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Abstract: There are many algorithms used with different purposes in the area of cryptography.
Amongst these, Genetic Algorithms have been used, particularly in the cryptanalysis of block ciphers.
Interest in the use of and research on such algorithms has increased lately, with a special focus on
the analysis and improvement of the properties and characteristics of these algorithms. In this way,
the present work focuses on studying the fitness functions involved in Genetic Algorithms. First, a
methodology was proposed to verify that the closeness to 1 of some fitness functions’ values that use
decimal distance implies decimal closeness to the key. On the other hand, the foundation of a theory
is developed in order to characterize such fitness functions and determine, a priori, if one method is
more effective than another in the attack to block ciphers using Genetic Algorithms.

Keywords: genetic algorithm; fitness function; block ciphers; cryptography; optimization

1. Introduction

There is a plethora of algorithms used in cryptography, with different purposes;
amongst them, Genetic Algorithms (GAs) have received an increased focus of attention,
as can be observed from the number of recent publications on the subject. GAs have been
applied to different areas of science. For example, in [1], the authors discussed various
methods to find approximate solutions to the TSP problem (Traveling Salesman Problem),
and they proposed a modification of GAs to solve the problem of streamlining the shipping
route. In [2], a method based on GAs for processing and classifying electroencephalogram
signals was proposed. In [3], a combination of GAs with neural networks was applied to
electronic commerce. Other applications can be found in [4–7], amongst many others.

In recent years, the use of GAs in cryptography has increased, particularly within
cryptanalysis, intending to find an optimal solution (the so-called key) within the key space
and one that is as close as possible to the real key. Some of the works in this direction are the
following: In [8], the authors applied GAs to the cryptanalysis of the RSA (Rivest, Shamir,
and Adleman) cipher. Something similar was done in [9], where GAs were used to look up
factors of the RSA public key. According to the authors, the research results suggest that
GAs can break the RSA encryption’s public key. In [10], the authors proposed an attack
method inspired by GAs based on the collateral channel attack. One of the algorithms to
which they applied this tool was DES (Data Encryption Standard).
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In [11], a hybrid tool was developed that creates ciphertexts from the combination of
GAs and the Particle Swarm Optimization algorithm. Shannon’s Entropy method was used
as a fitness function in both algorithms. The authors claimed that the proposed application
offers an alternative data encryption and decryption method that can be used to transmit
messages. In [12], a technique for encrypting texts based on the mutation and crossing
operations of GAs was presented. The proposed encryption technique consisted of dividing
the plaintext characters into parts and applying the crossover operation between them,
followed by the mutation operation to obtain the ciphertext. In [13], the authors discussed
comparing traditional cryptographic algorithms and GA-based cryptosystems.

For more details on the structure and values of the parameters and operators of GAs,
which are used in the experiments presented in this article, see [14]. More details on the
use of GAs in cryptography can be seen, for example, in [15–19].

Other investigations are directed to the analysis and improvement of the properties
and characteristics of the GAs. An example of the above is [14], where several aptitude
functions are proposed, and through some experiments, it was studied which of these
functions provide the best results in the application of GAs; thus, it has been possible
to appreciate the scarcity of theoretical results that can be used in such analysis. On the
other hand, there is also the problem of analyzing whether the closeness to 1 of the fitness
functions that use decimal distance implies decimal closeness between the new element
found and the real key. In this sense, in the present work, a study was conducted on the
fitness functions that intervene in GAs with the aim of improving their properties. So
our contributions are: (1) a methodology to verify that the closeness to 1 of the values of
some fitness functions that use decimal distance implies decimal closeness to the key; (2) a
block cipher attack methodology based on the results of (1); and (3) the foundation of a
theory that allows us to characterize fitness functions and determine, a priori and from a
theoretical point of view, if one fitness function is more efficient than another in attacking
block ciphers.

2. Preliminaries
2.1. Genetic Algorithm

We assume that the reader is familiar with the general ideas of how some heuris-
tic optimization methods work. This section briefly describes the GAs scheme used in
this work.

