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We consider the possibility that as a result of interactions between an elemen-
tary particle and a suitably designed classical system, the particle may be
divided into two or more pieces that act as though they are fractions of the
original particle. We work out in detail the mechanics of this process for an
electron interacting with liquid helium. It is known that when an electron is
injected into liquid helium, the lowest energy configuration is with the elec-
tron localized in a 1s state inside a spherical cavity from which helium atoms
are excluded. These electron bubbles have been studied in many experiments.
We show that if the electron is optically excited from the Is to the lp state,
the bubble wall will be set into motion, and that the inertia of the liquid sur-
rounding the bubble can be sufficient to lead to the break-up of the bubble
into two pieces. We call the electron fragments “‘electrinos.” We then show
that there is a substantial amount of experimental data in the published
literature that gives support to these theoretical ideas. The electrino bubble
theory provides a natural explanation for the photoconductivity experiments
of Northby, Zipfel, Sanders, Grimes and Adams, and possibly also the ionic
mobility measurements of Ihas, Sanders, Eden and McClintock. Previously,
these experimental results have not had a satisfactory explanation. In a final
section, we describe some further experiments that could test our theory and
consider the broader implications of these results on fractional particles.

I. INTRODUCTION

Quantum mechanics has been the accepted fundamental theory of
physics for the last 70 years. The energy levels of atoms that are obtained
through solution of the time-independent Schrodinger equation are in very
accurate agreement with an enormous range of experimental data. Quantum
mechanics has also been used to calculate scattering cross sections, again
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leading to agreement with experiment. However, almost from the time that
the principles of quantum mechanics were formulated, there has been con-
troversy about the measurement process. For example, Einstein, Podolsky,
and Rosen! have claimed that quantum mechanics, taken together with the
standard view of the quantum measurement process, leads to results that
indicate that quantum mechanics does not provide a complete description
of physical reality. Their argument was rejected by Bohr,? who argued that
the procedure of measurement itself is implicitly part of the definition of
physical quantities. While such questions are interesting, it appears more
important to establish, as an essential element of quantum theory, some
number of principles that in conjunction with the equation for the time-
development of the wave function make the theory complete in the sense
that there is a clear and definite prediction for the result of any experiment
that can be performed. These principles can be selected only on the basis
of a comparison of theory and experiment.

The difficulties in quantum theory arise largely at points where the
classical and quantum worlds meet.> The traditional view has been that
a quantum mechanical experiment involves elements that are essentially
non-quantum. A classical apparatus under the control of a human brain
prepares the quantum system in some way. The measurement of the outcome
of an experiment is considered to be some numbers that are ultimately read
from a classical instrument.

In this paper we shall consider a particular experimental situation that
is designed to bring into a very sharp focus some of the uncertainties of
quantum measurement theory. This investigation leads, in turn, to some
remarkable results concerning the fission of the electron, and by implication
the fission of other elementary particles.

II. COMMENTS ON THE FISSION OF ELEMENTARY PARTICLES

One type of fission of an elementary particle takes place when a wave
packet is incident on a potential barrier. A part of the wave packet is trans-
mitted, and a part is reflected. At some later time, measurements are made
to determine the location of the particle. According to the conventional
interpretation of quantum theory, the probability that the particle will be
found on the right hand side of the barrier is

Pe=| lPav. (1)

where the integral is over all of space on the right hand side of the barrier.
If the particle is found on the right, the wave function everywhere on the
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left hand side is supposed to immediately become zero; this is referred to
as collapse of the wave function. This collapse ensures that if a second
measurement of Py is made a short time later, the particle will again be
found on the right.

Consider now a different experiment. A particle is confined to a box
that has a movable impenetrable partition (Fig. 1a). Let i, and i be the
lowest energy solutions of Schrédinger’s equation for the left and the right
hand parts of the box when the partition is in the closed position, and let
the energies corresponding to these solutions be E; and Ey, respectively.
Suppose that we start with the partition in the open position and the
particle in the ground state. If the partition is then closed very slowly,
it follows from the adiabatic principle that the particle will remain in the
ground state. Thus, if £, < E the wave function will be completely con-
fined to the left hand part of the box. Then, P, =1 and Py =0. Now sup-
pose that the partition is closed rapidly. In this case, the system will not
remain in the ground state, and the wave function will be non-zero in both
the left and right regions. If a measurement of Py is made, quantum theory
predicts that the result is as given by Eq. (1). If the particle is found on the
right, the wave function on the left becomes zero immediately, even though
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Fig. 1. (a) Box with a movable partition to
divide the wave function into two parts. (b) Box
with movable partition and end walls with
springs.
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the barrier is completely impenetrable to the particle. To perform an
experiment of this type appears to be feasible in principle, but we are not
aware of a specific example.

Now consider a variation of this experiment. Let us suppose that the
end walls of the box are not rigid, but instead are held in place by springs
as shown in Fig. 1b. The particle will exert a pressure P on the left hand
end wall given by

h2
P=o VY%, 2)
m

where Vi is the gradient of the wave function at the wall, and m is the
mass of the particle. The force on the end wall is thus dependent on the
wave function. The wave function is a function of the size and shape of the
box, and so is, in turn, dependent on the position of the end wall. If there
is some mechanism that damps the motion of the end wall, the wall will
come to rest at a position that minimizes the sum of the energy of the spr-
ing and the energy of the particle. Suppose now that the position of the end
wall is measured in some way. If it is found that the spring is compressed
relative to its natural length, the wave function inside the box must be non-
zero. For a given spatial dependence of the wave function, the probability
of finding the particle inside the left part of the box is directly proportional
to the wall displacement.

One can ask a number of questions about the results of experiments
on this system:

(1) Is the discussion just given in accord with experiment? In other
words, if such a mechanical system is constructed, and if a partition is
moved across the box in a way such that one would expect based upon the
time-dependent Schrodinger equation that y should be non-zero on both
sides of the partition, will there be a displacement of the end wall that can
be calculated from the pressure as given by Eq. (2)?

(2) If the position of the left hand wall is measured, and it is found
that the wall is displaced, what is the effect of this measurement on sub-
sequent measurements of the displacement of the right hand wall? For
example, does the determination that there is some displacement of the left
hand wall result in a sudden change in the wave function such that
becomes zero on the right hand side? This would presumably mean that a
second measurement of the displacement of the left hand wall would give
a different, and larger, displacement because now the wave function is
entirely on the left.
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(3) If the left hand part of the box is illuminated with light, at what
frequencies will optical absorption take place?

