On-the-fly Automata Construction
for Dynamic Linear Time Temporal Logic

Laura Giordano Alberto Martelli
Universit del Piemonte Orientale Universit di Torino
Alessandria, Italy Torino, Italy
laura@mfn.unipmn.it mrt@di.unito.it
Abstract that the satisfiability problem for DLTL can be solved in ex-

ponential time, by reducing it to the emptiness problem for
We present a tableau-based algorithm for obtaining a Buichi automata. This motivates the interest in developing

Buchi automaton from a formula in Dynamic Linear Time efficient techniques for translating formulas into automata.
Temporal Logic DLT L), a logic which extends LTL by in- In this paper we present an efficient tableau-based algo-
dexing the until operator with regular programs. The con- rithm for constructing a Bchi automaton from a DLTL for-
struction of the states of the automaton is similar to the stan- mula. The construction of the states of the automaton is sim-
dard construction for.T'L, but a different technique must ilar to the standard construction f&T L [2], but the pos-
be used to verify the fulfillment of until formulas. The re- sibility of indexing until formulas with regular programs
sulting automaton is a @#chi automaton rather than a gen- puts stronger constraints on the fulfillment of until formu-
eralized one. The construction can be done on-the-fly, whilelas than in LTL, requiring more complex acceptance condi-
checking for the emptiness of the automaton. tions. Thus we extend the structure of graph nodes and the

acceptance conditions by adapting a technique proposed in

[6]. The resulting automaton will be aiBhi automaton in-

1. Introduction stead of a generalizediBhi automaton as in [2].

The problem of constructing automata from Linear-Time 2. Dynamic Linear Time Temporal Logic
Temporal (LTL) formulas has been deeply studied [11]. The)))
interest on this problem comes from the wide use tempo- [N this section we shortly define the syntax and seman-
ral logic for the verification of properties of concurrent sys- ics 0f DLTL as introduced in [6]. In such a linear time tem-
tems. The standard approach to LTL model checking con-Poral logic the next state moda!|ty is indexed by actions.
sists of translating the negation of a given LTL formula Moreover, (andthis is the extension to LTL) the until opera-
(property) into a Bichi automaton, and checking the prod- tor is indexed by programs in Propositional Dynamic Logic
uct of the property automaton and the model for Ianguage(PD'-)- .
emptiness. Therefore it is essential to keep the size of the L€t be afinite non-empty alphabet. The members of
automaton as small as possible. A tableau-based algorithnff€ actions. LeE* andx* be the set of finite and infinite
for efficiently constructing a Bchi automaton is presented Words onX, wherew = {0,1,2,...}. Let ¥ =X U ¥¥.
in [2]. This algorithm allows to build the graph “on the fly” We denote by, o’ the words oveE:* and byr, 7’ the words
and in most cases builds quite small automata, although the?ver>*. Moreover, we denote by. the usual prefix order-
problem is intrinsically exponential. Further improvements iNg overX* and, foru € ¥, we denote byrf(u) the set
have been presented in [1, 8]. of finite prefixes ofu. .

Dynamic Linear Time Temporal Logid{LT'L) [6] ex- We define the set of programs (regular expressions)
tends LTL by indexing the until operator with programs in £r9(X) generated by as follows:
Propositional Dynamic Logic, and has been shown to be Prg(X) i=a|m 4 mo | myme | 7
strictly more expressive than LTL [6]. In [3, 4] we have de-
veloped an action theory based on DLTL and of its prod-
uct version [5], and we have shown how to use it to model
multi-agent systems and to verify their properties, in partic-
ular by using model checking techniques. In [6] itis shown e [[a]] = {a};

wherea € ¥ andry, w2, 7 range overPrg(X). A set of fi-
nite words is associated with each program by the mapping
[[l] : Prg(X) — 2%, which is defined as follows:

o [[m +ma]] = [[m]] U [[ma]l;
o [[m;m]] ={nm [m € [[m]] andrs € [[ma]]};
o [[7*]] = Ul[="]], where
= [[=°]] = {}
= [[m*] = {nm | n € [[x]] andr; € [[x']]},

for everyi € w.

