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On the Fluid-Dynamical Approximation to the Boltzmann
Equation at the Level of the Navier-Stokes Equation

Shuichi Kawashima, Akitaka Matsumura, and Takaaki Nishida
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan

Abstract. The compressible and heat-conductive Navier-Stokes equation
obtained as the second approximation of the formal Chapman-Enskog
expansion is investigated on its relations to the original nonlinear Boltzmann
equation and also to the incompressible Navier-Stokes equation. The solutions
of the Boltzmann equation and the incompressible Navier-Stokes equation for
small initial data are proved to be asymptotically equivalent (mod decay rate
t~°/%) as t— + oo to that of the compressible Navier-Stokes equation for the
corresponding initial data.

1. Introduction

The nonlinear Boltzmann equation for a rarefied simple gas is given in the form
. 1
F,—l—vJij:EQ(F,F) (1.1)

where t>0: time, xe R*: physical space, ve R®: velocity space, ¢: mean free path,
F=F(t,x,v) is the mass density distribution function and Q represents the
quadratic collision operator. Here and in what follows, we use the summation
convention when we are not confused. Let us introduce the fluid-dynamical
quantities as follows:

mass density: o= [F(t,x,v)dv,
. . A
fluid flow velocity: u'= = [v'F(t, x,v)dv,
@
momentum: m'=ou,
pressure tensor: Pi= fc‘:ch(t,x, v)dv,
pressure: p=1P¥,
viscous term: pi=Pi_psi,

heat flow vector: q'= %[ el*F(t, x,v)dv,
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. . 1.1
internal energy per unit mass: e= —f§|c|2F(t, x,v)dv,
@

2
bsolute t ture: 0= _—e,
absolute temperature T
total energy: E=ge+ 50lul*,

= {3 PPF(t, x,v)dv,

where ¢'=v'—u’, R: gas constant and 6Y: Kronecker’s delta. Then the con-
servation laws derived from (1.1) are given in the form:

¢, +(ew),,=0,
(ou), +(ou'v! + pd” + p¥), =0, (12)
(ole+ 3 1ul), +(ew(e+ 3 [ul*) + pu! +u*p* + ¢)), =0,

where the equation of state is that of “ideal and polytropic gas”, i.e.,
p=Rol=%ge.

In order to enclose the system (1.2) in the fluid-dynamical variables ¢, u and 6,
the formal Chapman-Enskog expansion

F=Y gF®
n=0

has been adopted where the functions F can be uniquely computed in turn as the
functions of v, (¢, u, #) and their partial derivatives with respect to x (cf. [1,4]). In
fact, the first approximation F¥ is given by the locally Maxwellian, i.e.,

) _ Q _|u_v|2
o= Grrayr eXp( 2RO )’ (1.3)

for which the system (1.2) comes to be the compressible Euler equation

¢, (o), =0,

(ou), +(ou'v! + pd¥), =0,

(ele+ 3 lul®), +(ew(e+ 3 lul*) +pw), =0,
p=Rob, e=3R0.

(1.4)

Furthermore, as we show the precise derivation in the later section (Sect. 3), the
system (1.2) corresponding to the second approximation F® +¢F( is given by the
compressible Navier-Stokes equation

0, +{ew),, =0,

(ou), +(ou'w’ + pdY), =elu(ul +ul)— 3 uuk 6Y),

(ole +31ul), +(guw(e + 3 1ul*) +w'p), (1.5)
= ol + ul )~ i, K0,

p=Reb, e=3R0,
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where p=u(0) and x=x(f) represent the coefficient of viscosity and that of heat
conduction respectively.

Assuming the cut-off hard potentials in the sense of Grad [5] for the collision,
we consider the initial value problem to the nonlinear Boltzmann equation (1.1) in
a small neighbourhood of the absolute Maxwellian state

[of*

M@)=(2n) 3> exp( - ”7) (1.6)

Ukai [15] and Nishida-Imai [13] succeeded to solve the initial value problem
globally in time and to show that its solution decays to the absolute Maxwellian
state as r— + co. Their arguments also include the result not mentioned explicitly
that the solutions of the nonlinear and linearized Boltzmann equations are
“asymptotically equivalent modt™># as t— +c0” to each other which means,
throughout this paper, that the difference of them decays to zero in L? at the rate
of (1+1)">* as t— + oo. We summarize all these results in Sect. 7.

Recently, we [9, 10] solved the initial value problem to the general compres-
sible Navier-Stokes equations including (1.5) in a small neighbourhood of the
constant state (g,0,0) and then we showed that its solution decays to the constant
state. In Sect. 4, we summarize these results and also establish the asymptotic
equivalence modt~>'* as t— + oo between the nonlinear and linearized solutions.
Furthermore in Sect. 5, we consider the following incompressible Navier-Stokes
equation as an approximation to the compressible Navier-Stokes equation (1.5)

around the constant state (g,0, 6):
- 0) . |

lj_8§vl 5t 5P =0
(1.7)

The global solutions in time are known in Leray [8]. In the present paper, for
appropriately small initial data, we show that the solution of (1.7) is asymptotically
equivalent modt™>* as t— + oo to that of the heat equation

o MO
Uy—&€—0

Y

=0,

x5Xj

(1.8)

~j _
o, =0.

On the other hand, in Sect. 6, we show that if the initial data for (1.5) satisfy
(0(0), E(0))=const and U(O)f;j:(), the solution of (1.5) 1s asymptotically equivalent
modt™3* as t— + oo to that of (1.8) and (g, E) = const. Thus, we may assert that the
incompressible Navier-Stokes equation (1.7) makes sense as an approximation to
the compressible Navier-Stokes equation (1.5) when not only the density but also
the total energy can be regarded as identically constant.