In Algorithm 1, the population’s individuals will be elements of the key space taken
as binary blocks. By Selecting the s parents, a subset S of Pi is obtained. These parents are
selected by the Tournament Method between two, selecting two individuals randomly and
choosing the one with the highest aptitude. Elements of S are crossed, and descendants
are added to Pi if they are not members. For Crossover, the two-point crossover will be
used, and the probability of two individuals crossing-over was set to 0.6 for all experiments.
The Mutate operation changes at most three binary block’s random components, with a
mutation ratio set to 0.2 in all experiments. An individual x is better adapted than another
individual y if it has greater fitness, i.e., if F(x) > F(y).

The application of GAs for cryptanalysis presented in this work uses a known plaintext–
ciphertext attack, in which the attacker knows a set of plaintexts with their corresponding
encrypted texts. The attack aims to find the key with which the plaintexts were encrypted.
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Algoritmo 1 Genetic Algorithm.

Input: m (number of individuals in the population), F (fitness function), g (number of
generations), s (number of individuals selected to mate).

Output: the individuals with the highest fitness function as best solution.
1: Generate randomly an initial population Pi with m individuals.
2: Calculate F(x), ∀x ∈ Pi (the fitness of each individual of Pi).
3: while no solution found or g generations not reached do
4: Select s parents of Pi.
5: Apply the Crossover operator to the s selected elements and generate offspring pairs.
6: Mutate each of the resulting descendants.
7: Compute the fitness of each of the offspring and their mutations with F.
8: Using the Tournament Method between two, based on the aptitudes of the parents

and offspring, decide what will be the new population Pi+1 for the next generation,
selecting two individuals at random each time and choosing the higher fitness.

9: end while

2.2. Fitness Functions

The focus of this paper will be fitness functions. In particular, the following functions
will be used. Let

E : Fm

2 × Fn

2 → Fn

2, (1)

with m, n ∈ Z∗+ and m ≥ n, be a block cipher, T a plaintext, K a key and C the corresponding
ciphertext, i.e., C = E(K, T). The first fitness function based on Hamming’s distance
between binary blocks, dH , for a certain individual X of the population, is:

F1(X) =
n− dH(C, E(X, T))

n
, (2)

which measures the distance between the ciphertext C and the text obtained from encrypt-
ing T with the probable key X.

The following fitness function is based on measuring the distance between plain-
texts but on their representation in decimal and not binary. Let Yd be the corresponding
conversion to decimal of the binary block Y. Then, we have:

F4(X) =
2n − 1− |Cd − E(X, T)d|

2n − 1
. (3)

Note that if the ciphertexts are equal, i.e., Cd = E(X, T)d, then F4(X) = 1. I.e., if they
are equal, then the fitness function takes the highest possible value. On the contrary,
the greatest difference is the farthest they can be, e.g., if Cd = 2n − 1, and E(X, T)d = 0,
then F4(X) = 0. For more details on these fitness functions and other proposals with
similar ideas, see [14], where F1(X) and F4(X) appear with the same name. Regarding
fitness functions and GAs, take into account that an individual x of the population is better
adapted than another, y, if it has greater fitness, i.e., if F(x) > F(y).

2.3. Partitioning the Key Space

In this article, two key space partitioning methodologies are used, BBM and TBB (the
names of the methodologies come from the authors’ last names’ initials, see the appendix),
which allow GAs to work on a certain set of keys’ subset, with admissible solutions as if it
was the complete set. This form of partitioning into equivalence classes allows for GAs to
be used in parallel, independent and simultaneously, in several classes.

