
On-the-fly Automata Construction
for Dynamic Linear Time Temporal Logic

Laura Giordano
Universit̀a del Piemonte Orientale

Alessandria, Italy
laura@mfn.unipmn.it

Alberto Martelli
Universit̀a di Torino

Torino, Italy
mrt@di.unito.it

Abstract

We present a tableau-based algorithm for obtaining a
Büchi automaton from a formula in Dynamic Linear Time
Temporal Logic (DLTL), a logic which extends LTL by in-
dexing the until operator with regular programs. The con-
struction of the states of the automaton is similar to the stan-
dard construction forLTL, but a different technique must
be used to verify the fulfillment of until formulas. The re-
sulting automaton is a B̈uchi automaton rather than a gen-
eralized one. The construction can be done on-the-fly, while
checking for the emptiness of the automaton.

1. Introduction

The problem of constructing automata from Linear-Time
Temporal (LTL) formulas has been deeply studied [11]. The
interest on this problem comes from the wide use tempo-
ral logic for the verification of properties of concurrent sys-
tems. The standard approach to LTL model checking con-
sists of translating the negation of a given LTL formula
(property) into a B̈uchi automaton, and checking the prod-
uct of the property automaton and the model for language
emptiness. Therefore it is essential to keep the size of the
automaton as small as possible. A tableau-based algorithm
for efficiently constructing a B̈uchi automaton is presented
in [2]. This algorithm allows to build the graph “on the fly”
and in most cases builds quite small automata, although the
problem is intrinsically exponential. Further improvements
have been presented in [1, 8].

Dynamic Linear Time Temporal Logic (DLTL) [6] ex-
tends LTL by indexing the until operator with programs in
Propositional Dynamic Logic, and has been shown to be
strictly more expressive than LTL [6]. In [3, 4] we have de-
veloped an action theory based on DLTL and of its prod-
uct version [5], and we have shown how to use it to model
multi-agent systems and to verify their properties, in partic-
ular by using model checking techniques. In [6] it is shown

that the satisfiability problem for DLTL can be solved in ex-
ponential time, by reducing it to the emptiness problem for
Büchi automata. This motivates the interest in developing
efficient techniques for translating formulas into automata.

In this paper we present an efficient tableau-based algo-
rithm for constructing a B̈uchi automaton from a DLTL for-
mula. The construction of the states of the automaton is sim-
ilar to the standard construction forLTL [2], but the pos-
sibility of indexing until formulas with regular programs
puts stronger constraints on the fulfillment of until formu-
las than in LTL, requiring more complex acceptance condi-
tions. Thus we extend the structure of graph nodes and the
acceptance conditions by adapting a technique proposed in
[6]. The resulting automaton will be a Büchi automaton in-
stead of a generalized Büchi automaton as in [2].

2. Dynamic Linear Time Temporal Logic

In this section we shortly define the syntax and seman-
tics of DLTL as introduced in [6]. In such a linear time tem-
poral logic the next state modality is indexed by actions.
Moreover, (and this is the extension to LTL) the until opera-
tor is indexed by programs in Propositional Dynamic Logic
(PDL).

Let Σ be a finite non-empty alphabet. The members ofΣ
are actions. LetΣ∗ andΣω be the set of finite and infinite
words onΣ, whereω = {0, 1, 2, . . .}. Let Σ∞ =Σ∗ ∪ Σω.
We denote byσ, σ′ the words overΣω and byτ, τ ′ the words
overΣ∗. Moreover, we denote by≤ the usual prefix order-
ing overΣ∗ and, foru ∈ Σ∞, we denote byprf(u) the set
of finite prefixes ofu.

We define the set of programs (regular expressions)
Prg(Σ) generated byΣ as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗
wherea ∈ Σ andπ1, π2, π range overPrg(Σ). A set of fi-
nite words is associated with each program by the mapping
[[]] : Prg(Σ) → 2Σ∗ , which is defined as follows:

• [[a]] = {a};

• [[π1 + π2]] = [[π1]] ∪ [[π2]];

• [[π1; π2]] = {τ1τ2 | τ1 ∈ [[π1]] andτ2 ∈ [[π2]]};
• [[π∗]] =

⋃
[[πi]], where

– [[π0]] = {ε}
– [[πi+1]] = {τ1τ2 | τ1 ∈ [[π]] andτ2 ∈ [[πi]]},

for everyi ∈ ω.