The asymptotic problem of the Boltzmann equation as the mean free path ¢
tends to zero and the relations to the hydrodynamical equations determined by the
Chapman-Enskog expansion at the Euler and Navier-Stokes levels have been
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considered by Grad [6] for the “semilinear” Boltzmann equation locally in time
and by McLennan [11], Ellis and Pinsky [2,3], and Pinsky [14] for the linear
Boltzmann equation. As to the full nonlinear Boltzmann equation, Nishida [12]
obtained the results at the level of the compressible Euler equation that if the
initial deviation from the absolute Maxwellian state is small and analytic in the
space variables, the solution of the Boltzmann equation exists in a finite time
interval independent of & and it converges there, as e—0, to the local Maxwellian
distribution whose fluid-dynamical quantities satisfy the compressible Euler
equation (1.4). In the present paper, we consider the nonlinear Boltzmann
equation (1.1) in a small neighbourhood of the absolute Maxwellian state at the
level of the compressible Navier-Stokes equation with a fixed . Then it is shown in
Sect. 8 that the solution of the nonlinear Boltzmann equation (1.1) is asymptoti-
cally equivalent mod:¢ ™34 as — + oo to the solution of the compressible Navier-
Stokes equation (1.5) with the corresponding initial data. Here we note that the
difference of the solution of (1.1) from the absolute Maxwellian state has decay
rate (1+41)">* at least for some restricted initial data which are classified later.
Thus, the second approximation of the Chapman-Enskog expansion is proved to
be valid in a sense.

Finally, an analogous asymptotic problem is considered in Kawashima [7] for
one-dimensional Broadwell model of the Boltzmann equation for a simple discrete
velocity gas. In comparison with this paper, the interesting fact in [7] is that the
solutions of nonlinear and semilinear (not linear) problems are asymptotically
equivalent as t— + oo to each other.

2. Some Notations

Letters x,veR® are the space- and velocity-variables and letter éeR?® is the
variable for the Fourier-transform in x. L?(-) (- =x, v, or £) denotes the Lebesgue
space of measurable functions whose p-th powers (1 <p < + 00) are summable in
R? with the norm | f [[ (. H'(x), 1= 0 denotes the Sobolev space of L*(x)-functions
together with the [-th derivatives, H'¢) is the Fourier transform of H'(x) with the
norm

1 gy = N+ IEVFEN g = 1T ey -
Definition 2.1. L3/{v) is the Hilbert space defined by

Liv)={f /M L)},

where M is the absolute Maxwellian (27) %% exp(— % |v}?). The inner product for
f,geL3,(v) is defined by

Sogp=[f-gMdv.

Definition 2.2. L*(v; L*(x)) [resp. L*(v; L'(x))] is the Hilbert (resp. Banach) space
which consists of L?(x) [resp. L*(x)] valued Lj,-functions in ve R* with the norm

LA T= IS0l f2Mw)do) 2
[resp. [ 2o = 1(, 0 F1M@)do) 2],
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Definition 2.3. B, (m,1=0) is the Banach space which consists of H'(x)-valued
continuous functions in v with the property
A+ )" M2 S, 0) =0 as Jol—+ oo,

The norm for feB,, ; is defined by

NS = sup(L+ )" M2 (-, o)l o

= sup(L+[o)"M "' 1 F (. 0)l gy -

Definition 2.4. Let B be a Banach space. C¥0, T;B) (k=0, T>0) is the Banach
space which consists of B-valued k-times continuously differentiable functions in

te[0, T]. L*(0, T; B) is the Banach space which consists of B-valued L2-functions
in te[0, T7. .

Definition 2.5. Let f=(f(x), f%x), ..., f"(x)). D*f (k=0) is defined by

Dkf:<(%)afi, )=k, i=1,2, n)

which is a vector composed of all k-th partial derivatives with respect to x.

3. Second Fluid-Dynamical Approximation

We consider the Chapman-Enskog expansion

FFO 4 gF 4 2FD 4 3.1)
and the corresponding expansion for the fluid dynamical quantitics

Pl pOii g gpii g (3.2)

G gipegMig (3.3)
where {p™}®_ and {g"™}*_, are determined by

p" = [ (cled — el 6 ) F™d, (3.4

g"i= L[ P F™ . (3.5)
It is well known that the first approximation F® is the locally Maxwellian (1.3)
and p'94¥ =g =0, In this section, following the procedure in [1], we determine

FO, p-iJ and g precisely. To start, we make some preparations. The quadratic
collision operator Q in (1.1) can be written in the form (cf. [1,5])

QF.G)=3 [ (F'G,+F,G—FG,—~F ,G)C(y,lv,~v|)dwdy, . (3.6)

S2x R3

Here v and v| are the velocities after the interaction of the molecules whose
velocities were v, v; before the interaction and w represents the unit vector in the
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direction of the apse line such that

w ={cosy, sinyp cos y, sinyp siny),

dow=sinypdypdy,

/ (3.7)

vV=v4+(w, v, —v)o,

vy =0, — (0,0, —v)w.
Also F,=F(t,x,v,), F/'=F(t,x,v), Fi=F(x,v|) and G,, G, G| are defined
analogously. Throughout this paper, we assume the cut-off hard potentials (cf. [5])
i.e.,, the function C(y, |v, —v|) satisfies

0= Cl, Jo, — o) <C,leos (v, —v]+Iv, —v] ), (38)

§ Clp, o, —vDsinp dypz Cylv, —ol(L+ v, —o) 71,
0
where C,, C,, and 4 <1 are some positive constants. Two important spacial cases

which satisfy (3.8) are the hard sphere for which
Cp, v, —v|)=Cslv; —v|cosy (3.9)

and the cut-off inverse power forces r~* (s=95), for which

C(wa |Ul _UI): |Ul —UPﬁ(w)a
s—5
s—1°

(3.10)

