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On-the-fly closed-loop materials discovery via
Bayesian active learning
A. Gilad Kusne 1,2,10✉, Heshan Yu2,10, Changming Wu3, Huairuo Zhang 4,5, Jason Hattrick-Simpers1,

Brian DeCost1, Suchismita Sarker6, Corey Oses 7, Cormac Toher7, Stefano Curtarolo7, Albert V. Davydov 4,

Ritesh Agarwal 8, Leonid A. Bendersky4,5, Mo Li 3, Apurva Mehta 6 & Ichiro Takeuchi 2,9✉

Active learning—the field of machine learning (ML) dedicated to optimal experiment design

—has played a part in science as far back as the 18th century when Laplace used it to guide

his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-

driven autonomous system on another major challenge, the discovery of advanced materials

against the exceedingly complex synthesis-processes-structure-property landscape. We

demonstrate an autonomous materials discovery methodology for functional inorganic

compounds which allow scientists to fail smarter, learn faster, and spend less resources in

their studies, while simultaneously improving trust in scientific results and machine learning

tools. This robot science enables science-over-the-network, reducing the economic impact of

scientists being physically separated from their labs. The real-time closed-loop, autonomous

system for materials exploration and optimization (CAMEO) is implemented at the syn-

chrotron beamline to accelerate the interconnected tasks of phase mapping and property

optimization, with each cycle taking seconds to minutes. We also demonstrate an embodi-

ment of human-machine interaction, where human-in-the-loop is called to play a contributing

role within each cycle. This work has resulted in the discovery of a novel epitaxial nano-

composite phase-change memory material.
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T
echnologies drive the perpetual search for novel and
improved functional materials, necessitating the explora-
tion of increasingly complex multi-component materials1.

With each new component or materials parameter, the space of
candidate experiments grows exponentially. For example, if
investigating the impact of a new parameter (e.g., introducing
doping) involves approximately ten experiments over the para-
meter range, N parameters will require on the order of 10 N+

possible experiments. High-throughput synthesis and character-
ization techniques offer a partial solution: with each new para-
meter, the number of candidate experiments rapidly escapes the
feasibility of exhaustive exploration. The search is further con-
founded by the diversity and complexity of materials
composition-structure-property (CSP) relationships, including
materials-processing parameters and atomic disorder2. Coupled
with the sparsity of optimal materials, these challenges threaten to
impede innovation and industrial advancement.

Structural phase maps, which describe the dependence of
materials structure on composition, serve as blueprints in the
design of functional and structural materials, as most materials
properties are tied to crystal-structure prototypes. For example,
property extrema tend to occur within specific phase regions (e.g.,
magnetism and superconductivity) or along phase boundaries
(e.g., caloric-cooling materials and morphotropic phase-boundary
piezoelectrics). Structural phase maps, and more specifically
equilibrium phase diagrams, were traditionally generated over
years with point-by-point Edisonian approaches guided by expert
knowledge and intuition and involving iterative materials
synthesis, diffraction-based structure characterization, and crys-
tallographic refinement.

Machine learning (ML) is transforming materials research
before our eyes3, and yet direct coupling of ML with experiments
remains a formidable challenge. Closed-loop autonomous system
for materials exploration and optimization (CAMEO) offers a
new materials research paradigm to truly harness the accelerating
potential of ML, setting the stage for the 21st-century paradigm of
materials research—the autonomous materials research lab run
under the supervision of a robot scientist or artificial scientist4.
Furthermore, CAMEO embraces one embodiment of human-in-
the-loop autonomous systems5,6, where the human provides their
expertise while ML presides over decision making steps. Live
visualization of data analysis and decision making (including
uncertainty quantification) provides interpretability of the
autonomous process for the human expert in the human-machine
research team (see Supplementary Fig. 11). CAMEO also exploits
(as of yet) non-automated capabilities of the human expert in the
closed loop, thus elevating the capabilities of both human and
machine.

