On the Flexibility of WS-Agreement for Job Submission

Rizos Sakellariou
rizos.sakellariou@manchester.ac.uk

Viktor Yarmolenko
viktor.yarmolenko@manchester.ac.uk

School of Computer Science, The University of Manchester
Kilburn Building, Oxford Road, Manchester M13 9PL
United Kingdom

ABSTRACT

This paper considers extensions to the WS-Agreement spec-
ification, namely the Guarantee Terms of WS-Agreement
[1]. Experiences and conclusions drawn are in the context
of Agreement-based job management systems. A key idea
of these extensions is the use of functions for the Guaran-
tee Terms of the Agreement rather than constant values or
ranges. Functions may contain variables defined in a partic-
ular agreement or be drawn from the known set of reference
variables, such as wall-clock time, job start time, etc. We
show that such an approach can potentially reduce the nego-
tiation overheads associated with job renegotiation and/or
reduce the number of failed agreements.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Client/server; C.4 [Perfor-
mance of Systems]: Reliability, availability, serviceability;
D.4.7 [Organization and Design]: Distributed systems

General Terms
Design, Standardization, Measurement, Performance

Keywords

Service Level Agreement, WS-Agreement, Job Submission

1. INTRODUCTION

Developments in the area of service-oriented architectures
will naturally attract a range of commercial applications.
An important part of this development is the increasing use
of the notion of a Service Level Agreement (SLA) (for exam-
ple, WS-Agreement (WS-A) [1]), which is essentially a con-
tract outlining service qualities and guarantees. Although
the WS-A specification covers an extensive set of scenarios
in general, some weaknesses have been noticed in the area
of SLA renegotiation [2, 6].

In the domain of SLA-based resource management an effi-
cient system relies heavily on the possibility of renegotiation
[7, 5, 4] of the whole or part of the agreement. Renegotiation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MGC’05, November 28-December 2, 2005 Grenoble, France Copyright
2005 ACM 1-59593-269-0/05/11...$5.00

includes reconsideration, by all participants of an agreement,
of the quality and the level of service, such as, time book-
ings, bandwidth, processor or memory requirements, and
many more. A significant proportion of agreed SLAs may
have to be renegotiated in order to keep an SLA [17]. This
requires the user’s participation at some stage between the
time when the initial agreement is made and when it is com-
pleted. This requirement might contrast with autonomous
systems [16], an area in which there is significant interest
for commercial development [11], where the aim is to reduce
the amount of interaction with the end-user. Another re-
lated branch — value added services, that are composed of
a number of single services — are based upon the assump-
tion that a certain level of automation exists.

In this paper, we consider how extensions to the Guaran-
tee Terms of WS-A can be used to minimise the impact of
renegotiation overheads. The scope of this paper does not
include negotiation protocols or what XML schema might be
used, nor does it consider scenarios other than job submis-
sion and management. However, its conclusions directly af-
fect renegotiation for SLA-based resource management and
could be applied to other aspects of service-driven applica-
tions on Grid. Thus, the paper aims to address the following
issues: how the network traffic associated with the job rene-
gotiation and user involvement can be reduced; and how all
this can fit within the existing WS-A framework.

The paper is structured in the following way. Starting with
the motivation and related work in Section 2, it then pro-
ceeds with a description of extensions to Guarantee Terms
in WS-A (Section 3). This includes a few specific exam-
ples (Sections 3.1-3.5). To support one of the examples a
simple model was constructed, which is discussed in Section
4 along with simulation results obtained from the model.
Concluding remarks are given in Section 5.

2. MOTIVATION AND RELATED WORK

Earlier work [17] indicated that, at high resource utilisa-
tion, renegotiation is inevitable as a means to maximise the
success rate of SLAs agreed. In [8], the authors evaluate
several SLA-based job management scenarios all of which
use re-planning on local resources. This method seems to
be widespread across the entire job management domain.