’})..—_

where C, and f(y) are some positive constant and function of y only respectively.
Define the summational invariants

2_
{w"};‘_oz{l,v",w'%z’}, (3.11)
which satisfy

fij(F,G)dsz for j=0,1,...,4. (3.12)

Also, introduce the Burnett functions {cf. [2])

[v]2 -3 2
!Ifu:(w',v)( - —),
6 3
" Ve (3.13)
Yor= T (e, U)z s

where «' is any fixed unit vector. It is easy to see

<qj11=lpoz>=<¥l11»wi>:<q’oz>wi>:0 (i=0,...,4). (3.14)
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For ®e L2,(v), define the linear operator L by

L(®)=2M"'Q(M,M®). (3.15)
By the arguments in [5], the integral equation in L3(v)

L(®)=¥eL;(v) (3.16)
is solvable if and only if

(Ppy=0 for i=0,1,...,4. (3.17)

So, from (3.14), L~ }(¥,,) and L™ (¥, ) exist in L} (v). Then our assertion in this
section is the following.

Proposition 3.1. p*¥ and ¢V are given in the form

i i k
) (3.18)
4= —K(0),
such that
1 3 1
.uﬁ :"Z<'P02’L (Toz» (>0),
(3.19)

1 3R
x(ﬁ) - Ry o

Furthermore, for the special case (3.9) and (3.10), u(6) and «(6) are given explicitly
~ as follows; for the hard sphere

u(6)=<R9)l/2u(1),

R
) (3.20)
—(ROVY/2 3| =
0= (R0) ).
and for the cut-off inverse power potentials (s = 5)
s+3 1
O = (R0 ).
(3.21)

S+_3 1
k(0) =(RO)Y*¢ Hc(E).

Remark. If we take pY=ep"»¥ and ¢/=eq™/ in (1.2), then by virtue of this
proposition, we immediately obtain the compressible Navier-Stokes equation (1.5)
corresponding to the second approximation F©® +¢F(®),



104 S. Kawashima, A. Matsumura, and T. Nishida

Proof. Following [1],

0 ju—v|
FO — —
@2nR0)? P ( 2RO )

and FU is determined by the integral equation

0, F© .
20(F©, F) = Oﬁ—t +o/FQ, (3.22)
where
0 F®  OF9 3y9  OF® gt 0F® 9,0
o T g ot ou o T o0 (3.23)
aOQ _ j
== (ew),,, (3.24)
: o1
0o _ it — L (rea). . (3.25)
t J Q ‘it
00 2.
5 = b,,— §0uxj. (3.26)
Substituting (3.23)—(3.26) into (3.22), we have
20(FO F) =F‘°){Aj(log9)xj +B”uij} , (3.27)
where
. o—u* 5\ .
J = — — J
Al(v) (2R0 2(0 u')
y W' —u)@W —uw)  |Jo—u?5Y
(1)) — _
Bo) ( RO 3RO
Set Vi=(RO)™2(v' —u). Then F'© is written by the absolute Maxwellian M(v) as
FO(v)=o(RO)*2M(V) (3.28)
so that
2M(V)~1Q(M(V), FD((RO)?V +u))
=(RO)'2A(V)(logh),, + BV )i, , (3.29)
where
.. V> 5\ .
Jj = _ Ty
e 1
V)?

Bi(V)=Vivi- T(;ij_
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Define the linear operator L, from L2/(V) to L;,(V) by

L(@®)(V)=2M(V)™" | (M'®,+M,&—Mb, —M,d)

§2x R3

-Clyp, (ROYHV, —V)dwdV,, (3.30)
where we note that L, = L. Then noting that
A,y =0,
BUyfH=0 (0=k=4),
we have
FO®u-+(RO)'?V)=M(V){(RO) '(logh), L (A%)
+(RO)™ 2l Ly H(BY)} . (3.31)
Hence (3.4) and (3.5) give
pM i =(RO [ VIVIF ) u+(ROV2V)AV,

W2 (3.32)
gV =(R0O)® IT VIFD(y+(ROV2V)YAV .
Substituting (3.31) into the above, we arrive at after computation
.. R# . . i J £y
p(l),u: ?fMB”L(; I(B”)dVX (ﬁﬁ% _ (iléfk_)gu),
3.33
o R0 TR (3.33)
g = [ MAL; Y(A)dV x 0.,

3
Here we use the fact that L, (A% and L; '(BY) are given in the form (cf. [1])
Ly {AYy=a®(V A,
0 (~.). (v ' (3.34)
Ly '(BY)=b%V|)BY,

where a® and b? are some functions depending only on |V|. Thus we have (3.18) by
setting

RO . lvl2 . _ - ]v|2 .
= ind 7V Sij U opigd 120 Sij
,u(H)_ 10 <<vv 3 o ),LQ (vv 3 é )>,

=S Jos )

Then, using the fact that the right hand side of (3.19) is independent of o’ and (3.34)
again, we have

1 1/ W o
)= — —{ ppd - =5 iyl — 2 §U
,u(R> 10<UU 3 oY, L <vv 3 o

= _%<lpoz,L_1('Poz)> s

(3.35)

i 3R o
) == <L .
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that imply (3.19). Finally (3.20) and (3.21) are the consequence of
Ly=(ROV*L for hard sphere,

s—5

L,=(RO)*s~VL for power force,

which are proved easily by (3.9), (3.10) and (3.30). This completes the proof of
Proposition 3.1.