Let P = {p1, p2, . . .} be a countable set of atomic
propositions. The set of formulas of DLTL(Σ) is defined as
follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

wherep ∈ P andα, β range over DLTL(Σ).
A model of DLTL(Σ) is a pair M = (σ, V) where

σ ∈ Σω andV : prf(σ) → 2P is a valuation function.
Given a modelM = (σ, V), a finite wordτ ∈ prf(σ) and
a formulaα, the satisfiability of a formulaα atτ in M , writ-
tenM, τ |= α, is defined as follows:

• M, τ |= p iff p ∈ V (τ);

• M, τ |= ¬α iff M, τ 6|= α;

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;

• M, τ |= αUπβ iff there existsτ ′ ∈ [[π]] such that
ττ ′ ∈ prf(σ) andM, ττ ′ |= β. Moreover, for every
τ ′′ such thatε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a modelM = (σ, V)
and a finite wordτ ∈ prf(σ) such thatM, τ |= α.

The formulaαUπβ is true atτ if “ α until β” is true on a
finite stretch of behavior which is in the linear time behav-
ior of the programπ.

The derived modalities〈π〉 and[π] can be defined as fol-
lows: 〈π〉α ≡ >Uπα and[π]α ≡ ¬〈π〉¬α.

Furthermore, if we letΣ = {a1, . . . , an}, the U , O
(next),3 and2 of LTL can be defined as follows:Oα ≡∨

a∈Σ〈a〉α, αUβ ≡ αUΣ∗β, 3α ≡ >Uα, 2α ≡ ¬3¬α,
where, inUΣ∗ , Σ is taken to be a shorthand for the pro-
grama1 + . . . + an. Hence both LTL(Σ) and PDL are frag-
ments of DLTL(Σ). As shown in [6], DLTL(Σ) is strictly
more expressive than LTL(Σ). In fact, as the logic ETL [10]
to which DLTL is inspired, DLTL has the full expressive
power of the monadic second order theory ofω-sequences.

3. Automaton Construction

In this section we show how to build a Büchi automa-
ton for a given DLTL formulaφ using a tableau-like pro-
cedure. The automaton generates all the infinite sequences
(models) satisfying the formulaφ. First we recall the defi-
nition of Büchi automata.

1 We defineτ ≤ τ ′ iff ∃τ ′′ such thatττ ′′ = τ ′. Moreover,τ < τ ′ iff
τ ≤ τ ′ andτ 6= τ ′.

A Büchi automatonover an alphabetΣ is a tupleB =
(Q,→, Qin, F) where:

• Q is a finite nonempty set of states;
• →⊆ Q× Σ×Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then arun of B overσ is a mapρ : prf(σ) →
Q such that:

• ρ(ε) ∈ Qin

• ρ(τ) a→ ρ(τa) for eachτa ∈ prf(σ)

The runρ is acceptingiff inf(ρ)∩F 6= ∅, whereinf(ρ) ⊆ Q
is given by:q ∈ inf(ρ) iff ρ(τ) = q for infinitely many
τ ∈ prf(σ). Finally L(B), the language ofω-words ac-
cepted byB, is: L(B) = {σ|∃ an accepting run ofB over
σ}.

Our aim is now to construct a B̈uchi automaton for a
given DLTL formulaφ. We build a graph defining the states
and transitions of the automaton. A tableau-like procedure
allows a node to be expanded by applying propositional
rules as well as by expanding the temporal operators. It
will make use of a reformulation of the following axioms
of DLTL in [6] 2:∨

a∈Σ〈a〉>
αUπβ ≡ (β ∨ (α ∧∨

a∈Σ〈a〉
∨

π′∈δa(π) αUπ′β)),
for ε ∈ [[π]],

αUπβ ≡ α ∧∨
a∈Σ〈a〉

∨
π′∈δa(π) αUπ′β,

for ε 6∈ [[π]],
where

δa(π) = {π′|π a−→ π′} and
a−→ is a transition relation

(defined in [6]) such that the programπ′ is obtained from
the programπ by executing actiona.