III. ELECTRONS IN LIQUID HELIUM

One can imagine a number of ways of performing an experiment
related to those just described. We now describe in some detail one par-
ticular experimental situation. This concerns the states of an electron that
has been injected into liquid helium. Electrons in helium have been studied
in many experiments over the last 30 years.* An electron is attracted to a
helium atom at large distances, but is repelled at short distances because of
the Pauli principle. As a result, a low energy electron entering liquid “He
has to overcome a potential barrier ¥, of approximately 1 eV.> Because the
interatomic forces in helium are so weak, an electron injected into helium
forms a structure referred to as an electron bubble. The electron sits in a
cavity in the liquid from which essentially all helium atoms are excluded.
As a first approximation, the energy of this bubble can be taken to be the
sum of the energy E,, of the electron, the surface energy of the bubble, and
the energy of creating the bubble volume. Thus,

E:Eel+ajdA+Pde, (3)

where o is the surface energy of helium per unit area, P is the applied
pressure, and the integrals are over the surface and volume of the bubble.
If the penetration of the electron wave function into the helium is neglected,
and we consider an electron in the 1s state, Eq. (3) becomes

2

E=——
8mR?

4
+47rR2<x+§ nR3P, (4)

where m is the mass of the electron, and R is the radius of the bubble. If
the pressure is zero, the lowest energy is obtained with a radius of

h2 1/4
R0=< > . (5)

32nmo

This is the radius of a spherical bubble containing an electron in the
ground state. One can also find the equilibrium shape and size of a bubble
containing an electron in an excited state (see Sec. IIIB below).
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There are a number of corrections that can be considered.

(1) The radius R, of the electron bubble calculated from Eq. (5) for
T=0K, and with zero applied pressure, is 19.4 A. The width of the liquid—
vapor interface is 7 A,° and thus is not entirely negligible compared to the
bubble radius. It is possible to use a density functional method to make an
approximate correction for the finite thickness of the bubble wall.”

(2) The electric field due to the electron causes a polarization of the
helium atoms surrounding the bubble. The interaction of this polarization
with the electric field gradient gives an inward force on the helium, and the
bubble radius is reduced.?

(3) At finite temperatures the electron bubble will contain some
helium vapor. The effect of vapor inside the bubble becomes important at
temperatures above about 3 K.”

(4) Since the height V, of the barrier is finite, there will be some
penetration of the electron into the helium. This penetration lowers the
energy of the electron by a small amount. The barrier height is expected to
depend on pressure.*

(5) The surface energy of the liquid should depend on the pressure.’
This variation has not been measured experimentally. It is also possible
that the surface tension is modified by the proximity of the electron to the
surface.

(6) Finally, since the radius of the bubble is not much larger than the
interatomic spacing, it may be necessary to include in the calculation a
correction to allow for the curvature of the liquid surface.

In this paper we are primarily interested in temperatures below 1.5 K,
so the effect (3) of helium vapor is unimportant. Of the other effects, it has
been shown that the corrections (1) and (2) to the energy arising from the
finite width of the liquid—vapor interface and from the polarization of the
helium are small.” Effects (5) and (6) can, in principle, be included through
the use of a density functional scheme that correctly represents the energy
of helium with a non-uniform density. We have used this method in a pre-
vious paper to calculate the configuration of a bubble with the electron in
the ground state.” However, it appears to be very difficult to extend this
calculation to determine the properties of a bubble in which the electron is
in an excited state. Consequently, we will use a simplified approach due to
Grimes and Adams,' together with some further simplifications that are
needed to make some of the calculations tractable. Grimes and Adams
showed that the experimentally-measured photon energies E;s_;, and
Es_,, for transitions from the ground 1Is state to the Ip and 2p states,
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respectively, were in good agreement with results calculated for a simplified
model. They took the surface energy a« to have a constant value of 0.341
ergcm 2, independent of pressure, and used the Wigner—Seitz approxi-
mation to estimate the pressure dependence of V,,. The polarization energy
(2) was included.® Effect (3) was neglected because of the low density of
helium vapor at. Effects (1), (5) and (6) were also neglected.

We make two further simplifications of the model of Grimes and
Adams. In all of the calculations, we will neglect the polarization energy.
This makes a small contribution to the total energy of the bubble, and is
difficult to treat correctly for bubbles with electrons in excited states.®* We
show in the next section that when this contribution to the energy is
neglected, the Grimes/Adams model still gives very good agreement with
the experimental data for E,;_;, and E;;_,,. In addition, in some of the
calculations, we will neglect the effect of the penetration of the wave func-
tion into the helium. This approximation is also introduced to make the
calculations easier for bubbles with electrons in excited states.

A. Calculation of Energies for Optical Absorption

The energy E,, of a bubble in which the electron is in the Is state
is shown as a function of pressure in Fig. 2. Note that the total energy of
the bubble is plotted, including the surface and volume terms. For each
pressure the bubble has an equilibrium radius R,,(P) that minimizes the
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Fig. 2. Energy of the 1s, 1p and 2p states
as a function of pressure. For all of these
states the radius of the bulb is equal to the
equilibrium radius of the 1s bubble.
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total energy. Also included in this figure are the energies Elp and Ezp of
spherical bubbles of the same radius, but with the electron in the higher
energy states 1p and 2p, respectively. The tilde is to denote that these
energies do not correspond to states in which the bubble is in mechanical
equilibrium, i.e., the size and shape of the bubble has not been adjusted to
minimize the total energy. The energies shown in Fig. 2 are calculated for
an electron moving in a spherical bubble with a potential V/, outside the
bubble, i.e., in these calculations allowance is made for the penetration of
the wave function into the helium. The radius for the 1s bubble at zero
pressure is found to be 17.9 A, only slightly less than is found when the
penetration of the wave function into the helium is neglected.

According to the Franck—Condon principle, when the electron is in the
ground state, optical absozption can occur at the photon energies £, _;, =
E,,—E, and E,_,,=E,,—E;,. These photon energies are plotted in
Fig. 3. Also included in Fig. 3 are the data of Grimes and Adams'®'! for
the 1s — Ip, and Zipfel and Sanders for the 1s— 2p transition.'*'? It can
be seen that the agreement between the calculation and the data is very
good.

B. Calculation of Equilibrium Shapes for Excited States

To calculate the equilibrium shape of a bubble containing an electron
in an excited state, the following steps are necessary. A shape for the
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Fig. 3. Energy of the Is— 1p and 1s—2p
transitions as a function of pressure. Solid
curves show the results of the calculation
described in the text. The crosses are the
data points of Grimes and Adams, Ref. 10,
and the circles the data of Zipfel, Ref. 12.
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helium bubble is assumed. The Schrodinger equation for the electron is
then solved with a potential energy that is zero inside the bubble and ¥,
outside. For a given set of quantum numbers for the electron state, the
shape of the bubble is then varied so as to minimize the total energy. The
total energy E is given by Eq. (3). The shape and total energy of bubbles
containing an electron in an excited state have been calculated previously
by Duvall and Celli.'* They used a perturbation approach in which the
distortion of the shape from spherical was treated as a small parameter.
The energy of some of these states has also been estimated by Fowler and
Dexter,"> who used a simplified model in which the bubble shape was
taken to be a rectangular box.

