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1. In troduct ion  

It is well known that the notion of linear partial differential operator admits the 
following algebraic formulation. Let ,4 be a commutative associative algebra over 
C and let .A4 and A/" be two ,4-modules. A linear mapping D of M into A/" is called 
an operator of order 0 of .A4 into A/" if it is a ,4-module homomorphism, i.e. if 
[D, f] = 0, Vf  E -4, ( f  E ,4 being identified with the multiplication by f in A/I 
and in .N'). Then, one defines inductively the operators of order k E 1~: A linear 
mapping D of A4 into .N" is an operator of order k + 1 of A4 into A/" if [D, f]  is an 
operator of  order k of.A4 into A/', Vf E -4. For bad choices of,4, it may happen that 
this notion is not very appealing. However, it makes sense and when .,4 is the algebra 
of smooth functions on a smooth manifold X and when .A4 and A/" are the modules 
of smooth sections of two smooth complex vector bundles E and F over X,  then 
this notion is just the usual notion of linear partial differential operators of order 
k E ~! of E into F.  The troubles start if one tries to replace ,4 by a noncommutative 
associative algebra and .A4 and A/" by left (or right) ,4-module. Then the definition 
breaks down because multiplications by elements f and g of ,4 do not commute. 
However, it was noticed by A. Connes [3] that if one works with bimodules, 
there is a natural noncommutative generalization of first-order operators, since 
the multiplications on the right and on the left commute. Moreover, in [3] it was 
pointed out that the first-order condition for the generalized Dirac operator plays an 
important role in the connection between the noncommutative Poincar6 duality and 
cyclic cohomology. On the other hand, it was observed at several places, e.g. [6, 7], 
that the natural generalization of the notion of module over a commutative algebra 
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is not necessarily the notion of left (or right) ~A-module over a noncommutative 
algebra .4, but can be a notion of bimodule over .4. Furthermore, it was claimed 
in [7] that the latter point of view is unavoidable if one wants to discuss reality 
conditions and if one takes the Jordan algebras of Hermitian elements of complex 
,-algebras as the noncommutative analogue of algebras of real functions (e.g. as 
in quantum theory). 

In Section 2, we recall the definition of first order operators in a form which is 
convenient for our purposes. In Section 3, we give some basic general examples. 
In Section 4, we establish the general structure of first-order operators and describe 
the appropriate notion of symbols. 

In Section 5, we apply our result to the theory of connections on bimodules 
and show the relation between the symbols and previously introduced twistings 
(generalized transpositions) in the case ofnoncommutative generalizations of linear 
connections [9]. 

2. First-Order Operators in Bimodules 

In this Letter, .A and/3 are unital associative algebras over C, their units ll~t and 
|t~ will be simply denoted by I when no confusion arises. Let .M and Af be two 
(A,/3)-bimodules, (i.e..A |176 and let/2(.M,.M) be the vector space 
of all linear mappings of .A// into Af. Among the elements s A/'), one can 
distinguish several natural subclasses. The most natural subspace of s 
is the space Hom~(.M,.M) of all (.A,/3)-bimodule homomorphisms of .M into 
A/'. Other natural subspaces are the space HomB(.h//,A/") of all right/3-module 
homomorphisms of M into A/" and the space HomA (.M, A/') of all left ~4-module 
homomorphisms of M into A/'. However, from the point of view of the (.A, 13)- 
bimodule structure, it was pointed out in [3] that there is a more symmetrical 
subspace of s  Af) which contains both HomB(A/[, A/') and Hom.a(M, A/') 
which we now describe. One has the following lemma. 

LEMMA 1. The following conditions (a) and (b) are equivalent for an element D 
of  C( M ,.M). 

(a) for any f E A, m ~ D ( f m )  - f O ( m )  is a right/3-module homomorphism. 
(b) for any g E 13, m ~-+ O(mg) - O(m)g is a left .A-module homomorphism. 