In our construction, we exploit the equivalence results
between regular expressions and finite automata and we
make use of an equivalent formulation of DLTL formulas
in which “until” formulas are indexed with finite automata
rather than regular expressions. Thus we haveαUAβ in-
stead ofαUπβ, whereL(A) = [[π]]. In fact, for each reg-
ular expressionπ there is an (ε-free) nondeterministic finite
automatonA, accepting the language[[π]] generated byπ.
Moreover the size of the automaton is linear in the size of
π [7]. Satisfiability of until formulasαUAβ must be modi-
fied accordingly by replacing[[π]] with L(A) in the defini-
tion above3.

More precisely, in the construction we will make use of
the following notation for automata. LetA = (Q, δ,QF)
be anε-free nondeterministic finite automaton over the al-
phabetΣ without an initial state, whereQ is a finite set of

2 Remember that〈a〉α ≡ >Uaα.
3 The idea of using finite state automata to label ”until” formulas is in-

spired both to the automata construction for DLTL in [6] and to the
automata construction for ETL in [9].

states,δ : Q×Σ → 2Q is the transition function, andQF is
the set of final states. Given a stateq ∈ Q, we denote with
A(q) an automatonA with initial stateq.

The two axioms above will thus be restated as follows:

αUA(q)β ≡ (β∨(α∧∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αUA(q′)β))

(q is a final state)
αUA(q)β ≡ α ∧ ∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αUA(q′)β
(q is not a final state)

These formulas can be easily proved to be valid. Observe
that the disjunction

∨
q′∈δ(q,a) αUA(q′)β is a finite disjunc-

tion, as the set of statesq′ in δ(q, a) is finite.
The main procedure to construct the Büchi automaton

for a formulaφ builds a graphG(φ) whose nodes are la-
belled by sets of formulas, and which defines the states
and the transitions of the B̈uchi automaton. The procedure
makes use of an auxiliary tableau-based function which is
described in the next section.

3.1. Tableau computation

The tableau procedure we introduce makes use ofsigned
formulas, i.e. formulas prefixed with the symbolT or F.
This procedure takes as input a set of formulas4 and returns
a set of sets of formulas, obtained by expanding the input
set according to a set of tableau rules, formulated as fol-
lows:

φ ⇒ ψ1, ψ2, if φ belongs to the set of formu-
las, then addψ1 andψ2 to the set

φ ⇒ ψ1|ψ2, if φ belongs to the set of for-
mulas, then make two copies of the set and add
ψ1 to one of them andψ2 to the other one.

The rules are the following:
T(α ∧ β) ⇒ Tα, Tβ
F(α ∨ β) ⇒ Fα, Fβ
F(α ∧ β) ⇒ Fα|Fβ
T(α ∨ β) ⇒ Tα|Tβ
T¬α ⇒ Fα
F¬α ⇒ Tα

R1TαUA(q)β ⇒ T(β∨(α∧∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αUA(q′)β))

(q is a final state)
R2 TαUA(q)β ⇒ T(α ∧∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αUA(q′)β)
(q is not a final state)

FαUA(q)β ⇒ F(β∨(α∧∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αUA(q′)β))

(q is a final state)
FαUA(q)β ⇒ F(α ∧∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αUA(q′)β)
(q is not a final state)

Given a set of formulass, function tableau(s)works as
follows:

4 In this section we will always refer to signed formulas

• addT
∨

a∈Σ〈a〉> to s,

• expand the set of formulas ofs according to the above
rules (by possibly creating new sets) until all formulas
in all sets have been expanded,

• return the resulting set of sets.

FormulaT
∨

a∈Σ〈a〉>makes explicit that in DLTL each
state must be followed by a next state (O> is an axiom in
DLTL).

If the expansion of a set of formulas produces an incon-
sistent set, then this set is deleted (consistency constraint).
A set is inconsistent if it contains either “T⊥” or “ F>” or
“Tα andFα” or “ T〈a〉α andT〈b〉β with a 6= b”.

Observe that the expansion of an until formulaαUA(q)β
only requires a finite number of steps, namely a number of
steps linear in the size of the automaton.

It is easy to see that for each set of formulas returned by
tableau there is exactly one symbola ∈ Σ such that the
set contains formulas of the formT〈a〉α. In fact, because
of T

∨
a∈Σ〈a〉>, there must be at least one formula of that

kind, whereas the consistency constraint prevents from hav-
ing more than one formula of the formT〈a〉α for different
symbolsa ∈ Σ.

