
ON-THE-FLY ATTESTATION OF RECONFIGURABLE HARDWARE

Ricardo Chaves1,2, Georgi Kuzmanov2, Leonel Sousa1

1 Instituto Superior Técnico/INESC-ID. 2Computer Engineering Lab, TUDelft.
Rua Alves Redol 9, 1000-029 Lisbon, Postbus 5031, 2600 GA Delft,

Portugal. http://sips.inesc-id.pt/ The Netherlands. http://ce.et.tudelft.nl/
email: {rjfc, las}@inesc-id.pt G.Kuzmanov@ewi.tudelft.nl

ABSTRACT

This paper presents a novel method to perform on-the-fly
attestation of hardware structures loaded to reconfigurable
devices. Given that a loadable hardware structure to a recon-
figurable device is described by a binary bitstream, the hash
value of this bitstream can be calculated to validate the hard-
ware structure. To optimize this attestation, the hash value
computation is implemented in hardware on the FPGA it-
self. To guarantee the integrity of the existing computation
architecture, the proposed hardware module also enforces
region delimitation. With the region delimitation, only the
regions intended to be reconfigured can be modified. Imple-
mentation results suggest that this bitstream attestation can
be performed without imposing an extra delay to the recon-
figurable process and at an area cost of less that 10% of a
Virtex II Pro 30 FPGA device.

1. INTRODUCTION

Recent FGPA devices allow its partial reconfiguration, while
the rest remains active and working; this is called dynamic
partial reconfiguration. This functionality allows for a very
wide range of computational units to be used on a single de-
vice. This capability allows the use of smaller devices, that
are cheaper and with a lower static power consumption, and
the implementation of more complex computational struc-
tures that would otherwise not fit in the device. In several
applications, the FPGA configuration data cannot be con-
sidered trustworthy, since it might be stored on an unsecured
or unreliable location. With this fact comes the need to as-
sure that whatever is being loaded into the reconfigurable
device, is in fact being loaded into the intended location,
and that once loaded it will behave as expected. Whenever
a given computational core is required, the reconfiguration
bitstream has to be downloaded from a storage device, such
as a hard drive or a LAN, and uploaded to the FPGA de-

This work has been partially supported by the Portuguese FCT–
Fundação para a Ciência e Tecnologia, the Dutch Technology Foundation
STW, applied science division of NWO, and the Technology Program of
the Dutch Ministry of Economic Affairs (project DCS.7533).

vice. However, a corrupted bitstream may reconfigure an
unintended region of the device or implement an undesired
functionality. For example, considering an FPGA system
that controls a vehicle’s Electronic Control Unit (ECU), the
parking radar system can be replaced by the cruise control
system when this is activated. However, we must be assured
that the cruise control hardware is properly loaded, and that
the remaining hardware is not altered, e.g., the system that
controls the brakes.

This paper is focused on the attestation of the hardware
structures loaded during the partial dynamic reconfigura-
tion. The attestation module herein proposed is used not
only to validate the correctness of the configuration data,
but also to protect the remaining computational structures
already loaded into the device. Taking into account that a
hardware structure for a given reconfigurable device can be
described by data in binary format, the verification of the
hardware structure can be directly performed over the re-
configuration bitstream data. In this case, the proof that the
reconfiguration bitstream has not been tampered with and
that it is in fact the desired bitstream (i.e. the intended hard-
ware structure), is achieved by computing and comparing
the hash value of the reconfiguration bitstream. The hash
value of a message, or in this case the reconfiguration bit-
stream, produces an unique identifying footprint of the pro-
cessed data. In these algorithms the probability of two dif-
ferent input data streams generating the same hash value is
very low, even if this is done intentionally in order to forge
the signature of a given data stream.

Implementation results on a VIRTEX II Pro 30 FPGA
suggest that:

• on-the-fly attestation of the reconfigurations bitstreams
can be performed with no performance degradation.

• a device occupation of less than 10% using a SHA256
hash core is achieved.

• the bitstream attestation module can be easily inte-
grated into existing designs.

This paper is organized as follows. Section 2 describes
how dynamic reconfiguration on FPGAs is performed, in

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
71

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 2, 2008 at 19:05 from IEEE Xplore. Restrictions apply.

particular for the Virtex II Pro Xilinx technology, and the
main characteristics of the configuration bitstream. In Sec-
tion 3, the hash functions are described, in particular the
SHA algorithm. Section 4 describes the proposed attestation
module, detailing the two major operations performed by
this module, namely the region delimitation hardware and
the hash generation of the bitstream. Implementation results
are presented in Section 5 and Section 6 finalizes this paper
with some concluding remarks.