Active learning7—the ML field dedicated to optimal experiment
design (i.e., adaptive design), is key to this new paradigm. Active
learning provides a systematic approach to identify the best
experiments to perform next to achieve user-defined objectives.
Scientific application can be traced as far back as the 18th century
to Laplace’s guided discoveries of celestial mechanics8. Bayesian
optimization (BO) active learning techniques have been used more
recently to guide experimentalists in the lab to optimize unknown
functions9–14. BO methods balance the use of experiments to
explore the unknown function with experiments that exploit prior
knowledge to identify extrema. However, these past studies only
advised researchers on the next experiment to perform, leaving
experiment planning, execution, and analysis to the researcher.
Recent advances in robotics have shifted the burden of materials
synthesis from human experts to automated systems, accelerating
materials discovery15,16. Concurrently, active learning has been
demonstrated to accelerate property optimization by guiding
simulations of known phases17. More recently, autonomous

systems and machine learning driven research have been
demonstrated for optimizing process and system operation18–20

sample characterization21, and tuning chemical reactions of
known polymers and organic molecules for technological appli-
cations22–24, using off-the-shelf optimization schemes. Taking
another step and placing active learning in real-time control of
solid-state materials exploration labs promises to accelerate
materials discovery while also rapidly and efficiently illuminating
complex materials-property relationships. Such potential innova-
tion has been discussed in recent prospectives25,26, with a primary
focus on autonomous chemistry27–29.

Here we demonstrate CAMEO (see Fig. 1) in real-time control
of X-ray diffraction measurement experiments over composition
spreads at the synchrotron beamline and in the lab. The algo-
rithm accelerates phase mapping and materials discovery of a
novel solid-state material, with a 10-fold reduction in required
experiments, each iteration taking tens of seconds to tens of
minutes depending on the experimental task.

Results
CAMEO uses a materials-specific active-learning campaign that
combines the joint objectives of maximizing knowledge of the
phase map P(x) with hunting for materials x

∗
that correspond to

property F(x) extrema. Here x∊ℝd is the set of d materials-
composition parameters. In particular, subsequent phase
mapping measurements are driven by Bayesian graph-based pre-
dictions combined with risk minimization-based decision making,
ensuring that each measurement maximizes phase map knowledge
(see “Methods” section “M1c–e”). CAMEO accelerates both tasks
by exploiting their mutual information via function g (see Eq. 1).
Further acceleration is achieved through integration of physics
knowledge (e.g., Gibbs phase rule) as well as prior experimental
and theory-based knowledge of the target material system.

These features allow CAMEO to target its search in specific
phase regions or to search near phase boundaries where sig-
nificant changes in the target property are likely to occur, thus
exploiting the dependence of materials property on structure. An
example of how phase map knowledge can accelerate materials
discovery and optimization is shown in Fig. 2a. Off-the-shelf BO
methods ignore material structure and assume material properties
are a function of only the synthesis parameters, while CAMEO
incorporates knowledge that significant changes in properties
may occur at phase boundaries. Phase mapping knowledge thus
improves property prediction estimate and uncertainty where it
matters most.

For this work a simplified implementation of g is used,
switching from phase mapping to materials optimization once
phase mapping converges. Materials optimization is focused in
the most promising phase region, with a greater importance given
to compounds near the phase boundaries. CAMEO thus provides
two benefits—a significant reduction of the search space and an
improved functional property prediction due to phase map
knowledge. Discussion of other approaches to g appears in the
“Methods” section. We demonstrate that this physics-informed
approach accelerates materials optimization compared to general
optimization methodologies that focus on directly charting the
high dimensional, complex property function.

x
*
¼ argmaxx g F xð Þ;P xð Þð Þ½ � ð1Þ

Here, we explored the Ge–Sb–Te ternary system to identify an
optimal phase-change memory (PCM) material for photonic
switching devices30. PCM materials can be switched between the
amorphous and crystalline states with an associated change in
resistance and optical contrast which can be accessed on the
nanosecond scale or shorter. Various Ge–Sb–Te based PCMs,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19597-w

2 NATURE COMMUNICATIONS |         (2020) 11:5966 | https://doi.org/10.1038/s41467-020-19597-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


especially Ge2Sb2Te5 (GST225), have been used in DVD-RAM
and nonvolatile phase-change random-access memory. We have
implemented our strategy for identifying the optimal composition
within the ternary for high-performance photonic switching with
an eye toward neuromorphic memory applications31. Our goal
was to find a compound with the highest optical contrast between
amorphous and crystalline states in order to realize multi-level
optical switching with a high signal-to-noise ratio. The compo-
sition range mapped was selected based on the lack of detailed
phase distribution and optical property information near known
PCM phases. We tasked CAMEO to find the composition with
the largest difference in the optical bandgap ΔEg and hence
optical contrast between amorphous and crystalline states. We
have discovered a naturally-forming stable epitaxial nano-
composite at a phase boundary between the distorted face-
centered cubic Ge–Sb–Te structure (which we refer to as
FCC–Ge–Sb–Te or simply GST) phase region and phase co-
existing region of GST and Sb–Te whose optical contrast is
superior to the well-known GST225 or other compounds within
the Ge–Sb–Te ternary. In a direct comparison, a photonic
switching device made of the newly discovered material outper-
forms a device made of GST225 with a significant margin.