Let P {p1,p2,...} be a countable set of atomic
propositions. The set of formulas of DLTE] is defined as
follows:

DLTL(X) ::=p| —a|aV B |aU™B

wherep € P anda, 3 range over DLTLE).

A model of DLTL(X) is a pairM = (o,V) where
o € ¥ andV : prf(oc) — 27 is a valuation function.
Given a modelMf = (0,V), a finite wordr € prf(c) and
a formulan, the satisfiability of a formula at in M, writ-
tenM, T = «, is defined as follows:

M,t Epiff pe V(r);
M, T E -aiff M, 7}~ a;
M, 7= aVpiff M7t EaorM,r E S;

M,T = olU™j iff there existst’ € [[r]] such that
71" € prf(c) and M, 77’ |= . Moreover, for every
7" suchthat < 7" < 7Y, M, 77" = a.

A formula « is satisfiable iff there is a modéll = (o,V)
and a finite wordr € pr f(o) such that, 7 = «.

The formulani(™ 3 is true atr if “ o until 5” is true on a
finite stretch of behavior which is in the linear time behav-
ior of the programr.

The derived modalitieér) and|[r] can be defined as fol-
lows: (m)a = TU™ o and[rr]ae = —({m)—av.

Furthermore, if we lett {a1,...,a,}, theld, O
(next), & andO of LTL can be defined as follows)a =
Vaes(a)a, aldp = ad® B, Ca=TUa, Do =-Oa,
where, ini/>", ¥ is taken to be a shorthand for the pro-
grama;y + ...+ a,. Hence both LTLE) and PDL are frag-
ments of DLTLE). As shown in [6], DLTLE) is strictly
more expressive than LTE). In fact, as the logic ETL [10]
to which DLTL is inspired, DLTL has the full expressive
power of the monadic second order theorye$equences.

3. Automaton Construction

In this section we show how to build aliBhi automa-
ton for a given DLTL formulap using a tableau-like pro-
cedure. The automaton generates all the infinite sequence
(models) satisfying the formula. First we recall the defi-
nition of Buchi automata.

1 We definer < 7/ iff 37"/ such that-v"" = 7/. Moreover,r < 7/ iff
7 <7 andrt # 7.

A Buichi automatorover an alphabel is a tupleB =
(Q,—, Qin, F) where:

e () is a finite nonempty set of states;

e —C (@ x X x () is a transition relation;
* 0 C @ is the set of initial states;

e [' C () is a set of accepting states.

Leto € 3X“. Then arun of B overc isamapp : prf(c) —
Q such that:

L4 p(a) € an
o p(1) % p(ra) for eachra € prf(o)

The runp is acceptingff inf(p) N F # 0, whereinf(p) C Q
is given by:q € inf(p) iff p(r) = ¢ for infinitely many
7 € prf(o). Finally £L(B), the language ofs-words ac-
cepted byB, is: £L(B) = {o|3 an accepting run oB over
o}

Our aim is now to construct ai8hi automaton for a
given DLTL formula¢. We build a graph defining the states
and transitions of the automaton. A tableau-like procedure
allows a node to be expanded by applying propositional
rules as well as by expanding the temporal operators. It
will make use of a reformulation of the following axioms
of DLTL in [6] %:

\/aEZ<a>T ,
ad™B = (BV (aA \/aez<a> vw/eaa(ﬂ) ad™ B3)),
, for e € [[n]],
ad™B=aNV,ex(a) Vw’eéa(w) ald™ 3,
for e & [[n]],
where

Sa(m) = {n'|m % 7'} and—% is a transition relation
(defined in [6]) such that the programi is obtained from
the programr by executing actiom.