Proof [3]. Let Lf  be the left multiplication by f E .A and let R a be the right 
multiplication by g E/3 in M and Af. Condition (a) reads [[D, L$], Rg] = O, V f  E 
.A,V# E /3, and condition (b) reads [[D, Rg],LI] = 0,Vf E .A, Vg E 13. On 
the other hand, one has [LI, Ra] = 0 which implies that [[D, L$] , Ra] = [[D, Ra] , 

zs]. [] 

An element D of s which satisfies the above equivalent conditions (a) 
and (b) is called [3] a first-order operator or an operator of order 1 of .tvl into Af. 
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The set of all first-order operators of M into Af is a subspace of/~(M, Af) which 
will be denoted by E1 (M,  Af): 

Z21(M,.A/') = {D �9 Z2(.A4,.M)I[[D, Lj], Rg] = 0,Vf �9 AM, k/g �9  

This terminology is, of course, suggested by the fact that when .4 and/3 coincide 
with the algebra C~176 of smooth functions on a smooth manifold X and when 
A4 and .M are the smooth sections of smooth vector bundles E and F over X,  then 
s (.A4, A/') is just the space of ordinary first-order differential operators of E into 
F. 

Remark. One has D �9 Hom.a(AA,A/') r [D,L]] = 0 V f  �9 .4 and D G 
Home(M,  Af) r [D, Rg] = 0 Vg �9 Therefore, Hom.a(.h4,.hf) and Home(M,  
A/') are subspaces of/:1 (.AA, A/'). When f runs over ,4, [D, L]] are the obstructions 
for D to be a left AM-module homomorphism and, thus, condition (a) of Lemma 1 
means that theses obstructions are right/3-module homomorphisms. Condition (b) 
can be formulated similarily by exchange of left and right. 

3. Examples 

3.1. THE STRUCTURE OF/~1 (AM, J~f) FOR A (AM, AM)-BIMODULE J~f 

Recall that a derivation of  .4 into a bimodule A/" over .4 is a linear mapping 
6: AM --+ A/" satisfying 

~5(fg) = 6(f)g + fO(g), Vf, g E .4. 

The space of all derivations of AM into A/" is denoted by Der(AM, A/). For each 
element n EAf ,  one defines a derivation ad(n) E ner(AM,.Af) by ad(n)(f)  = 
n f  - f n ,  V f  E .4. The subspace ad(Af) of Der(AM,.Af) is denoted by Int(AM, A/') 
and its elements are called inner (or interior) derivations of  AM into.Af. By the very 
definition, a D E L;(AM, A/') is a first-order operator, i.e. D E/21(AM,A/'), if and only 
if one has 

D( fg )  = D( f )g  + fD(g)  - f D ( l ) g , V f ,  g E ,4. 

It follows that the derivations of .4 into .N" are exactly the first-order operators of 
.A into A/" which vanish on the unit I of .4, i.e. one has 

Der(AM, A/') = {D E/ZI(AM,.Af)ID(n) = 0}. 

One defines two projections Pn and PL of/~1 (AM, J~) onto Der(AM, A/') by setting 

pR(D)( f )  = D ( f ) -  D ( l ) f  and pL(D)( f )  = D ( f ) -  f D ( l ) .  



470 MICHEL DUBOIS-VIOLETTE AND THIERRY MASSON 

Notice that pL(D)  - pR(D)  = ad(D( l ) )  so I m ( p / -  PR) = Int(.4, Af). It is clear 
that D ~ ( p L ( D ) , D ( I ) )  and D ~ ( p R ( D ) , D ( | ) )  are both isomorphisms of 
/~1 ( '4,Af) onto Der(.4,Af) | A/'. Thus one has 

s -~ Der(.4,Af) | ./V'. 