In this paper, we will consider only bubble shapes that have axial sym-
metry. Thus the wave function of the electron inside the bubble will have
a definite azimuthal quantum number m, and can be written as

W(r, 0, ¢) =3 A,P7(cos 0) ey (kr), (6)
1

where A4, are coefficients to be determined, P7’(cos 0) are associated Legendre
polynomials, j,(kr) is a spherical Bessel function, and k = (2mEy)"?/h. As
a first step, we calculate the electron energy in the limit V', — oo, so that
Y is zero at the bubble wall. An initial guess is made for the energy E. The
sum over / extends up to some maximum value /... To look for a state
of even parity, the coefficient A, is set equal to unity, and all of the {4,}
for odd / are set equal to zero. Then the remaining coefficients are adjusted
so as to minimize the integral

SE” W (r, 0, )| d cos 0 dg. (7)

This integral is over the surface of the bubble. This minimization procedure
leads to a set of linear equations for the {4,} coefficients. Let the value of
S after the {4,} have been chosen in this way be S,,;,. Then the energy E,
is adjusted to find values at which S,;, becomes close to zero. Since for
these energies Schrodinger’s equation is satisfied inside the bubble and also
Y is very small on the surface of the bubble, these values of £, must be the
energy eigenvalues. The eigenfunction can then be calculated from the {A4,}
coefficients. To find states of odd parity the same procedure is used except
all the even / coefficients are set zero, and {4} is set equal to unity. If /,,,
is chosen to sufficiently large, the results for E, are independent of /.
For each excited state there will be a shape of the electron bubble that
corresponds to a minimum energy. We refer to this as the equilibrium
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shape. To find this shape we have to look for a minimum in the total
energy as described above. To find the shape that minimizes the energy, we
write

R(0)=Y a, P (cos 0), (8)

where R(0) is the distance from the origin to the bubble surface in the
direction 0, P (cos 0) are Legendre polynomials, and {a,} are some coef-
ficients. The summation is over even values of L from zero to a maximum
value L,,,.. Note that only shapes with axial symmetry are considered. The
set of {a, } coefficients are then varied to obtain the minimum energy. The
equilibrium shapes of several excited states for zero pressure are shown in
Fig. 4. These results were obtained with L, = 6; the use of a larger value
does not change the shapes significantly.

The eigenvalues obtained in this way do not allow for the penetration
of the wave function into the barrier. Given the uncertainties in the model,
this appears to be a reasonable approximation. As a test, we have
calculated the energies E,, 1p and E. »p for P =0 when  is required to
go to zero at the bubble wall, and also when the wave function penetrates
into the helium. We find that when there is no penetration, E 1s—1p and
E\,_,, are increased by only 5 and 7%, respectively, compared to the
values found for these quantities when penetration is taken into account.

The bubble shapes can be understood qualitatively in terms of the
balance between the pressure exerted on the bubble wall by the electron,
the surface tension, and by the liquid pressure. The pressure exerted by the
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Fig. 4. The shape of bubbles containing electrons in dif-
ferent quantum states. The liquid pressure is zero. The
same scale is used for each state, and the radius of the
Is bubble is 19.4 A.
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electron is given by Eq. (2). For the 1p state, for example, the electron
pressure vanishes in the plane z =0, and the bubble has a slight waist coin-
ciding with the xy-plane. As the pressure is increased, the size of the bubble
decreases, and the waist becomes more pronounced. As an example of this,
we show in Fig. 5 the shape of the bubble with the electron in the 1p state
at pressures of 0, 5 and 10 bars. At pressures of 10 bars and above, the
waist of the bubble has a radius of only a few Angstroms. It can be seen
from Fig. 5 that at high pressure the bubble shape is closely approximated
by two spheres of equal radius R, that overlap by a small amount. The
wave function inside each sphere is a 1s wave function with origin at the
center of the sphere. The wave functions in the two spheres have opposite
signs. We can consider that each sphere has an energy of

1 n , 4
1/2 28 R2 +47'[R O(+37ZR P (9)
This formula is identical to the expression for the energy of a bubble con-
taining a 1s state electron [ Eq. (4)], apart from the factor of 1 that arises
because each of the spheres contains only one half of the electron wave
function. In this pressure range, where the waist radius is small, the
numerical method that we are using to solve Schrodinger’s equation
becomes inaccurate unless a very large value of /., is used. We have
confirmed that the energy E found by numerical solution is close to the
value 2E ;.

Although it would be interesting to have more detailed information
about the precise shape of the equilibrium 1p state at high pressures,
there seems to be little point in attempting a more accurate solution of
Schrodinger’s equation. The simplified model that we are using (see

P=10
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Fig. 5. The shape of the electron bubble containing
a lp state at pressures of 0, 10, and 20 bars.
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discussion at beginning of this section) cannot be used to consider what
happens when the radius of the waist approaches atomic dimensions. To
make a quantitative study of the shape it would be necessary to construct
a more elaborate model, perhaps based on some form of density functional
model for the helium. Nevertheless, the calculation that we have done
clearly shows that at high pressures the 1p bubble is greatly distorted, and
is close to being pinched off into two separate volumes. At 10 bars, for
example, the energy E,, that we have computed by solving Schrodinger’s
equation numerically and then adjusting the shape of the bubble so as to
minimize the total energy, is very close to twice the energy E,, that is
obtained from Eq. (9).

Note that we have considered the equilibrium shapes of the states with
m =0 only.

C. Dynamics of the Optical Absorption Process

The calculations in the previous section all concern the equilibrium
shape of an electron bubble. We now consider what happens when an elec-
tron is optically excited from the ground state into one of the higher states,
such as the 1p. The time scale for electron motion is of the order of mR?/h,
where R is the radius of the bubble. This time is of the order of 10~ s.
The time scale for the motion of the bubble wall is of the same order as the
period for shape oscillations of the bubble; if the liquid pressure is zero,
this period is of the order of (pR3/x)"?, and is in the range 10~ to
10~''s. Thus, the Franck-Condon principle applies, i.e., it should be con-
sidered that the transition of the electron occurs before the bubble has had
time to change shape.'® A complete calculation of the motion of the bubble
after optical excitation would require the following steps. The bubble starts
as a sphere of the same radius as the equilibrium 1s state. For this bubble
size, the 1p wave function is found. The net pressure at each point on the
bubble wall due to the combined effects of the electron, the surface tension,
and the liquid pressure can then be determined. This pressure varies over
the surface of the bubble, and so the bubble surface begins to move. This
results in a velocity field in the liquid. To determine how the shape of the
bubble evolves, it is therefore necessary to calculate at each instant of time
the electron wave function, the force on the bubble wall, and how this force
changes the motion of the liquid. It should be a reasonable approximation
to treat the liquid as an incompressible fluid. At low temperatures, e.g., at
around 1.2 K or below, the effects of dissipation should be very small. We
discuss this point in more detail below.