4. Solutions of the Compressible Navier-Stokes Equation

We consider the initial value problem to the compressible Navier-Stokes equation
(1.5) with a fixed ¢, so that we may set ¢ =1 without loss of generality. Writing (1.5)
in the variables g, u and 0, we consider

Qt + (Quj)xJ = 0 >

N | 1 ; 2 y
u+wuy + 'é(RQ@)xl = 5(#(9)(MLJ. +ug)— gﬂ(g)uﬁﬁ”)x,-a (4.1)
, 2 . 2 2¥
J S0y — 2 it
0,+u BXJ_ + 3 Guxj IRo (K(G)ij)xj + iR’
with the initial data
(0(0, x), u(0, x), 0(0, x)) = (,(x), uy(x), O(x)), 4.2)

where
, S )
Y= %(u;j—kufcl,)(u;jﬁ-uii -3 ol )? .
Applying our arguments in [ 10] to (4.1}~(4.2), we obtain the solution in a small

neighbourhood of the constant state (1,0, R~ !) which corresponds to the absolute
Maxwellian (1.6).

Theorem 4.1. Suppose the initial data
(00— 1,uy, 0,— R~ He H3(x)nL(x)
and set
Mo=llgo—1,uq, Go“RﬂHHS(x)‘*‘ oo — 1’“0’00—R_1HL1(x)'

Then there exists a positive constant g, such that if M, <e,, the initial value problem
(4.1)~(4.2) has a unique solution globally in time such as

0—1eC%0, + oo ; H3(x)INCY(0, + oo ; H*(x))NL3(0, + o0 ; H3(x)),
(u,0—R ™ HeC%0, + oo ; H3(x))nCH0, + oo ; HY(x))N L0, + oo ; H*(x)).



Approximation to the Boltzmann Equation 107

Furthermore the solution is classical for >0 and has the cstimates
t
sup{Iie= 1,10~ R0+ { Hle= DO
0

+ H(u,0~R*1)(r)||f‘,4(x)dr}§constM(2), 3)
lle—1,u,0~ R™)(O)l| oy S const(l +1)"¥* M.

In order to study the further asymptotic property, we rewrite (4.1)-(4.2) in the
variables ¢, m and E as

0 +my =0,

o (mimi 2 [ml?\ ..
; “(E- T ) o
m’+{ 0 +3< 2@) }

2 (mf\
CRCISER
W o)l
send_infe
Et+< L )
) () |2 2 (Y ]
[@ K@) (@)xk} 3 0 (Q>xk+3R<g 7). ),
3R 2
(2(0), m(0), E(O)):(QO, QOMO,QO<7 0,+ Iugl ))
=(0¢, Mo, Eo), 45)

where

2 [E [ml2
m=pl3pl, " 27))
y 2 (E  |m?
TU\3R\e  20%))
Corresponding to (1,0,R™'), we consider (¢,m, E) around the constant state

(1,0,3). Getting together the linearized parts of (4.4) at (1,0, 3) in left-hand side, we
rewrite (4.4)-(4.5) again as

o, +ml =0,
m +3 E —:umexJ 3 H’ x.x]_ chj (46)
5 K 2K .
E j Kp =g
t+ 2m + RQxeJ 3R XX ng'7

(2(0), m(0), E(0)) =(g,, M, Eo), (4.7)



108 S. Kawashima, A. Matsumura, and T. Nishida

where i=pu(R™ 1Y), k=x(R™1),

;H N
1= lm?:{l@ :Vi: P {4 ml}

2 . — i — 1w
2o f(0=0) ezt |
e/, e s

NEIC:%:.
-+ W.:A4|.|© én%

= —o(u'w — 3 |ul*6") + (n— W, +ul)
— 3 (u—mu, 87— i{lle — D), + (e — D)}

+ N% (0 — V"), 67, (4.8)
oo {32
eel -5
e We/s, \e/y 30 \e/,
r Zenfs- )
o2,

3R\ o 25) " 27

|ul*u!
2

+ il 4wl )— I:

%w

2 _.[3R T B
._'MMQ«I‘AAWA@(% I.m_:_ vx

J

Nx? :A!a R™1)+2 _:_NVW :wlm:: . (4.9)
Setting N
N='(n%n', n%)

=o—1,m, )V2E- }/30), (4.10)
='(0, 1, /3 g%, 4.11)

0 l.m; 0
i |, Bt Sa, —V3e) “12)

2K

2 —_
0 - 130, R4
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(4.6)—(4.7) is written in the form
N,=AN+Fi,

. (4.13)
N(O)=N,="(eo—1,mh, |/ Eg— /3 00)
or the Fourier transform of (4.13)
N,= AN +igF, G
N©O)=N,, '
where
0 i&, 0
. ] _ zéjk ﬁ ) . 2 .
A= |G FEPF LG 1V3G) (4.15)

2_.
0 iV3a kP

Let us review the results of spectral analysis for A(¢) that was precisely investigated
in [10]. The characteristic equation for A(¢) is

det(A — A() =(A+é]*) f(1)=0, (4.16)

where
4
1=+ 37+ S+ (s miee+ 316 e S

Set A,(&)= —qlé|>. Denote the roots of f(A)=0 by {A(&)};_, and the spectral
resolution for ¢4 by

3
PA@ .ZO eH@Pp (&), 4.17)
fe=

where P (¢) is the corresponding projection matrix.

Lemma 4.2. 1) 1(0)=0 and Re,({)<0 for any [£]>0 (05j<3).

i) Rank(1,(&)I — A(E))=3 for any |E|>0 except at most one point of |&|.

iii) There exists a positive constant r, such that for any || <r;, A(C) has the
Taylor series expansion

M= Y APy, 0s<3) @18)

and more concretely

A (,)=—*lél +0(¢P),

‘/Iil /1+- Ii|2+0(lé|3),
119,

3(5)= —#Iilz-
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iv) There exist positive constants B, and B, such that for any |&|<r,, — Blé|?