In what follows, a brief description of both methodologies is given; for more details
see [14,20]. Let Fk1

2 be the space of keys of length k1 ∈ Z, k2, kd ∈ Z>0, such that, 1 ≤ k2 < k1,



Entropy 2023, 25, 261 4 of 13

kd = k1 − k2, and, Q = {0, 1, 2, . . . , 2kd − 1}. So, in both methodologies, the formulas to
represent the elements of Fk1

2 are identical:

q 2k2 + r, q ∈ Q, r ∈ Z>0. (4)

This equation can be used to summarize the differences between these methodologies.
Both consist of keeping the GAs running on a subset of the key space rather than the entire
key space. In the case of BBM, the subset is associated with the class of keys that correspond
to the same quotient (q). The TBB methodology consists of working with the subset given
by the keys with the same remainder (r); the elements of each class are scattered throughout
the set of keys.

In the case of the BBM methodology, the idea of the division made in the keys’ space
can be seen in the diagram in Figure 1, where the one-to-one correspondence is assumed
between Fk1

2 and the interval [0, 2k1 − 1] ⊂ Z+. Note that q determines the interval and
r the position of the element in that interval, then all n ∈ [0, 2k1 − 1] are represented as
n = q2k2 + r.

0 2k1 − 1

q = 0

2k2

q = 1

2k2

q = 2k1−k2 − 1

2k2

Figure 1. Graphic scheme of the BBM methodology.

On the other hand, the TBB methodology is based on the definition and calculation of
the keys’ quotient group GK , whose objective is to partition Z2k1 (considering Fk1

2
∼= Z2k1 )

into equivalent classes, using the homomorphism h defined as follows:

h : Z2k1 → Z2k2

a 7→ a (mod 2k2),

so GK = Z2k1 /N, where N is the kernel of h. The diagram in Figure 2 presents the structure
of GK with respect to Z2k1 and Z2k2 .

hZ2k1 Z2k2

GK = Z2k1 /N

q2k2 + r∼=

Figure 2. Diagram of the quotient group of the keys.

3. About the Closeness Problem

The analysis will focus on the fitness function F4, from Equation (3), which measures
the fitness of each individual X of the key space, comparing the ciphertext C, and the text
obtained from encrypting T with X. In short, it measures the decimal distance between
ciphertexts. In this sense, the focus is on the problem of verifying if the approximation to
1 of F4(X) in the comparison of the ciphertexts (that is, the approximation of E(X, T) to
C = E(K, T)), implies decimal proximity to the real key K being searched for, with which T
was encrypted to obtain C. This problem will be referred to as Closeness Problem (CP).



Entropy 2023, 25, 261 5 of 13

3.1. Closeness Strategy

In this section, the first approximation of the CP is proposed. To test it, an attack
strategy is proposed that links the two key space partitioning methodologies, BBM and
TBB, and will be referred to as the Closeness Strategy. We will divide the strategy into three
stages, which are detailed below:

1. First, the idea is that, given T, K and C, such that C = E(K, T), choose k2 and kd in the
TBB methodology and then search for the key K in any class of the quotient group of
keys GK (see [19]). For uniformity, the key will be searched for in the class to which the
ciphertext belongs. The purpose at this first moment is not for the GA to find the key
directly (that is why the choice of the class could even be random or chosen according
to another criterion) but, in the end, to choose the individual of the population with
the greatest adaptation, the fittest, returned as a solution by the GA, say X1. At this
point, the fitness of X1, and its decimal distance to K, must be calculated: F4(X1), and,
S1 = |X1d − Kd|;

2. Then, partition the space using the BBM methodology (in this case, exchanging the
values of k2 and kd, to perform the search under the same conditions as with the
TBB methodology). Select the class in which the fittest individual is found that was
obtained as a solution with the TBB methodology in Stage 1 (X1). At the end of
the GA, the best-fit individual returned is taken as the solution, say, X2. As in the
previous case, the fitness of X2 is taken, and its decimal distance to K: F4(X2), and,
S2 = |X2d − Kd|;

3. For the purposes of testing the Closeness Problem, we will say that a better solution
was obtained at Stage 2 if the following condition holds,

F4(X2) > F4(X1) ∧ S2 < S1. (5)

That is, if X2 is closer to K than X1, at the same time, it is more suitable.