3.2. Building the graph

To build the graph we will consider each set of formu-
las obtained through the tableau construction as a node of
the graph. The above tableau rules do not expand formulas
of the kind〈a〉α. Since the operator〈a〉 is anext stateoper-
ator, expanding this kind of formulas from a noden means
to create a new node containingα connected ton through
an edge labelled witha. Given a noden containing a for-
mula T〈a〉α, then the set of nodes connected ton through
an edge labelleda is given bytableau({Tα|T〈a〉α ∈ n} ∪
{Fα|F〈a〉α ∈ n}).

States and transitions of the Büchi automaton are ob-
tained directly from the nodes and edges of the graph. While
we will give later the details of the construction of the au-
tomaton, we want now to address the problem of defining
accepting conditions. Intuitively this has to do withuntil
formulas, i.e. formulas of the formTαUA(q)β. If a noden
of the graph contains the formulaTαUA(q)β, then we will
accept an infinite path containing this node if it is followed
in the path by a noden′ containingTβ andTαUA(qF)β,
whereqF is a final state ofA. Furthermore ifτ is the se-
quence of labels in the path fromn to n′, thenτ must be-
long toL(A(q)), and all nodes betweenn andn′ must con-
tainTα.

This problem has been solved in LTL by imposing gener-
alized B̈uchi acceptance conditions. In our formulation they
could be stated as follows: For each subformulaαUβ of the

Figure 1. (a) automatonA and (b) graph for
2〈A(s1)〉p

initial formula there is a setF of accepting states includ-
ing all the nodesq ∈ Q such that eitherTαUβ is not con-
tained in the node orTβ holds. Unfortunately a similar so-
lution does not apply in the case of DLTL, because accep-
tance of until formulas is more constrained than in LTL.

Let us consider for instance the formula2〈A(s1)〉p,
with Σ = {a}. The automatonA is given in Figure 1(a).
By eliminating the derived modalities, this formula can be
rewritten as the signed formulaF(>UA1(s0)¬(>UA(s1)p)),
where the automatonA1 has only one (final) states0 con-
nected to itself through a transition labelleda. By applying
the above construction starting from this formula, we obtain
the graph in Figure 1(b), where for simplicity we have kept
only the most significant formulas. Every node of this graph
contains a formulaT(>UA(s1)p), and the only node which
might fulfill the until formulas is noden3, since it contains
T(>UA(s3)p), with s3 final, andTp. However it is easy to
see that not all infinite paths throughn3 will be accepting.
For instance, in the pathn1, n2, n3, n4, n3, n4, n3, n4, . . .
no occurrence ofn3 fulfills the formulaT(>UA(s1)p) in n2,
since the distance in this path between noden2 and any oc-
currence ofn3 is odd, while all strings inL(A(s1)) have
even length.

We present now a different solution, derived from
[6], where some of the nodes will be duplicated to
avoid the above problem. Before describing the con-
struction of the graph, we make the following observa-
tion. Let us assume that a noden contains the until formula
TαUA(q)β, such thatq is not a final state. Since this for-
mula has been expanded with (R2), noden will also
contain T〈a〉∨q′∈δ(q,a) αUA(q′)β for some a. There-
fore, according to the construction of the successor nodes,
each successor node will contain a formulaTαUA(q′)β,
whereq′ ∈ δ(q, a). We say that this until formula isde-
rived from formula TαUA(q)β in node n. On the other

hand, if q is a final state, thenTαUA(q)β has been ex-
panded with (R1), and two cases are possible: eithern
containsTβ or all successor nodes contain a derived un-
til formula as described above.

If a node contains an until formula which is not derived
from a predecessor node, we will say that the formula is
new. New until formulas are obtained during the expansion
of the tableauprocedure. It is easy to see that ifTαUA(q)β
is a new formula, thenαUA(q)β must be a subformula of
the initial formula. For instance, the formulaT(>UA(s1)p)
is new in each of the nodes in Figure 1. Note that an un-
til formula in a node might be both a derived and a new for-
mula. In that case we will consider it as a derived formula.