2. FPGA DYNAMIC RECONFIGURATION

The current generation of reconfigurable devices has the ca-
pability to reconfigure part of its available resources while,
at the same time, the remaining resources of the device con-
tinue active and performing computation. This operation
is called dynamic partial reconfigurability. This type of re-
configurability allows for runtime reconfiguration, adaptive
hardware algorithms, reduced power consumption, and a
more efficient usage of the available resources.

The two main methods for partial reconfiguration are
Difference-based and Module-based. In Difference-based
partial reconfiguration, small changes to a design are sup-
ported by generating a bitstream based on only the differ-
ences in the two designs. In this paper only the Module-
Based Partial Reconfiguration is considered, since this is the
most useful for computational units’ reconfiguration. In this
reconfiguration mode, a fraction of the FPGA is completely
reconfigured.

The reconfiguration of the Xilinx Virtex II Pro FPGA is
performed by the Internal Configuration Access Port (ICAP),
whose interface is depicted in Figure 1. The FPGA is re-

InData

OutData

write

ce

busy

ICAP

@50MHz

8

Fig. 1: Xilinx ICAP interface.

configured by sending the configuration bitstream through
the 8 bit InData port. The configuration interface operates
at 50MHz, and for a Virtex II PRO 30 a full configuration
bitstream has approximately 1.7 Mbyte; the reconfiguration
of the whole device requires approximately 34ms. On the
Virtex II PRO technology, the data are loaded on a column
basis with the smallest load unit being a frame, which varies
in size depending on the targeted device [1].

The Virtex Pro devices have an on-chip DES (or Triple-
DES) decryption core, used merely to decrypt the incoming
bitstreams. The designer can encrypt the bitstream in soft-

ware, and the FPGA then performs the reverse operation,
decrypting the incoming bitstream, and internally recreat-
ing the intended configuration. This method provides a very
high degree of design security. Without knowledge of the
encryption/decryption key or keys, potential attackers can-
not use the externally intercepted bitstream to analyze or to
clone the design [2]. System manufacturers can be sure that
their Virtex-II Pro implemented designs cannot be copied
and reverse engineered. However, it is also not possible to
analyze the bitstream, since it is decrypted in the ICAP. It is
thus not possible to asses what is being sent into the FPGA,
nor which regions are being modified.

The attestation module is used to enforce reliability in
the reconfigured computational modules and to protect ex-
isting modules, initially loaded into the device. This attes-
tation procedure is mainly composed by two mechanisms:
Region Delimitation and Hardware Attestation. This work
assumes that the initial configuration of the FPGA with the
attestation module can be securely performed, e.g., from a
local ROM with the initial bitstream.

The following gives an overview on how the device is
configured and the structure of the configuration bitstream.

2.1. Virtex II Pro Configuration Registers

The Virtex configuration logic was designed so that an ex-
ternal source may have control over the configuration func-
tions by accessing and loading addressed internal configu-
ration registers. In Table 1, the most significant internal
configuration registers are presented. The Frame Address

Table 1: Virtex II Pro internal configuration registers.

Register Name Description

CMD Command Register
FLR Frame Length Register
FAR Frame Address Register
FDRI Frame Data Input Register
CRC Cyclic Redundancy Check
MFWR Multiple frame Write Register
KEY Initial Key Address Register
CBC Cipher Block Chaining Register

Register (FAR) indicates the frame, and the location in the
frame where the 32-bit configuration data are to be writ-
ten. The register is automatically incremented after writing
each word. The size of a frame is specified in the Frame
Length Register (LFR). The Command Register (CMD) is
used to execute commands on the device. Table 2 presents
the most relevant commands available in the FPGA configu-
ration. These commands are executed by loading the CMD
register with the respective binary code.

72

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 2, 2008 at 19:05 from IEEE Xplore. Restrictions apply.

Table 2: Virtex II Pro CMD Register commands.