In our construction, we exploit the equivalence results
between regular expressions and finite automata and we
make use of an equivalent formulation of DLTL formulas
in which “until” formulas are indexed with finite automata
rather than regular expressions. Thus we hai&'3 in-
stead ofald™ 3, whereL(A) = [[r]]. In fact, for each reg-
ular expressiomr there is and-free) nondeterministic finite
automatonA, accepting the languagdgr]] generated byr.
Moreover the size of the automaton is linear in the size of
7 [7]. Satisfiability of until formulasa/4 3 must be modi-
fied accordingly by replacinfj=]] with £(.A) in the defini-
tion abové.

More precisely, in the construction we will make use of
the following notation for automata. Let = (Q,4,Qr)
be ane-free nondeterministic finite automaton over the al-
Bhabetz without an initial state, wheré) is a finite set of

2
3

Remember thafa)a = TU .

The idea of using finite state automata to label "until” formulas is in-
spired both to the automata construction for DLTL in [6] and to the
automata construction for ETL in [9].

statesy : Q x ¥ — 29 is the transition function, an@ » is
the set of final states. Given a state Q, we denote with
A(q) an automatord with initial stateq.

The two axioms above will thus be restated as follows:

aUAD 3 = (BV(@AV 4ex(a) Vq/eé(q,a) auA(q/)ﬁ))
(¢ is afinal state)

aZ/_lA(q)ﬂ =« AV gexla) \/q,eé(q}a) adAd) g
(¢ is not a final state)

e addT \/

e expand the set of formulas efaccording to the above
rules (by possibly creating new sets) until all formulas
in all sets have been expanded,

wex(@)T tos,

e return the resulting set of sets.

FormulaT \/,.5,(a) T makes explicit that in DLTL each
state must be followed by a next stat@ T is an axiom in

These formulas can be easily proved to be valid. ObserveDLTL).

that the disjunction/,, s, ., et 3 is a finite disjunc-
tion, as the set of statesin d(q, a) is finite.

The main procedure to construct thédhi automaton
for a formula¢ builds a graphj(¢) whose nodes are la-

belled by sets of formulas, and which defines the states

If the expansion of a set of formulas produces an incon-
sistent set, then this set is deletedrisistency constraint
A set is inconsistent if it contains eithef.” or “FT" or
“Ta andFa” or “T{a)a andT (b) 5 with a # b".

Observe that the expansion of an until formala*(@) 3

and the transitions of theiBhi automaton. The procedure only requires a finite number of steps, namely a number of
makes use of an auxiliary tableau-based function which is steps linear in the size of the automaton.

described in the next section.

3.1. Tableau computation

The tableau procedure we introduce makes uségofed
formulas i.e. formulas prefixed with the symbal or F.
This procedure takes as input a set of formtiasd returns

a set of sets of formulas, obtained by expanding the input
set according to a set of tableau rules, formulated as fol-

lows:

¢ = 1,1, if ¢ belongs to the set of formu-
las, then add); andv, to the set

¢ = 1|, if ¢ belongs to the set of for-
mulas, then make two copies of the set and add
11 to one of them ang, to the other one.

The rules are the following:
T(anf) =Ta, T3
FlaV 3) = Fa,F3
F(a A B) = FalFB
T(aVvp)=TaoTS
T-a = Fa
Fra=Ta
RITaUAD B = T(BV(aAV 4exla) V
(g is a final state)
R2TalUAMD B = T(a AV e (@) Vg esig.a) UMD B)
(g is not a final state)
Foll @8 = F(BV(aAV ess (a) V yres(qm U B))
(¢ is a final state)
FaldA DB = Fla AV e la) V
(¢ is not a final state)

) alAD))

q'€d(q,a

) ol)

Given a set of formulas, functiontableau(s)works as
follows:

4 In this section we will always refer to signed formulas

It is easy to see that for each set of formulas returned by
tableauthere is exactly one symbal € ¥ such that the
set contains formulas of the fori{a)«. In fact, because
of TV, ex{a) T, there must be at least one formula of that
kind, whereas the consistency constraint prevents from hav-
ing more than one formula of the forfa)« for different
symbolsa € .