We can now show how the graph can be built and how
the accepting conditions are formulated. Each node of the
graph is a triple(F , x, f), whereF is an expanded set of
formulas,x ∈ {0, 1}, andf ∈ {↓,√}.

In order to formulate the accepting condition, we must be
able to trace the until formulas along the paths of the graph
to make sure that they satisfy the until condition. Therefore
we extend signed formulas so that all until formulas have
a label 0 or 1, i.e. they have the formTlαUA(q)β where
l ∈ {0, 1}.

For each node(F , x, f), the label of an until formula in
F will be assigned as follows. If it is a derived until for-
mula, then its label is the same as that of the until formula
in the predecessor node it derives from. Otherwise, if the
formula is new, it is given the label1 − x. Of course func-
tion tableau must be suitably modified in order to propa-
gate the label from an until formula to its derived formulas
in the successor nodes, and to give the right label to new for-
mulas. To do this we assume that it has two parameters: a
set of formulas and the value ofx.

Functioncreategraph in Figure 2 builds a graphG(φ),
given an initial formulaφ, by returning the triple〈Q, I, ∆〉,
whereQ is the set of nodes,I the set of initial nodes and
∆ : Q× Σ×Q the set of labelled edges.

Note that two formulasT0αUA(q)β andT1αUA(q)β are
considered to be different. For instance, by applyingcre-
ate graphto the formula of Figure 1, we get two nodes

({T0(>UA(s1)p), T0(>UA(s2)p), T1(>UA(s4)p)}, ↓, 1)
and

({T0(>UA(s1)p), T0(>UA(s2)p), T0(>UA(s4)p),
T1(>UA(s2)p)}, ↓, 1).

These two nodes correspond to noden4 in Figure 1.
States and transitions of the Büchi automatonB(φ) are

obtained directly from the nodes and edges of the graph.
The set of accepting states consists of all states whose asso-
ciated node containsf =

√
.

Let ρ be a run ofB(φ). Since we identify states of the au-
tomaton with nodes of the graph,ρ can also be considered
as an infinite path ofG(φ), andρ(τ) will denote a node of
such a graph. According to the construction of the graph, the

function create graph(φ)
I := ∅
for all F ∈ tableau({Tφ}, 0)

I := I ∪ {(F , 0,
√

)}
end-for
U := Q := I
∆ := ∅
while U 6= ∅ do

removen = (F , x, f) from U
if f =

√
then

x′ := 1− x
else

x′ := x
end-if
for all F ′ ∈ tableau({Tα|T〈a〉α ∈ F}∪

{Fα|F〈a〉α ∈ F}, x′)
if f =

√
then

f ′ :=↓
else ifthere exists noTx′αUA(q)β ∈ F ′ then

f ′ :=
√

else
f ′ :=↓

end-if
end-if
n′ := (F ′, x′, f ′)
if ∃n′′ ∈ Q such thatn′′ = n′ then

∆ := ∆ ∪ {(n, a, n′′)}
else

Q := Q ∪ {n′}
∆ := ∆ ∪ {(n, a, n′)}
U := U ∪ {n′}

end-if
end-for

end-while
return 〈Q, I, ∆〉

Figure 2. Functioncreategraph

x andf values of the nodes ofρ have the following proper-
ties:

• if a node contains(0,
√

) then its successor node con-
tains(1, ↓)

• if a node contains(1,
√

) then its successor node con-
tains(0, ↓)

• if a node contains(0, ↓) then its successor node con-
tains either(0, ↓) or (0,

√
)

• if a node contains(1, ↓) then its successor node con-
tains either(1, ↓) or (1,

√
)

Therefore the sequence of thex andf values inρ will be as
follows:

(0,
√

), (1, ↓), . . . , (1, ↓), (1,
√

), (0, ↓), . . . , (0, ↓),
(0,
√

), · · ·
Let us call0-sequencesor 1-sequencesthe sequences of

nodes ofρ with x = 0 or x = 1 respectively. Ifρ is anac-
cepting run, then it must contain infinitely many nodes con-
taining

√
, and thus all 0-sequences and 1-sequences must

be finite.
Intuitively, every until formula contained in a node of a

0-sequence must be fulfilled within the end of the next 1-
sequence, and vice versa. In fact, assuming that the formula
has label 1, the label will be propagated to all derived for-
mulas in the following nodes until a node is found fulfilling
the until formula. But, on the other hand, the 1-sequence ter-
minates only when there are no more until formulas with la-
bel 1, and thus that node must be met before the end of the
next 1-sequence.