Command Action

RCRC Reset CRC Register
SWITCH Change clock frequency
WCFG Write Configuration Data
RCFG Read Configuration data
LFRM Last Frame Write
SHUTDOWN Begins Shutdown sequence
START Activates the reconfigurable hardware
MFWR Activate Multiple Frame Write mode

2.2. Bitstream Packets

The configuration bitstream is stored in a file, the bitstream
file. Since this file may include a header with information
not relevant for the configuration itself (e.g. the file cre-
ation date), a synchronization tag is inserted in the bitstream
before the actual configuration data. The synchronization
tag is also used to synchronize the ICAP with the beginning
of the 32-bit packet, since data are sent to the ICAP inter-
face in blocks of 8 bits. Consequently, no actual processing
takes place until the synchronization tag is detected by the
ICAP. After synchronization, all data (commands, configu-
ration data, etc.) are encapsulated in packets.

Due to the way data is processed by the ICAP, a 32-
bit data block is only interpreted after the subsequent 32-bit
data block is received. This implies a configuration delay
of at least 4 cycles, which allows time for the attestation
module to suspend the reconfiguration process before the
packet is processed by the ICAP.

3. HASH FUNCTIONS

Cyclic Redundancy Check (CRC) functions are capable of
detecting errors or variations in data streams, however, this
detection is rather limited. Several data streams produce the
same output, and collisions can be easily created. On the
other hand, hash functions have an extremely low collision
probability and collision attacks are not feasible in practice.

Currently, the most commonly used hash functions are
the MD5 and the Secure Hash Algorithm (SHA), with 128-
bit to 512-bit output Digest Messages (DM). While for MD5,
collision attacks are computationally feasible on a standard
desktop computer, current SHA-1 attacks still require mas-
sive computational power [3], (around 269 hash operations),
making attacks unfeasible for the time being. The SHA-1
(or SHA128) produces a 160-bit DM (the output hash value)
from the input message. The input data stream is divided
into multiple input blocks of 512 bits each. These 512-bit
blocks are split into 80x32-bit words, one 32-bit word for
each of the 80 computational round of the SHA-1 algorithm.

In 2002, the SHA-2 [4] was released as an official stan-

dard. The SHA-2 uses larger DM, from 224 bits to 512 bits,
making it more resistant to possible attacks and allowing
them to be used with larger data streams, up to 2128 bits
in the case of SHA512. The SHA-2 with a 256 DM is desig-
nated as SHA256. In each round of the SHA256 algorithm,
512 bit input data block are mixed with the current state.
Each SHA256 data block is processed in 64 rounds, after
which the current value is added to the previous hash value.
The final DM for a given data stream is given by the final
hash value obtained after the last data block.

4. HARDWARE ATTESTATION

In order to assure that the loaded modules are the correct
ones, an attestation method has to be applied when these
units are dynamically allocated into the reconfigurable de-
vice. As previously explained, the hardware structure loaded
into the device is described by a set of packets. Therefore,
the validation of the bitstream data allows for the attesta-
tion of a given hardware structure. The bitstream can be
validated by computing its hash value, either in software or
with a dedicated hardware structure. The existing mech-
anisms for software attestation could be used [5, 6], how-
ever the size of the bitstream can be significantly large, e.g.
1.4Mbit for 10% of a Virtex II Pro 30 FPGA. Therefore, the
computational time of this software attestation would also
be significant. In software, the bitstream would first need to
be loaded into an internal memory, validated by a hashing
algorithm, and sent to the configuration interface. Even as-
suming an internal memory large enough to store the entire
desired bitstream and that the ICAP is directly connected to
the internal memory, a significant computational overhead
would still be imposed.

A few hardware structures have also been proposed to
perform authentication [7,8]. However, these are either per-
formed offline or require the validation to be performed be-
fore the reconfiguration process is started.

In this paper, a hardware structure is proposed to per-
form on-the-fly attestation of the reconfiguration bitstreams.
In this approach, the generation of the DM is performed in
the device, as the device is reconfigured. Given that the DM
computation can be performed at a faster rate than the de-
vice reconfiguration, and that the data is sent directly to the
ICAP, no additional time is required for the attestable recon-
figuration, regarding the standard dynamic reconfiguration
of the device. However, since the DM of the unit can only
be obtained after the complete hash value is computed, some
region delimitation has to be enforced, in order to guaran-
tee the non tampering of the remaining area of the circuit.
The region of the device allowed to be reconfigured is lim-
ited to the area reserved for the reconfigurable modules. If
an attempt is made to modify (write) any of the reconfig-
urable hardware outside the delimited region, an abort signal
is generated and the reconfiguration process stopped. The

73

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 2, 2008 at 19:05 from IEEE Xplore. Restrictions apply.