SRel (&)< — B¢ (0=/=3)
v) There exists a positive constant f, such that for any || >ry, Red ()< —B,

(0=j=3).
vi) The representation (4.17) makes sense for any |£|=0 and for |E|>r,

4O < Cl1+ePer,
where | -|| represents matrix norm, and for |{|<r,, P(¢) has the Taylor series

expansion
P(&)= Z ey PP(@),  o=¢/,

where {P{"(w)}3_, are orthogonal projections and are given by

2 21/
3
0
PO(w)= 0 0 ,
21/3 3
‘?l/; 0 5
3 11/3 11/3
10 2 V5w 51/;
(0) — 1 3 1 11/2
PPN (w)= El/gwi 2 W;0; zV;wi ,
11/3 11/2 1
?lfi 2 V5w 5

0 0
PO(w)=[0 &—wm; 0
0 0 0

Lemma 4.3. Define ¢'‘G for Ge L*(x) by
e1G=(2m) "2 [ e 41 OG () dE

Then for Ge LA(x)nL(x),
1e4G | L2y S c(1+1) (| Gll L2y + 1G | L1y

and for Ge H*(x)nL(x),
1D G 2y (L + 171Gl iy + Gl Lagy) -

By virtue of Lemmas 4.2 and 4.3, we can show the asymptotic equivalence
modt~3/* as t— + oo between the nonlinear solution N(t) and the solution of the

linearized equation which is defined by

Wi(t)="(w°,w', w*)
=e“N,, (4.19)
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i.e., W(t) is the solution to the initial value problem

W,= AW,

(4.20)

W(0)=N,.
For this purpose, we prepare
Lemma 4.4. Let (¢, u, 0) be the solution of (4.1)~(4.2) constructed in Theorem 4.1 and
FJ be defined by (4.11). Then

3

Z (HFjHHl(x)‘l" HFjHLl(x))écﬂ(Q_ Lu, G‘Ril)(t)Hfzﬂ(x)
=1

ScMa(1+1) 372,

For the proof, we may apply the estimates of composite function and the decay
estimates (4.3) to (4.11) (cf. [10]). Thus, it is ready to state the main result in this
section.

Theorem 4.5. Let (g, u, 0) be the solution for (4.1){4.2) constructed in Theorem 4.1
and let N(t) and W(t) be defined by (4.10) and (4.19) respectively. Then

IN(@) = WD) 2 S ML +1) %,
Proof. By (4.13),

t
N(#)=e“N(0)+ [ e~ 94F 7 (s)ds
0
=W+ je(t*s)AFj;J(s)ds.
0

Hence from Lemmas 4.3 and 4.4,

IN() = WO L2y = § 1 T94F ()] 2y ds
0

IIA

. bf(l +1=8) (S gy + 1S i)

t
<MY [(L+i—s) %1 +45)"32ds

0
<eMR(L+1)75%.

This completes the proof of Theorem 4.5.
Finally, for the arguments in the later sections, let us study the condition that
the solution W(t) [or N(¢)] has the decay rate t~%* at least.

Lemma 4.6. Define W'(t) from W(t) in the Fourier transform by

3

W't &)= z e HOPO )N o(&).

Then
W@ =W O 2 S+ )7 (NGl oy + Nl 1) -
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Lemma 4.7. Suppose
[ Ny(x)dx+0
and set
M, =[{Nyx)dx|>0.
Then there exists a positive constant § such that
IWAO)] 2 2 6M (14 6) 3 — (14054 No | 2+ Nl 1) -
Proof of Lemma 4.6
W@ = WOl 2
=| V”V(r)— W' ()l 2

Z eHO(P (&)= PP) No(£)

L2(9)

Sc(l+1)e _”2’||Nol|Lz<x)+C( I lélze‘z"“'é'zdéwzI)Nol\um

[l =rs

Sc(L+07 (I Ngll 2y + [ Noll 1) -
Proof of Lemma4.7. Using Lemma 4.6, we may estimate W’(t) because
IWO Loy Z W (O oy — WO = WOl L2y - (4.21)
Noting that
‘Pw)= PN w)=(P()?,
PP(@)PP(@)=0 for j*k,
we have

[W'(t, O ="W'(t, ) W'(¢t, &)
3 __T‘ -
z tleE'O)NO)(eMkPg{O)NO)

k:

Z (5 +lk)tN tP(O)P(O)N

Q)R"

Z 2tRelJ(f)|P(0)(a)) N (i)l 2

Hence it follows from Lemma 4.2 that for || <r,,
WGz, &) Ze 1™ 7 |PO() N o(&)
:e‘ZﬁolélztUz‘]O(é)F' 4.22)
By the assumption that N e L}(x) and
Ny(0)= [ Ny(x)dx+0,
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we can assume

V(@2 3INGO) for [¢l<r, (4.23)
because we can regard r, as sufficiently small. Therefore (4.22) and (4.23) give
j" IW’(I, é)[z df IN j‘ e—Aﬂovg]mrdf
S fgl=ry
=cM3(1+41)732. (4.24)
On the other hand, it is easy to see
m[ IW(t, &) dE Sce™ 2Ny sy - (4.25)

Thus (4.21), (4.24), and (4.25) give the desired estimate
WO 2y Z My (L 46)3* —c(1+8) 3*(INoll 2oy + I Nl s -
This completes the proof of Lemma 4.7.

5. Solutions of the Incompressible Navier-Stokes Equation

We consider the initial value problem to the incompressible Navier-Stokes
equation

i 1
Bl v+ op =0 (i=1,2,3),
. . (5.1)
v, =0,
U(Oa x) = UO(x) (UiOXi = 0) ’ (52)

where ¢ and [i represent the constant density and coefficient of viscosity
respectively. By the arguments in Leray [8], we have

Theorem 5.1. Suppose vy(x)e H'(x) and v}, =0. Then there exists a positive
constant &, such that if Hv0|1ngx)<sl, the mztlal value problem (5.1)-(5.2) has a
unique solution ve C%(0, + oo ; H(x)) which is classical (C*) for t>0.