Although this calculation is straightforward in principle, it requires
substantial numerical computation, and we have not attempted to perform
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it. Instead, we have restricted attention to the examination of the potential
energy surface in the configuration space of parameters defining the bubble
shape. At the simplest non-trivial level, the shape of the bubble can be
parameterized by just two coefficients a, and a, [see Eq. (8)]. The energy
FE from Eq. (3), which plays the role of the potential energy in the dynami-
cal problem, can then be represented by a contour plot in the a,—a, plane
Fig. 6). The starting configuration immediately after excitation from the 1s
to the 1p states corresponds to a,=194, a,=0A," and the energy is
4.828 x 10~ '* ergs.'® The minimum energy is 4.275 x 10 ~'* ergs, and is at
af™=21.0 A, and a™=8.8 A. After excitation the bubble will move on
some path in the a,—a, plane. If the motion is heavily damped by the
viscosity of the liquid, the bubble will change shape slowly and will
eventually reach the configuration of minimum energy. However, if the
damping is small, the bubble can explore the entire region of the a,—a,
plane in which the energy is less than its starting energy. It can be seen
from Fig. 6 that this region extends out to the line on which a,=2a,. On
this line, the distance from the center of the bubble to the bubble surface

FISSION OF
THE BUBBLE

POINT OF
~ MINIMUM
ENERGY

a, (A)

Fig. 6. Contour plot of the energy of a bubble
containing a lp electron as a function of the
parameters a, and a,. The distance from the cen-
ter of the bubble to the surface in the direction ¢
is ayPy(cos 0) + a, P,(cos ). The contour closest
to the energy minimum at 4.275x 107" ergs
corresponds to an energy of 4.4 x 10~"3 ergs, and
the energy difference between adjacent contours is
0.2x 107 '3 erg. Along the line on which a, =2a,,
the waist of the bubble has zero radius, and the
bubble has split into two. The solid black square
indicates the configuration of the bubble immedi-
ately after excitation to the 1p state.
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1s zero for =0, i.e., the waist of the bubble becomes zero and the bubble
breaks into two parts. It is hard to make an accurate calculation of the
energy of the electron close to this line because it is necessary to use a large
value for /., in Eq. (6). However, it appears that the lowest energy along
the line on which fission occurs is significantly below the starting energy of
4.828 x 10~ '* ergs. Therefore, in the absence of damping the bubble can
reach the line and undergo fission.

We have not performed detailed calculations of the energy as a func-
tion of a, and a, at different pressures. However, it is clear that as the
pressure is increased, the equilibrium state of the bubble moves closer to the
fission line (a, =2a,), and that the amount by which the starting energy of
the bubble in the 1p state exceeds the energy at the fission line will go up.

D. Stability of the Fission Process

In the previous section we have considered the possibility of fission
resulting from a dynamical process after optical excitation. At first sight,
this calculation can be objected to on stability grounds. It could be argued
that as the bubble waist is about to pinch off and divide the bubble into
two pieces, one of the pieces of the bubble will always be slightly larger
than the other. The pressure inside a bubble due to surface tension is given
by Laplace’s formula P =2u«/R, and so the pressure will always be larger in
the smaller bubble. Hence, this bubble will shrink and the wave function
will be driven into the larger bubble which will grow. Thus, all of the elec-
tron wave function will transfer into the larger bubble, the smaller bubble
will collapse, and fission will not take place.

We now show that this argument is wrong. We are interested here in
knowing what happens when the wave function of an electron in the Ip
state is close to being divided into two pieces. The 1p state has a node in
the region where the bubble waist will be pinched off. We consider as a
highly-simplified model system a particle that moves in one dimension in
a potential consisting of two wells each of width « (Fig. 7a). The wells are
separated by a barrier of height U. For this model system, there is a state
in which the wave function has an equal amplitude in each well, but oppo-
site sign (Fig. 7b). This state is analogous to the 1p state. Now suppose
that the width of the right hand well is changed to a', where a’ < a (Fig. 7¢).
It is well known that when this happens, the amplitude of the wave func-
tion increases in the smaller left hand well, rather than flowing into the
larger right hand well (Fig. 7d). Thus, the pressure exerted by the particle
in the smaller well will increase. Hence, the system has a natural stability.

We can also consider the more realistic model of the final stage of the
fission process shown in Fig. 8a. We suppose that at this stage of the fission
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Fig. 7. The double well model discussed in the
text. For the potential (a) the wave function
(b) is such that the particle has an equal prob-
ability of being found in either well. When the
left hand potential well is made narrower as in
(c), the probability of finding the particle in
the left hand well increases as shown in (d).

process, the original single bubble has been distorted into a volume consist-
ing of two spheres of radius R, and R, that have a small overlap. We take
the total energy of this system to be

E=E,+4nRo+4nR3q, (10)

where E, is the energy of the electron, and the correction to the surface
area due to the small amount of overlap of the spheres has been neglected.
For simplicity, we restrict attention to zero pressure. To calculate E,, we
write the wave function as

Y=c + e, (11)

where ¢, and ¢, are amplitudes, and we have used as basis states 1s wave
functions ¥, and , inside each of the two spheres. The energies of the
basis states are

h? h?
1= 2 E,= 2
8mR; 8mR;

(12)
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(b) (¢)
30
20
0

0 10 20 30
Ri(A)

Fig. 8. (a) Geometry of the model used to study the stability of the fission process.
(b) Contour plot of the energy as a function of the radii R, and R, when the electron
is in the excited state. The solid circle shows the conﬁguration of minimum energy.
The contour closest to the minimum corresponds to an energy of 4.8 x 10~!3 ergs.
(c) Contour plot of the energy when the electron is in the ground state. The open
triangle shows the location of a saddle point, and the two solid circles are minima. The
contours closest to the minima correspond to an energy of 3.4 x 10 '3 erg. The energy
difference between adjacent contours is 0.2 x 103 erg.

Let the rate for quantum tunneling of the electron through the neck
between the spheres be I'. This will be a sensitive function of the degree of
overlap of the spheres. The electron energy is given by

E,+E,+ [(El _E2)2 +4h2F2]1'/2
el —
2

(13)

The + sign gives the energy of the excited state. This will be the energy
that the Ip state will have after the bubble has reached the shape shown
in Fig. 8a. The total energy E from Eq. (10) is plotted as a function of R,
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and R, in Fig. 8b. This plot is for a fixed value of T chosen to be 103
sec 1, which corresponds to A" = 0.0066 eV. It can be seen from the figure
that there is a single stable minimum with R, = R,=16.2 A. A different
choice for the value of I' changes the form of the contour lines in Fig. 8b,
but the stable minimum with R, = R, remains. Thus, we conclude that even
when the bubble is close to splitting into two parts, the electron divides
equally between the two spheres.