3.3. Correctness of the procedure

The next proposition summarizes what we have already
pointed out in the previous section.

Proposition 1 Assume that a noden of the graph contains
TlαUA(q)β, and leta be the label of the outgoing edges (re-
member that all outgoing edges from a node have the same
label). Then the following holds:
if q is not a final state ofA

node n contains Tα and each outgoing edge
leads to a node containing an until formula
TlαUA(q′)β derived fromTlαUA(q)β in n, such
that q′ ∈ δ(q, a)

else, ifq is a final state ofA, either

(a) noden containsTβ and no successor node
contains a formula derived fromTlαUA(q)β, or
(b) noden containsTα and each outgoing edge
leads to a node containing a derived until formula
TlαUA(q′)β, such thatq′ ∈ δ(q, a)

Given a runρ, we will denote withρ(τ).F theF field of
the nodeρ(τ), and similarly for thex andf fields.

Proposition 2 Let σ ∈ Σω and ρ : prf(σ) −→ Q be a
(non necessarily accepting) run. For eachτ ∈ prf(σ), let
ρ(τ) = (F , x, f). Then for eachTlαUA(q)β ∈ F one of
the following holds:

1. ∀τ ′ s.t.ττ ′ ∈ prf(σ) : TlαUA(q′)β ∈ ρ(ττ ′).F and
q′ ∈ δ∗A(q, τ ′) 5

2. ∃τ ′ s.t. ττ ′ ∈ prf(σ) : TlαUA(q′)β ∈ ρ(ττ ′).F , q′

is a final state,q′ ∈ δ∗A(q, τ ′), Tβ ∈ ρ(ττ ′).F and no

5 δ∗A is the obvious extension ofδA to sequences

successor node ofρ(ττ ′) contains an until formula de-
rived fromTlαUA(q′)β. Moreover, for everyτ ′′ such
thatε ≤ τ ′′ < τ ′, Tα ∈ ρ(ττ ′′).F .

For eachFαUA(q)β ∈ F the following holds:

3. ∀τ ′ s.t. ττ ′ ∈ prf(σ): if τ ′ ∈ L(A(q)) then either
Fβ ∈ ρ(ττ ′).F or there isτ ′′ such thatε ≤ τ ′′ <
τ ′, Fα ∈ ρ(ττ ′′).F .

Proof It follows from Proposition 1 and procedurecre-
ate graph.

In an accepting run, case (2) must hold for all until for-
mulas and all nodes. This is proved in the following theo-
rem, together with its converse.

Theorem 1 Let σ ∈ Σω andρ : prf(σ) −→ Q be a run.
Then, for eachτ ∈ prf(σ) and for eachTlαUA(q)β ∈
ρ(τ).F , condition (2) of Proposition 2 holds if and only ifρ
is an accepting run.

Proof If part: ρ is an accepting run. As pointed out before
the nodes ofρ are arranged in alternating 0-sequences and
1-sequences of finite length. Then we can have the follow-
ing cases:

a) l = 0 andρ(τ).x = 0. Let us assume that condition
(1) of Proposition 2 holds. Then each nodeρ(ττ ′) fol-
lowing ρ(τ) in the same 0-sequence, will contain a de-
rived formulaT0αUA(q)β (remember that the label of
a derived formula cannot change). On the other hand,
the 0-sequence containingρ(τ) is finite, and, by con-
struction, the last node of this sequence does not con-
tain any until formula labelled with 0. Therefore the
assumption is wrong, and condition (2) must hold.

b) l = 1 andρ(τ).x = 1. As case (a).

c) l = 1 andρ(τ).x = 0. Let us assume again that condi-
tion (1) of Proposition 2 holds. Then each nodeρ(ττ ′)
following ρ(τ) will contain an until formula derived
from T1αUA(q)β in ρ(τ). All derived formulas will be
labelled 1 up to the last node of the 0-sequence. This
label will necessarily propagate to the first node of the
following 1-sequence, and we fall in case (b).

d) l = 0 andρ(τ).x = 1. As case (c).