Ready

Region
Delimitation

M
U
X

SHA-2

Counter

Filter

FIFO

Reset

Busy hash InData Abort

28
4

8

32

Control

Addess

Data

32
32

256

32

Abort
Value

100 MHz 50 MHz

Global
reset

FIFO
status

1
new

Packet

readHash

Fig. 2: Attestation module structure.

following describes the hardware structures realized to im-
plement the desired functionalities of the attestation module,
namely: i) region delimitation; ii) hardware validation; and
iii) interface to the attestation module. The structure of the
attestation module is depicted in Figure 2.

4.1. Region Delimitation

To detect a write violation outside the delimited area, we
must know: i) which frame is being written and ii) when is
the frame being written. Since the ICAP does not directly
provide this information, the bitstream must be interpreted.
In order to assure that all the bitstream is analyzed, certain
commands cannot be allowed to be processed by the ICAP,
such as Shutdown or Multiple Frame Write.

To simplify the interpretation of the bitstream, the attes-
tation module is organized into several units. First, the 8-
bit input stream (InData), depicted in Figure 2, is filtered
in order to eliminate all data before the synchronization se-
quence (FF, FF, FF, FF,AA, 99, 55, 66). This also iden-
tifies the beginning of the first 32-bit packet. After receiv-
ing 4 new 8-bit inputs, the 32-bit output is made available
and the NewPacket signal generated, indicating that a new
packet is available.

The 32-bit packets are then sent to the Region Delimi-
tation module that interprets the bitstream data. This parser
mostly implements a state machine that identifies which kind
of packet is received and their function.

Given that this unit has to identify where the Data Frame
is being written to, writings to the Frame Length Regis-
ter (FLR), Frame Address Register (FAR), and Frame Data
Register Input (FDRI) have to be detected. The parser has
its own internal frame register, which is updated every time
a FAR packet is sent to the ICAP. The value written to the

FDRI is retrieved and used to calculate which frames will be
written by the arriving data packets. To assure that a frame
is not improperly written due to a wrong frame dimension
value (FLR), the packet with the FLR value is compared
with the correct value, which is known for the device in use.
In this version of the attestation module, the FAR register
is compared with a static region value. This defined a fixed
reconfigurable region.

As mentioned above, it is not sufficient to test this type
of instructions; command instructions also have to be inter-
preted, in order to assure a certifiable reconfiguration pro-
cedure. The following points out which commands are not
allowed and why they cannot be executed (refer to Table 2
on page 3 for the commands).

SWITCH : By changing the clock frequency, an operating
frequency could be set in which the full system could
behave erroneously.

SHUTDOWN : While in shutdown mode, the configured
logic in the device is rendered inoperable;
consequently, during this period the Attestation Mod-
ule would also be rendered inoperable.

MFWR : The implemented attestation module is only able
to cope with one frame write at a time. This means
that only one of the frame’s writing would be within
the Region Delimitation hardware testability. The
other frame being written could be located anywhere
within the device.

Whenever the internal frame address is outside the al-
lowed region, or when an illegal command is detected, the
Abort signal (see Figure 2) is generated and the device re-
configuration suspended. In the attestation module output,
4 bits are used to identify what kind of violation generated
the Abort signal. Whenever a new packet is made available,
an internal counter is incremented, indicating the number of
packets received for a given bitstream. The 28-bit value of
this counter is also outputted in order to be used in the vali-
dation test.

4.2. Hardware Validation

The hardware validation is performed by generating the Di-
gest Message of the data being used to configure the device
and comparing it with the expected value. The bitstream
data preceding the synchronization pattern is not used to
generate the hash value.

The SHA hash function is used to generate the DM. The
SHA256 core used [9], computes the hashing of the bit-
stream in blocks of 512 bits and requires 65 clock cycles
to compute each data block. The SHA256 core at 50MHz
would only be able to compress data at a rate of 393Mbit/s,
which is lower than the maximum input rate of the ICAP
(of 400Mbit/s). Consequently, rather than having the ICAP

74

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 2, 2008 at 19:05 from IEEE Xplore. Restrictions apply.

wait for the bitstream to be compressed, the hash core is op-
erated at a higher frequency, for example at the frequency of
the hardware interfacing the attestation module. This dual
clock operation is depicted by the dotted line in Figure 2.
A FIFO is used to interconnect the bitstream filter, running
at the ICAP frequency, with the validation hardware. This
FIFO, capable of receiving and sending data with different
clocks, acts as a buffer between the two computation units.
If the hashing core is not able to process the data at an ade-
quate rate, the FIFO full signal is used to halt the ICAP and
the reconfiguration process, giving time for the core to pro-
cess the data. If no data is available in the FIFO the hashing
core is simply halted until a new 512-bit is available.

