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On the flow of polythermal glaciers
I. Model and preliminary analysis
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Received 5 December 1977)

Many interesting phenomena have been observed in the flow of glacial ice
masses. In order to establish a rational theory for the study of these phe-
nomena, we develop here a detailed continuum model for the flow of poly-
thermal (i.e. partially cold and partially temperate) glaciers in wide
mountain valleys. As a first step in the analysis of the nonlinear double
free boundary problem posed by this model, the structure and stability of
solutions are studied in a particular very simple limiting situation. Further
analysis is deferred to part II of the paper.

1. INTRODUCTION

On a time scale of years, glacial ice flows like an incompressible non-Newtonian
fluid, a typical velocity being 100 metres per year. The flow is driven by gravity and
is supplied by the accumulation of new ice formed on the glacial surface from packed
fallen snow. In general, climatic conditions will be such that over certain regions of
the surface (typically those at lower altitudes) the iceis ablating rather than accumu-
lating and for these regions the ice accumulation rate is simply considered to be
negative. Glaciers will also in general be polythermal, i.e. consist of two zones,
‘cold’ and ‘temperate’, in which the ice is respectively below and at the melting
point. Particular thermal limits are the so-called ‘polar’ and ‘temperate’ glaciers
which consist almost exclusively of ice in one or the other of these two states. In
the cold zone, the ice is basically frozen to the bedrock. When the ice becomes
temperate, however, it can slide over the bedrock by maintaining a thin water film
there which lubricates the flow. In this case, the ice experiences a frictional drag as it
flows over the underlying bedrock undulations.

Many interesting phenomena have been observed in the flow of glacial ice masses.
Of those that occur on a global scale, one should mention slow ‘kinematic’ waves,
fast ‘seasonal’ waves and ‘surges’. The kinematic waves appear as undulations in
the glacial surface which travel along at about three to four times the surface speed
of the ice (see, for example, Nye (1960) and the references listed there). The seasonal
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218 A. C. Fowler and D. A. Larson

waves are waves of velocity which travel at about 20 to 150 times the surface speed
of the ice (Deeley & Parr 1914; Hodge 1974). Surging valley glaciers exhibit periodic
motions of a relaxation oscillation type. This oscillation consists of two phases: an
active (or surging) one, when the ice velocity increases by an order of magnitude and
a substantial part of the glacier travels down the valley to lower altitudes, and a
quiescent one, when the elongated glacier withdraws slowly up the valley towards
its original pre-surge state. These phases typically last about one to two years and
30-40 years respectively (Meier & Post 1969). Of the three flow phenomena men-
tioned here, the first has been studied by Nye (1960, 1963) using Whitham & Light-
hill’s (1955) theory of kinematic waves. His analysis predicts wavespeeds which are
similar to those actually observed. For seasonal waves, there is no quantitative
theory which can predict the high propagation rates of velocity disturbances. A
similar difficulty besets the study of surges, although for this case the physics is
much better understood (Weertman 1969) and various numerical models (e.g. Budd
1975) have exhibited surge-like oscillations, the periods and amplitudes of which are
similar to those observed. It remains to be shown, however, that one of the various
postulated physical theories (e.g. Robin 19535, 1969; Weertman 1969) can mathe-
matically predict the occurrence of surges.

In this paper, we develop a self-consistent, non-dimensionalized continuum
model for the flow of polythermal glaciers in wide mountain valleys in order to
establish a rational theory for the study of the above-mentioned (and other) flow
phenomena. In so doing, we have minimized the use of semi-physical arguments and
empirical laws of the type that often appear in presently existing glacier flow models.
In §2 we introduce the full set of differential equations and boundary conditions
which serves as a basis for our flow model. In §3 these equations and boundary
conditions are made non-dimensional in a consistent manner and the important
dimensionless parameters of polythermal ice flow are identified. This provides us
with a rational basis for neglecting numerous terms in the full model set of equations
and boundary conditions. In §4 this procedure is used to develop a vastly simplified
‘reduced’ flow model which we expect to be a reasonable approximation to the full
model. Itis thisreduced model that will be analysed in detail in Part II of this paper.
In §5 we begin this analysis by considering the structure and stability of solutions in
a particular limiting case where the viscosity is independent of the temperature and
the glacier is completely cold. In §6 we summarize the results of the present paper.
For ease of reference, a nomenclature is given in §7.

In the past, a variety of models have been proposed to explain certain features of
the flow (e.g. Nye 1960; Budd 1975). The most detailed analytical model is that of
Grigoryan, Krass & Shumskiy (1976), who consider a simpler model set of differen-
tial equations and boundary conditions (in curvilinear coordinates), non-dimen-
sionalize this set, and then qualitatively discuss the behaviour of solutions to the
resulting set in the case where the heat transport by convection dominates that by
conduction. It should be emphasized that there are numerous fundamental differ-
ences between their work and that presented here. For example, as will be made
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clear in § 2 here, we provide a more complete set of boundary conditions and, follow-
ing Lliboutry (1976), we allow the stress—strain rate relationship for temperate ice
to be a function of its moisture content. Secondly, our non-dimensionalization of the
model is determined explicitly by the dimensional parameters actually present in
the problem and is therefore more consistent. Thirdly, we show how to reduce our
model to a much more manageable (though still complex) form, which enables us in
§5 and part II to carry out detailed mathematical analysis and obtain quantitative
as well as qualitative results.

2. THE BASIC MODEL

Before describing the general model, we would like to emphasize that a table of
nomenclature is given in § 7. This table may be of considerable use to the reader in
view of the fact that quite a large number of symbols are introduced in this paper.

atmosphere

Y=Yy (,2)

cold ice zone
(T<T)

y=n(x,t)
Xplt)

/ temperate
ice zone

y=h(x) (T=Ty)

Ficure 1. Typical polythermal glacier profile.