3.2. Building the graph

To build the graph we will consider each set of formu-
las obtained through the tableau construction as a node of
the graph. The above tableau rules do not expand formulas
of the kind{a)«. Since the operatdw) is anext stateoper-
ator, expanding this kind of formulas from a nodeneans
to create a new node containingconnected to: through
an edge labelled with. Given a node: containing a for-
mulaT(a)c, then the set of nodes connecteditthrough
an edge labelled is given bytableau({Ta|T{(a)a € n} U
{Fa|F{a)a € n}).

States and transitions of thellBhi automaton are ob-
tained directly from the nodes and edges of the graph. While
we will give later the details of the construction of the au-
tomaton, we want now to address the problem of defining
accepting conditions. Intuitively this has to do witimtil
formulas i.e. formulas of the fornT o249 3. If a noden
of the graph contains the formuleal/(9) 3, then we will
accept an infinite path containing this node if it is followed
in the path by a node’ containingT 5 and Tal/A@#) 3,
wheregr is a final state ofd. Furthermore ifr is the se-
guence of labels in the path fromto »n/, thenT must be-
long to £L(A(g)), and all nodes betweenandn’ must con-
tainTa.

This problem has been solved in LTL by imposing gener-
alized Bichi acceptance conditions. In our formulation they
could be stated as follows: For each subformulés of the

hand, if ¢ is a final state, theMal/*(? 3 has been ex-
panded with (R1), and two cases are possible: either
containsT 3 or all successor nodes contain a derived un-
til formula as described above.

If a node contains an until formula which is not derived
from a predecessor node, we will say that the formula is
new New until formulas are obtained during the expansion
of thetableauprocedure. It is easy to see thafifi/(9) 3
is a new formula, themi/(*(9 3 must be a subformula of
the initial formula. For instance, the formule TZ/A (1) p)
is new in each of the nodes in Figure 1. Note that an un-
a til formula in a node might be both a derived and a new for-

mula. In that case we will consider it as a derived formula.
] We can now show how the graph can be built and how
Figure 1. (a) automatond and (b) graph for the accepting conditions are formulated. Each node of the
O(A(s1))p graph is a triple(F, z, f), whereF is an expanded set of
formulas,x € {0,1}, andf € {[,/}.

In order to formulate the accepting condition, we must be
initial formula there is a seF of accepting states includ- able to trace the until formulas along the paths of the graph
ing all the nodeg € Q such that eitheT o/ is not con- to make sure that they satisfy the until condition. Therefore
tained in the node GF 3 holds. Unfortunately a similar so- We extend signed formulas so that all until formulas have
lution does not apply in the case of DLTL, because accep-2 label 0 or 1, i.e. they have the forfifat/*(@) 5 where
tance of until formulas is more constrained thanin LTL. ! € {0, 1}. _ _