In fact, one has 

ker(pR) = HomA(.4,Af), ker(pL) = HomA(.4,A/') 

and the mapping D ~ D ( l )  of/~(.4, Af) into Af induces isomorphisms 

~R:HomA(.4,Af) -~,A/" and aL:HOm.a(.4,A/') =, .Af, 

so the two above isomorphisms of 1:1 (.4, Af) onto Der(.4, Af) �9 A/" correspond to 
the canonical splitting of the exact sequences of vector spaces 

0 ~ Hom'a(.4,Af) c s A/') pR Der(.4,A/') ~ 0 

and 

0 --+ HomA(.4,Af) c s pL Der(.4,A/') ~ 0 

associated to the inclusion Der(.4, A/') C/Z, (.4, Af). 
Notice, finally, that one has in/~I(.4,-A/') 

Int(.4, A/') = Der(.4, A/') N (Hom'a(.4, .A/') + Horn a('4, A/')). 

3.2. FIRST-ORDER OPERATORS OF .4 INTO ITSELF 

In the case where Af = "4, the space/~1 ('4, "4), Der('4, "4) and Int('4, "4) will be 
simply denoted by/:1 ('4), Der('4) and Int('4). If D1 and D2 are elements of/Zl ('4), 
it is easy to see that [D1, D2] = Dl o D2 - D2 o D1 is again an element of s 
Thus,/~l ('4) is a Lie algebra; it is also, in an obvious way, a module over the center 
Z( '4 )  of "4. The subspace Der('4) is a Lie subalgebra and a Z('4)-submodule 
of L~1 ('4) and Int('4) is a Lie ideal of Der(A) and also a Z('4)-submodule. The 
quotient Out('4) = Der( '4)/Int( '4) is a Lie algebra and a Z('4)-module. The 
spaces Horn A ('4, "4) and HomA (.4, .4) are both Lie ideals and Z(.4)-submodules 
of s (.4) and the exact sequences 

and 

0 + HomA('4, A ) ~  ~1('4) PR Der('4) ~ 0 

0 ~ HomA(A,A)  ~ s ;" '  Der('4) ~ 0 
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are now exact sequences of Lie algebras and of Z(A)-modules,  whereas the cor- 
responding isomorphisms s (A) ~- Der(A) | A are isomorphisms of Lie algebras 
and of Z(A)-modules.  One has the isomorphism of Lie algebra and of Z(A)-  
module 

Out(A) ~- s A ) +  Hom~t(A, A)). 

3.3. FIRST-ORDER OPERATORS ASSOCIATED WITH DERIVATIONS 

Let f~}. be a bimodule over A, let ~2~ be a bimodule over /3 and let dr be a 
derivation of A into f~}. and dn be a derivation of/3 into fl~. Let .M and A/" be 
two (A,/3)-bimodules and let D be a linear mapping of .M into A/'. 

(1) Assume that there is a (A,/3)-bimodule homomorphism aL of f~}. | .M into 
A/" such that 

D ( f m )  = fD(ra) + aL(dL(f) | rn), Yrn E M andVf E A,  

then D is a first-order operator. 
(2) Assume that there is a (A,/3)-bimodule homomorphism aR of M | ~ into 

A/" such that 

D(mg) = D(m)g + an(m | dR(g)), Vm E .M and Vg E B, 

then D is a first-order operator. 

Thus, any of the two above conditions implies that D is of first order. We 
shall now show that, conversely, if D is a first-order operator of M into A/', these 
conditions are satisfied with an appropriate choice of the (dL, 9/L) and (dn,  f~n). 

4. General Structure of First-Order Operators 

Recall that in the category of derivations of A into the bimodules over A there 
is an initial object, du: A ~ ~)~(A), which is obtained by the following stan- 
dard construction [2, 1]. The bimodule f~l(A) is the kernel of the multiplication 
m: A | A --+ A, ( m( f | g) = f g ), and the derivation du: A ---, ~ I ( A )  is defined 
by du(f) = 1 | f - f | 1. This derivation has the following universal property: 
For any derivation 6: A ~ A4 of A into a bimodule A4 over A, there is a unique 
bimodule homomorphism i8 of f ~ ( A )  into A4 such that ~ = is o du. The left 
(resp. right) A-module f ~ ( A )  is isomorphic to A | duA (resp. d~A | A) whereas 
the kernel of du is CI,  i.e. duA ~- A / C I  as vector space. One has the following 
structure theorem for first-order operators. 