Re-planning involves changes in queue order, nodes used,
booked time, etc. and is an essential part of job manage-
ment with or without renegotiation. Renegotiation allows to

Article 12

change SLA constraints whilst keeping the agreement. This
provides the necessary flexibility and achieves a higher re-
source utilisation, although the overall performance suffers
as a result. In fact, the performance of the job submission
system might be measured using a function inversely pro-
portional to the number of renegotiations required to sat-
isfy SLAs. In addition, some optimisation algorithms for
scheduling perform better with soft constraints [14, 9, 12],
meaning a large number of renegotiations is required or such
algorithms cannot be used in a Grid environment.

Considering the dilemma between efficient scheduling on one
hand and the renegotiation overhead on the other, we pro-
pose to extend the Guarantee Terms in WS-A aiming to
reduce the need for renegotiation of a service and to pro-
vide the extra flexibility needed for a wider spectrum of re-
source management applications. In the draft WS-A specifi-
cation [1], terms of an agreement that were negotiable were
labelled as such, whilst the negotiable range remained un-
known. Further extensions, addressing this issue [2, 6], were
proposed in which a set of negotiable templates can be added
to WS-A. These increase the overall flexibility of the job ne-
gotiation, but they still require some renegotiation to be per-
formed. In [13], an SLA language specification was defined
(WSLA), which, in our opinion, addresses some important
issues mentioned in this paper; however, the future of this
work is somewhat unclear.

In this paper, we elaborate on extensions to the guarantee
terms of WS-A, namely the Service Level Objective (SLO)
and the Business Value List (BVL). These can be applied to
distributed computing on the Grid, and map onto the gen-
eral WS-Agreement specification [1]. Our initial motivation
was to address the problem of resource management and
scheduling in an SLA aware environment. It soon became
clear that the efficiency of the service could be increased
by using techniques [10], which unfortunately could not be
accomodated by the current state of Grid and Web Service
Architectures. We believe that the suggested extensions to
WS-A can facilitate the development of new services, for
example, scheduling based on optimisation methods, which
have succeeded in other areas.

3. EXTENSIONSTO THE TERMS

In most cases of SLA-based resource management applica-
tions that work within the WS-A framework [3, 15], the set
of guarantee terms is rigidly defined, however there is no evi-
dence that such constraints are really essential in the WS-A.
Speaking in terms of WS-Agreement specification [1], the
Service Level Indicators contain constant values and thus
define a Service Level Objective (SLO) in a limited way.

Within such parameters, it is known in advance, for exam-
ple, what the exact financial gain will be when an SLA is
audited. The obvious benefit of such an arrangement is a
relatively compact SLA that is simple and has small over-
heads. However, we find that this arrangement carries too
little information for other participants of this SLA to take
the initiative for some deviation without the need for rene-
gotiation. The flexibility of an agreement can be improved
by adding more terms, but there is a limit on how much
overhead is practical, whereas most of the terms can easily
be described analytically.

We believe, therefore, that in most cases a slightly increased
overhead in the SLA can be justified if the number of rene-
gotiations or failed SLAs can be reduced. The latter can be
achieved by providing an infinitely large set of term configu-
rations in SLA. The extra SLA feeds can provide complex re-
lationships between guarantee terms (SLO, BVL, etc.) that
could potentially be used by autonomous applications in
providing qualitatively new levels of service. In other words,
we propose to extend the SLA specification, which describes
the service, with higher degrees of description. These can
be described as follows:

(1) A list of universal variables is introduced. These can
be either constants or static functions, i.e. invariant to the
environment. They are predefined elsewhere and simply re-
ferred to in the SLA. Among such variables/functions are:
current Wall Clock Time, current network bandwidth, etc.
(the relevance of these will be explained shortly).

(2) A list of predefined common functions is introduced.
For example an average value of a list, a Gaussian or other
function that defines min/max bounds, etc.

(3) Service Level Indicators (SLIs) are described not as con-
stants but as functions of universal variables, or other SLIs.
These functions can be defined within an SLA or can be one
of the predefined common functions.