Let us consider for instance the formua(A(s))p, For each nodé', z, f), the label of an until formula in
with © = {a}. The automatom is given in Figure 1(a). F will be a§3|gned as follows. If it is a derived u.nt|l for-
By eliminating the derived modalities, this formula can be Mula, then its label is the same as that of the until formula
rewritten as the signed formule(T2/A1(50) ~(TYAGp)), in the predecessor node it derives from. Otherwise, if the
where the automatod; has only one (final) state, con- formula is new, it is given the label — . Of course func-
nected to itself through a transition labelledBy applying ~ tion tableau must be suitably modified in order to propa-
the above construction starting from this formula, we obtain 9at€ the label from an until formula to its derived formulas
the graph in Figure 1(b), where for simplicity we have kept N the successor nodes, and to give the right label to new for-
only the most significant formulas. Every node of this graph Mmulas. To do this we assume that it has two parameters: a
contains a formuld (TYA(=1)p), and the only node which ~ Set of formulas and the value of
might fulfill the until formulas is nodexs, since it contains Functioncreategraphin Figure 2 builds a grapi(¢),
T(TUAG)p), with s; final, andTp. However it is easy to ~ given an initial formulap, by returning the tripl@, I, A),
see that not all infinite paths throughy will be accepting. ~ WhereQ is the set of nodeg] the set of initial nodes and
For instance, in the pathy,ns, ns, na, n3, na, ng, na, . . - A Q x ¥ x @ the set of labelled edges.
no occurrence af fulfills the formulaT (TUAC)p) in ny, Note that two formulad ®at/A(@ 3 andT' at/4(® 3 are
since the distance in this path between nadend any oc- considered to be different. For instance, by applyene-
currence ofns is odd, while all strings inC(A(s;)) have ategraphto the formula of Figure 1, we get two nodes
even length. ({TO(TUACD), TOTUACDp), THTUACI)}, |, 1)

We present now a different solution, derived from and
[6], where some of the nodes will be duplicated to ({T(TUACYp), TO(TUAE)p) TO(TUAEp),

T(TYAp)
TTUAp)
TTUAp)

T(TUAp)
T(TUADp)
T(TUAp)
Ip

T(TUAp)
TTUAp)

avoid the above problem. Before describing the con- Tl(TU“_‘\(‘”)p)},Ll)-
struction of the graph, we make the following observa- These two nodes correspond to neden Figure 1.
tion. Let us assume that a nodeontains the until formula States and transitions of thdiBhi automator3(¢) are

TaldA9 3, such thaly is not a final state. Since this for- obtained directly from the nodes and edges of the graph.
mula has been expanded with (R2), nodewill also The set of accepting states consists of all states whose asso-

contain T(a) Vg cs(.a) @U@ B for some a. There- ciated node containg = /.

fore, according to the construction of the successor nodes, Letp be arunof3(¢). Since we identify states of the au-
each successor node will contain a formilaz/A@) g3, tomaton with nodes of the graph,can also be considered
whereq’ € d(q,a). We say that this until formula ide- as an infinite path of/(¢), andp(7) will denote a node of

rived from formula TaZ/(@ 3 in noden. On the other such agraph. According to the construction of the graph, the

function create_graph(¢)
I:=10
forall F € tableau({T¢},0)
I:=TU{(F,0,\)}
end-for
U=Q:=1
A:=10
while U # () do
removen = (F,z, f) fromU
if f=./then
=1-x
else
==z
end-if
forall 7' € tableau({Ta|T{(a)a € F}U
{Fa|F{a)a € F}, ")
if f=+/then
=l
else ifthere exists n@* al{A@ 3 € F' then
fi=v
else
=l
end-if
end-if
n/ = (f/7l,/,f/)
if In” € @ such that” = n' then
A:=AU{(n,a,n")}

else
Q:=QuU{n'}
A:=AU{(n,a,n')}
U:=Uu{n'}
end-if
end-for
end-while

return (Q, I, A)

Figure 2. Functiortreategraph

x and f values of the nodes gf have the following proper-
ties:

e if a node containg0, /) then its successor node con-

tains(1, |)

e if a node containgl, /) then its successor node con-

tains(0, |)

e if a node containg0, |) then its successor node con-

tains either(0, |) or (0, /)

e if a node containg1, |) then its successor node con-

tains either(1, |) or (1, /)

Therefore the sequence of theand f values inp will be as
follows:

0,v), (1, 1), (1, 1), (1,4/), (0, 1), ..., (0,]),

(()’ \/)’

Let us call0-sequencesr 1-sequencethe sequences of
nodes ofp with z = 0 or x = 1 respectively. Ifp is anac-
cepting run then it must contain infinitely many nodes con-
taining 4/, and thus all 0-sequences and 1-sequences must
be finite.