Note that, when performing the partition with the TBB methodology, each class has
individuals from the population distributed throughout the space. In this sense, all the
intervals of the BBM methodology have at least one individual of each class taken from
TBB. For this reason, the TBB methodology is used first, where the individual with the
highest fitness is expected to be closest to the key K, according to the decimal distance.
Stage 1 is based on this fact.

Then, the idea of Stage 2 is to search for the key in an integer interval around X1, with
the goal of finding an individual X2 that is closest to the key in its decimal place, and at
the same time, has a higher fitness value than X1. For this purpose, the search is carried
out in this stage with the BBM methodology, which partitions into integer intervals (see
Section 2.3). The interval to choose is the class to which the individual X1 belongs when
performing the partition with BBM. Suppose that q is the class to which X1 belongs in BBM
and in which to start searching. So, if one wants to widen the search range, one should
take the classes immediately before and after q, starting with this one. In other words, it
searches successively in the classes,

q, q± 1, q± 2, . . . , q± n, n ∈ Z∗+, (6)

which would be equivalent to progressively increasing the radius of the interval to the
desired depth level. As explained above, reversing the order of the methodologies in the
Stages 1 and 2 would not make the same sense concerning testing the Closeness Problem
and the decimal distance.

Stage 3 is essential for answering the Closeness Problem. Remember that the main
objective is to verify if the closeness of the ciphertexts, and, therefore, the tendency to 1 of
the fitness function, implies positional decimal closeness of the individual to the real key.
Therefore, to say that the result obtained in the second stage is good is not enough to find
an individual with greater fitness. Worse still is finding an individual closer to K; on the
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contrary, its adaptation is less than the solution found in the first stage. In the first case in
which an individual is found that only complies with having greater fitness, no data are
obtained to verify the proximity to K since it could be further from it than the individual
in the first stage. For this reason, both conditions must be fulfilled simultaneously and,
therefore, the relationship in Equation (5).

The importance of the Closeness Problem lies in the fact that we are getting closer to
the key, even if it is not known. When performing the attack to search for the key, if it is not
found, then the idea is to have a certain degree of certainty that the individual who found
the solution is positionally closest to the key.

3.2. Applications to Cryptanalysis

For future research, and with processors with higher computing capacity, it would be
interesting to test the following attack methodology based on the Closeness Problem and
which will be referred to as the Decimal Closeness Attack (DCA). The DCA constitutes an
application of the results concerning the CP to the attack on block ciphers.

Given T and C as defined above, the attack’s goal is to find K such that E(K, T) = C.
The main idea of the DCA is to increase the radius of the search interval around q and
search for the key with the GAs in those classes. That is, each time Step 1 is applied, Step 2
should be applied several times. The rationale is precise that each time a solution with
higher fitness is found, it will also be assumed that it is closer to the key and, therefore, that
it satisfies the relationship shown in Equation (5).

Once the experiments were performed, an average reference distance ε was calculated,
obtained as the average of the distances,

Sl
2 = |Xl

2 − Kl |, (7)

in the attacks made to each trio (Tl , Kl , Cl), l = 1, n, n ∈ Z+:

ε =


n
∑

i=1
Si

2

n

. (8)

In other words, ε is the average distance of the solution obtained in the second stage,
X2, from the key K. Assuming this distance in the DCA, the search will also be performed
on the two classes, q1,2 , corresponding to the individuals X3,4 = X2 ± ε:

q1,2 =
(X2 ± ε)− (X2 ± ε) (mod 2k2)

2k2
· (9)

That is, it will not only search for an interval around X2, but also around X3 = X2 − ε
and X4 = X2 + ε. The last two cases would be the result of experimentation; the more
experiments that are carried out, the more precise the estimate of ε will be. In this case, the
advantage of the BBM and TBB key space partitioning methodologies is that they allow the
search to be performed simultaneously in different classes, saving time in the attack.

