) (B)
uθ = 0 on ∂ ((I + θ) (B))
∆uθ − d1 ((I + θ) (B))uθ

ν = 0 on ∂ ((I + θ) (B))

such that

(43) ‖∆uθ‖L2((I+θ)(B)) = 2n
√
|B| = ‖∆u0‖L2(B).

Consider the functional θ 7→ d1 (θ) defined by

(44) d1 (θ) = d1 ((I + θ) (B)) =

∫

(I+θ)(B)
|∆uθ|2dx

∫

∂((I+θ)(B))
|uθ|2ν dS

∀θ ∈ C4
b (Rn;Rn) .

In the first part of this section we prove that the functional θ 7→ d1 (θ) is differentiable in a neigh-
bourhood of θ = 0.

Let

Θ =
{

θ ∈ C4
b (Rn;Rn) : ‖θ‖C4

b
<

1
2n2

}

so that I + θ is a C4-diffeomorphism of Rn for any θ ∈ Θ.
Let vθ = uθ ◦ (I + θ) so that vθ ∈ H2 ∩ H1

0 (B) for any θ ∈ Θ. Since ∂ ((I + θ) (B)) ∈ C4 and
since the Steklov boundary conditions satisfy the complementing conditions (see Lemma 15 in [4])
by elliptic regularity [2] we know that uθ ∈ H4 ((I + θ) (B)) and, in turn, also vθ ∈ H4 (B) for any
θ ∈ Θ.

Consider the transposed inverse matrix of the Jacobian of the map I + θ,

M (θ) = [Mij (θ)] =
(
[J (I + θ)]−1

)T
∀θ ∈ Θ

and define the linear operator Lθ by

(45) Lθu =
n∑

i,j,k=1

Mij (θ)
∂

∂xj

(
Mik (θ)

∂u

∂xk

)
= ∆

(
u ◦ (I + θ)−1

)
◦ (I + θ) in B
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for any smooth function u defined on B. Then the function vθ solves the problem

(46)





L2
θv

θ = 0 in B

vθ = 0 on ∂B

Lθv
θ − d1 (θ)

n∑

i,j=1

∂vθ

∂xj
Mij (θ)

(
νθ

i ◦ (I + θ)
)

= 0 on ∂ ((I + θ) (B))

where νθ =
(
νθ
1 , ..., νθ

n

)
is the unit normal vector to the boundary ∂ ((I + θ) (B)) . Define the map

F : Θ× R× (
H4 ∩H1

0 (B)
) → L2 (B)×H3/2 (∂B)× R

by

F (θ, d, v) =


L2

θv, Lθv − d
n∑

i,j=1

∂v

∂xj
Mij (θ)

(
νθ

i ◦ (I + θ)
)

,
1
2

∫

B
|∆v|2 dx


 .

Note that the map θ 7→ Mij (θ) is of class C1 from Θ into C3
b (Rn) for any i, j ∈ {1, ..., n} where

Ck
b (Rn) =

{
u : ∂αu ∈ C0 ∩ L∞ (Rn) for any 0 ≤ |α| ≤ k

}
,

see Section 1.3 in [21] for more details. This implies that the map F is of class C1 in Θ ×
R× (

H4 ∩H1
0 (B)

)
.

Finally define the set

Z =
{
(θ, d, v) ∈ Θ× R× (

H4 ∩H1
0 (B)

)
: F (θ, d, v) =

(
0, 0, 2n2 |B|)}

so that
(
0, d1 (B) , u0

) ∈ Z. By means of the Implicit Function Theorem we prove the following

Lemma 5. There exist a neighbourhood U of θ = 0 in C4
b (Rn;Rn) , a neighbourhood V of(

d1 (B) , u0
)

in R× (
H4 ∩H1

0 (B)
)

and a map Λ : U → V of class C1 such that (d, v) = Λ (θ) for
any (θ, d, v) ∈ Z ∩ (U × V ) . Moreover Λ (θ = 0) =

(
d1 (B) , u0

)
with u0 (x) = 1− |x|2 .