Intuitively, every until formula contained in a node of a
0-sequence must be fulfilled within the end of the next 1-
sequence, and vice versa. In fact, assuming that the formula
has label 1, the label will be propagated to all derived for-
mulas in the following nodes until a node is found fulfilling
the until formula. But, on the other hand, the 1-sequence ter-
minates only when there are no more until formulas with la-
bel 1, and thus that node must be met before the end of the
next 1-sequence.

3.3. Correctness of the procedure

The next proposition summarizes what we have already
pointed out in the previous section.

Proposition 1 Assume that a hode of the graph contains
TlaldA@) 3, and leta be the label of the outgoing edges (re-
member that all outgoing edges from a node have the same
label). Then the following holds:

if ¢ is not a final state ofd

node n contains T and each outgoing edge
leads to a node containing an until formula
T atAd) 3 derived fromT ald 4@ 3 in n, such
thatq’ € 6(q,a)

else, ifq is a final state of4, either

(a) noden containsT3 and no successor node

contains a formula derived froff aZ/4(? 3, or

(b) noden containsTa and each outgoing edge

leads to a node containing a derived until formula
TlattA4) 3, such thayy € 6(q, a)

Given a rurp, we will denote withp(7).F the F field of
the nodep(7), and similarly for ther and f fields.

Proposition 2 Leto € ¥« andp : prf(c) — @ be a
(non necessarily accepting) run. For eache prf(o), let
p(1) = (F,z, f). Then for eaciT'aldA93 ¢ F one of
the following holds:

1. V7' st € prf(o) : T'adA4) g € p(r7').F and
q' € 04(q,7')°

2. 3 st € prf(o) : TadM3 € p(rr').F, ¢
is a final stateg’ € 6% (q,7'), TG € p(r7').F and no

5 §7 is the obvious extension df4 to sequences

successor node pf 77’) contains an until formulade- all new until formulas created in this 1-sequence will have

rived from T!a24(4) 3. Moreover, for everyr”” such label 0. Therefore, if"%* is the longest among ail, af-

thate < 7" < 7/, Ta € p(r7").F. ter nodep(77™**) there will be no until formula labelled
For eachFaliA(@ 3 e F the following holds: with 1, and the 1-sequence will terminate. The same holds

by replacing 0 with 1 and vice versa.
3.Vr' st.rr’ € prf(o): if 7' € L(A(q)) then either
F3 € p(r7').F or there ist” such thate < 7”7 <
7' Fa € p(t7").F.

Lemmal Let s be a set of formulas anthbleau(s) =
{Sla ceey 571}' Then/\ s \/lgign /\ Si-

Proof All rules used by the functiotubleau correspond to

Proof It follows from Proposition 1 and procedui@e- equivalence formulas.

ate.graph
In an accepting run, case (2) must hold for all until for- Lemma 2 Let M = (o, V) be a modely € prf(o), and

mulas and all nodes. This is proved in the following theo- letn = (F,z, f) be a node of the graph such thaf, 7 =
rem, together with its converse. A\ F. Then there exists a successor= (7,2, f') of n

" such thatM, ra = A F', wherera € prf(o). Moreover, if
Theorem1 Leto € X¥ andp : prf(o) — Qbearun. 1,45 ¢ 7 whereq is a final state andV/, 7a = T3,
Then, for eachr € prf(o) and for eachT'al/A@ 3 ¢ thenT3 e 7.

p(7).F, condition (2) of Proposition 2 holds if and onlyif
is an accepting run. Proof The proof comes from the construction and the pre-

vious lemma. In particular the last part holds if, when ex-

Proof If part: p is an accepting run. As pointed out before handingT /4@ g in F with rule (R1), we choose the set
the nodes op are arranged in alternating 0-sequences and containingT 3.