Only if: condition (2) holds. We show that all 0 and
1-sequences ofρ are finite. This is true for the initial 0-
sequence, which consists only of the first node. Let us as-
sume now that a 0-sequence is finite. We show that the fol-
lowing 1-sequence is also finite. According to the construc-
tion, the last node of the 0-sequence can contain only un-
til formulas with label 1. The following 1-sequence goes
on until its nodes contain some until formula with label 1.
Since condition (2) holds, for each of these until formulas
there is aτ ′ such that the successor node ofρ(ττ ′) does not
contain an until formula derived from it. On the other hand

all new until formulas created in this 1-sequence will have
label 0. Therefore, ifτmax is the longest among allτ ′, af-
ter nodeρ(ττmax) there will be no until formula labelled
with 1, and the 1-sequence will terminate. The same holds
by replacing 0 with 1 and vice versa.

Lemma 1 Let s be a set of formulas andtableau(s) =
{s1, . . . , sn}. Then

∧
s ↔ ∨

1≤i≤n

∧
si.

Proof All rules used by the functiontableau correspond to
equivalence formulas.

Lemma 2 Let M = (σ, V) be a model,τ ∈ prf(σ), and
let n = (F , x, f) be a node of the graph such thatM, τ |=∧F . Then there exists a successorn′ = (F ′, x′, f ′) of n
such thatM, τa |= ∧F ′, whereτa ∈ prf(σ). Moreover, if
TαUA(q)β ∈ F ′ whereq is a final state andM, τa |= Tβ,
thenTβ ∈ F ′.
Proof The proof comes from the construction and the pre-
vious lemma. In particular the last part holds if, when ex-
pandingTαUA(q)β in F ′ with rule (R1), we choose the set
containingTβ.

Theorem 2 Let M = (σ, V) and M, ε |= φ. Thenσ ∈
L(B(φ)).

Proof We show how to build an accepting runρ of B(φ)
over σ. The first node ofρ is chosen by taking an initial
noden = (F , x, f) of the graph such thatM, ε |= ∧F .
The following nodes ofρ are chosen by repeatedly applying
Lemma 2. To prove that the run is an accepting run, we have
to show that all the until formulas are fulfilled. Assume that
TαUA(q)β occurs on the run atρ(τ). Then, for the choice
of the runρ, it must be thatM, τ |= αUA(q)β. By defini-
tion of satisfiability we have that there existsτ ′ ∈ L(A(q))
such thatττ ′ ∈ prf(σ) andM, ττ ′ |= β. Moreover, for
every τ ′′ such thatε ≤ τ ′′ < τ ′, M, ττ ′′ |= α. As
τ ′ ∈ L(A(q)), by the choice of runρ and the construction
of the automaton, there must be a final stateq′ ∈ δ∗A(q, τ ′)
such thatTαUA(q′)β belongs toρ(ττ ′).F . Moreover for
all τ ′′ such thatε ≤ τ ′′ < τ ′, Tα belongs toρ(ττ ′′).F . By
Lemma 2,Tβ also belongs toρ(ττ ′).F . Hence, condition
(2) of Proposition 2 holds and we can conclude, by Theo-
rem 1, thatρ is an accepting run.

Given a setF of signed formulas, we define the sets
Pos(F) and Neg(F) respectively as the sets of positive
and negative propositions inF , i.e. Pos(F) = {p ∈
P|Tp ∈ F}, andNeg(F) = {p ∈ P|Fp ∈ F}.
Theorem 3 Let σ ∈ L(B(φ)). Then there is a modelM =
(σ, V) such thatM, ε |= φ.

Proof Let ρ be an accepting run. for eachτ ∈ prf(σ) let
ρ(τ) = (Fτ , xτ , fτ). The modelM = (σ, V) can be ob-
tained by definingV (τ) ∈ 2P such thatV (τ) ⊇ Pos(Fτ)
andV (τ) ∩Neg(Fτ) = ∅.

It is easy to prove by induction on the structure of for-
mulas that, for eachτ and for each formulaα, if Tα ∈ Fτ

thenM, τ |= α, and if Fα ∈ Fτ thenM, τ 6|= α. In par-
ticular, for until formulas labelledT we make use of The-
orem 1 and of Proposition 2, case 2, while for until formu-
las labelledF we make use of Proposition 2, case 3. From
Tφ ∈ Fε, it follows thatM, ε |= φ.