The electron energy in the ground state is obtained by taking the
negative sign in Eq. (13). The total energy is plotted in Fig. 8c. There is
now a saddle point at R, = R, =162 A, and minima at R, =0, R, =194 A,
and R, =194 A, R,=0. Thus, as expected, when the electron is in its
ground state, the lowest energy configuration is with the wave function
confined in a single bubble.

We have not considered the stability of other excited states.

E. Properties of Bubbles Containing Fractional Electrons

We will call the bubbles that contain a fraction of the wave function
of an electron, electrino bubbles, and will denote a bubble in which the
integral of |/|?> = f by e’. If the penetration of the wave function is neglected,
the radius of a 1s e'/? bubble will be smaller than the radius of an ordinary
electron bubble by a factor of 214, Based on the discussion at the end of
Sec. II (see the questions 1-3 that were raised at that point), it is not clear
that quantum mechanics, as currently developed, provides definite predic-
tions regarding the properties of these objects. For example:

(1) At what wavelengths will such bubbles absorb light? One
approach is the following. The wave function inside one of the electrino
bubbles is a 1s wave function normalized so that the integral of 2 over the
bubble is 1. We apply an oscillating electric field to this bubble and find the
frequencies at which absorption of energy takes place. Since the time-
dependent Schrodinger equation is linear in ), these frequencies are unaf-
fected by the normalization of the wave function, i.e., optical absorption
occurs at the same photon energies as for an ordinary electron bubble of
the same radius. Figure 9 shows the photon energy for the 1s — 1p transi-
tion. The results in Fig. 9 are based on the same model approximations
that were used for Fig. 3, i.e., the surface tension was assumed to have the
value 0.341 erg cm ~2 independent of pressure, the polarization energy was
neglected, and the Wigner—Seitz approximation was used for the height V,,
of the energy barrier. Based on this model, the bubble radius for zero
pressure is found to be 14.8 A.
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Fig. 9. Energy of the 1s— lp transi-
tion for an e!? electrino bubble as a
function of pressure.

Alternatively, one could make the argument that if light is to be
absorbed in the bubble, the electron must be there. Hence, the bubble will
have the normal size, and will absorb light at the same energies as does the
normal bubble.

(2) We can ask about the results of other experiments that effectively
measure the size of the bubble. It might be possible to measure the effective
mass of the bubble, as has been done for normal bubbles.!® The mobility
of a bubble at finite temperatures is proportional to the charge and varies
inversely as the drag force Fy,,, on the bubble that arises from the inter-
action of the bubble with phonons and rotons. This drag force depends on
the size of the bubble. To predict the results of these two experiments, it is
necessary to know how to treat the charge on the bubble, ic., does the
bubble act as though it has charge e, or does it behave as though it
has a full charge? It is not clear that quantum mechanics gives a definite
answer to this question, and the answer may depend on the particular
experiment. Consider, for example, an experiment to measure the mobility
of ¢!? bubbles that uses a cell with travel distance w, and an applied elec-
tric field E. Suppose that an electron is injected from the cathode at one
end of the cell, and is then optically excited so that two e'? bubbles are
produced. Let us suppose that the anode of the cell together with the elec-
tronics connected to it acts as a “measurement device” in the quantum
mechanical sense. If the measurement device indicates that an electron has
arrived, the work that has been done by the electric field must be eEw
(E is the electric field, w is the distance across the cell). This should equal
the total energy dissipated by the viscous drag force acting on the bubble
(or bubbles) that have crossed the cell. The drag force F,,, acting on a
bubble moving at small velocity equals yv, where y is a coefficient that
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depends on the size of the bubble. It could be argued that in this experiment
two e'2 bubbles move through the liquid from the cathode to the anode,
where the measurement device “finds” an electron in one of them. According
to this view the dissipation is eEw = 2y, ,vw, where y, , is the drag coefficient
for an ' bubble. Thus, the mobility would be u = v/E = ¢/2y, ,. Hence, the
conclusion is that the mobility of the e/ bubble should be calculated using
one half of the full charge of one electron together with the drag force on
the bubble of reduced size. However, this argument supposes that there is
energy dissipation in the liquid along the path of the e!/? bubble in which
an electron is not found. If we take the viewpoint that this dissipation does
not occur, we would instead be lead to the conclusion that the mobility
should be u =e¢/y,,, ie., the ¢'/* bubble acts as though it has the full charge.

(3) Assuming that electron bubbles in excited states do divide into
two or more pieces, we can ask what will be the interaction between the
pieces. Let us suppose that the correct procedure is as follows. If the elec-
tron is inside one of the bubbles at position 7 there will be an electric field
E(F, ') at the point 7. Hence the energy associated with the polarization
of the helium will be

— Lo [ 1B 727, (14)

where oy, is the polarizability of liquid helium per unit volume, and the
integral is over the volume occupied by liquid. This result is correct to first
order in ay,, and it has been assumed that the density of the liquid is unaf-
fected by the electric field. The polarization energy as given by Eq. (14) is
then averaged over all possible positions of the electron, giving the result

Epoin = — tuse [| 1W(F)2 | B, )2 % dF. (15)

As the bubbles move further away from each other, there is a greater
volume of helium in the region of strong electric field and hence the
polarization energy decreases, i.e., becomes more negative. Thus, there is
a weak repulsive interaction between the electrino bubbles. The potential
as a function of the separation as calculated from Eq. (15) is shown in
Fig. 10.

Of course, one could also consider other contributions to the interac-
tion energy coming from, for example, exchange of phonons or the long
range van der Waals interaction between helium atoms. These appear to be
smaller effects, but we have not investigated them in detail.
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Fig. 10. Energy of interaction between two e'/?
electrino bubbles as a function of the distance
between the centers of the bubbles. The inter-
action energy arises from the polarization of
the liquid helium, as described in the text.

IV. EVIDENCE FOR FRACTIONAL ELECTRONS

Based on the above theoretical work, we expect that electrino bubbles
will be formed when ordinary electron bubbles are excited by light. We
have examined this process in detail for the 1s — 1p transition only, but
it seems likely that electrino bubbles are produced after other bound—
bound transitions, such as the 1s — 2p. It also appears likely that electrino
bubbles will be produced after an electron is ejected from a bubble into an
unbound state. At the present time, we do not know how to calculate the
probability of production of electrino bubbles after a bound—unbound opti-
cal transition, or what fraction electrinos are produced. There is also the
possibility that when the optical illumination contains a number of dif-
ferent wavelengths, electrino bubbles that have been produced as a result
of a first fission process can undergo further division. Finally, we have to
consider the possibility that electrino bubbles can be formed directly when
an energetic electron enters helium and comes to rest. Again, we do not
know how to calculate the probability with which electrino bubbles are
produced by this mechanism. Through the combination of these different
mechanisms, it appears likely that bubbles containing a substantial number
of different fractions of an electron can be produced. We have looked at the
existing literature for evidence of electrino bubbles. We have found that
there are, in fact, a number of experimental observations that can be inter-
preted as evidence for the existence of these bubbles. It is significant that,
as discussed below, these experimental observations have hitherto defied
explanation.
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A. Photoconductivity Experiments

The theory that we have presented predicts that if light is absorbed by
a bubble with the electron in the ground state, the bubble will split into
two parts. The electrino bubbles will be smaller than the original bubble.
The mobility of a bubble in liquid helium depends on its size (see detailed
discussion below). Thus, our theory predicts that there should be a photo-
conductivity effect, i.e., if the liquid is illuminated with light of the correct
wavelength, the ionic mobility should be modified. This modification of
the mobility should occur for light wavelengths that can excite the 1s — 1p
and 1s— 2p transitions. It is also possible that electrino bubbles can be
produced by light of wavelength sufficiently short to excite the electron out
of the bubble and into a free state.