To summarize, given the pair (T, C), the DCA consists of the following. Apply Stage 1
and get X1. Apply the Stage 2 with the BBM methodology and search the class to which
X1 belongs to obtain X2. Finally, search with the GA around X2, X3, and, X4, that is, in
the classes,

q± i0, q1 ± i1, q2 ± i2, ij = 0, nj, j ∈ {0, 1, 2}, nj ∈ Z∗+. (10)

Only five classes were searched, and ε is large. However, as the search radius increases
around q in experiments, ε will become smaller. See Section 5 for the experiments with the
closeness strategy.
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4. On the Fitness Functions and the Change Detection

From now on,M, K, and C will be the space for the plaintexts, keys, and ciphertexts,
respectively. The purpose is to characterize fitness functions and determine, in advance,
whether one fitness function is better than another. Informally, we will say that the fitness
function f1(x) (x ∈ K) is better than f2(x), if f1 detects more changes in x than f2. Each
change in x is detected in different function values each time. For example, given

x1 < x2 < · · · < x10 ∈ K, (11)

if f2 remains constant in x1, . . . , x5,

f2(x1) = · · · = f2(x5) = a; (12)

so it is not detecting changes from x1 to x5. Therefore, it does not reflect the approach of x1
to x5. In the extreme case, neither is the closeness to x10, despite the fact that x5 is closer to
x10 than x1. However, if f1 were different in all cases, then it would detect the changes and
the closeness of x1 to x10. This fact causes better behavior of f1 concerning f2. It is clear
that the probabilistic and pseudo-random complexity that both encryption algorithms and
GAs have are being overlooked in the above (and later). The focus is only on the structure
of the fitness functions since the characteristics of the cryptosystems and the GAs do not
depend on them.

The functions F1 and F4 (see Section 2.2) use two different distances, Hamming’s
distance and the decimal distance. There are changes that F1 does not detect, unlike F4.
For example, suppose the key is a = (1, 1, 1, 1, 1, 1)2, and b = (0, 0, 0, 0, 0, 1)2 is the possible
key, both in binary. It is clear that Hamming’s distance is 5, and the decimal distance is
62 since a = 63, and b = 1; and the fitness functions take the values 1− 5/6 = 0.17 for F1
and 1− 62/63 = 0.016 for F4. Now, if b = (0, 0, 1, 0, 0, 0)2, the function F1 would still be
0.17 since there are still five different bits; on the other hand, b = 8, so F4 takes the value
1− 55/63 = 0.13. Finally, if we take b = (1, 0, 0, 0, 0, 0)2 = 32, then Hamming’s distance
remains constant but the decimal keeps changing, so the fitness function does too and
takes the value 0.49. Therefore, this shows that the change of b is detected by the decimal
distance most of the time, contrary to the binary distance, which stays the same over many
more changes.

Considering the above, the objective of what is proposed in this section is to start
the basis of a theory that allows an explanation of the aforementioned. Let f be a fitness
function that depends on a distance function d; the analysis will focus separately on the
characteristics of f and d, understanding that the results on the distance influence f also.

Definition 1. Given δ ∈ Img( f ) ⊂ [0, 1] ⊂ R+, we will call the Completeness Kernel of f in
δ, Com( f , δ), to the set:

Com( f , δ) = {x ∈ K| f (x) = δ}. (13)

The completeness kernel is a way to obtain a range of elements in which f is remained
constant and therefore does not reflect changes occurring in the keys. In the example
with f2,

Com( f2, a) = {x1, x2, x3, x4, x5, . . . } (14)

That is, at least it is known that the elements x1, . . . , x5 are in the completeness kernel
Com( f2, a).

Definition 2. The Center of Completeness of f , Cen( f ), is the set,

Cen( f ) = {#Com( f , δ)| ∀ δ ∈ Img( f )}. (15)

The Degree of Completeness, λ f , of f , is the maximum of its center of completeness, λ f =
max(Cen( f )). Then, f is said to be λ f -complete.
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The degree of completeness globally measures the worst result of f in terms of the
number of elements in its completeness kernels. The larger λ f is, the less effective f is, in
the sense that the larger the range in which it detects no change. What is desired is to have
fitness functions that are 1-complete.