The important physics of polythermal glacial ice flow has been outlined in §1;
further details may be found in Paterson (1969) and will be presented as required in
the remainder of this paper. In wide mountain valley glaciers, the flow is essentially
two-dimensional, and so we restrict attention here to glaciers whose profiles are the
same for all longitudinal sections; a typical geometry of such a profile is shown in
figure 1. We take a coordinate system a sshown where the x axis makes an angle arc-
tan e with the horizontal and ¢ is the mean bedrock slope. The origin may be chosen
arbitrarily. We denote by y = #(x, t) the top surface, by y = k() the (given) bedrock
profile, and by y = yy(x, t) the surface dividing the cold and temperate zones, which
will be called the melting surface. On this surface 7' = Ty, where T' and 7y are the

8-2
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local ice temperature and pressure melting temperature respectively. The inter-
sections of the melting surface with the atmosphere and the bedrock are denoted by
xp(t) and zy(t) and will be called the top and bottom melting points respectivley.
We denote the ends of the glacier by x4(f) and x4(?), 2, being the ‘head’ and g being
the ‘snout’. :

Let ¢ = (g4, ¢5) = (u,v) be the velocity field and p the pressure in the ice. Then the
continuum equations which represent the conservation of mass and vector momen-
tum in the ice flow are the following ones:

Uy +, = 0,
p[%t+uu:c+vuy] = —px+71x+72y ‘|‘P9'€: (21)
P(”t'*"u”x"‘m’y] = —py+72w"71y*pgl'

Here, letter subscripts denote partial differentiation, p is the (constant) density of
the ice, and g’ = g(1 +€2)2, where g is the acceleration due to gravity. Also, 7, and
7,are the longitudinal and tangential stress deviators and are defined for an isotropic,
incompressible fluid in terms of the stress tensor, [¢;], in the following way:

O-‘ij =

Ty =Ty = —Top, (2.2)

‘“}73'51' + Ty

Ty =Ty = Ty,
d,; being the Kronecker delta.
As a constitutive equation for the cold ice, we assume that the stress and strain
rate second invariants are related by a power law of the following commonly ac-
cepted type (Glen 1953, 1955; Paterson 196g):

ey =Am 1, e= A1, nx3 or 4, (2.3)
where 212 =Ty Ty, 2% = e ey,
1y = —Ogp = € = Uy = — 0y,
e1p = €y = €5 = 3(U, +7,). (2.4)

In (2.4) and throughout this paper, the standard tensor summation convention is
to be employed. In (2.3), 4 is found experimentally to be a function of the tempera-
ture; in common with other authors, e.g. Barnes, Tabor & Walker (1971), we

assume it is of the form
A = Bexp (~Q/RT), (2.5)

where @ is an activation energy, R is the universal gas constant, and B is a constant
which is determined experimentally. Finally, conservation of energy in the cold ice
zone leads to the equation

PONT A uT A 0T = VT +1,5e,, (2.6)

where C, and k are the assumed constant heat capacity and conductivity for the ice.
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In (2.6) we have neglected the change in internal energy stored in the ice as plastic
work.

In the temperate zone, equations (2.5) and (2.6) are not suitable models for energy
conservation and (together with (2.3)) material constitution. In this zone, the heat
produced by viscous dissipation is used to partially melt the ice rather than increase
the temperature, and the presence of trapped meltwater there can significantly
affect the resulting relationship between stress and strain rate (Lliboutry 1976).
Lliboutry indicates that (2.3) is still valid with » ~ 3, and so we adopt the following
equations as appropriate replacements for (2.5) and (2.6) in this zone:

and A = r(w), (2.8)

where w, the moisture content, is defined to be the local mass fraction of water in the
ice, L is the latent heat of melting of ice and »(w) is a rheology-dependent funetion
which must be determined experimentally. In (2.7), we have omitted certain terms
in Lliboutry’s actual energy equation which arise from the variation of melting
temperature with pressure and salt concentrations, and which appear from his own
work to be negligible. Terms containing 7" and its derivatives are similarly absent
from (2.7). This approximation is justified a posterior: in § 3, where it is shown that 7'
is very nearly 0 °C throughout the temperate ice zone. A more serious and possibly
unjustified omission is the neglect of a term describing the heat transport due to
water flow through the ice (as opposed to convected with the ice). It is felt that the
present state of understanding of glacial hydrology is insufficient to predict on
rational grounds the form that such a term should take for the long time scales of
interest in this paper, and so, rather than attempt an ad hoc description of water
transport, we simply choose to omit this term. The mathematical consequences of
this omission are discussed briefly on page 226 below.

To go with the equations (2.1)-(2.8), we must prescribe a set of initial conditions
and boundary conditions. The initial conditions will be left unspecified, but we
require the following boundary conditions to be satisfied.

1. On the top surface

We specify that (i) the stress tensor is continuous; (ii) the kinematic condition for
a free boundary is satisfied; (iii) over the cold ice zone, the temperature is equal to
the (assumed known) atmospheric temperature. That is,

oyny = —pal@,t)n, (2.9)
dy/dt —v = a(z,t), (2.10)
and T ="T,(x,t) for x < zgp(?). (2.11)

Here, n = (n,,n,) denotes the unit outward normal to the ice surface, d/df is the
material derivative, and p, and 7, are atmospheric pressure and temperature
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functions, which are considered known. For reasonable climates, T, is typically
monotonic increasing in x for each fixed ¢; we shall generally assume this to be the
case. Also, we shall assume for convenience that p, is constant; this assumption in
no way limits the results presented here. More importantly, a(x,¢) denotes the
top surface ice accumulation (or ablation) rate per unit length, which depends in a
complicated way upon the local weather conditions but which is also considered
known. A graph of the annual average of this function against z is shown in figure 2
(after Nye 1963). We shall assume that this graph is a typical one in the sense that
a(z,t) is monotonically decreasing in x forx > x,(t) and identically zero for & < z,(t).
The point where a(z,t) = 0 and the surface ice begins to ablate is denoted by x(t)
and is called the ‘equilibrium point’.

average
value
of a(x,t)

j

xolt) x,t) x

Ficure 2. Typical ice accumulation function.

2. Along the bedrock surface

The development of a suitable set of boundary conditions for this surface requires
more consideration than did that for the top surface. As mentioned earlier, tem-
perate ice slides over its bedrock, but the corresponding flow is not ‘inviscid’
because the ice experiences a resistive drag near the bedrock due to the small-scale
roughness of the bedrock. In attempting to develop flow field boundary conditions
which adequately represent this flow behaviour, it is appropriate to consider the
flow as consisting of two parts, an outer one and an inner one, as in normal boundary
layer theory (Batchelor 1967) and as illustrated in figure 3.