A second prediction of our theory is that this photoconductivity effect
is likely to disappear above some temperature. As the temperature is
increased the number of phonons and rotons in the liquid increases, and
the motion of the wall of the bubble will be damped. Above a critical tem-
perature T, the damping will become sufficiently large that fission will no
longer occur (see previous discussion concerning Fig. 6). It is hard to per-
form a quantitative calculation of 7, but we note the following points.
Gross and Tung-Li*® have calculated the frequencies of the normal modes
of an electron bubble. Using their results, it is straightforward to show that
for helium above the lambda point, the /=0 and /=2 oscillations of a
bubble are heavily damped, i.e., most of the vibrational energy is lost in less
than half a cycle. This indicates that T, must have a value below T,. As the
temperature is reduced below 7',, the mean free path of rotons and
phonons quickly becomes larger than the bubble diameter, and so it is no
longer permissible to use the two-fluid model to calculate the damping of
the bubble wall. The damping of the motion of the bubble wall could
perhaps be calculated by using the measured mobility of negative ions in
superfluid helium to estimate the drag on the bubble wall due to phonon-
roton interactions. It would then be necessary to determine over what
range of temperature this drag force is large enough to prevent fission.

Experiments to study the effect of light on ionic mobility have been
conducted by Northby and Sanders,??? Zipfel and Sanders,'>!* and
Grimes and Adams.!%!! They observed an increase in ionic mobility under
illumination, but recognized that the origin of the effect was unclear. It
appears that the electrino bubble provides a natural explanation for the
majority of the results that they obtained. We now summarize these results.

In the Northby and Sanders (NS) experiment,?!:?? ions were intro-
duced into the liquid from a radioactive source, and had to pass through
two grids in order to reach the detector. The voltages on the grids were
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varied in time in a way such that normal negative ions could not reach the
detector. It was found that when the liquid was illuminated, a small ion
current reached the detector. The goal of the experiment was to detect the
photo-ejection of electrons from bubbles. It was assumed that if an electron
was ejected, it would have a very high mobility and therefore be able to
reach the detector. NS measured the photo-induced current with light of
photon energy E, from 0.7 to about 3eV. They found that the photo-
induced current had a peak when the photon energy was E,=1.21¢V.
They then made a calculation of the probability of photo-ejection, in which
the bubble radius was adjusted so that a strong peak in the calculated
photo-ejection spectrum occurred at the energy E,. The bubble radius they
obtained in this way was 21.2 A.

An electron that is ejected from a bubble into helium will lose its
kinetic energy very quickly, and will then form a new bubble. As far as we
can see, the time scale for this to happen should be of the same order of
magnitude as the time scale for bubble shape oscillations, i.e., of the order
of 1071% to 10~ ! secs. Thus, we believe that the ejection of the electron
from the bubble is not likely to decrease significantly the transit time of the
electron across the experimental cell.

In the work of Zipfel and Sanders (ZS), similar measurements to those
of NS were made as a function of pressure up to 16 bars.'>!* The photo-
conductivity peak detected by NS was found to shift to higher photon
energies as the pressure increased. In addition, a second peak was found at
a lower photon energy E,. At zero pressure, this peak was at approximately
0.5eV. NS assumed that the peak at £, was a second peak in the photo-
ejection spectrum. They performed further calculations of the photo-ejection
spectrum, and showed that by choosing a smaller radius for the bubble
(around 15 A for P=0), a spectrum could be obtained that contained
peaks at both E, and at E,.

Miyakawa and Dexter®® performed calculations of the optical absorp-
tion of an electron bubble, and concluded that the peak at E, seen by ZS
corresponded to the transition 1s — 2p, and that the peak at E; seen by NS
and also by ZS corresponds to ejection of an electron from the bubble.
Miyakawa and Dexter also calculated the photon energy required for the
Is— 1p transition. This transition was detected by Grimes and Adams
(GS),'° again through a measurement of photoconductivity. Shortly after
this, the transition was seen by Parshin and Pereversev?* and by Grimes
and Adams!! in direct measurements of optical absorption.

Although these experiments have established the electron transitions
that are responsible for each peak in the photoconductivity, it was difficult
to understand why there should be a change in conductivity when light was
absorbed. Miyakawa and Dexter?® proposed that when light was absorbed
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by the bubble, it would be set in vibration, and the vibrational energy
would quickly be converted into heat. If the bubble were attached to a
vortex, this heating could enable it to escape, and so there would be an
increase in current. In the Grimes and Adams experiment, ions were intro-
duced by field emission from sharp tips. Near to the tips, the electric field
was very large, and so it reasonable to assume that a large number of
vortices were present. However, it seems unlikely that this mechanism can
explain the data of NS and ZS. In their experiments, the illumination was
applied far away from the ion source. It appears that the voltages that were
applied to the grids were too small for vortex nucleation by the ions
moving through the liquid at the temperature of the experiment (1.3 K). In
addition, we note that in the ZS experiment measurements were made up
to a pressure of 16 bars. It is known? that above pressures of about 10
bars, when a strong electric field is applied, the normal negative ion loses
energy by roton production and does not produce vortices.

Our proposal is that the photo-conductivity effect arises from the crea-
tion of electrino bubbles by the light. Our explanation does not rely on the
assumption that vortices are present.

In the experiments of NS, ZS and GA it was noted that the photo-
conductivity effect was absent above a critical temperature. This tempera-
ture was approximately 1.7 K at zero pressure, and decreased to 1.2 K at
20 bars. Grimes and Adams!® proposed that this effect occurred because at
a critical temperature the probability that a vortex line will trap a negative
ion becomes very small. We propose instead that the photoconductivity
signal disappears because of the damping of the bubble motion by the
excitations in the liquid. As the pressure is increased, the roton energy gap
goes down, and so the damping increases. Thus, it is to be expected that
T, decreases with increasing pressure.