Instead of having the parser unit detect the end of the
bitstream, the hash unit is always computing any incoming
data. This is used as an additional security measure, since a
new bitstream sequence can be added to the end of the con-
figuration file sent to the ICAP. The attestation module only
stops computing the hash value when it receives the signal
to read the DM. When the hardware validation unit receives
this readHash signal, depicted in Figure 2, two situations
can occur: i) the reconfiguration bitstream is a multiple of
512 bits and the current DM is the final DM value; ii) the re-
configuration bitstream is not a multiple of 512 bits. In this
later case, the last partial input of the hashing core is con-
catenated with zeros, to form a full 512-bit block, and pro-
cessed to generate the final DM. This concludes the compu-
tation of the attestation module, causing the Ready signal to
be asserted. Once the final DM is generated, the validation
data can be read. These data are composed by the final DM;
the dimension of loaded bitstream, given by the counter; and
the error value.

To validate the loaded bitstream the DM read has to be
compared with the expected value in order to determine the
authenticity of the loaded hardware. This validation also
checks if an error occurred, and the dimension of the bit-
stream.

The final DM is calculated without the concatenation of
the length of the hashed message. The length of the bit-
stream is considered separately from the hash value. This
increases the security level of the validation data, that is
thus composed by the DM, the Abort value (if an Abort
occurred), and the length of the loaded reconfiguration bit-
stream.

4.3. Attestation Module Interface

In order to facilitate the utilization of this attestation mod-
ule, an interface identical to a register bank is used. 3 ma-
jor port sets are used. i) The handshake port composed by
the readHash signal, that informs the attestation module
that there is no more data to be hashed, and to conclude
the computation; and the Ready signal that indicates that
the final DM is ready to be read. ii) A 32 bit bus to read

the data and the address port, indicating which of the 32bit
parcels of the validation data are to be read. iii) A reset
signal (Globalreset) used to reset the attestation module,
preparing it to validate a new reconfiguration bitstream.

By reading the counter/abort value, a reset signal is sent
to the region delimitation unit and packet counter. This re-
set initializes the part of the module running at 50 MHz,
preparing it for the next bitstream. In order to assure that the
part of the attestation module running at 50MHz is reset, the
reset signal for these units is set active during the 8 cycles
needed to read the final DM value. Once the DM value has
been read, the hashing core is also reset, by the Global reset
signal.

Given that the attestation module works passively by
snooping the ICAP bus interface during the reconfiguration
process, it can be easily integrated into existing designs.
This module only requires that the reconfiguration unit, that
sends the bitstream data to the ICAP, allows for the recon-
figuration to be halted, in case the Abort signal is asserted.
The data resulting from the attestation module is read by ad-
dressing the data as a register bank. With this interface the
attestation module can be integrated into existing designs at
a very low design cost.

5. IMPLEMENTATION RESULTS

The proposed attestation module was implemented on a Vir-
tex II Pro 30 Xilinx FPGA, in order to analyze the amount
of resources required to implement it. The results were ob-
tained after place and route, considering the attestation mod-
ule as an isolated component.

Implementation results suggest an occupation of approx-
imately 8% of the FPGA (1113 slices and 2 BRAMs) for the
complete attestation module supported by a SHA256 hash
core. The FIFO in the attestation unit was realized using
the Xilinx ISE IPCore generator. It requires one embedded
BRAM and is capable of storing 128 words of 32 bits. This
FIFO also outputs additional status information, e.g. 512
bits available, full and empty FIFO.

In order to analyze the cost of each of the functional
blocks of the attestation module were implemented sepa-
rately. Implementation results suggest that the bitstream
interpretation and the region delimitation only require 195
slices, and 1 BRAM for the FIFO buffer. This suggests that
an even more compact attestation module can be achieved
with the use of a more area efficient hashing core. The
SHA256 core used requires 849 slices and 1 BRAM, 6%
of the available reconfigurable resources. More detailed fig-
ures for the FPGA occupation are presented in Table 3. The
register based structure of the Filter and Region Delimitation
components are capable of achieving a maximum frequency
largely above 50MHz. The SHA256 core can be operated at
frequencies up to 170 MHz.