Lemma 1. If there is a kernel of completeness of f with cardinality θ, then the degree of completeness
of f is greater than or equal to θ. More formally,

f , δ ∈ Img( f ), θ ∈ Z∗+, ∃Com( f , δ), #Com( f , δ) = θ ⇒ λ f ≥ θ. (16)

Proof. Given a fitness function f , suppose there exists Com( f , δ) with cardinality θ, for
some value δ ∈ Img( f ). It is clear that θ ∈ Cen( f ), and there are only two possibilities—
that it is less than or equal to the maximum of Cen( f ), which is equivalent to λ f —therefore,
it must be λ f ≥ θ.

It is a hard problem to determine the degree of completeness of a fitness function.
This is due, first of all, to the size of the key space. Another point is the very structural
complexity of the E cipher, which depends on the key, and at the same time, most fitness
functions also use E in their construction.

The cipher E often takes the same value for different keys x because the combination
of keys and plaintexts is much larger than the cardinality of the ciphertext space. Then, by
Dirichlet’s Principle, at least one pair of keys x1, x2, returns the same ciphertext:

∃ x1, x2 ∈ K, T1, T2 ∈ M (E(x1, T1) = E(x2, T2) ∈ C). (17)

In this sense, it is complicated to ensure higher bounds for λ f (other than |K|). This fact
influences some fitness functions not detecting the change between x1 and x2. However,
that would not depend on them but on the cipher E. In practice, it is a hard problem
to determine the pairs (xi, Ti) in which equal ciphertext is obtained. The same would
happen in the opposite case, where the fitness functions compare the plaintexts from the
cryptosystem’s decryption algorithm.

Definition 3. Let d be a distance function, and, s ∈ [0, dmax] ⊂ Z+ be the distance between two
arbitrary elements of C. We will call the Plateau of d at C0 ∈ C with respect to s, the set M(d, C0, s)
(or simply M(d)):

M(d, C0, s) = {C ∈ C| ∃ x ∈ K, T ∈ M, C = E(x, T), d(C, C0) = s}. (18)

We will say that C0 is the Axis of the Plateau.

Definition 4 (Reduced Plateau). Let C0 ∈ C, d be a distance function, s ∈ [0, dmax] ⊂ Z+ be
the distance between two arbitrary elements of C, and, M(d, C0, s) a plateau of d. Two arbitrary
elements Ci, Cj of M(d, C0, s) are equivalent in M(d, C0, s), if they can be obtained with the same
keys, i.e.,

Ci = E(Ki, Ti), Cj = E(Kj, Tj) (Ki = Kj ⇒ Ci ≡ Cj). (19)

The reduced plateau is the one obtained by eliminating equivalent elements in M(d, C0, s),
leaving only one representative in each case for each key.

Definition 5 (Maximum plateau). Let d be a distance function. The maximum plateau of d,
Mmax(d), is the largest cardinal reduced plateau for all possible axes and values of s ∈ [0, dmax] ⊂ Z+.

Figure 3 shows a schematic example of a plateau of cardinality n. In general, the
Ti, i = 1, n can be the same all at once. However, if the plateau were reduced, the keys
Ki ∈ K, i = 1, n, must be different two by two. The reason is that the analysis of the fitness
functions focuses on the changes of the individuals in the GA population, which coincide
with the elements of the key space.
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C0

C1 = E(K1, T1) C2 = E(K2, T2)

C3 = E(K3, T3)

· · ·
Cn = E(Kn, Tn)

−s−

−s−
−s−

−s−

Figure 3. Example of a plateau of cardinality n.

The interesting property of the maximum plateau is its cardinal. In this sense, there is
no difficulty if several maximum plateaus have the same number of elements.

Definition 6. Let d be a distance function, and M(1)(d) and M(2)(d) two reduced plateaus of d.
We will say that M(1)(d) and M(2)(d) are equivalent if they have the same cardinality:

|M(1)(d)| = |M(2)(d)| ⇔ M(1)(d) ≡ M(2)(d). (20)

It is clear that if M(1)(d) is a maximum plateau, then so is M(2)(d).