Let us study the decay estimates of the solution. Fourier transform of (5.1)
gives

o+ Bepovis o+ Sip—o,
4 0
| (5.3)
i€, =0,
which also implies
PO = 0 Lh i e). (5.4)

R
Therefore the problem (5.1)(5.2) is reduced to the integral equation

5= T8

#Je 17 i B0, 0~ 06 O ds. (55
4]
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Here we note that if we define v/(¢, x) in the Fourier transform by

. SLTED
0'(t,8)=e &7 04(¢), (5.6)
v'(¢, x) is the solution of the initial value problem to the heat equation
113 la 11 .
A :'@"Uxm (i=1,2,3),

(0, x) =v,(x). G.7)

By the analogous arguments as in [10, 13, 15] or Sect. 4, we have easily
Theorem 5.2. Suppose vo(x)e H*(x)nL*(x) and v}, =0. Then there exists a positive
constant &, such that if vl gaey + 0o |l L1y <2, the initial value problem (5.1)~(5.2)

has a unique solution ve C°(0, + oo ; H*(x))nCY(0, + oo ; L2(x)) which is classical for
t>0 and also has the decay estimate

Hv(t)“m(x) Sc(l+1)” 3/4(‘\00 I e T lvg HLl(x))-
Furthermore it holds for v defined by (5.6) that

[0(0) = V(O] oy S (1 +8) 7.

6. Compressible and Incompressible Navier-Stokes Equations

In this section we establish the asymptotic equivalence modt™>* as t— + o0
between the solution of the compressible equation and that of the incompressible
one. In order to compare their solutions, we can assume without loss of generality

§=0=1,i=F=nR™),

. . 6.1
0o(X) =1L ug(x)=0v4(x) and up, =vp, =0. ©.1)
In addition, we need to assume
3R 1 3
Eq(x)= 7Ho(x)—i— 5 luo(x)|* = 7 6.2)

which determines the initial data of the absolute temperature 6. Then N in (4.13)
is given by

No="0,uy(x),0), (6.3)
for which W'(t) in Lemma 4.6 is given after simple calculation by

W, &)= i e OPMNw)(0, 5(£), 0)

j=0

= O PO)(0, 3(€), 0)
=(0,e FP4,(),0)
=40, 7P 94(£),0).
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Therefore W'(t, x) is (0, v'(t, x), 0) exactly, where v’ is the solution of the heat Eq.
(5.7) with 9=1, ji=p and v'(0)=v, =u,. Thus we have

Theorem 6.1. Suppose u,, vy, and 8,— R~ ' e H*(x)nL*(x) and also suppose (6.1) and
(6.2). Let (9,u,0) and v be the solutions of (4.1)~(4.2) and (5.1)(5.2) constructed in
Theorems 4.1 and 5.2 respectively. Then

(L, (), 3) — (o, @u', EY(O)ll gy S (L +8) ¥4
Proof. 1t follows easily from Lemma 4.6, Theorems 4.5 and 5.2 that
(L, (), 3) — (os o', E)(O)l 2y
=1(0,2'2), 0)— (@ — 1, m", E— ()| 1a(s)
<0, v'(2), 0) = N(O)]| s
= cl[o(t) = V(@) Loy + €0, 0(2), 0) = W (D) 1
WO = W) g + WO = Nl
Sc(l+1)7%4,
This completes the proof of Theorem 6.1.
Remark 1. By Lemma 4.7, if we suppose
fvgdx= fu,dx=+0,
o(t) has the decay rate ¢~ 3% at least.

Remark 2. Theorem 6.1 indicates that the incompressible Navier-Stokes equation
is an approximation to the compressible one when not only the density but also
the total energy can be regarded as identically constant.

7. Solutions of the Boltzmann Equation

Under the same assumptions in Sect. 3, we consider the initial value problem to
the nonlinear Boltzmann equation

F,+vF, =Q(F,F),

F(0,x,v)=Fy(x,v), 7
where we set ¢=1. In order to linearize (7.1), setting

F(t,x,v)=M(@)(1 + f(t,x,v)), (7.2)
where M is the absolute Maxwellian, (7.1) is written in the form

fi+vf, —Lf=T(f,f) (1.3)

JO,x,0)=M"1©)Fo(x,0)— 1= fo(x,v)
or in the Fourier transform of (7.3)

Jo+ e, —1)f =1(f. ) (7.4)

f(oa éav):fo(éa U) [
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where Lf and I'(f, f) are defined by
Lf=2M"'Q(M,Mf),

4 : (7.5)
I'(f,f)=M""QMf,Mf).
Let f'(t,x,v) be the solution of the linearized problem
'+vifl —Lf'=0
fi+vf,—Lf (7.6)

10, x,0)= fo(x,v).
First, we review the arguments in Ukai [15] and Nishida-Imai [13].

Theorem 7.1. Suppose the initial data satisfies
fo=M "N Fq—M)eB; ;nL*v; L(x)).
Then there exists a positive constant &, such that if

[ folls,3+ 1 follp2s <es,
the initial value problem (7.3), i.e. (7.1), has a unique solution f globally in time which
satisfies
feC0, +00;B; 3)NCHO, +0; B, ,),
Lf Ol 3 Scl+1) 7%,
and for the linearized solution f' defined by (7.6),

I =IOl 3 st +)7%%.

Next, we review the fluid-dynamical eigenvalues and eigenfunctions
(&), e(Z,v)) in L2 (v) defined by

(L—iv/é)e=ue (7.7)

which were precisely investigated in [2,3].