The detailed small-scale flow of the ice over the roughness of the bedrock profile is
essentially contained in the inner flow layer, while the flow in the outerregion appears
to be that of an ice mass sliding over a smoothed-out form of the bedrock profile.
The inner flow ‘feels’ the outer flow as a uniform shearing flow at infinity, and the
outer flow ‘feels’ the inner flow as a tangential stress at the smoothed bedrock
boundary. This formulation is explained further by Fowler (1977) and may be
made more precise by using the ideas of matched asymptotic expansions (Van
Dyke 1g975; Cole 1968). The basic mathematical requirement is that the limiting
velocity and stress fields of the outer flow on the smoothed bedrock be equal to the
limiting velocity and stress fields of the inner flow far from the rough bedrock. In
principle, one can therefore determine the basal shear stress for the outer flow in
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terms of the basal sliding velocity from an examination of the inner flow problem;
thus appropriate bedrock boundary conditions for the outer flow are the following :

e = f(qr); O = — Wylz, t). (2.12)

Here, N and T subscripts refer to components of the stated variables which are
normal and tangential to the smoothed bedrock surface. In the second condition,
War(z, t) represents a suction per unit length due to removal of melt water from the
bedrock surface. Actually (Lliboutry 1968), typical values for Wy(z, t) are orders of
magnitude less than those for |a(z, t)|, and so henceforth we simply set Wy (z, t) = 0.
Several authors (Weertman 1957, 1964; Lliboutry 1968, 1975; Nye 1969, 1970;
Kamb 1970; Morland 1976; Fowler 1977) have studied the problem of determining

~~. outer
flow
region

smoothed
form of

h(x)

Ficure 3. Typical smali-scale flow geometry.

the functional form of f(-). In this paper, we leave it arbitrary, restricting it only
minimally in the discussion below. We note that the sliding law in (2.12) cannot be
expected to retain its simplistic form (i.e. where f depends only upon ¢g) in regions
where the ice thickness and the inner flow layer thickness are of the same order of
magnitude. Since the only temperate ice region of this type that will be encountered
in our study consists of a few metres of ice at the very snout of the glacier, this
inadequacy is ignored here. A detailed discussion of the flow problem near the snout
is presented by Fowler (1977).

As mentioned earlier, cold ice freezes to its underlying bedrock; thus the natural
flow field boundary conditions in this case are

u=v=0, (2.13)

Since realistic sliding laws have f(0) = 0, (2.12) and (2.13) predict a discontinuity in
either the stress or the velocity at the bottom melting point. In practice, such a
discontinuity will not occur since the no-slip conditions in (2.13) become invalid
when the temperature is near the pressure melting point. This is because the ice will
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start to slide when the pressure variation on the bedrock is sufficient to cause a small
part of the basal ice to reach the pressure melting point, so that the ice becomes
lubricated in patches (cf. Robin 1976). It is therefore appropriate to replace the
conditions in (2.13) by the second condition in (2.12) and a temperature-dependent
sliding law of the following type:

qr = Flrye, T), (2.14)

where, for any given 7y and Ty, F depends on T' < T, as indicated in figure 4.

F (TNT,T) for fixed

‘} Typ and Ty
/-F (Tr T
Ty Ty T

Ficure 4. Assumed form of the glacier sliding law.

Here T, is a constant which is independent of 7y and near 7. As T, > Ty, the
sliding law expressed in (2.14) tends to the limits given in (2.13) and (2.12) for
T < Ty and T = T}, provided one can invert f(-) to define 7y implicitly in terms
of ¢r. However, we shall see in Part Il that the behaviour of solutions to our model
problem in this limit is not the same as that when T, = Tjy; clearly, it is the former
case that is of physical interest and should be considered here.

Along the bedrock surface of the cold ice, we also assume that a geothermal heat
flux supplies the ice with heat at a rate @ which depends on temperature in a known
way. Following the discussion of the previous paragraph, we assume that this
dependence is roughly as illustrated in figure 5. That is, in regions where T' < 7, the
heat flux is relatively constant (= /) while in regions where 7;, < 7' < 7} and the
bedrock is beginning to be lubricated, part of the natural bedrock heat flux is used up
in this Iubrication process and the cold ice ‘feels’ a heat flux which is monotonically
decreasing in 7'. The appropriate thermal boundary condition in this case is then

where 0T /0N = n-VT. It should be noticed that (2.15) contains a source term due
to viscous heating at the bedrock surface. This term vanishes for 7' < 7, but pro-
vides a non-zero contribution to the heat flux when 7}, < T' < Tj;. Let us denote by
wo(t) and xy(t) the points where T' = Tj, and where T first equals 7};. For x > x,(t),
we specify that 17" = Tj; until 07'/0N reaches the value which is prescribed on the
melting surface (see below). At this point x = xy(t), the melting surface ‘breaks
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away’ from the bedrock and the basal ice becomes temperate. The final set of bed-
rock surface boundary conditions that we prescribe are then the following:

In=0, gp=F(rygT),
onpgr—kOTJON = —D(T) for =z < wy(l),
T="Ty for uy(t) <z <ay). (2.16)

A formal derivation of the thermal boundary conditions and their relation to the
inner and outer flows discussed previously is given by Fowler (1977).

A &(T) for fixed T,

Ficure 5. Assumed form of the geothermal heat flux function.

3. Along the melting surface

We specify that all dependent variables in the model problem together with the
local heat flux vector ( — kEVT) must be continuous. In particular, we specify that the
moisture content of the ice is zero and that the temperature and pressure satisfy
the Clausius-Clapeyron condition. The boundary conditions along this line are
therefore the following:

all variables and 07'/ON are continuous across the line, (2.17)
w =0, (2.18)
and T =Ty=Ti—0(p—p4) (2.19)

where 6 is the Clausius—Clapeyron constant for water, and T} is the freezing point of
water at atmospheric pressure.