THEOREM 1. Let A4 and A/" be two (A,/3)-bimodules and let D be a first-order 
operator of A4 into A/'. Then there is a unique (A,/3)-bimodule homomorphism 
CrL( D) off~lu(A) | .M into A/" and there is a unique (A, 13)-bimodule homomor- 
phism aR( D) of A4 | ~2~(/3) into A/" such that one has 
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D(fmg) = :D(m)g + a i ( D ) ( d j  | ra)g + faR(D)(m | dug) 

for any m E All, f E +4 and g E B. 
Proof. By definition, one has 

D(fmg)  - D(fra)g - fD(rag) + fD(m)g = 0 

which can be rewritten as 

D(frag) = fn(ra)g + (D( fm)  - f n ( m ) ) g  + .f(D(mg) - D(m)g). 

Now we know (Lemma l(a), etc.), that ra ~ D(fra) - fD(ra) is a right B-module 
homomorphism. Furthermore, it vanishes whenever f E CL so one defines a 
(`4, B)-bimodule homomorphism ~L(D) of f~l(`4) | .A4 into Af by setting 

 L(n)(fo4,f, | m) = f o ( n ( f , m )  - f ,D(m) ) .  

Moreover, one has 

~L( D)(fodu(fl )h | m) 

= ~ L ( n ) ( / 0 d , ( f , h )  | m) - ~L(D)(foflduh | m) 

= f o ( n ( f l h r a ) -  f l hD(ra) ) -  f o f l ( n (h ra ) -  hD(ra)) 

= fo(n( f lhm)  - f lD(hm)) 

= 5L(D)(fod~fl | hm). 

This means that 

~L(D)(c~h | m) - ~L( D)(o~ | hm) = O, 

for any a E f/~(`4), m E .s and h E `4, i.e. that aL(D) passes to the quotient and 
defines a (.4, B)-bimodule homomorphism aL(D) of ~2~(.4) | .A4 into Af. The 
uniqueness of aL(D) is obvious by setting g = I in the statement. One proceeds 
similarily on the other side for an(D). [] 

In view of 3.3, the converse is also true: any element D of s  Af) for which 
there are aL(D) and a n ( D )  as above is a first-order operator. 

It is clear that ar(D) and a n ( D )  are the appropriate generalization of the notion 
of symbol in this setting. We shall refer to them as the left and right universal 
symbols of D, respectively. 

In order to make contact with this notion, let us investigate the examples of 
the last section. So let D be a first-order operator of .4 into a bimodule A/" and 
let pR(D) and pL(D) be the corresponding derivations of .4 into iV" as in 3.1, 
then O'D(D ) = ipn(D ) and e L ( D )  = ipL(D ) are the canonical homomorphisms 
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of bimodule over .4 of f~l(.A) into Af associated with the derivations pn(D)  and 
p L ( D ), (i.e. such that p R ( D ) = ipa( D ) o d~ and p L ( D ) = ivL( D ) o d~,); in particular, 
if 6 is a derivation of .4 into .Af, one has an(6) = aL(~) = i6. In the cases of the 
examples of 3.3, for case (1), one has aL(D) = aL o (idL | idA4) and for case (2), 
one has an(D)  = a n  o (idM | ida), where idL is the canonical homomorphism 
of bimodule over ,4 of f~lu(.A ) into ft~ associated with the derivation alL, idR is the 
canonical homomorphism of bimodule over B of ft~(B) into f~}~ associated with 
the derivation dn  and where idA4 is the identity mapping of .A4 onto itself. 

