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(V) Tt in Range 3 and T in Range 2 

(1) cp = 0.2318 + 0.1040 X 10~*T + 0.7166 X 10" 8 r 2 

(2) T = cp/[cp - (R/J)} 

(3) M2 = (27) [(0.22147^ + 0.1760 X lO~*Tt
2 - 0.1258 X 

io-87y) - (o.23igr + 0.0520 x io- 4 r 2 + 
0.2388 X 10-8T*)]/7RT 

(4) p/pt = (r/i7oo)3-389 x (i7oo/r,)3-229 x 
exp[(2.753 X 10-8)7V - (5.134 X 10-*)Tt + 0.7932] X 

exp[(1.516 X 10"4)r + (5.224 X 10~8)T2 - 0.4087] 

(5) p/pt = (r/i700)2-380 x (1700/r,)2-229 x 
exp[(2.753 X 10-8)r,2 - (5.134 X lO" 4 )^ + 0.7932] X 

exp[(1.516 X 1 0 " 4 ) r + (5.224 X 10~8)r2 - 0.4087] 

(VI) Tt in Range 3 and T in Range 1 

(1) cp = 0.2393 

(2) T = cp/[cp - (R/J)} 

(3) M2 = (2J) [(0.22147^ + 0.1760 X l O " 4 ^ 2 -
0.1258 X 10-82V) - 0.2S93T]/yRT 

(4) p/pt = (i7oo/r,)3-229 x (r/4oo)3-491 x (0.00535) x 
exp[(2.753 X lO"8)^2 - (5.134 X lO" 4 )^ + 0.7932] 

(5) P/Pt = (1700/r,)2-229 x (r/4oo)2-491 x (0.0228) x 

exp[(2.753 X 10~*)Tt
2 - (5.134 X 10~*)Tt + 0.7932] 
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On Flat Plates and Detached Shock Waves 

S. S. Sopczak 
Aerodynamics Department, Goodyear Aircraft Corporation, 

Akron, Ohio 

December 5, 1958 

RECENT UNDERGRADUATE THESIS work by the author at the 

University of Detroit leads to the possible modification of 
Serbin's Eq. (5) of reference 2. This modification would make 
possible the prediction of the shock detachment distance for any 
flat-plate configuration. As stated in reference 2, the shock 
detachment distance for a disc can be determined by the following 
formula: 

1.03/(K ~ 1 ) 1 / 2 A/R (disc) 

where A is the detachment distance, R is the radius of the disc, 
and K is the densit}^ ratio across a normal shock at the free-
stream Mach Number. 

The modified formula is: 

A = 0.581 [A/(K ~ l ) ] 1 / 2 (flat plate) 

where A is the area of the flat plate. This modified formula was 
verified by the test results obtained on flat plates of a circular, 
square, and rectangular configuration. The tests were limited 
to a Mach Number of 2.82, and the aspect ratios of the flat plates 
were less than 1.5. 
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On the Flow of a Hydromagnetic Fluid Near an 
Oscillating Flat Plate 

R. S. Ons and J. A . Nicholls 
Department of Aeronautical Engineering, University of Michigan, 

Ann Arbor, Mich. 

December 8, 1958 

THE IMPULSIVE MOTION of an infinite flat plate in a viscous, 
incompressible magnetic fluid in the presence of an external 

magnetic field has been discussed by Rossow.1 In this note, 
his method is extended to cover the case of the flow near an in
finite flat wall which executes linear harmonic oscillations parallel 
to itself. The velocity profile will be found for the two cases: 
(1) the magnetic lines of force fixed relative to the fluid, (2) the 
magnetic lines of force fixed relative to the plate. 

MAGNETIC FIELD F I X E D RELATIVE TO THE FLUID 

Let x denote the coordinate parallel to the direction of motion 
and y the coordinate perpendicular to the wall. At time t < 0, 
the fluid, plate, and magnetic field are assumed to be stationary 
everywhere. The plate starts to move at time t = 0. 

The flow may be approximately described by the following 
differential equation :l 

(du/dt) + (<T5O7P) « = v(b*u/by2) (1) 

where: u = x — component of fluid velocity; BQ = external 
magnetic field directed perpendicular to the plate; a = con
ductivity of the fluid; v = kinematic viscosity of the fluid. 
Bo, a, and v are assumed to be constant. The boundar}^ condi
tions are: u = UQ cos nt&ty = 0, t > 0; and u = finite at y = oo f 

t > 0 . 
The Laplace transform of the velocity u is defined as 

• / ; 
' udt 

(2) 

Applying the Laplace transform to Eq. (1), gives 

v(d2u/dy2) — (s + m)u = 0 

where m = aB0
2/p. 