Definition 7 (Degree of detection). The Degree of Detection of a fitness function f is the pair

(λ f , |Mmax(d)|), and will be written simply, D(λ f ,|Mmax(d)|)
f . The function f is of perfect degree if

it is 1-complete and |Mmax(d)| = 1.

The ideal would be to look for fitness functions for GAs applications whose degree of
detection is getting closer and closer to the perfect degree.

Proposition 1. Given α1, α2 ∈ R, d(x) a distance and f (x) a fitness function with x ∈ K. If f is
of the form

f (x) = α1 + α2d(x), (21)

and d has a reduced plateau of cardinal ρ, then, λ f ≥ ρ.

This statement says nothing about the internal structure of d.

Proof. Let α1, α2 ∈ R, d(x) be a distance and f (x) be a fitness function with x ∈ K.
Suppose f has the form,

f (x) = α1 + α2d(x), (22)

and that Mmax(d, C0, s) is a reduced plateau of d, such that, |Mmax(d, C0, s)| = ρ, for some
C0 ∈ C and s ∈ R+. By the Definitions 3 and 4, there exist ρ keys xi ∈ K, i = 1, ρ, such
that, d(xi) = s. From the form of f in (22), it is clear that f is also remained constant and
equal to

α1 + α2s (23)

for each of these keys. Therefore, the set,

V = {xi}
ρ
i=1, (24)

is a completeness kernel of f of cardinal ρ. Then, applying the Lemma 1 with θ = ρ, we
obtain, λ f ≥ ρ = |V|.
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5. Experiments and Results
5.1. Closeness Strategy

Experiments were carried out with a Laptop Personal Computer with a processor:
Intel(R) Celeron(R) CPU N3050 @1.60 GHz (2 CPUs), ∼1.6 GHz, and 4 GB of RAM. The
experiment consisted of applying the Closeness Strategy with the function F4 to the AES(t)
encryption for t = 3 (AES(t) is a parametric version of AES (Advanced Encryption Standard),
where t ∈ {3, 4, 5, 6, 7, 8}, and AES(8) = AES, see [21,22]).

In the case of the AES(3), k1 = 48, k2 = 38, and kd = 10 were taken in the TBB
methodology, and conversely for BBM (k2 = 10 and kd = 38). With these data, the
GA carried out 10 generations. One hundred pairs of plaintexts and keys were randomly
generated, and the corresponding 100 ciphertexts were calculated. The strategy was applied
to each trio (T, K, C = E(K, T)). In the second stage with the BBM methodology, five classes
were searched for: the class q of the element X1 of the first stage, and the classes

q− 1, q + 1, q− 2, q + 2, (25)

which represent an insignificant amount concerning the total number of classes:

2kd = 238 = 274 877 906 944. (26)

Although the search interval was small, as a result, a better solution was not obtained
in only 12 occasions. Therefore, in 88% of the attempts, the CP was positively verified,
finding individuals with greater fitness and, at the same time, closer to the key K.

Under the same conditions, the same procedure was applied with the function F1.
Note that in this case, F1 used Hamming’s distance with the binary blocks, and therefore it
was totally different from F4. If the results behave similarly to F4, then it would make no
difference whether the distance used was decimal. However, out of 30 attempts, 13 failures
had already been obtained, and only 17 positive solutions were found (for a 56.66̄% effec-
tiveness). That is, in 30% of attempts with F4, the function F1 reached 108.33̄% of failures.
This shows that it is more effective to achieve decimal closeness to the key by using fitness
functions that use decimal distance.