Proposition 7.2 (Ellis and Pinsky). There exist five linearly independent solutions
(&), e(&,v)) of (7.7) with a(0)=0; these can be represented in the form

o«

o4(&)= 2 A"

(7.8)

ef&v)= ) &w,v)(e)  (0=j=4),
n=0
where the series are asymptotic for |£|—0. Here {e j};‘: o Satisfy
Ej(éa U) = e]( - é) U)

and are normalized as

(ef&),e(—&>=0" (0sjk=4).
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More concretely, they can be represented in the form
%(&)=2 (W, , LT D IEP +0(E1),

o0 (& =1 /3 IE+E(Wor L Wy,

+ 3P, LN )00,
2,(6)=0,(0)
03() = 3 W0 L™ Wou D 212+ 0(1EP),

0, (&) =2 W L™ " Wo0 €1 +0(P),

ew, v) l/l[) + Vw ,

eOw,v)=)/Fv°— VEou+ [/Tp*,

eD(m, v)= 1/%1;) + ]/z‘ijj‘i' l/§w ) (7.10)
e, v)=Chy’,

e, v)=Cly’,

where CJ, and C} represent some unit vectors such as C4CL =0 and C,C} + CLC}
=0 -,

Remark. In Proposition 3.1, we showed

_ 1 3 _
H .U(>=_ Z<T02aL 1'Poz>

I

R
(7.11)

K

|I

1 3R -
(E)Z —”2‘<T115L ll1U11>-

Substituting (7.11) into (7.9), it follows that

(&)=~ o[+ 002P),

‘/m u+ —‘)15|2+0(|§|3>,

(&) (7.9)
(&)= —#lil2 +0(¢1%),
o, (&)= — HIEP +0(EP).

Hence, comparing (7.9’) with iil) in Lemma 4.2, we have
=2 and P =12 (0£j=3). (7.12)

Finally in this section, we derive “Navier-Stokes part” f from the linearized
solution f’. The Fourier transform of f’ is written explicitely in the form (cf.
[13,15])

—f+icwo

. 1 . .
f’(t,iav)=5;i I e pI=L+i/e)™" fo(& v)dp (7.13)

—f—ico
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for |€|=r and

Je&v)= Z ¢HO (&, el =& e )
—pB+ico

1 ) ”
+o— [ ePpI-L+i'E) " fo(& v)dp (7.14)
2 g0
for |¢] < where r and f are some positive constants. Let us define f, in the Fourier
transform by

INAXE Z eSO o(E, ), e, ) e w,v), (7.15)

Jj=

where (&)= ia{V]E[ —a{P|€|*. Using Proposition 7.2, we have easily

Lemma 7.3. Suppose foeB3’3mL2(v;L1(x)). Then

I = O] S el +1)7 %%
Now define Wy ="(wg, wi, wy) by

wilt, )=yt x, i)y (0Zi<4) (7.16)
for which we simply write
Wy={frp¥>. (7.17)

Then we have

Lemma 7.4. i) W, defined by (7.17) is the solution of the initial value problem
(W) =AxWy

(7.18)
W0y =<fo. >,
where the symbol A(€) of Ay is given by
3K ) 21 /2
( i e i 5\/(u— ~)Ié|\
| 2K
A=~ iﬁj TR g(ﬁ— %) 5151( ]/é
2 /2(. 2% 1/2 _ 1R L,
5%@— e il/34 (A o) )
ii) ¢4%© js given in the form
AN — i O POY ), (7.20)

j=o

where {P‘™(w)}]_, are as in Lemma 4.2.
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Proof. Defining the matrix B={B"} (0<i,j<4) by

/— \/% 0 0 0
3

V o oy oy
gy V10 TV TVE T2

3 @, W, W,
I A
o ¢ ¢
o ¢ ¢

we can write (7. 10) as

& w, v) Z Biy/  (0<i<4).
Substituting (7.21) into (7.15),
< 4 7 -~ 4 . 4 .
=2 e‘“"<f o B”w’>( > B”‘w")
j=0 =0 k=0
4

= Y emBIBRM(0)

i k1=0
for which

W=y ™

4
Y, eBIBIEG, ) wi(0)
J,k,1=0
4 ' .
Y BB (0)

J1=0

=2 Z PP )} "wy(0)

j=0 1=

which implies (7.20). Noting that
4
Z Blann 5lm
n=0
we have

4
= Y e sBIBImM(0)
j,l=0
4

4
_ e‘“3BﬂW,’V(O)( 5 a;Bkméfk)
4] k

j,l: =0

4 4
Y e‘°‘3Bﬂv”va(0)( Y a;Bkme"Bk">

=0 kn=0

4 4
§ (5 s

n=0\k=0

4
= ;0 {ANQ)}™ Wy .

119

(7.21)

(7.22)

(7.23)
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Thus (7.18) is proved. This completes the proof of Lemma 7.4.

Here we note the difference between the systems (7.18) for Wy, and (4.20) for W.
The system (4.20) is not parabolic (so to speak, incompletely parabolic system), but
the system (7.18) is parabolic. That is

Lemma 7.5. For any vector Ve R?, there exists a positive constant § such that
V(= APV zolEl VI,
where AE(E) is the principal part of Ay(E) defined by

2(_ 3R\ .., 2172/ 2Kk 2\
g(#+5~§)lf| 0 5‘/;( )¢
o1 2%
(2)(f) = — alE|2oY — | u— | £, 0
AP 0 e (a- 5p)e
21/2(- 2\, 4/ 1R,
g%@-ﬁ)léi 0 B<“+10R Iél)
Proof. Set V="Ya,,a,a,). Then
V(= APV
2R L, A2 2R L,
- 3+ sx) ao+§\/§<u e )ieace,
Gl URY & [ 1 2R
v gl ol 3 {meret— 5 g)asfaa,
L2 (- 3R\, 1/2(- 2R 2/ 1R,
—§|f| {(/H‘ﬁ)ao*'z g(/i gﬁ)aoa4+3<y+ﬁ)a4
1) o
12 T {50 3 (- 35 oo s
__2 2 2
=§l§| Slag, a)+1E1%glay, a,,a3) ; (7.24)
%\ )P osR( R
faan— (s ) Ja 4 2 H735R 3R\ 3R/,
0=\ HT SR T 3 NEG G N e
HT SR HT SR
Y POSR(, R
2 uRy] 3 "SR 2R\ "SR/
3\MTToR) 1% 2 TR | — 1k °
ST HT10R
2 Cy(lagl* +la,?), (7.25)
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where C, is some positive constant,