3.4. Complexity

It is known that forπ ∈ Prg(Σ), we can construct in
polynomial time a non-deterministic finite state automaton
A with L(A) = [[π]] such that the number of states ofA is
linear in the size ofπ [7]. The expansion of each until for-
mula αUA(q)β in the initial formulaφ introduces at most
a number of formulas which is linear in the size ofA and,
hence, is linear in the size ofπ. In fact, observe that the ex-
pansion of the until formulaαUA(q)β (and its descendants)
introduces at most|QA| subformulas of the formαUA(q′)β,
with q′ ∈ QA. Let α1Uπ1β1,....,αnUπnβn be all the until
formulas occurring in the initial formulaφ. It must be that
|π1|+ . . . + |πn| ≤ |φ|. Hence, the number of until formu-
las which are introduced in the construction of the automa-
ton is linear in the size of the initial formulaφ. Therefore,
in the worst case, the number of states of the Büchi automa-
ton is exponential in the size of|φ|.

4. Conclusions

In this paper we have presented a tableau-based algo-
rithm for constructing a B̈uchi automaton from aDLTL
formula. The formula is satisfiable if the language recog-
nized by the automaton is nonempty. The construction of
the states of the automaton can be done on-the-fly during
the search that checks for emptiness. As in [6] we make use
of finite automata to verify the fulfillment of until formu-
las. However, the construction of the automaton given in [6]
is based on the idea of generating all the (maximally con-
sistent) sets of the subformulas of the initial formula. More-
over, rather then introducing the states of the finite automata
in the global states of the B̈uchi automaton, we stay closer
to the standard construction for LTL [2] and we detect the
point of fulfillment of the until formulas by associating a fi-
nite automaton with each until formula (rather than a regu-
lar expression) and by keeping track of the evolution of the
state of these (finite) automata during the expansion of tem-
poral formulas.

This construction could be improved in various ways, in
particular by adopting the techniques presented in [1].

5. Acknowledgements

This research has been partially supported by the project
MIUR PRIN 2003 “Logic-based development and verifica-
tion of multi-agent systems”.

References

[1] M. Daniele, F. Giunchiglia and M.Y. Vardi. Improved au-
tomata generation for linear temporal logic. InProc. 11th
CAV, Springer LNCS vol. 1633, pp. 249–260, July 1999.

[2] R. Gerth, D. Peled, M.Y. Vardi and P. Wolper. Simple on-the-
fly automatic verification of linear temporal logic. InProc.
15th work. Protocol Specification, Testing and Verification,
Warsaw, June 1995.

[3] L.Giordano, A.Martelli, and C.Schwind. Reasoning about
actions in dynamic linear time temporal logic.Logic Jour-
nal of the IGPL, 9(2):289–303, 2001.

[4] L. Giordano, A. Martelli, and C. Schwind. Specifying and
Verifying Systems of Communicating Agents in a Temporal
Action Logic. In Proc. AI*IA’03, Pisa, Springer LNCS vol.
2829, pp. 262–274, September 2003.

[5] J.G. Henriksen and P.S. Thiagarajan. A Product Version of
Dynamic Linear Time Temporal Logic. InCONCUR’97,
1997.

[6] J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time
Temporal Logic. InAnnals of Pure and Applied logic, vol.96,
n.1-3, pp.187–207, 1999.

[7] J. Hromkovic, S. Seibert and T. Wilke. Translating Regular
Expressions into Smallε-Free Nondeterministic Finite Au-
tomata. InProc. STACS’97, Springer LNCS vol. 1200, pp.
55–66, 1997.

[8] F. Somenzi and R. Bloem. Efficient Büchi automata from
LTL formulae. InProc. 12th CAV, Springer LNCS vol. 1855,
pp. 247–263, 2000.

[9] M. Vardi and P. Wolper. Reasoning about infinite computa-
tions. InInformation and Computation115,1–37 (1994).

[10] P. Wolper. Temporal logic can be more expressive. InInfor-
mation and Control56,72–99 (1983).

[11] P. Wolper. Constructing Automata from Temporal Logic For-
mulas: A Tutorial. InProc. FMPA 2000, Springer LNCS vol.
2090, pp. 261–277, July 2000.