Therefore, the Guarantee Terms of WS-A are no longer de-
scribed as a single point or flat limits (formed by the SLI
range-values independent of each other) in SLA space, but
become non-trivial multidimensional volumes defined by a
system of functions. Such an agreement has an infinitely
large number of outcomes that belong to the continuum
defined by the system of functions. When such a system
of functions, which describes the entire guarantee terms of
an SLA| is chosen correctly it can potentially provide a far
richer term set for job management applications and hence
reduce the need for renegotiation. Next, we give several
examples of the extensions discussed in this section.

3.1 Universal Variablesand Functions
Earlier, we expressed the need for universal variables, the
actual values of which may not be known at the time when
an SLA is formed. Below is an example of such universal
variables, which an extended WS-A could include:

(1) Current Time - returns the global wall clock time.

(2) Current Resource Load - returns a value {0...1} that
indicates the current resource load at the time of usage. In
the simple case, this value is formed as the ratio of non-idle
CPU nodes of the resource to its total number.

(3) Current Actual Bandwidth - returns the actual band-
width capability at the time of usage that was allocated to
satisfy a specific SLA. This may depend on the time of the
day, and other factors.

(4) Actual Data Traffic - returns the amount of data that
was transferred as a result of the client’s job.

(5) Actual Disk Usage - returns the amount of disk space
used by the client’s job.

Article 12

(6) Actual Maximum Memory Used - returns the highest
level of memory occupied by the client’s job.

(7) Actual Execution Time - returns the time it took for
the client’s job to be executed.

(8) Actual Job Start time - returns actual global wall clock
time at which the client’s job begun its execution.

Below we give a list of common functions. The criteria that
determine which functions should be included in the list
must be based on (1) how elaborate the function is in its
description, and (2) how common this function is.

Fronm (€, low, high) - a binary function which returns 1 in
the region low < x < high and zero for other values of z.

fino (@, low, high) - a binary function which returns 0 in the
region low < x < high and 1 for other values of z.

fir (z,low, a, high, B) - a function described in Figure 1(a).

Note that lists for universal variables and common functions
are not limited to those elements suggested in this paper.
Also, it is worth re-emphasising that the universal variables
and common functions are predefined and as such are avail-
able offline, thus there is no need for their descriptions to
appear in SLA, but only their references. This constitutes
the first part of the extensions suggested to WS-A.

3.2 Guarantee Terms as Functions

In the previous section, we described some of the universal
variables and functions as WS-A extensions that can be used
when defining a guarantee term. Guarantee terms, in turn,
may be used in other parts of the agreement. In this paper,
we only concentrate on guarantee terms, such as, SLOs and
BVLs.

Furthermore, we present three specific examples of how and
why guarantee terms such as number of CPU nodes, memory
or time slot required for the successful execution of a job, can
and should be able to be expressed as functions and not as
constants, renegotiable constants, or ranges. Similarly, BVL
terms such as price, penalty for the service or importance
of an SLO can and should also be able to be expressed as
functions of any guarantee term(s) as well as universal vari-
ables and common functions. This constitutes the second
and main part of the extensions suggested to WS-A.

3.3 Examplewith Reward Term asa Function
Let us now consider a simple example of how a term from
BVL (call it Integrated Reward) can be described as a func-
tion of SLOs, other BVLs and universal variables, etc. First
we define a few guarantee terms for the WS-A:

SLO: Earliest job start time, T

SLO: Latest job finish time, T},

SLO: Number of CPU Nodes required, N,
SLO: Reserved time for job execution, ¢,
BVL: Penalty limit for non-compliance, V::M
BVL: Price limit for compliance, V;M

BVL: Integrated Reward, V,,,

(@

tot

V. function

Building

2
RN
NSO
.‘o:::.‘.‘o%
QDD
SN
oot tototom

3%

t (t+t,) Time, t

Figure 1: An example of Integrated Reward, V,,,,
expressed as a function (Equation 2). (a) - f,, func-
tion (Section 3.1); (b) the Resource Load function
(Section 3.1(2)); (c¢) - a version of (a) that defines
values for price/penalty (Equation (1)); (d) - same
as (c) but takes into account the price variation de-
pending on (b).