Let us note that, in writing the temperate energy equation (2.7) and the boundary
condition (2.18), we have tacitly assumed that the melting surface yy(x) as illus-
trated in figure 1 is a monotonically increasing function of x or, more specifically,
that the direction of the streamline of the flow at all points along the melting surface
is from the cold to the temperate ice. This assumption may be written in the form

dly—yu(z, )]/t 0 when y=yy if T <Ty in yyt+. (2.20)

Here, yy + indicates ice regions just above and just below yy, and the + (- ) sign
is associated with the < (> )inequality. (2.20) can be written in the form

V=Y — WYy, SO0 on y=yy if T <Py in yyt. (2.21)
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The importance of this assumption is indicated by the following fact. The temperate
energy equation (2.7) is hyperbolic, and has asits characteristics precisely the stream-
lines of the flow. Furthermore, the form of (2.7} implies that w increases monotoni-
cally along these characteristics. If (2.20) does not hold at any point on ¢y, then the
streamline through this point emanates from the temperate zone, within which w is
inereasing (from a minimum of zero) and so must be strictly positive. This contra-
dicts the boundary condition prescribed in (2.18), and implies that the model pre-
sented here with this boundary condition has no solution. A typical example of such
a situation is depicted in figure 6.

Fieure 6. Possible melting surface geometry when no solution of (2.7) can exist. Along the
dotted streamline, w must increase monotonically from zero at A and hence cannot be

zero at B, as required by (2.18).

In cases where (2.20) is satisfied, this ill-posedness of the model problem dis-
appears. In general, however, (2.20) will not be satisfied, but the resulting contradic-
tion can be remedied by the inclusion in (2.7) of some suitable small diffusion-like
term, e.g. one of the form vV?w, v < 1. In this case it is also necessary to prescribe
suitable moisture boundary conditions on the other parts of the temperate ice zone
boundary. However, it is possible to show, using standard boundary layer argu-
ments (e.g. Cole 1968), that the presence of a small non-zero v will not affect to
leading order the solutions with v = 0, provided we correctly pose our model prob-
lem by replacing the boundary condition (2.18) by

wly=ym =0 when [v—yy—uyp,] ly=ym 50
f T<Ty In yyz. (2.22)

The details of the arguments are beyond the scope of this paper, and are not included
here. (We would for example require a more detailed knowledge of the form of
r(w), and of the basal sliding process.)

We feel that it is reasonable and meaningful to consider the » = 0 model with the
boundary condition (2.22), and so we proceed on this basis.

In summary, then, our basic model for the wide valley flow of polythermal
glaciers consists of the equations (2.1) to (2.8) and the boundary conditionsin (2.9) to
(2.11) and (2.16), (2.17), (2.19) and (2.22).
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3. THE SCALED MODEL

The basic polythermal glacier flow problem posed in the last section is a nonlinear
one of double free boundary type and of course too difficult to solve explicitly. In
this section, we begin the process of rationally reducing the problem to a simplified
form which can be profitably analysed by scaling it and identifying the important
dimensionless parameters which occur naturally within it.

wy

xolt) x{t)

Froure 7. A typical flux function.

The non-dimensionalization of the basic problem involves the finding of typical
dimensional quantities to serve as scaling factors for the various dimensional
variables in the problem. There are at least two natural choices for such scale factors,
namely, V as a typical y velocity value, where V is the maximum (or a typical) value
of a(z,t) over its domain of definition, and T} = |0,, — T%| as a typical temperature
difference value, where 6, is the time average value of T at the head of the glacier.
It also seems rather natural to scale the z coordinate in such a manner that, when
non-dimensionalized, x derivatives of a(x,t) (and E(z)) are all of numerical order
one, but we shall not do this here. Instead, noting from foresight that the « integral
of a(x, ) will play amuch larger role in the ensuing analysis of our model problem than
will the z derivatives, we choose to scale z in such a manner that the following ‘flux’
function and its first « derivative become order one under this scaling:

sz, §) = f m(t) alE, 1) dE. (3.1)

From figure 2, a typical s(z, t) profile for fixed ¢ is as in figure 7. The requirement that
s,(z,t) be order one is automatically satisfied when a(z,t) is scaled with V as dis-
cussed above; then [, our scale for the = coordinate, is to be chosen so that s(x,?)
varies by an order one factor for all ¢ over distances of size . It will become clear later
on that a typical choice for I is the total length of the glacier. We assume here that
/() becomes order one under this scaling; for reasonably smooth landform profiles,
this is not a drastic agsumption.

From (2.3), (2.4), (2.6) and (2.8), the tensor [e;;] depends on derivatives of  and
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v and [,;] depends on [e,;] and either 7' or w. So once we choose scales for y, v and w
we can use these scales in conjunction with those introduced in the last paragraph
for z, v and T to define scales for all variables in our basic model except p and ¢.
For now, let us consider flow phenomena which occur on a convective time scale and
introduce the following scalings for the basic model variables:

x=1%, y=dy, w=Uu, v=7Vs t=(d/V)Ii
yM(x: t) = dgM(‘Tv> t_), h(x) = dz(i’)’ 77(95: t) = d"_?(i’ t_)’
zo(t) = 1Zy(t), wg(t) = 1Tg(), ws(t) = 1Zs(E),
za(t) = @), ay(t) = Zu(f), 24() = IZ,(0),
a(x’ t) = Va(i:, E): 5(51 E) = fw - a(g, t_) dg:
Tolt)
T=T+T,T, w=Ww, p=p,+pydi—7yl+Pp,
Ty =T+ Ty To=Ti+1T Ty=Ti+T,T,, (3.2)

where d, U, W and P are as yet unspecified. As usual, a balance of the terms in the
continuity equation requires that we choose

l
U= (3) a (3.3)
In any real situation, we expect that
5 = (fll) <1 (3.4)

(i.e. we expect the ‘shallow ice’ approximation to be valid); it will be shown below
that in fact this is typically the case. We specify d by requiring that, under the above
scalings, the  momentum equation retains an order one longitudinal gravity in-
fluence term (so that the flow is gravity driven). From (2.2), (2.3) and (2.4), we have

that T, = A-Vny_ g~(n-Din,

u, .
Ty = A-—l/n( y;'" w) e—(n—l)/n

e = §[4uZ + (u, +v,)7]}, (3.5)
and hence from (3.2) and (3.3)

v Qm _
T, =6 [2722};] [24-Vrgg—n-DIn] = §[7]7,,

W
r= | g+ st = 11,
1]
Wi, 25 )2 25,274 é
e = é;l——é [u?7+6'05) +48u5] E[e]e’
A=A 1, (3.6)
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where, as indicated, 4, is to be chosen (in a manner described below) so that 4
becomes an order one function of its argument. In this way, 7, 7, and & also repre-
sent order one functions of their arguments, and so

represent natural stress and strain rate scales for the problem. We then find that the
scaled version of the x momentum equation in (2.1} is the following:

= s py'de _ _Zi = pg'dd = pUd] N

sz + 8 Tlm + [ [T] ] a [ [T] pa: [T] 77:6 - [T] l [ut + uuw + vuy]' (3‘7)
For real glaciers, observations typically reveal that I ~ 10km, d ~ 100 m, U ~
100 m/a and [7] ~ 1 bar (Paterson 1969). Using the value of p given in table 1 one
then finds that a typical glacier flow Reynolds number is given by

_[pva
Re“[w

If we then assume that § < € and P 5 [7], we see from (3.7) (and the definition of
[7] in (3.6)) that gravity will play the desired non-trivial role in the x momentum
equation as long as we chcose to set

2= (%) = (zz0595) - (3.9)

We show below that § < e is a realistic assumption and that for ‘shallow’ ice, where
the pressure field is almost hydrostatic, P < [7] holds. In fact, we shall simply scale
P by writing

] ~ 10" < 1. (3.8)

P = 8[r), (3.10)

and we shall verify a posterior: that such a choice leads to a correctly scaled problem
for p.

It remains to specify 4, and W. From (2.5) and (2.8), there are two basic ways in

which we can choose 4,. As shown in tables 1 and 2, it is typically true that
T

Z = (Tf) <1, (3.11)

and so, from (2.5), the natural choice for 4, in the cold ice zone is the following one:

Ao = Bexp(—Q/RTY). (3.12)

On the other hand, we can formally make (2.8) non-dimensional in a general way by
writing w
A=Ay, 7T (-—W) = Aiemp TW), (3.13)

where A, is chosen so that 7 is an order one function of its (order one) argument.
In this way, 4cpyp is the natural choice for 4, in the temperate ice zone, and, as can
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be inferred from the data in table 2, it is probably the case that A, is some-
what larger than 4., 4. Nevertheless, in this paper we shall be more interested in
interactions between the temperature and velocity fields than between the mois-
ture content and velocity fields, and so for now we shall scale 4 with 4,4 rather
than with Ay,,. In any case, it is not expected that A4 and An+® will differ
drastically, and so, as can be seen from (3.9), a change of 4, from A, to 414
(or vice versa) will hardly affect the other model scales (e.g. d) which depend upon
Ay To define W, let us consider the case of a completely temperate glacier. Then
Ay = Aenp and we require W to be such that the terms in the temperate energy

equation balance. That is, from (2.7) and (3.2),

_ (2do[r]"dY  lge

Since W is independent of 45, we define it by (3.14) in the general polythermal case

also.
TaBLE 1. VALUES OF PHYSICAL CONSTANTS IN THE MODEL

constant approximate value

273.15 K

900 kg m~3

9.8 m g2

2x10° J kgt K-
7Tx 10" J K1 m™! a™?
3.3x10% J kg~

8.3 J mol-1 K1

0.74 % 102 K bar™!

DN OV 4

TarLE 2. ESTIMATES FOR OTHER MODEL CONSTANTS

constant approximate value source
W 0.17 bar—" a—t Glen (1955)
tomp an order of magnitude greater than A, Lliboutry (1976)
" {3.17 (eold) Glen (1955)
3 (temperate) Lliboutry (1976)
Q 6x 10* J mol—? Raraty & Tabor (1958)

A number of the parameters that have appeared in the discussion thus far are
known physical constants which have well established values. These values can be
found in Paterson (196g) and are collected in table 1. Estimates for various other
physical constants appearing in the model are presented in table 2. Values for these
constants are known with much less certainty than are those in table 1, but the esti-
mates given here are considered to be of the correct order of magnitude (Glen 1955;
Raraty & Tabor 1958; Barnes ef al. 1971). The dimensional inputs to the model are
V, 1,1, e and G. These may vary considerably from glacier to glacier, typical values
being as given in table 3. The values in tables 1-3 may now be used to compute values
for the remaining model parameters by means of the various formulae developed in
this section. These values are presented in table 4.
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As mentioned above, these values do appear to be typical; this indicates that our
scalings are indeed appropriate ones. Furthermore, it is clear from tables 3 and 4 that

0 = (d/1)is indeed < 1 and
u= (g) ~ 10-1 < O(1). (3.15)

These order of magnitude statements justify a posteriori the various assumptions
made above. It should be remembered, though, that for any particular glacier a
number of values in tables 2 and 3 may be out by as much as a factor of 10, and so in
the general discussion below we use as few specific numbers as possible.

TABLE 3. TYPICAL VALUES OF INPUT PARAMETERS

parameter value source
14 1mat Paterson (1969)
T, 20 K Paterson (1969)
{ 10 km Paterson (1969)
€ 101 Paterson (1969)
G 1.6x 108 J m~% a—* Paterson (1969)

TaBLE 4. COMPUTED TYPICAL VALUES OF SEVERAL MODEL PARAMETERS

computed
parameter nominal value
d 100 m
U 100 m a—*
7] 1 bar
w 3%

Using the scaling system developed in this section, we may now rewrite the com-
plete nonlinear free boundary problem posed in §1 as follows:
Uz+05 =0,
T+ 1 = piz+0%(Pz—Tyz) + Re[Du/Di],
Dy = Toz— T1y — Re[Dv/DE],

Di-atE ey (3.16)
with 7, = QU] A-tng—tn—Dim],
Ty = [ty +8%5] [A-Mre-v—in],
& = [(@y+ 6%05)% + 46%u]h, (3.17)

where, for T < Ty,
T+ (@I +0T5] = o [T+ 02T5z) + fy [Amgn+Dim],

T

A =exp[(T+0(Z)] as Z->0, «=[QT,/RTY,
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while for T = T},

wf‘f‘Wf‘f‘ﬁEﬁ = [E-llné(n+l)/n],
4 = 77(@): Y= (Atemp/Acold)’ (3.19)

and we have the following sets of boundary conditions:

1. Along 7 = 7(Z,¥),
Tyt 03P —~T1) 7z = 0,
T +P+7 7z =0,
T+ uTz—0 = a(Z,1) = 55(, 1),
T =Tzt for %< zg(l) (3.20)
2. Along 7 = h(%),
“752—17 =0,
F(Tyr, T), Fbeing a dimensionless version of ¥,
[ (1—02h2) 72—262}»511]

1+ 8%h%
o [u+82vhﬁ]
I = A omil’
T, — 82k, T, - ;
ﬂ]TNTQT+ﬂ2[(1+62 %)%] —AD(T) for Z < Zy(l),
_9 B Gd
O=g A= *T,
T=0 for Zyf)<Z< Byld). (3.21)

3. Along ¥ = 7y(%,1),

all variables and [T,—, — 8%z 1] are continuous across this line,

e — A — — A 'd@
T - Ty~ OG-+l 0= |%].
W=0 when P—Zyi—ahzS0 if T<Ty in Fyt. (3.22)

Hereafter, the problem posed by equations (3.16) to (3.22) will be referred to as the
‘scaled model’. It should be remembered in ensuing discussions that, from (3.8),
(3.9), (3.11), (3.15), (3.18), (3.19), (3.21), (3.22) and tables 1-4, it is typically the case
that

Re,8,0,7Z < 1, (3.23)
and Pi~% k~2
Bo~%, e~ 1077,
vy 210, A~ 10714, ~ 3 x 102, (3.24)
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In the remaining sections of this paper we shall consider various limiting cases of the
scaled model in view of (8.23) and (3.24). In these cases, we shall reduce one or more
of the parameters here to zero, but from the discussion following (3.13) we shall
always consider y to be of order one and not large.

4, THE REDUCED MODEL

In this section we use the results from §3 to develop a glacier flow model whichis a
vast simplification of the full model presented in §2 and yet is expected to be a very
good approximation to it. It is this simplified model that will be analysed in some
detail in Part IT of this paper.

We begin here by making the following approximations concerning the scaled

model of §3: .
Re=6=Z=0=0. (4.1)

These approximations are motivated by the results in (3.23) and hence are ex-
pected to be reasonable ones. They admit the following physical interpretation: The
first two indicate that the ice flows like a slow, shallow fluid. The third approxima-
tion implies that the dependence of the viscosity on temperature can be adequately
represented by an exponential function, and the last means that the deviation of the
pressure melting temperature from the atmospheric melting temperature is neg-
ligible. It should be noticed, however, that the simplification of certain equations in
the scaled model, notably those containing terms multiplified by 62, leads to the
neglect of highest order derivatives in these equations; thus we might expect prob-
lems of singular perturbation type to occur. In later analysis such problems will be
dealt with as they arise. For now, we simply use (4.1) to reduce the scaled model to
the following problem, overbars in §3 being dropped here for convenience:

Dy = Top—T1y

Ty = 2u, A-lne-(n=1in,

Ty = , A= ling—(n—Din, (4.2)
€= |u1/|’
where, for T < 0,
Tyl 0T, = By Ty o[ A=V 00), (4.3)
A = exp[«T],

while, for T = 0,
Wy + uw, + vw, = [A-tnen+Din],

A = yr(w) = B,(w), (4.4)
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say, and we have the following sets of boundary conditions:

1. Along y = n(z, 1),
Tg =0,
Ty +p+727, =0,
N+ U, —0 = a’(“’: t) = Sw(x’ t)a

T =Ty(z,t) for < ap(t). (4.5)
2. Along y = h(x),

wuh,—v = 0,

u = F(1,,T),

brirou+ BT, = —AD(T) for x < wylt),

T=0 for xy(t) <z < aylt). (4.6)

3. Alongy = yyl(z, 1),
T=1T,=0, and
w=0 when v—yy—uyy, SO0 If 7T7<0 in yy+. (4.7)
We can now further simplify the problem posed by equations (4.2) to (4.7) in the

following analytical manner. We integrate the second equation in (4.2) and use

(4.5) to find

Tol@,y) = (1—p,) (9 —y); (4.8)
then from the fifth and sixth equations there
&= f“yi =, = A7y = A1~ pn, )" (9 —y)", (4.9)

assuming that 1-—un, > 0 for all relevant z. Since it is typically expected that
# < 1 (cf. (3.24)), we make this assumption in what follows in order to keep ensuing
equations free from cumbersome absolute value signs; in cases where 1 —ugy, < 0 for
some z, one can reintroduce absolute value signs and modify our analysis with very
little effort. We define the stream function for the flow by

U = 2/’:1/’ Y= -wx’ 7zﬁlazmaco(t) =0, (4'10)

In this way the first equation in (4.2) is automatically satisfied, and it is then clear
from the third and fourth equations there and the second equation in (4.5) that p and
7, uncouple from the other equations. These two variables therefore play no role at
all in the determination of ¢, 4 and #; in ensuing discussions we simply omit them
from consideration. From (4.8) and (4.9), we can do the same with respect to 7, and
e provided we use their equivalents there to replace these variables in (4.3), (4.4)
and (4.6).
For convenience, we now introduce the following changes of variable:

0

E=n@t)~y, ¥=y+5]| Ho,t)do,

zo(8}
H(z, 1) = 5(x,t) ~ h{x). (4.11)
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The problem posed by equations (4.2) to (4.7) then reduces to the following, much
simplified one:

P Wy = £r[1— p(H, +h,)]"4, (4.12)

_ fexp(kT) for T <0
4= {31(‘10) for T = 0}’ (4.13)

T+ o T — Y T, = By Ty + By EV L — p(H, + b))l exp (kT') for T <0,
(4.14)
wy+ Vpwe— Prw, = 1 — p(H, + k)" By(w) for T =0, (4.15)

subject to the following boundary conditions:

1. Along £ = 0,
¥ =g(x,t), T="T(x1) for z<ap(t). (4.186)
2. Along § = H(z, t),
o (=
Y= 3 xomH(o‘, t)do,
W, = — F(H[L—u(H,+ b)), T), (4.17)

BoH[L = p(Hy ) Wyt BT = AD(T) for @ < ay),
T =0 for xy(t) << aylf).