Remark. In the case where the right and left module structures are related, the 
a n ( D )  and the aL(D) are also related. For instance, if .,4 = B is a commutative 
algebra and if .M and A/" are .A-modules, then an(D)  = aL(D) o T, where T is 
the transposition of M | ~2~(.A) onto f~(.A) | M defined by 

T ( m | 1 7 4  Vm e A4 and Va e ~I(.A). 

In particular, this applies if .4 = /3 = C ~ ( X )  and if M and A/" are the smooth 
sections of smooth vector bundles E and F over the smooth manifold X.  In this 
case, one has a n ( D )  = a ( D )  o (ia | idA4), where a ( D )  is the usual symbol 
of the first-order linear partial differential operator D of E into F and id is the 
canonical homomorphism of f~l (C ~ (X))  into f~l (X)  (= the ordinary 1-forms on 
X)  associated with the ordinary differential d: C ~ ( X )  ~ f~i (x) .  

5. Application to the Theory of Connections 

Let f~ be a graded differential algebra, with differential d, such that ~0 = .4. The 
restriction of the differential d to ,4 is then a derivation of .4  into the bimodule ft 1 
over ,4 (the fV ~, n E N, are bimodules over .4). Recall that a f~-connection on a 
left .A-module .A4 [3, 4] is a linear mapping V of .M into f~i | .At satisfying 

V ( f m ) =  f V ( m ) + d f |  V m E . A 4 a n d V f  E.A. 

Suppose now that .A4 is not only a left .A-module but is also a bimodule over .4. 
It follows then from 3.3 that a left .A-module ~-connection V on M as above is a 
first-order operator of the bimodule .A4 into the bimodule 121 | r 4  over .,4. Con- 
sequently, in view of the structure theorem of Section 4, there is a homomorphism 
of bimodule over ,4, a n ( V ) ,  of .M Q.~t f~l('A) into 121 | .A4 such that 

V(mg) = v(m)g + on(v)(m | dug), Vm c M and Vg e .A. 

The homomorphism a n ( V )  is the right universal symbol of V, whereas its left 
universal symbol is simply at , (V) = id | idA4 where id is the canonical bimodule 
homomorphism of f~( 'A) into f~l induced by d, (i.e. such that d = id o d~), and 
idA4 is the identity mapping of A4 onto itself. 
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In the case where trR(V) factorizes through a bimodule homomorphism tr of  
.A4 | [21 into f~l | .M as aR(xT) = tr o (id,~ @ id), we call x7 a (left) bimodule 
[2-connection on the bimodule A4. (One defines similarily a (right) bimodule [2- 
connection by starting with a right A-module [2-connection on .A4.) 

In the case where .M is the bimodule [21 itself, a (left) bimodule [2-connection 
on [21 in the above sense is just what is the first part of the proposal ofJ. Mourad [9] 
for the definition of linear connections in noncommutative geometry (the second 
part which relates tr and the product [21 @~4 [21 ._+ ~2 makes sense only in this 
case). This proposal was applied in some simple examples, e.g. [5, 8]. 

On the other hand, in [7] connections on central bimodules for the derivation- 
based differential calculus, i.e. for f~ = f~Oer(A), were defined and it was pointed 
out in [9] that when the central bimodule is [2~er(A) itself the connections of [7] 
are linear connections in the sense of [9], (the choice of or being fixed). By a similar 
argument, one sees that the derivation-based connections on central bimodules of 
[7] are bimodules [2Oer(A)-connections in the above sense. To be precise, this holds 
strictly in the finite-dimensional cases, otherwise, one has to introduce completions 
of the [2~er(A) | A4, but this is merely a technicality. 

Thus, the above definition of (left) bimodule ill-connections seems very gen- 
eral. However, it is worth noticing here that for the derivation-based connections 
on central bimodules, the curvatures of these connections are bimodule homomor- 
phisms whereas this is generally not the case for the curvature of a (left) bimodule 
[2-connection (it is, of  course, always a left A-module homomorphism), although 
differences of such connections for a fixed a are bimodule homomorphisms, (see, 
e.g., [5]). 
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