With a SHA128 core, less than 800 slices are required,

75

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 2, 2008 at 19:05 from IEEE Xplore. Restrictions apply.

Table 3: Attestation module occupation.

Component Slices BRAMs Occupation

Filter 40 0 <1%
Reg. Delimit. 79 0 <1%
FIFO 0 1 -
SHA128 533 0 4%
SHA256 849 1 6%

Total-SHA128 797 1 6%
Total-SHA256 1113 2 8%

the occupation of the attestation core is already reduced to
6% of the total available resources of a Virtex II Pro 30.

6. CONCLUSIONS

In this paper, a novel method is proposed to validate the
hardware structures loaded into reconfigurable device at run
time, via dynamic partial reconfiguration. This method is
based on the analysis of the bitstream used to configure the
FPGAs. The attestation, of the computational structure be-
ing loaded, is performed by computing in hardware the hash
value of the bitstream, and comparing it against the expected
value. However, this operation is not sufficient to assure the
correct loading of the desired structure; the validation of the
loaded structure can only be performed after the bitstream
has been completely uploaded into the FPGA. An additional
mechanism has to be used in order to assure that an adulter-
ated bitstream is not able to damage or modify the remain-
ing computational structure. This is achieved by restricting
the area where the reconfiguration can occur. An attempt
to modify any resources outside the delimited area, leads
to the halting of the reconfiguration. Since the attestation
module works by snooping the ICAP bus interface, it can
be easily integrated into existing designs at a very low de-
sign cost. Implementation results suggest that the proposed
attestation module, using the SHA256 algorithm to produce
the Digest Message, can be realized using less than 10% of
the resources available in the Virtex II Pro 30 FPGA. If the
SHA128 algorithm is used, 6% of the available resources are
needed. With this attestation module, higher security in the
dynamic partial reconfiguration of hardware structures can
be accomplished with no performance degradation and at a
low area cost. It allows, for example, the use of dynamic

FPGA reconfiguration in the automotive industry [10], that
strongly requires the certification of all used hardware and
software components. In conclusion, the work herein pro-
posed allows the on-the-fly attestation of incoming recon-
figuration bit stream in existing FPGA devices with a low
hardware cost. In future FPGA devices this attestation unit
may be directly included in the device layout, no longer re-
quiring reconfiguration resources.

7. REFERENCES

[1] Two Flows for Partial Reconfiguration: Module Based or
Difference Based, Xapp290 (v1.2) ed., Xilinx, September
2004, Application Note: Virtex, Virtex-E, Virtex-II, Virtex-
II Pro Families.

[2] Virtex-II Pro and Virtex-II Pro X FPGA User Guide, Ug012
(v4.1) ed., Xilinx, March 2007.

[3] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full
SHA-1,” in CRYPTO, ser. Lecture Notes in Computer Sci-
ence, V. Shoup, Ed., vol. 3621. Springer, 2005, pp. 17–36.

[4] NIST, “FIPS 180-2, secure hash standard (SHS),” National
Institute of Standards and Technology, Tech. Rep., August
2002.

[5] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla,
“Swatt: Software-based attestation for embedded devices,” in
IEEE Symposium on Security and Privacy. IEEE Computer
Society, May 2004, pp. 272–.

[6] E. Shi, A. Perrig, and L. van Doorn, “Bind: A fine-grained
attestation service for secure distributed systems,” in IEEE
Symposium on Security and Privacy, May 2005.

[7] E. Simpson and P. Schaumont, “Offline hardware/software
authentication for reconfigurable platforms,” Lecture Notes
In Computer Science, vol. 4249, p. 311, 2006.

[8] T. Eisenbarth, T. Güneysu, C. Paar, A. Sadeghi,
D. Schellekens, and M. Wolf, “Reconfigurable trusted
computing in hardware,” Proceedings of the 2007 ACM
workshop on Scalable trusted computing, pp. 15–20, 2007.

[9] R. Chaves, G. Kuzmanov, L. A. Sousa, and S. Vassiliadis,
“Improving SHA-2 hardware implementations,” inWorkshop
on Cryptographic Hardware and Embedded Systems, CHES
2006, October 2006, pp. 298–310.

[10] N. Chujo, “Fail-safe ECU System Using Dynamic Reconfig-
uration of FPGA,” R&D Review of Toyota CRDL, vol. 37,
no. 2, pp. 54–60, 2002.

76

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 2, 2008 at 19:05 from IEEE Xplore. Restrictions apply.