B. Exotic Ions

In a paper published in 1969, Doake and Gribbon?® detected
negatively-charged ions that had a mobility substantially higher than the
normal electron bubble negative ion. Measurements were made by a time-
of-flight method. This ion, which has become known as the “fast ion,” was
next seen in another time-of-flight experiment by Ihas and Sanders (IS) in
1971.%7 They showed that the fast ion could be produced by an « or S
source, or by an electrical discharge in the helium vapor above the liquid.
In addition, they reported the existence of two additional negative carriers,
referred to as “exotic ions,” that had mobilities larger than the mobility x,
of the normal negative ion, but less than the mobility u, of the fast ion.
These exotic ions were detected only when there was an electrical discharge



196 H. J. Maris

above the liquid surface. In a paper the following year,?® IS reported on
further experiments in which 13 carriers with different mobilities were
detected. Measurements could be made only in the temperature range 0.96
to 1.1 K, where the density of the helium vapor was such that an electrical
discharge could be produced. The strength of the signal associated with
each carrier depended in a complicated way on the magnitude of the volt-
age used to produce the discharge and on the location and geometry of the
electrodes. Figure 11 shows the mobilities x5, u4, and ug of the three exotic
ions that gave the strongest signals, together with the mobility of the
normal bubble and the fast ion.*® The IS experiments are described in
detail in the thesis of Thas.’® More recently, these ions have been studied
by Eden and McClintock (EM).3!32 They also detected as many as 13 ions
with different mobilities. In their measurements, the mobility in large elec-
tric fields was studied, whereas IS investigated the mobility in low fields.
EM showed that, like the normal ion, the exotic ions nucleate vortices
when their velocity reaches a critical value v.. This critical velocity was
found to be larger for the exotic ions of higher mobility.

The ions studied by IS have mobilities that liec in a range up to about
five times the mobility of the normal negative ion. If we assume that the
mobility of the ion varies as the inverse square of its radius R (see discus-
sion below), it follows that the 13 carriers must have radii between about
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Fig. 11. Mobility of negative ions
in superfluid helium plotted versus
the inverse of the temperature.
Solid triangles are for the normal
electron bubble, open squares,
circles and triangles are for three of
the exotic ions, and solid circles are
the fast ion. These data are taken
from ref. 30.
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9 and 18 A. Donnelly and Roberts’ theory of the critical velocity for vortex
nucleation predicts that v, should increase as the radius of the ion
decreases.®® The experiments of EM show that the critical velocity for
vortex production is higher for the exotic ions of higher mobility, and are
thus consistent with Donnelly and Roberts’ prediction.

Both IS and EM put forward a number of proposals to explain the
exotic ions, but considered all of these to be unsatisfactory. These proposals
included the following: (1) A free electron, i.e., an electron that has not
formed a bubble, will have a higher mobility than the normal negative ion.
However, the mobility is expected to be two orders of magnitude higher,
whereas the exotic ions have mobilities that are no more than a factor of
five larger than the normal ion. In addition, as already mentioned, it is
expected that a free electron will form a bubble state very quickly; (2) An
electron bubble with the electron in an excited state should have a different
mobility from the normal ion. However, as we have seen in Sec. IIIB, when
these bubbles have reached an equilibrium shape they are larger than the
Is bubble, and so should have a lower mobility. In addition, the lifetime of
the excited states'” is less than the time for the exotic ions to cross the
mobility cell; (3) An electron bubble containing two electrons would have
a different mobility from the normal ion. But calculations of the energy of
this complex show that it has an energy substantially higher than the
energy of two single electron bubbles, and therefore is unstable.®* Also
based on the theoretically-predicted size of the two electron bubble, it is
expected that it will have a lower mobility than the normal ion; (4) The
exotic ions might be negative helium ions (He ™). However, the lifetime of
these ions in vacuo is short, and so it would be necessary to suppose that
for some reason their decay takes place at a much slower rate when they
are in the liquid. In addition, the lifetime of the He ™ ion is greatly reduced
by the application of a magnetic field. Thas and Sanders found that the
exotic ions could still be detected even in the presence of a field of 1.2 kG;
(5) The exotic ions could be negatively charged impurities in the helium. In
the IS and EM experiments the electrical discharge in the helium vapor
could cause sputtering of atoms from the cell walls. Some of these atoms
could be negatively charged. However, for an atom with a large electron
affinity (e.g., 2 eV), the electron wave function will decrease rapidly with
distance from the atom. When such an ion is in liquid helium, the bubble
that will be produced will be very small.>® Therefore to produce objects
that have a size indicated by the mobility measurements, it is necessary to
consider impurity atoms that have a very small electron affinity. We have
performed calculations of the variation of the size of an impurity ion with
the electron affinity.>® We find that to get a bubble with a radius in the
required range (i.e., with a radius greater than 9 A) it is necessary for the
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electron affinity to be less than about 0.2 ¢V. There are only a small num-
ber of elements that meet this requirement. These include iron that might
well be sputtered from some part of the experimental cell, and nitrogen that
is likely to be adsorbed on the cell walls. However, as far as we can see,
it is not possible to explain the existence of 13 different exotic ions in this
way. We note that negatively-charged impurities may well be the explana-
tion of the fast ion.

It is significant that the exotic ions appear only when an electrical
discharge takes place close to the free surface of the liquid. Under these
conditions, the electrons that enter the liquid and form bubbles may absorb
light emitted from the discharge. Thus, it is natural to consider the possibil-
ity that the exotic ions are bubbles containing fractional electrons. As men-
tioned at the beginning of this section, it appears that the fraction f of an
electron confined in a bubble could take on a number of different values,
and so this could conceivably explain the existence of ions with 13 different
mobilities.

To associate a definite fraction f with each one of the ions seen by IS
and EM, it is necessary to have a detailed theory of how the mobility m
of a bubble varies with f. Unfortunately, it appears to be extremely hard to
construct a quantitative theory for u as a function of /. In the temperature
range around 1K, the ionic mobility of the normal electron bubble is
primarily limited by roton scattering. If the roton—ion scattering cross-
section is taken to have a constant value oz and the recoil of the ion is
neglected, the mobility is*’

n’e
= PE—. exp(A/kT), (16)

0 O1R
where e is the charge on the electron, k, is the wave number at the roton
minimum (1.91 A~'), and A is the roton energy gap. As a first guess,
we can take the cross-section ¢ to be the geometrical cross-section 7R
This gives a mobility for the normal ion (using the theoretical value of
R=19.4A) of 29x10 *exp(—A/kT)cm?V~'sec™!. At 1 K this equals
1.7 cm? V' sec~! which is about 40% of the measured value for the nor-
mal ion. To develop a more accurate theory the following effects need to
be included: (1) When a roton collides with a bubble, the bubble recoils
due to its finite mass. The effect of recoil has been considered by Barrera
and Baym,* and by Bowley.* Allowance for recoil modifies the magnitude
of the mobility and also the temperature-dependence. (2) When a roton
scatters from the bubble, it can be reflected as a normal or anomalous
roton, i.e., a roton with group velocity opposed to its momentum. The
probabilities of these two processes are unknown, and affect the result for
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the mobility and the form of the correction for recoil just discussed.”
(3) Finally, the relation ¢ = nR> between the total scattering cross-section
¢ and the bubble radius R, as used in the calculation of the bubble energy,
is unlikely to be quantitatively correct.