Note that we omit other fields of the WS-A template, such
as Context, Name and all the tags associated with them and
only concentrate on a few guarantee terms for simplicity.

The Integrated Reward, V,,,, may be unknown at the time
when an agreement was formed and is calculated after the
WS-A is finished. What is known, however, is the limits
within which this business value can fluctuate and how.

Let us, thus, build this function from the elements men-
tioned in Section 3.1 starting with softening the time con-
straints (T; and Ty) with f,., shown in Figure 1(a). Now
we introduce the maximum price and penalty factors, V;::a;

(¢;—¢,) and meng ¢ respectively, into the equation, so that:

ft{'r' = (ftr(t’Ts’aaTF:ﬁ)'cl _cz) (1)
where ¢, and c, are constants in mutually agreed reward
units per time unit (e.g. $, £, pigs per hour, etc.) and a,
B are the parameters of f,. that determine the angles of
the trapezium (Figure 1(c)). The area of the function below
zero (as low as V) will contribute to the penalty whereas
that above zero (as high as V;::M) contributes to the price.

Article 12

At this stage, we would like to point out the time limits of
V,.:, namely the start time of the job, ¢, and its duration
t, (Figure 1). For simplicity, we assume that the time re-
served for the job, t,, is equal to the time it took for the job
to complete, however one could introduce a relationship be-
tween these SLOs, which might influence the final outcome.

All mentioned SLA terms, except ¢, and t,, are SLOs that
are usually defined by the client. Let us impose a constraint
on V,,,, which is defined by the service. For example, a
function that represents the resource load, f,,(t) (Section
3.1(2) and Figure 1(b)). The provider may want to vary the
amount of the reward generated from the service depending
on the demand of this service. Naturally, f,,(¢) is unknown
when the agreement is created.

We build V,,, so that only the area under both functions,
f..(t) and f; contributes to the outcome (Figure 1(d)):

to+t maz maz
ft: b ftlr(tyTs:aaTFaﬂa‘/p" 7‘/;,7«)dt
Ve = 2
=t @
fts ¢y - fra(t) dt

The shaded area represents total reward, V,_,, that a client
has agreed to pay. In the case when the job started later
than ¢, on the figure, this value decreases up to the point
where the negative term outweighs the positive term under
the integral and the service provider ends up pazlng some
penalty, but not higher than that limited by V,

Thus, we defined a guarantee term in the agreement which
is based on functions and universal variables whose values
could not be available at the time when SLA was formed.
Also, in this example, we were able to agree on an infinitely
large number of outcomes for V,,,. Now the service provider
can re-plan its activities without the need for renegotiation.

Similarly, other business values and SLOs can be described
as functions or a system of functions. For example a client’s
application can start with different memory or CPU require-
ments, which may affect the execution time, with the rela-
tionship defined in SLO:t,,. Alternatively, a service provider
may want to encourage clients to use wider time bounds, so
that business values depend on time window (T, — T%).

3.4 Examplewith variable number of CPUs
Another simple example of usage of the extended SLA would
be useful for applications that can vary the number of CPU
nodes required at a start of the computation (e.g., MPI
based parallel applications). The extended SLA would look
similar to the standard SLA except two of its SLOs:

SLO: CPU Nodes required, N, = {2,3,4, ..., N:;Z},
4o

SLO: Reserved time for job execution, ¢, = 22—,
CPU

o P; is limited by the ca-
pacity of the Resource. The relation can be more complex
than that. Compared to the previous example, this descrip-
tion of SLOs can only produce a limited number of options.
However, even in cases like this, a relatively small function
could describe something in a more laconic fashion than a
list of paired values (N, p,, and tD), which, in the simplest
case, can reach the list of (XV,

where ¢ is some constant and NV,

opy — 1) items in size (option

with N,,, = 1 is not considered). The number of possi-
ble renegotiations even for such a limited set is unaccept-
ably high. If the Resource’s scheduling algorithm needs to
renegotiate every single {N,p,,t, }-paired option for each
job submitted in order to increase its utilisation then, po-
tentially, (I, :2 — 1)"ieb renegotiations would be required

(assuming that responses are cached by the Resource).