Proof. The partial variation of the map F with respect to the the pair (d, v) takes the form

F ′
(d,v) (θ0, d0, v0) [(d, v)] =

=




L2
θ0

v

Lθ0v − d
n∑

i,j=1

∂v0

∂xj
Mij (θ0)

(
νθ0

i ◦ (I + θ0)
)
− d0

n∑

i,j=1

∂v

∂xj
Mij (θ0)

(
νθ0

i ◦ (I + θ0)
)

∫

B
∆v0∆v dx




.
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We show that F ′
(d,v)

(
0, d1 (B) , u0

)
: R× (

H4 ∩H1
0 (B)

) → L2 (B) × H3/2 (∂B) × R is an isomor-

phism. This is equivalent to show that for any f ∈ L2 (B) , g ∈ H3/2 (∂B) , α ∈ R the problem

(47)





∆2v = f in B
v = 0 on ∂B
∆v − d1 (B) vν − du0

ν = g on ∂B

(48)
∫

B
∆u0∆v dx = α

admits a unique solution (d, v) ∈ R× (
H4 ∩H1

0 (B)
)
. We prove this statement in two steps.

Existence of a solution of (47)-(48). We start by looking for a solution (d, v) ∈ R×H2 ∩H1
0 (B)

of (47), i.e. a pair (d, v) which satisfies
(49)∫

B
∆v∆w dx− d1 (B)

∫

∂B
vνwν dS =

∫

B
fw dx +

∫

∂B

(
g + du0

ν

)
wν dS ∀w ∈ H2 ∩H1

0 (B) .

By Lemma 2 we deduce that (49) admits a solution if and only if the following condition holds

(50)
∫

B
fu0 dx +

∫

∂B

(
g + du0

ν

)
u0

ν dS = 0.

Therefore if we choose d ∈ R such that (50) holds true then there exists a solution v ∈ H2 ∩H1
0 (B)

of (49) and by elliptic regularity [2] it follows that v ∈ H4 (B) . In general this function v does not
satisfy (48) but it is worth noting that if v solves (49) then for any λ ∈ R the function vλ = v +λu0

is still a solution of (49). It is now sufficient to choose λ such that (48) is satisfied. With this choice
of λ the corresponding function vλ ∈ H4 ∩H1

0 (B) solves (47)-(48).
Uniqueness for (47)-(48). In order to prove uniqueness for (47)-(48) it is sufficient to prove that

the associated homogeneous problem

(51)





∆2v = 0 in B
v = 0 on ∂B
∆v − d1 (B) vν − du0

ν = 0 on ∂B

(52)
∫

B
∆u0∆v dx = 0

admits only the trivial solution (0, 0) ∈ R× (
H4 ∩H1

0 (B)
)
. The corresponding variational formu-

lation for (51) is

(53)
∫

B
∆v∆w dx− d1 (B)

∫

∂B
vνwν dS = d

∫

∂B
u0

νwν dS ∀w ∈ H2 ∩H1
0 (B) .

Choosing w = v in (53), by (52) and using the fact that u0 is an eigenfunction of d1 (B) , we obtain∫

B
|∆v|2 dx = d1 (B)

∫

∂B
v2
νdS + d

∫

∂B
u0

νvν dS

= d1 (B)
∫

∂B
v2
νdS +

d

d1 (B)

∫

B
∆u0∆v dx = d1 (B)

∫

∂B
v2
νdS.

Therefore, if we assume by contradiction that v is not identically equal to zero then we infer that
v ∈ H2 ∩H1

0 (B) is a minimizer for (3) and since d1 (B) is a simple eigenvalue then v coincides with
u0 up to a constant multiplier. This contradicts (52) and hence v ≡ 0.
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Choosing w = u0 in (53) and using the fact that v ≡ 0 we conclude that d = 0. This completes
the proof of uniqueness.

We may conclude that F ′
(d,v)

(
0, d1 (B) , u0

)
is an isomorphism and since the map F is of class C1

in Θ × R× (
H4 ∩H1

0 (B)
)
. Hence, the statement of the lemma follows from the Implicit Function

Theorem. ¤

In the next statement we show that if Λ (θ) = (d (θ) , v (θ)) is the map found in Lemma 5 then
d (θ) = d1 (θ) and v (θ) = uθ ◦ (I + θ) with uθ as in (42). We recall that d1 (θ) is defined in (44).

Lemma 6. Let Λ : U → V the map found in Lemma 5 and let d (θ) be such that Λ (θ) = (d (θ) , v (θ))
for any θ ∈ U. Then there exists a neighbourhood Ũ ⊂ U of θ = 0 with respect to the topology of
C4

b (Rn;Rn) such that d (θ) = d1 (θ) and v (θ) = uθ ◦ (I + θ) for any θ ∈ Ũ with uθ as in (42).

Proof. Suppose by contradiction that there exists a sequence {θr}r∈N ⊂ U such that θr → 0 in
C4

b (Rn;Rn) and d (θr) 6= d1 (θr) for any r ∈ N. This means that for any fixed r ∈ N, d (θr) coincides
with some eigenvalue dir (θr) of (1) with ir 6= 1.