1-sequences of finite length. Then we can have the follow-
ing cases: Theorem2 Let M = (0,V) and M,e = ¢. Theno €

L(B(9)).
a) l = 0 andp(7).z = 0. Let us assume that condition (B i .
(1) of Proposition 2 holds. Then each ngde ') fol- Proof We show how to build an accepting runof B(¢)

lowing p(7) in the same 0-sequence, will contain a de- OVer 7- The first node ofp is chosen by taking an initial
rived formulaT®a/A@ 3 (remember that the label of Noden = (F,z, f) of the graph such thatl,e = A\ F.
a derived formula cannot change). On the other hand, 1€ following nodes op are chosen by repeatedly applying

the 0-sequence containingr) is finite, and, by con- Lemma 2. To prove that the run is an accepting run, we have

struction, the last node of this sequence does not conto show that all the until formulas are fulfilled. Assume that

" :
tain any until formula labelled with 0. Therefore the 12U (@3 occurs on the run ai(r). Then, for the choice

. L A . .
assumption is wrong, and condition (2) must hold. of the runp, it must be thatV/, r |= ald (?)B. By defini-
tion of satisfiability we have that there existse £(.A(q))

b) I =1andp(r).z = 1. As case (). such thatrr’ € prf(o) and M, 77" |= 3. Moreover, for

c) I = 1andp(r).z = 0. Let us assume again that condi- every 7”7 such thate < 7”7 < 7/, M,77" = a. As
tion (1) of Proposition 2 holds. Then each noder’) 7' € L(A(q)), by the choice of rup and the construction
following p(7) will contain an until formula derived of the automaton, there must be a final sigite §% (¢, 7')
from T'aldA@ 3 in p(7). All derived formulas willbe such thatT o/ 3 belongs top(r7').F. Moreover for
labelled 1 up to the last node of the 0-sequence. Thisall 7/ such that < 7" < 7/, Ta belongs top(77").F. By
label will necessarily propagate to the first node of the Lemma 2,73 also belongs te(r7').F. Hence, condition
following 1-sequence, and we fall in case (b). (2) of Proposition 2 holds and we can conclude, by Theo-

d) I = 0andp(r).z = 1. As case (c). rem 1, thafp is an accepting run.

Only if: condition (2) holds. We show that all 0 and Given a setF of signed formulas, we define the sets
1-sequences of are finite. This is true for the initial O- Pos(F) and Neg(F) respectively as the sets of positive
sequence, which consists only of the first node. Let us as-and negative propositions iff, i.e. Pos(F) = {p €
sume now that a 0-sequence is finite. We show that the fol-P|Tp € F}, andNeg(F) = {p € P|Fp € F}.
lowing 1-sequence is also finite. According to the construc- .
tion, the last node of the 0-sequence can contain only un_Theorem 3 Leto € L(B(¢))- Then there is a modell =
til formulas with label 1. The following 1-sequence goes (V) such thatM, e = ¢.
on until its nodes contain some until formula with label 1. Proof Let p be an accepting run. for eaehe prf(o) let
Since condition (2) holds, for each of these until formulas p(7) = (F;,z,, f;). The modelM = (o, V') can be ob-
there is ar’ such that the successor nodep6f') does not tained by defining/(r) € 27 such thati’(7) 2 Pos(F,)
contain an until formula derived from it. On the other hand andV (r) N Neg(F;) = (.

It is easy to prove by induction on the structure of for-
mulas that, for each and for each formula, if Tae € F;
thenM,r = «, and ifFa € F, thenM, 7 [~ a. In par-
ticular, for until formulas labelled we make use of The-
orem 1 and of Proposition 2, case 2, while for until formu-
las labelled we make use of Proposition 2, case 3. From
T¢ € F., itfollows thatM, e = ¢.