3. Along £ = [n(x, ) —ym(®, )] = En(x, ),
¥ and ¥, are continuous across this line,
T=T,=0, and (4.18)
w=0 when Y, +%¥ &y, —8u,20 if T'<0 in §y+.

We shall hereafter refer to the problem posed by the equations in (4.12) to (4.18) as
the ‘reduced model’. The five dependent variables that must be found in any solu-
tion of this problem are H and £,, the ice thickness and melting surface profile
functions, and ¥, T and w.

5, ANALYSIS OF A COLD GLACIER WITH TEMPERATURE-
INDEPENDENT VISCOSITY

In this section we consider the form and stability of steady-state solutions to a
particularly simple asymptotic limit of the reduced model developed in §4. The
analysis presented here is primarily intended to serve as a preliminary example of
the more detailed work that will appear in part IT; however, since very little analyti-
cal work has been done in this area, the analysis is of interest in its own right.

We simplify the reduced model in three ways here. Firstly, we consider the flow
of glaciers which are completely cold by requiring that 7' < 0 throughout. In fact, we
shall make the slightly stronger assumption that

T < TQ, (5'1)
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80 that no basal sliding occurs. This will be satisfied if the surface temperature T}, is
less than 7y, everywhere and the viscous dissipation parameter 8, is sufficiently

small. Secondly, we put 4=0, (5.2)

which means that we neglect the effect of variations of the surface slope of the glacier
from the mean bedrock slope. This is motivated by (3.24) and is a simplifying but
non-essential approximation in the present analysis. Thirdly, we uncouple the
temperature field from the flow field in the reduced model by setting

Kk =0, (5.3)

i.e. we assume the viscosity is independent of temperature. From (3.24), we see that
(5.3) is not expected to be a reasonable approximation in any real glacier. It is simply
made here in order to gain some initial understanding of the model.

" We now use the approximations in (5.1) to (5.3) to reduce the model in §4 to the
simpler one given shortly below. In this case, w and £, are irrelevant variables and
are omitted from the simpler model. Also, in anticipation of the steady-state form
and stability studies that are made later in this section, we require now that the
data functions s(x, ¢) and 7', (z, t) be time independent and therefore they are replaced
by s(x) and T',(x), respectively. The simpler model is then

g = &7,
Tyt W, Ty W, T, = By Thg+ oy £, (5.4)
subject to the following conditions:
1. Along £ = 0,
V=s(x), T=17T(). (5.5)
2. Along § = H(z,1),
w2 (" Houndo, =0, T =2 (5.6)
ot ol

We now consider steady-state solutions to the problem posed by (5.4) to (5.6).
The first equation in (5.4) may be immediately integrated subject to the first con-
dition in (5.5) and the first two conditions in (5.6) to show that

_ H(.’E)’"’""l gn4-2
e, €) = s(x)"[ ntl ]5+[(n+ 1)(n+2)]’ 67

where H(x), the steady-state version of H(z, £), is given by
H(z) = [(n+ 2) s(ax) o2, (5.8)

Since H(x) represents the steady state ice thickness at z, it is then clear from figure 6
that the steady-state positions of the glacier head and snout are precisely at the
first and second zeros, respectively, of the (assumed known) function s(z). Physically,
this means that the head lies at the point where the uphill ice accumulation rate
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first becomes positive, and the snout lies at the point where the ice supplied by the
uphill accumulation rate has been completely depleted by ablation. Between the
head and the snout, the steady-state ice flow pattern is completely determined by
(5.7) (and {4.10) and (4.11)) and the temperature field is to be found as the solution
to the following problem:

Tm(xa £) ]15"— Tg(x: E) 7, = B 1155 + B £,

T(x’ 0)= TA(x)’ ﬂzTg(x’ H(Z‘)) = A. (5.9)
This problem is linear but has variable coefficients which, from (5.6), ‘degenerate’
(i.e. equal zero) along the curve where £ = H(x). As discussed by Friedman (1964), a
study of its solutions is therefore a non-elementary task. On the other hand, if 7}, in
(5.9) isreplaced by [T, + §*T,,,| with & > 0, as was indeed the case in the scaled model
of §3, then it is shown by Friedman that there does in fact exist a unique solution to
the resulting modified version of (5.9). Motivated by this result, we shall simply
assume that the same is true for (5.9) as it stands, and turn our attention to the
linear stability problem for the (assumed unique) solution to the full set of equations
in (5.4) to (5.6).

We do this by writing

Y=Y,+Vet, H=H+Het T=T+Te? (5.10)
where the suffix zero refers to the (assumed known) steady-state quantities and the
suffix one refers to small perturbations from these quantities. Substituting (5.10)
into (5.4) to (5.6), expanding the boundary conditions for ¥'in (5.6) as Taylor series,
and neglecting second and higher order terms throughout, we obtain the following
linear stability equations: W, =0,

O_T+[T0x]75+T0£ ylw_y]()ng_%x g]g] Zﬂzng’ (5-11)
subject to the following conditions:
1. Along £ = 0,
Y=0 T=0. (5.12)

2. Along £ = Hy(z)
Y= o‘fch(w)dw,

Pt Wo H = 0,
T+ Ty H = 0. . (5.13)

Here, z, is the time-independent value of #y(t), and for convenience we have dropped
suffixes on perturbed quantities. An immediate integration shows that

P(2,£) = — Woglx, Hy(w)) H(z) &
= —H"@)H(x)-£, (5.14)
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where, from a differentiated form of the first condition in (5.13),
[H+(z)- H(x)], + oH(x) = 0. (5.15)

The general solution of this first order equation is easily shown to be

where F and ¢ (> «,} are arbitrary constants. Now H, > 0 for > x,, and so

*_do <0 for z,<xz<e;
o By (W) ' ’

hence, if Re (o) > 0, H in (5.16) is unbounded as x->x, unless & = 0. In other
words, if Re (o) > 0in (5.11) to (5.13), then H{z) and hence ¥(z, §) must be identi-
cally zero. The temperature perturbation problem is then the following one:

PeTy+1qy VT —0T =0, ¢y = (=¥, Py.),
T(z,0) = 0, Tyx, Hy()) = 0. (5.17)