Let uθ as in (42). By elliptic regularity estimates [2] we deduce that there exists Cθ such that∥∥uθ
∥∥

H4((I+θ)(B))
≤ Cθ. Since the map θ 7→ d1 (θ) is continuous in Θ (see Proposition 7) and θ ∈ Θ,

the elliptic regularity estimates up to the boundary may be done in such a way that the constant
Cθ can be chosen independent of θ ∈ Θ. Therefore there exist C > 0 such that

‖uθ‖H4((I+θ)(B)) ≤ C ∀θ ∈ Θ.

Then one can prove by computing all the derivatives of a composition up to the fourth order that
there exists a positive constant still denoted by C such that

‖ψθ
1‖H4(B) ≤ C ∀θ ∈ Θ

with ψθ
1 = uθ ◦ (I + θ) . Therefore up to subsequences we may assume that there exists ψ ∈ H4 (B)

such that ψθr
1 ⇀ ψ weakly in H4 (B) and by compact embedding we also have ψθr

1 → ψ strongly in
H2 ∩H1

0 (B). Therefore since Mij (θr) → δij in C3
b (Rn) for any i, j ∈ {1, .., n} we also have

4n2 |B| = lim
r→∞

∫

(I+θ)(B)
|∆uθr |2dx = lim

r→∞

∫

B
|Lθrψ

θr
1 |2 |det J (I + θr)| dx =

∫

B
|∆ψ|2 dx

which shows that ψ 6= 0.
On the other hand, ψθr

1 solves (46) with θr in place of θ and hence we have
n∑

i,j,k=1

∫

B
Lθrψ

θr
1

∂

∂xk

(
Mik (θr)

∂

∂xj
(Mij (θr) w)

)
dx

(54)

−
n∑

i,j,k,l,m=1

∫

∂B
Mik (θr)

∂

∂xj
(Mij (θr) w) νkd1 (θr) Mlm (θr)

(
νθr

l ◦ (I + θr)
) ∂ψθr

1

∂xm
dS = 0

for any w ∈ H2 ∩H1
0 (B).

Using the following convergences ψθr
1 → ψ in H2 ∩ H1

0 (B), Mij (θr) → δij in C3
b (Rn) for any

i, j ∈ {1, .., n} , νθr
i ◦ (I + θr) → νi in L∞ (∂B) for any i ∈ {1, .., n} and d1 (θr) → d1 (B) in view of

Proposition 7, passing to the limit in (54) we obtain∫

B
∆ψ∆w dx− d1 (B)

∫

∂B
ψνwν dS = 0 ∀w ∈ H2 ∩H1

0 (Ω)(B).
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Since for any r ∈ N, d (θr) 6= d1 (θr) and since by (45)-(46) the function v (θr) ◦ (I + θr)
−1 solves

(42) in (I + θr) (B) with d (θr) in place of d1 (θr) then by the orthogonality result in Theorem 1.1
in [8] we have

0 = lim
r→∞

∫

(I+θr)(B)
∆uθr∆

(
v (θr) ◦ (I + θr)

−1
)

dx

= lim
r→∞

∫

B
Lθrψ

θr
1 Lθr (v (θr)) |det J (I + θr)| dx =

∫

B
∆ψ∆u0dx

and this is a contradiction since ψ and u0 are nontrivial eigenfunctions of the simple eigenvalue
d1 (B) (see Theorem 1 in [4]). ¤

In order to compute the first variation of d1 (θ) with respect to θ we introduce the functionals

J (θ) =
∫

(I+θ)(B)
|∆uθ|2dx, K (θ) =

∫

∂((I+θ)(B))
|∇uθ|2dS =

∫

∂((I+θ)(B))
|uθ

ν |2dS

so that

d1 (θ) =
J (θ)
K (θ)

.

In the next lemma we prove that the functionals J and K are of class C1 in a neighbourhood of
θ = 0.

Lemma 7. There exists a neighbourhood U of θ = 0 in C4
b (Rn;Rn) such that the functionals J

and K are of class C1 in U. Moreover the directional derivatives of J,K at θ = 0 in the direction
τ ∈ C4

b (Rn;Rn) take the form

(55)
∂J (θ)

∂τ
(0) =

〈
J ′ (θ)|θ=0 , τ

〉
= −4n

∫

∂B
x∇

(
∂uθ

∂τ |θ=0

)
dS + 4n2

∫

∂B
xτ dS

(56)
∂K (θ)

∂τ
(0) =

〈
K ′ (θ)|θ=0 , τ

〉
= −4

∫

∂B
x∇

(
∂uθ

∂τ |θ=0

)
dS + (4n + 4)

∫

∂B
xτ dS.