3.4. Complexity

It is known that forr € Prg(3), we can construct in
polynomial time a non-deterministic finite state automaton
A with £(A) = [[x]] such that the number of states.dfis
linear in the size ofr [7]. The expansion of each until for-
mula a/*(9) 3 in the initial formula¢ introduces at most
a number of formulas which is linear in the size4fand,
hence, is linear in the size af In fact, observe that the ex-
pansion of the until formulai/4(?) 3 (and its descendants)
introduces at most) 4| subformulas of the formi/A(@) 3,
with ¢ € Q4. Let o™ B4,....0,U4™ 3,, be all the until
formulas occurring in the initial formula. It must be that
|m1| + ... + || < |¢|. Hence, the number of until formu-
las which are introduced in the construction of the automa-
ton is linear in the size of the initial formula. Therefore,
in the worst case, the number of states of tlielld automa-
ton is exponential in the size ¢f|.

4. Conclusions

In this paper we have presented a tableau-based algo-

rithm for constructing a Bchi automaton from @& LTL

formula. The formula is satisfiable if the language recog- [10]

nized by the automaton is nonempty. The construction of

the states of the automaton can be done on-the-fly during(t1]

the search that checks for emptiness. As in [6] we make use
of finite automata to verify the fulfillment of until formu-
las. However, the construction of the automaton given in [6]
is based on the idea of generating all the (maximally con-
sistent) sets of the subformulas of the initial formula. More-
over, rather then introducing the states of the finite automata
in the global states of theiBhi automaton, we stay closer
to the standard construction for LTL [2] and we detect the
point of fulfillment of the until formulas by associating a fi-
nite automaton with each until formula (rather than a regu-
lar expression) and by keeping track of the evolution of the
state of these (finite) automata during the expansion of tem-
poral formulas.

This construction could be improved in various ways, in
particular by adopting the techniques presented in [1].

5. Acknowledgements

This research has been partially supported by the project

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

MIUR PRIN 2003 “Logic-based development and verifica-
tion of multi-agent systems”.

References

M. Daniele, F. Giunchiglia and M.Y. Vardi. Improved au-
tomata generation for linear temporal logic. Pmoc. 11th
CAV, Springer LNCS vol. 1633, pp. 249-260, July 1999.

R. Gerth, D. Peled, M.Y. Vardi and P. Wolper. Simple on-the-
fly automatic verification of linear temporal logic. Proc.
15th work. Protocol Specification, Testing and Verification
Warsaw, June 1995.

L.Giordano, A.Martelli, and C.Schwind. Reasoning about
actions in dynamic linear time temporal logit.ogic Jour-
nal of the IGPL 9(2):289-303, 2001.

L. Giordano, A. Martelli, and C. Schwind. Specifying and
Verifying Systems of Communicating Agents in a Temporal
Action Logic. InProc. AI*IA'03, Pisa, Springer LNCS vol.
2829, pp. 262—-274, September 2003.

J.G. Henriksen and P.S. Thiagarajan. A Product Version of
Dynamic Linear Time Temporal Logic. I€CONCUR’'97
1997.

J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time
Temporal Logic. IMnnals of Pure and Applied logigol.96,
n.1-3, pp.187-207, 1999.

J. Hromkovic, S. Seibert and T. Wilke. Translating Regular
Expressions into Smal-Free Nondeterministic Finite Au-
tomata. InProc. STACS'97Springer LNCS vol. 1200, pp.
55-66, 1997.

F. Somenzi and R. Bloem. EfficientiBhi automata from
LTL formulae. InProc. 12th CAYSpringer LNCS vol. 1855,
pp. 247-263, 2000.

M. Vardi and P. Wolper. Reasoning about infinite computa-
tions. InIinformation and Computatioh15,1-37 (1994).

P. Wolper. Temporal logic can be more expressivelnfor-
mation and Controb6,72—-99 (1983).

P. Wolper. Constructing Automata from Temporal Logic For-
mulas: A Tutorial. InProc. FMPA 2000Springer LNCS vol.
2090, pp. 261-277, July 2000.