Because of its relevance and simplicity, we ran an experiment
(Section 4), which quantitatively measured benefits of the
extended SLA in which N,,, and t, correlate. Results
show over 10% increase in resource utilisation at about 95%
resource load. Summarising this example it is worth adding
that a user may want to add variable importance as to what
number of CPU Nodes to use, adding extra correlation to the
Business Value List and combining therefore this example
and the example described in Section 3.3.

3.5 Examplewith variable Bandwidth

The next example considers the communication speed be-
tween the working nodes. For example, for message passing
intense applications a 32-processor machine is likely to per-
form better than a Grid cluster, which aggregates 32 indi-
vidual nodes of comparable power spread across the world.
As in the previous examples, let us define the relevant SLOs:

Universal Value: Bandwidth between the nodes, B,

SLO: Reserved time for job execution, t, = 52—

CPU
Again, the relation for ¢, can be more complex than that.
The more detailed the description, the better service, in gen-
eral, can be achieved. Combining this example with the
examples described in 3.4 and 3.3 increases the vector of
options available to the Resource, making value added au-
tonomous services more feasible.

4. EXPERIMENTSAND RESULTS

This experiment refers to the example described in Section
3.4. We choose two metrics: the average job rejection rate
and the average number of renegotiations per job request.
These metrics will be used to evaluate the negotiation ef-
ficiency of the system that uses extended WS-A compared
to that of normal WS-A, both with respect to the job load.
The model description and relevant details follow.

Two parties are involved in the SLA, the User and the Re-
source. The Resource schedules jobs using a single iteration
Earliest T, -Deadline First algorithm. Its availability is 64
working nodes over 147 virtual hours. The User always gen-
erates 340 job requests. At least one configuration for the
set of all 340 jobs exists, by which jobs can be scheduled on
the Resource with 100% utilisation, so that 100% of SLAs
are satisfied with zero idle resources during the availability
period.

When the submission is successful, an SLA is formed with
the SLOs: Ty, Ty, Nyp,, and t,. Other guarantee terms
(including BVL) are omitted in this experiment for simplic-
ity. Upon its creation, each SLA describes ¢, as a function
of N, so that the product of these two, A, is always con-

cPU)?
stant, t,, A__ A, varies between SLAs with an average

Ng
value of 21.85 for the set of 340 job requests. Only the cases

Article 12

with the whole values of N, and ¢, are considered. For
example, for A = 24 the relation can produce only 7 paired
options (option: N,,,, = 1 is not considered). Depending
on the value of A, the number of options vary from SLA to
SLA with the average number of options being below 5.

In the first scenario, the User attempts to submit a job,
constrained by the criteria mentioned earlier, one by one to
the Resource. If the Resource is able to fit the job, then an
SLA is formed, in which all SLOs are constants. N, is al-
ways chosen to be the highest possible for the particular job,
but not higher than the Resource size (64). If the Resource
refuses to accept the job, it is completely discarded. This
scenario represents job submission using a normal SLA.

The second scenario differs from the former in that it uses a
function to describe ¢, in which only whole multiplicands
are allowed with limitations on Ng,, = {2,3,...64}. The
initial configuration in this case also starts with the highest
possible value of N, for the job. However, if the Resource
cannot accept the job with these parameters it simply tries
another configuration from the SLA. This scenario repre-
sents a job submission using an SLA with SLOs defined as
functions, but in this specific example there is only one SLO
(tp) that is described in such a way, and the number of pos-
sible options generated from this is very limited. In real life,
t,, is more fine-grained than that of the simulation, resulting
in more options for the relevant SLO (see Section 3.4).