The solution of Eq. (2) is given by 

u = C1(s)exp[-y{(s + m)/v}1^] + C,(s) exp[y{(s + m)/^2] 

Since u = finite at y = c°, C2M is chosen to be zero. The inte
gration constant Ci(s) is found from the boundary condition at 
y = 0—i.e., on the plate—giving 

Ci(s) = uQs/(s2 + n2) 

Hence, 

u(y, s) = {u0s/(s2 + n2)} exp [-y{(s + m)/v)1/2] (3) 

Eq. (3) may now be inverted by means of the inversion theorem:2 
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FIG . 1. Velocity profile with magnetic field fixed relative to the 
fluid. 
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u / u 0 

FIG. 2. Velocity profile with magnetic field fixed relative to the 
plate. 

to Eq. (1) may be expressed by 

u(y, t) = u0 exp { -y[{l/2i>)({ni2 + n2)1/2 + m)]1/2} X 
cos {nt - y[(l/2v)((m2 + n2)l/2 - m)]1/2} (5) 

I t is to be noted that if tn = 0—i.e., with no external magnetic 
field—the above expression reduces to the well-known solution 
for the ordinary viscous fluid flow problem.3 Fig. 1 represents 
qualitatively this motion for several instants of time and for var
ious strengths of the external magnetic field where a = y(n/2v)1/2 

and (3 = m/n. 

MAGNETIC F IELD F I X E D RELATIVE TO THE PLATE 

In this case, the magnetic field is moving and the fluid is 
initially at rest, so the relative motion must be accounted for. 
Hence, the relation analogous to Eq. (1) is 

(du/dt) + m(u — UQ COS nt) = v(d2u/dy2) (6) 

u(t) = \l/2iri\ lim im I estu(s) ds (4) 

The boundary conditions are: u = uQ cos nt at y = 0, t > 0; 
and u = finite at y = co t t > 0. Application of the Laplace 
transform to Eq. (6) gives 

After a straightforward but lengthy computation, the solution vd2u/dy2 = (m + s)u • 

The solution of Eq. (7) is given by 

muQ{s/(s2 + n2)} 

u{s, y) 
(s -f- m) s2 -f- n2 (s + m) (s2 -f ,[«.,4,(^ntw,.,{,(^)"i] 

(7) 

(8) 

From the boundary conditions: C2(s) = 0, and G(s) = s/m. 
Hence, 

ii(y, s) = muo 

The first term on the right-hand side may be inverted by ele
mentary methods to give 

(s -f- m) (s2 + n2) 

UQ S 

+ 

(s + m) (s2 -f- n2) exp \-> <;-¥)! 
mu0s 

(9) 
\(s + m) (s2 + n2) 

muo 
\ -

m2 + n2 m cos nt exp {—mt) 

The second term is inverted by means of the inversion formula, 
Eq. (4), and the final solution to Eq. (6) is expressed by 

u(y, t) = 
UQ 

m2 + 
[m cos nt + n sin nt] + 

n cos < w£ — y — ( (m2 + w2)1//2 — m J 

(m2 + n2)1/2 

l/2\ 
— w sin -{ nt - y - ( ( w 2 + w2)1 / 2 )]'!] (10) 

Fig. 2 illustrates this motion for various strengths of the external 
magnetic field and for several instants of time. Again a = 
y(n/2v)1/2 and /3 = m/n. 

In both figures, the curves for nt = w and STT/2 are not in
cluded due to the complete symmetry (Fig. 1) and almost com
plete symmetry (Fig. 2) with respect to the ordinate. 
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the modified form 

C'/C>~a* = S i " 2 S (1) 

together with the value of CPmaz that is derived from the normal 
shock relations. (The angle 8 is the local inclination of the body 
surface.) If the left-hand and right-hand terms of Eq. (1) are 
divided, respectively, by CPmax and by its equivalent for blunt 
noses Cv sin2 8 , there results 

i max max' 

Lp/^P, sin2 5/sin2 8n (2) 

General ized-Newtonian Theory 

E. S. Love 
Head, Hypersonic Tunnels Branch, 

Langley Research Center, NASA, Langley Field, Va. 

January 6, 1959 

LEES 1 has shown that in application to blunt-nose bodies an 
improvement upon Newtonian theory is realized by use of 

This equation will be referred to as the generalized-Newtonian 
theory. 

For bmax = 90° the utility of the generalized-Newtonian theory 
is obviously well established since in this case it reverts to Lees1 

blunt-nose modification. For 8max < 90° (pointed-nose bodies) 
the generalized form is equally useful, and in addition to exhibit
ing advantages over the Newtonian theory (Cp = 2 sin2 8), it 
tends to unify the results for body shapes in general at hyper
sonic speeds. To illustrate, Fig. 1 compares exact solutions 
(including rotational effects) for several ogives with the general
ized-Newtonian theory and the Newtonian theory. The exact 