_. 1/ 2K
glay,a,,a;)= Z(,U(S”“ g(ﬂ_ ﬁ) wiwj> a;4;

7Y la. (7.26)

Hence (7.24)-(7.26) immediately imply
V(= APV zZolEP v

for some positive constant 8. This completes the proof of Lemma 7.5.

8. Boltzmann and Compressible Navier-Stokes Equations

In the last section, we establish the asymptotic equivalence modt~>'* as t— + oo
between the solution of the nonlinear Boltzmann equation (7.1) and the solution of
the compressible Navier-Stokes equation (4.1). To distinguish the former from the
latter, especially in this section, we write

op(t,x)= [ F(t,x,v)dv,

mi(t, x)= [v'F(t, x,v)dv, (8.1

E(t,x)= {5 PPF(t,x,v)dv,

Pex= 3 o090, 82
where N(t) was defined by (4.10), ie.,
N(t,x)="(n%n',n*
=Ho—1,m\, |/2E~ /3 0).
Then it holds for F=M(1 + f) that
lor—1.mi V3 Ex— /3 05)
=1L LD ™))
=) (8.3)
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In fact, (8.3) follows from
op—1=[F—Mdv
=[Mfadv
={v%,
mi = [v'F dv
= [Mv'+Mfv'do
={fLvD,
V3Er—Vier=1GVEIE = VIM+GVE01— /DS Mdo
= fow*)-

In order to compare the problems (7.1) and (4.1)~(4.2), we assume that the initial
data satisfy

QFO(X) =0,(X),
mis (x) = 0,(x)ub(x) =mp(x), (8.4)
3R 1 ,
Ep (x)= TQO(X)HO(XH EQO(X)Iuo(xN =Eq(x).
Then we note from (8.3) and (8.4) that

NOEI(QO—lymOs I/%_EO— l/%Q())
=g, = Limp, VZEp,~ /3 05,)
={fo¥>- (8.5)

Now it is ready to state our main result in this paper.

Theorem 8.1. Suppose that the initial data F, and (0, u,, 0,) satisfy (8.4) and
fo=M"YF,—M)eB; ;nL*v; LY(x)). ‘ (8.6)
Then there exists a positive constant &, such that if

Hfo”3,3+ [follLe i <ess

both the initial value problems (4.1)-(4.2) and (7.1) have the global solutions in time
( Theorems 4.1 and 7.1) which satisfy

e — 0. mp—m, By — B)Oll gy Se(l 40 %1%, (8.7)

I =M@ et +1 %, (8.8)
where (0, My, Ep) and [~ are given by (8.1) and (8.2) respectively and F =M(1+ f).
Remark. By Lemma 4.7, if we suppose

[ {fouw> dx=+0,
{f,w>(t) has the decay rate ¢~ 3*essentially.
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Proof. First, we note that (8.6) implies
(00— L,up, 0, — R~ He H3(x)NLY(x).
In fact, g, — 1€ H3(x) follows from
lloo = Uz = 1r, - aell 130

= i JID¥{(Fy— M)dv|? dx

3
< Y [fID*foM*2? dx dv
k=0
§c{s%p(1 M2 fo-, U)HHs(x)}z

écho”%,s

and the others are obtained in the same way. Hence, if ¢, is sufficiently small,
Theorems 4.1 and 7.1 guarantee the global existence in time. Let us show only (8.7)
because (8.8) is proved in the same way. It follows that
l(er—@.mp—m, Ep— E)|| 1
<cllep—Limp V3 Er— V3o —(e—Lm V3 E= /3 0)l
:CH<J(> w>'—N“L2(x)
Scll<f = 15w g el = o WDl Lo
+ [ Wy =Wl o+l W =Wl Loy + el W =Nliay, (8.9)
where f, f', fy, N, Wand W’ are given by (7.3), (7.6), (7.15), (4.13), (4.20) and
Lemma 4.6 respectively. Since we can easily see
<9, ol L2y Zcligll
éCHg”s,s for geB3’3,

Theorem 7.1 and Lemma 7.3 give

I<S = 150> Ol 2oy H IS = fos 0D Dl 2y ScX+8) 7%, (8.10)
and Theorem 4.5 and Lemma 4.6 give
IW(E) = N oy + I WD) = W (@)l 2y Sl +1) 3%, (8.11)

Therefore if we can show
IWn(E) = WOl Ly Sc(L+1)7%, (8.12)
then (8.9)~(8.12) complete the proof. Noting (8.5), Wy and W’ were represented as
Wi(t)=e“>Wy(0)=e“~( f,, )

3
= ¥ MOPO(N,,
j=0 ’
3

W'(t)= .ZO eEOPO WIN, .

J
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Hence, it follows from Lemma 4.2 and Remark of Proposition 7.2 that

IWx() = WD) ags

= [ W)= W' D)) 22,
2
(mj erj >( Zo (= OPPIN, ) .
=r1 >ry j=

Scll+0% 2| Nl 2+ suplNo(OF | er?lefoe 2015

[&] =r1

3

IIA

(140" (Nl F1 + INIE20) -

Thus we have

W)= WDl oy Se(1+1) %%

which also completes the proof of Theorem 8.1.
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