In Figure 2, we present two curves that were obtained using
the scenarios mentioned. The values are averaged over 5, 000
experiments. As we can see from the figure, the scheduling
algorithm begins to struggle with a density of jobs higher
than 90% rejecting some of the requests as a result. In
the case when the SLA describes terms as fixed values, the
Resource rejects a higher number of jobs, on average, than
that of the extended SLA. The difference is 11.66% at its
widest point of 95.88% of submitted jobs. It is anticipated
that the difference in the rejection rate would increase as
the number of configurations per SLO continues to increase.

Let us consider a third scenario in which the Resource rene-
gotiates an SLA before cancelling the job. Each renegotia-
tion produces another set of SLOs. The job set is the same
as in the second scenario. The only difference is that the
Resource must contact the User each time the next pair of
SLOs is used.

Figure 3 shows the dependence of the average number of
renegotiations per job on the percentage of submitted jobs.
The number of renegotiations increases as more jobs are
submitted to a highly loaded resource. This value remains
at 1 at any resource load, when the extended SLA is used,
because the Resource has all the information in the first in-
stance and does not require additional renegotiations. The
number of renegotiations levels off at the value of the average
number of configurations in SLA, which was anticipated. As
the Resource struggles more to fit a job it runs through all
possible configurations before giving up. It is obvious that
the number of renegotiations, limited in this simulation, may
potentially reach large numbers, rendering the entire rene-
gotiation concept useless. In real life, the number of options
can progress from a limited set to infinity for each guarantee

100

Rate of Rejected Jobs:
90 -

using normal SLA

- — — using extended SLA
80 -

70 3
60 -
50
40 -

30

The Persentage of Rejected Jobs, %

20 -

T T
84 86 88 920 92 94 96 98 100
The Persentage of Processed Jobs, %

Figure 2: The rate of cancelled job requests depend-
ing on the percentage of jobs submitted. The job
submission using extended SLAs (dashed line) pro-
duced less rejected jobs at high resource load, com-
pared to the normal SLA scenario (solid line).

5.0

4.5

4.0

354

3.04

254

2.04

The Average Number of Negotiations per Job

0.54

0.0 T T T T T T T
84 86 88 90 92 % % 98 100

The Persentage of Processed Jobs, %

Figure 3: The rate of negotiation attempts depend-
ing on the percentage of jobs submitted.

term, as well as more guarantee terms can be represented
as analytical functions of other guarantee terms. All this
could potentially increase the overall efficiency if it was not
for a dilemma associated with renegotiation expenses. Cur-
rently, this issue is addressed by making a compromise; in
this, only a limited number of renegotiations is allowed be-
fore it becomes too expensive. This approach automatically
cuts off a growing number of more sophisticated scheduling
techniques which could be adopted to the problem of job
management and scheduling on grids.

5. CONCLUSIONS

We argued the case in which suggested extensions to the
standard WS-Agreement were discussed. These include in-
troduction of universal variables and common functions and
extending guarantee terms to be described as analytical func-
tions of universal variables, common functions and/or other
guarantee terms. We showed, using a simple experiment,
that even a little flexibility in the Agreement, defined as the
function of only one guarantee term, t,, improves the over-

Article 12

all system performance by over 10%. The situation is bound
to be improved when the number of configuration options
in the SLA approaches infinity, something that it would be
possible to define with the extended WS-A proposed in this
paper.

We believe that such a form of WS-Agreement not only
does it produce visible benefits to the current job manage-
ment models, but it may also encourage new service models
to emerge, especially in the area of value added and au-
tonomous services. Summarising this section we outline the
following benefits offered by the extended WS-Agreement
proposed in the paper:

(1) Reduction in the network traffic associated with the
negotiation of a service.

(2) Reduction in the user-service interaction, due to increase
of the autonomy of the process, which consequently improves
the quality of the service (at least for the job submission).

(8) The extended WS-Agreement, allows both new optimi-
sation algorithms and those used for other problems to be
applied in job scheduling and service management in gen-
eral.