Multiplying the first equation here by T* (i.e. the complex conjugate of T') and
integrating the result over &, the region occupied by the steady-state ice mass, we

have

ﬁzng*Tégda)—f-f@T* (qO-VT)dw—O'f@[ledw = 0, (5.18)
and also its conjugate
,é’zfg’ng"gdw—!~f@T(qO-VT”‘)dcu—<r”‘f9 |72dw = 0. (5.19)

Adding these two equations and using Green’s theorem and the identity
div(TQ) =TdivQ+ Q-VT,

which is valid for any scalar 7' and vector @, we find, putting Q = (0, — 1),
0= 2Re(0‘)f [T{zdw~f go (T*VT + TVT*)da)—,é’zf [T*T+TT]) dw

@ @ )

- 2Re(0")f [T[zdw-—f div (|72 gy) do
7 2

+/>’2f [div(T*Q) +div (T'Q*) - Q- VT*—- Q* VT dw
2

= 2Re(a)f ]T[zdw—f |T'|2q, nds

@ 0

+2,32f ]T§|2dw+2ﬂ2f [Re (T*Q-n)]ds, (5.20)
2 02
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where 02 represents the boundary of 2 and n (as usual) represents the unit outward
normal to 0Z. From (5.17), T vanishes when £ = 0 and, from (5.6), (5.17) and the
definition of Q, g,and Q vanish when £ = Hy(z). It then follows that, for Re (o) > 0,
(5.20) can only be satisfied if 7 is identically zero, and therefore we have succeeded
in demonstrating the linear stability of the assumed steady-state solution to the
simplified problem posed by equations (5.4) to (5.6).

6. CONCLUSIONS

In this paper we have shown how generally accepted views on the mechanics of
ice can be incorporated into a complete fluid-dynamical description of two-dimen-
sional glacial ice flows. This description includes some novel features. The ice is
divided (by a ‘melting surface’) into two distinct types of region, in which the ice is
cold and temperate, respectively; both the melting surface and the top surface of the
glacier are unknown, and so the problem is one of double free boundary type. One
of the kinematic boundary conditions on the bedrock (the ‘sliding law’) is assumed
for physical reasons to be a continuous function of the temperature. This apparently
minor change from assumptions made previously by others is justified in Part II,
where it is shown to have a major effect on the resulting glacier dynamics. For the
sake of completeness, we include an energy equation for the temperate zone which
describes the evelution of the moisture content of the ice. It is emphasized that this
equation is nof intended to be definitive (as it neglects any description of water
transport through the ice), but is rather put forward as a first attempt to describe the
hydrology of temperate ice over long time scales, and as a necessary constituent to
any complete model (such as that presented here).

Having described the model, we show how it may be scaled and non-dimension-
alized in a rational and self-consistent manner without making a priori assumptions
about the size of various terms, but using only the given input data. The results of
this procedure then émply that glaciers have depths, velocities, stresses and moisture
contents of the observed order of magnitude (and this justifies our results). This
scaled model is then simplified by making the assumptions that the numbers Re,
& and § introduced in §3 are zero. These numbers are indeed small, and can be taken
to represent respectively the slowness of the flow, the shallowness of the glacier
profile, and the smallness of the deviation of the pressure melting temperature from
the atmospheric melting temperature.

After being simplified, the model is then partially solved and a much simpler
(though still mathematically complex) reduced model is finally obtained. In this
model, the further approximation x = 0 is also suggested by the scalings; this
approximation represents the neglect of deviations of the surface slope from the
mean bedrock slope and is used extensively as a simplifying assumption in Part II.

Lastly, with the assumption that g = 0, we have presented an analysis of the
particular simple limiting case of a completely cold glacier with temperature-
independent viscosity (for which 7' < 7}, everywhere and x = 0). The assumption
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that the viscosity is independent of temperature makes this case somewhat unreal-
istic, and, as will be seen from Part 11, devoid of the complexity of dynamical be-
haviour that glacier flows can exhibit, but the case does serve as an initial example
of the kind of analysis that may be done using the reduced model and provides a

A. C. Fowler and D. A. Larson

preview of the more detailed and relevant results to appear in Part II.

7. NOMENCLATURE

accumulation/ablation rate
rheological function in (2.3)
typical value of 4

typical value for cold ice

typical value for temperate ice
constant in (2.5)

specific heat of ice

typical depth (3.9)

strain-rate invariant (3.5)
strain-rate tensor (2.4)

typical scale for e

the exponential function

sliding laws (2.12), (2.14)

gravity

gravity component perpendicular to mean bedrock slope
geothermal heat flux

bedrock profile

dimensionless ice thickness (4.11)
thermal conductivity of ice
typical length scale

latent heat

exponent in stress-strain rate law (2.3)
unit outward normal at a boundary
pressure

pressure scale (3.10)

atmospheric pressure

activation energy in (2.5)
velocity

rheology functions in (2.8), (4.4)
gas constant

Reynolds number

flux function (3.1)

time

temperature

atmospheric temperature
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melting temperature of ice (2.18)

temperature scale

temperature at which basal sliding begins to occur
atmospheric melting temperature of ice

horizontal velocity

scale for u

vertical velocity

scale for v

moisture content of temperate ice

‘suction’ velocity at the bedrock due to melt-water run-off
scale for w

length coordinate

top melting point

bottom melting point

glacier head

glacier snout

equilibrium point

bottom point where sliding begins

- bottom ‘zero temperature’ point

height coordinate

melting surface

defined in (3.11)

viscous dissipation parameter (3.18)

heat conduction parameter (3.18)

defined in {3.19)

shallow ice parameter (3.4)

mean bedrock slope

top surface

Clausius—Clapeyron constant

dimensionless Clausius—Clapeyron constant (3.22)
defined in (3.18)

geothermal heat flux parameter

surface slope parameter (3.15)

small ‘moisture diffusion’ coefficient on page 226
vertical coordinate, measured downwards from the surface (4.11)
melting surface

density of ice

stress tensor

second invariant of stress deviator tensor (2.4)
stress deviator tensor

typical stress

‘geothermal’ heat flux function (2.16)

stream functions (4.10), (4.11)
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