5.2. Comparison of Two Fitness Functions

We will focus the analysis on the distances of F1 and F4 to compare these fitness
functions using the results from Section 4. These functions can be written in the form (21),

F1(X) = 1− 1
n

dH(C, E(X, T)), (27)

F4(X) = 1− 1
2n − 1

d(X), d(X) = |Cd, E(X, T)d|, (28)

In the case of F1, dH is the Hamming’s distance between binary blocks of length n.
Take, for reference, the binary null vector of length n:

O = [0, 0, · · ·︸︷︷︸
n−3

, 0]. (29)

The vector C1,
C1 = [0, 0, · · ·︸︷︷︸

n−4

, 0, 1], (30)

has a Hamming’s distance equal to 1 with respect to O, dH(O, C1) = 1. Now, by varying
the 1 in C1, a total of n different vectors are obtained that maintain a Hamming’s distance
equal to 1 with respect to O, in which dH does not detect the change. If we take C2 with
two 1 s:

C2 = [0, 0, · · ·︸︷︷︸
n−5

, 0, 1, 1], (31)
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then the Hamming’s distance is, dH(O, C2) = 2. In this case, there would be(
n
2

)
=

n!
2!(n− 2)!

=
n(n− 1)

2
(32)

different ways to place the two 1s in C2 to obtain vectors with equal distance from O.
Therefore, there are n(n−1)

2 different vectors with Hamming’s distance equal to 2. In general,

if a vector with t 1s was chosen, then there would be
(

n
t

)
different vectors with equal

distance from O: (
n
t

)
=

n!
t!(n− t)!

, (33)

which would be equivalent to having plateaus whose cardinality would be, at least, equal
to that number of vectors. Therefore, to compare F1 and F4, it is enough to take the degree
of completeness, for example, greater than n, λF1 ≥ n (note that there are larger plateaus,

as in the case of C2, with, n(n−1)
2 ≥ n, n ≥ 3). Similar reasoning would be obtained if, on

the contrary, the vector whose components are all equal to 1 had been taken as a reference.
For F4, the distance d is the decimal between positive integer values. In this case,

taking C ∈ C with Cd /∈ {0, 2n − 1}, it is clear that, for a given value of the distance s, there
are only, at most, two values that are at that distance, Cd − s and Cd + s. In other words, it
is fulfilled that

d(Cd, Cd − s) = d(Cd, Cd + s) = s. (34)

So the degree of completeness is λF4 ≥ 2. Therefore, there is a greater chance that F4 will
outperform F1. In this sense, in [14], it was already verified that, globally, fitness functions
that use decimal distance behave better than those that use Hamming’s distance when
the objective is to find the key, making a balance between the time consumed, the number
of generations needed on average to find the solution, and the number of times the key
was found.

On the other hand, experiments were performed to compare the fitness of the fittest
individuals returned as a solution by GA using these fitness functions in cases where
the cues were not found. In particular, 100 data points were taken for each of the fitness
functions in the same experiments of Section 5.1, whose behavior can be observed in
Figure 4.

fitness values

0.25

0.50

0.75

1

0 25 50
number of data

75 100

- F1

- F4

Figure 4. Values of the fitness functions F1 and F4.

In these experiments, on average, the fitness of the fittest individuals with F1 was
approximately ± 0.75. With F4, the values are greater than or equal to ± 0.98 in general,
reflecting the better behavior of F4. Note that, if the key is found, then the fitness of that
individual is 1.
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6. Conclusions

In the present work, a study was carried out on the fitness functions that intervene
in GAs and the attack on block ciphers. First, a methodology called Closeness Strategy
was proposed, verifying that the closeness to 1 of the value of some fitness functions that
use decimal distance implies decimal closeness to the key. In this direction, the Decimal
Closeness Attack was also proposed, the foundation of which is the Closeness Strategy. On
the other hand, the basis of a theory that allows the future characterization of the fitness
functions and the determination, in advance, if one is more effective than another in the
attack on block ciphers using the Genetic Algorithm, is initiated. In this last case, the
best behavior of the fitness functions that use decimal distance is corroborated when the
objective of the attack is to find the key.

For future work, it is interesting to apply the DCA to attack some ciphers and continue
advancing in the characterization of fitness functions according to their degree of detection,
as well as developing procedures that allow calculating with greater precision the degree
of detection of a fitness function.
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