(4) The Extended WS-Agreement could support a larger
variety of services, especially commercial services geared to-
ward automation and value added approach.

(5) The extensions fit within the existing WS-A framework.

Acknowl edgement:

This research has been partially funded by EPSRC (grant
reference GR/S67654/01) whose support we are pleased to
acknowledge.

6. REFERENCES
[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Agreement-based Grid Service Management
(OGSI-Agreement). IBM Corporation, 2003.

[2] A. Andrieux, A. Dan, K. Keahy, H. Ludwig, and
J. Rofrano. Negotiability Constraints in
WS-Agreement. In Version 0.1, Document to
GRAAP-WG Meeting, Argonne, IL, 26-27 Jan, 2004.

[3] J. Austin, M. Fletcher, and T. Jackson. Distributed
Aero-Engine Condition Monitoring and Diagnosis on
the GRID: DAME. In COMADEM, Cambridge, UK,
23-24 Aug, 2004.

[4] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and
M. Xu. Agreement-based Grid Service Management
(OGSI-Agreement). In Global Grid Forum,
GRAAP-WG Author Contribution, 12 Jun, 2003.

[5] K. Czajkowski, I. Foster, C. Kesselman, V. Sander,
and S. Tuecke. SNAP: A Protocol for Negotiating
Service Level Agreements and Coordinating Resource
Management in Distributed Systems. In JSSPP, pages
153-183, 2002.

[6] A. Dan, K. Keahy, H. Ludwig, and J. Rofrano.
Guarantee Terms in WS-Agreement. In Version 0.1,
Document to GRAAP-WG Meeting, Argonne, IL,
26-27 Jan, 2004.

[7] M. D’Arienzo, A. Pescape, S. P. Romano, and
G. Ventre. The service level agreement manager:
control and management of phone channel bandwidth
over Premium IP networks. In ICCC ’02: Proceedings
of the 15th international conference on Computer
communication, pages 421-432, Washington, DC,
USA, 2002. International Council for Computer
Communication.

[8] C. Dumitrescu and I. Foster. GRUBER: A Grid
Resource SLA-based Broker. In EuroPar 2005,
Lisbon, Portugal, 2005.

[9] K. Ecker, D. W. Juedes, L. R. Welch, D. M. Chelberg,
C. Bruggeman, F. Drews, D. Fleeman, D. Parrott, and
B. Pfarr. An Optimization Framework for Dynamic,
Distributed Real-Time Systems. In IPDPS, page 111,
2003.

[10] R. Horst and P. M. Pardalos. Handbook of Global
Optimization. Kluwer, Dordrecht, 1995.

[11] J. O. Kephart and D. M. Chess. The Vision of
Autonomic Computing. Computer, 36(1):41-50, 2003.

[12] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao.
Feedback Control Real-Time Scheduling: Framework,
Modeling, and Algorithms. Real-Time Systems,
23(1-2):85-126, 2002.

[13] H. Ludwig, A. Keller, A. Dan, R. P. King, and
R. Franck. WSLA Language Specification. IBM
Corporation, 2003.

[14] L. Markov. Two Stage Optimization of Job Scheduling
and Assignment in Heterogeneous Compute Farms. In
FTDCS, pages 119-124, 2004.

[15] D. Mobach, B. Overeinder, and F. Brazier. A
Resource Negotiation Infrastructure for Self-Managing
Applications. In Proceedings of the 2nd IEEE
International Conference on Autonomic Computing
(ICAC 2005), Seatle, WA, 2005.

[16] R. Sterritt and M. G. Hinchey. Why Computer-Based
Systems Should Be Autonomic. In ECBS, pages
406-412, 2005.

[17] V. Yarmolenko, R. Sakellariou, D. Ouelhadj, and
J. M. Garibaldi. SLA Based Job Scheduling: A Case
Study on Policies for Negotiation with Resources. In
AHM?2005, Nottingham, UK, 20-22 Sep, 2005.

Article 12