Proof. We start with the functional J. In view of Lemmas 5, 6 we know that there exists a neigh-
bourhood U of θ = 0 such that the map θ 7→ v (θ) is of class C1 from U into H4 ∩H1

0 (B) so that
the assumptions (3.2), (3.6), (3.8) and (3.9) of Theorem 3.3 in [21] hold true with m = 4 and p = 2.
The assumption (3.14) of Theorem 3.3 in [21] is also true in view of Theorem 3.4 in [21]. Therefore
all the assumptions of Theorem 3.3 are satisfied in any point θ ∈ U so that J is of class C1 in U .

Let us recall that from [4] we know that

(57) d1(B) = n , u0 (x) = 1− |x|2 in B.

Then, by (3.15) in [21] we infer

∂J (θ)
∂τ

(0) =
∫

B
2∆u0∆

(
∂uθ

∂τ |θ=0

)
dx +

∫

∂B

∣∣∆u0
∣∣2 xτ dS

= −4n

∫

B
∆

(
∂uθ

∂τ |θ=0

)
dx + 4n2

∫

∂B
xτ dS.

By Green formula we immediately obtain (55).
Consider now the functional K. Using again Lemmas 5, 6 we deduce the assumptions (5.1)-(5.6)

of Theorem 5.1 in [21] hold true with m = 4 and p = 2. The assumption (5.7) of Theorem 5.1 in [21]
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follows from Theorem 3.4 in [21]. Therefore we may apply Theorem 5.1 in [21] in any point θ ∈ U
so that K is of class C1 in U. The formula (56) for directional derivatives of K at θ = 0 follows
immediately from (5.8) in [21] and (57). ¤

We may now complete the proof of Theorem 8.
From Lemma 7 we deduce that the functional θ 7→ d1 (θ) is of class C1 in a neighbourhood U of

θ = 0. Moreover by (55)-(56) and taking into account that d1 (θ = 0) = n (see (57)) we deduce that
the directional derivative of d1 (θ) at θ = 0 in the direction τ ∈ C4

b (Rn;Rn) takes the form

∂d1 (θ)
∂τ

(0) =
〈
d′1 (θ)|θ=0 , τ

〉
= K (0)−2

(
∂J (θ)

∂τ |θ=0
K(0)− J (0)

∂K (θ)
∂τ |θ=0

)

=
(∫

∂B

(
u0

)2

ν
dS

)−1 [
−4n

∫

∂B
x∇

(
∂uθ

∂τ |θ=0

)
dS + 4n2

∫

∂B
xτ dS

]

−
(∫

∂B

(
u0

)2

ν
dS

)−1

d1 (B)
[
−4

∫

∂B
x∇

(
∂uθ

∂τ |θ=0

)
dS + (4n + 4)

∫

∂B
xτ dS

]

(58) = − n

|∂B|
∫

∂B
xτ dS = − 1

|B|
∫

∂B
xτ dS.

Introduce now the volume functional V (θ) defined by

V (θ) = |(I + θ) (B)| =
∫

(I+θ)(B)
dx ∀θ ∈ C4

b (Rn;Rn) .

Then by Theorem 3.3 in [21] we infer that

∂V (θ)
∂τ

(0) =
〈
V ′ (θ)|θ=0 , τ

〉
=

∫

∂B
xτ dS ∀τ ∈ C4

b (Rn;Rn) .

Let γ ∈ C1
(
[0, 1] ;C4

b (Rn;Rn)
)

be such that

γ (0) = I and |γ (t) (B)| = |B| ∀t ∈ [0, 1] ,

then
d

dt
d1 (γ (t) (B))|t=0 =

d

dt
d1 (γ (t)− I)|t=0 =

〈
d′1 (γ (t)− I)|t=0 , γ′(0)

〉

= − 1
|B|

∫

∂B
xγ′(0) dS = − 1

|B|
〈
V ′ (γ (t)− I)|t=0 , γ′ (0)

〉
= − 1

|B|
d

dt
V (γ (t)− I)|t=0

= − 1
|B|

d

dt
|γ (t) (B)||t=0 = 0.

This completes the proof. ¤
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[13] E. Krahn, Über eine von Rayleigh formulierte minimaleigenschaft des kreises, Math. Ann. 94, 1925,
97–100
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