Exotic ions that have mobilities close to the mobility of the normal ion
must have a radius R close to the radius R,, of the normal ion. For these
ions, it may be a reasonable approximation to estimate the mobility u
using

L _R,
m, R

(17)

From the data of IS, the value of u/u, averaged over the data points for
ion #8 is 1.31 (see Fig. 11). Now we compare these values with what
might be expected for electrino bubbles. On the basis of the very simplest
model of the electron bubble [ see Eq. (4)], the radius R, , at zero pressure
for an €' bubble should be the radius R, of the normal negative ion
divided by a factor of 2%, Hence on this model, and assuming that the full
charge should be used to determine the mobility, the mobility should be
1.41u,. This mobility is thus fairly close to the mobility of the exotic ion
#8 as measured by Thas and Sanders.*® If we allow for the penetration of
the wave function into the helium, the mobility calculated from Eq. (17) is
1.454,,. Inclusion of the polarization correction gives 1.38u,,.%!

Given the absence of a quantitative theory of the mobility, it is
impossible to make a serious estimate of the size and value of f for the
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Fig. 12. Data trace taken from ref. 30 showing the
detected ion signal as a function of time. F and N
denote the fast and normal ion signals. 1, 2, and 3 are
the peaks corresponding to the same exotic ions
shown in Fig. 11. For a description of the experimen-
tal conditions, see ref. 30.
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other exotic ions. We note, however, one interesting aspect of the IS data
that apparently has not been noticed. We show in Fig. 12 one of the data
traces taken from the thesis of Thas.** The pulses arising from the fast and
normal ions, along with the pulses from the three exotic ions, are labeled
as in Fig. 11. It can be seen that there is a broad background signal in
addition to the sharp pulses. Two possible explanations of this come to
mind. An electron entering the liquid could form a normal ion and then,
after traveling some distance be converted by photo-excitation into an
exotic ion. Since, the conversion could occur at different depths for different
ions, a broad distribution of arrival times would result. A second interest-
ing possibility is that there are processes that lead to electron bubbles in
which f can have a continuous range of values.

V. SUMMARY AND OPEN QUESTIONS
We summarize the main points of this paper:

(1) We first discussed experiments which result in the wave function
of a particle becoming confined within two separated regions of space. We
argue that quantum mechanics does not make clear predictions for the
results of measurements on systems with a wave function of this type.

(2) We then considered the behavior of an electron bubble that
undergoes optical excitation. We show that, in the absence of damping of
the liquid motion, the bubble will split into two smaller bubbles each con-
taining a wave function y such that the integral of |i/|? over the volume of
the bubble gives 1. The sum of the energy of the two e'/? bubbles is less
than the energy that the single bubble has after optical excitation.

(3) We have calculated the photon energy required to excite these
electrino bubbles to the 1p state, and the interaction energy between the
two bubbles.

(4) Finally, we discussed the possibility that the electrino bubbles
have already been produced in several experiments involving ions in super-
fluid helium. It has hitherto been impossible to explain the results of these
experiments in a reasonable way. We showed that it may be possible to
explain these experiments in terms of electrino bubbles. Of course, it is
possible that not al/l of the effects observed in these experiments are to be
attributed to electrino bubbles. We find that in order for the exotic ions to
be electrino bubbles, it is necessary to assume that the bubbles act as
though they have the full charge of an electron.

We want to emphasize that even if further experiments show that elec-
trino bubbles are not involved in the experiments that we have discussed,
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the theory we have given predicts the existence of these objects. We note
that the calculations mentioned in (2) above rely on a number of well-
tested principles borrowed from molecular physics. The time scale of the
motion of the electron is much less than the time scale for motion of the
bubble wall. Thus, the Franck—Condon principle should apply. The differ-
ence in time scales also means that that as the bubble shape changes, the
wave function of the electron will deform adiabatically (Born—Oppenheimer
principle). The application of these principles, together with the use of
Schrodinger’s equation for the calculation of the energy of the electron
states, leads to the prediction that the electron will undergo fission. Given
these considerations, we have to consider that it would be an interesting
result if electrino bubbles were shown to not exist.
Finally, we note the following points:

(1) It should be possible to make detailed studies of the bubbles via
optical techniques. For example, it should be possible to create e'/> bubbles
by optical excitation of the 1p state of the normal negative ion, and then
measure the mobility of these measured by means of a time-of-flight experi-
ment. It would then be possible to determine if the measured mobility of
this ion matches the mobility of one of the exotic ions already studied
experimentally. It should also be possible to provide a second optical wave-
length to cause a second fission and produce e bubbles. The mobility of
these could then be measured.

(2) In order for the electrino bubbles to be the explanation of the
experiments on exotic ions, it is necessary to suppose that, as far as
mobility experiments are concerned, the bubbles that reach the detector act
as though they have the full charge of the electron. This needs further
experimental study. Does this mean that some of the bubbles act as though
they have one unit of negative charge and others act as though they have
no charge? An experiment that probed the spatial distribution of the elec-
trino bubbles in a helium cell could answer this question.

(3) One can ask what happens to these objects when they leave the
liquid. For example, can the part of the wave function confined within an
e'/? electrino bubble bind to an atom or ion on the cell wall? If this
happens, what are the chemical properties of such an atom that has cap-
tured half of the wave function of an electron? Or does the arrival at the
cell wall amount to a quantum measurement process, so that the other part
of the wave function (which is in another bubble some distance away)
collapses along with the bubble containing it? If this happens, is there a
measurable energy release into the liquid?

(4) Is our calculation of the energy of interaction between two elec-
trino bubbles produced by the splitting of one electron correct ? It should
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be possible to test this result experimentally.? Is there any interaction
between a pair of electrino bubbles, other than the polarization interaction
that we have considered? Is there any limit to the separation between the
bubbles? And, it is natural to ask whether it is possible to separate the lig-
uid helium into two volumes, each containing one of the pair of electrino
bubbles.

(5) Finally, it would be very interesting to consider other situations
in which the fission of an electron or other elementary particle might occur.
Fission of bubbles after optical excitation between two bound states should
not occur in liquid helium-4 above the lambda point or in the normal
phase of helium-3 because the viscosity of the these liquids damps the
motion of the bubble wall. It is also interesting to look for other physical
situations in which fission occurs “naturally,” i.e., as a result of a sponta-
neous mechanism analogous to the process that takes place with a bubble
in helium absorbs a photon, and that does not involve any external interac-
tion other than the absorbed photon. If such a situation existed in the early
universe, for example, it might provide a mechanism for the production of
exotic particles with unusual charge properties that might be hard to detect
by conventional means. It may also be possible to design and construct a
solid state device that can be used to divide electrons.
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