CAMEO satisfies many attributes of a robot scientist, as dia-
grammed in Fig. 1. The modular algorithm has ‘at its fingertips’
a collection of information—knowledge of past experiments
both physical and computational, materials theory, and
measurement-instrumentation science. The algorithm uses this

knowledge to make informed decisions on the next experiment
to perform in the pursuit of optimizing a materials property and/
or maximizing knowledge of a materials system. For example, at
each iteration the set of possible phase maps are identified and
ranked by Bayesian likelihood, given analysis results of the
measured materials. Phase map and functional property like-
lihoods establish scientific hypotheses and drive further phase
mapping and materials optimization and are also presented to
the human-in-the-loop who can then (optionally) provide gui-
dance. Specifics are presented in Methods. CAMEO controls lab-
based characterization equipment in real-time to orchestrate its
own experiments, update its knowledge, and continue its
exploration. The more specific implementation of Eq. 1 is shown
in Fig. 2.

CAMEO is based on the fundamental precept that in navi-
gating compositional phase diagrams, enhancement in most
functional properties is inherently tied to the presence of parti-
cular structural phases and/or phase boundaries. The strategy is,
therefore, broadly applicable to a variety of topics with disparate
physical properties. The method was first benchmarked and its
hyperparameters tuned using a previously characterized compo-
sition spread Fe–Ga–Pd, where an entirely different physical
property—remnant magnetization, was optimized (see “Methods”
for benchmarking method and performance analysis). It was then
successfully used to discover a new photonic PCM composition
whose ΔEg (between crystalline and amorphous states) is up to 3
times larger than that of the well-known Ge2Sb2Te5.

Simulate /

download Bayesian 

manifold 

learning w/

physics

Analyze

Decide

Execute

Active learning 

w/physics

Make

Measure

Ask an expert

Database (Internal

/ external)

1 cycle in seconds to 10s of minutes

Fig. 1 Closed-loop autonomous materials exploration and optimization (CAMEO). The autonomous cycle begins with loading data from databases

including composition data for the materials on the composition spread and computed materials data from the AFLOW.org41 density functional theory

database. The collected data is then used to begin analysis of the data using physics-informed Bayesian machine learning. This process extends knowledge

of structure and functional property from materials with data to those without, predicting their estimated structure and functional property, along with

prediction uncertainty. Physics-informed active learning is then used to identify the most informative next material to study to achieve user-defined

objectives. For this work, active learning can select the next sample to characterize through autonomous control of the high-throughput X-ray diffraction

system at a synchrotron beamline or it can (optionally) request specific input from the human-in-the-loop. Future implementations will include

autonomous materials synthesis and simulation. The data collected from measurements and from human input are added to the database and used for the

next autonomous loop. For more information, see “Methods”.
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For this task, scanning ellipsometry measurements were per-
formed on the spread wafer with films in amorphous (initial) and
crystalline states ahead of the CAMEO run, and the raw ellip-
sometric spectra data were incorporated as a phase-mapping
prior. This was performed by increasing graph edge weights
between samples of similar raw ellipsometry spectra during the
phase mapping operation (see “Methods” section “M1c”). Thus,
the algorithm makes use of information regarding phase dis-
tribution across the spread that is “hidden” in the unreduced
complex spectroscopic data, which vary non-trivially across the
spread. At each iteration, CAMEO identifies the next material to
query, indicates the material to the experimentalist (human-in-
the-loop) who performs the intensive task of processing the raw
optical data to extract ΔEg. In parallel, CAMEO remotely controls
scanning of the synchrotron beam to collect X-ray diffraction
data from the spread wafer with films in the crystalline state.
CAMEO first seeks knowledge of the phase map until 80 %
convergence, and then switches to material optimization (see
“Methods” section “M1”). This procedure identified the material
with the largest ΔEg over 19 iterations taking approximately 10 h,
compared to over 90 continuous hours for the full set of 177
composition spots. After data collection CAMEO was bench-
marked against common active learning schemes with each run
for 100 simulations. CAMEO provides an approximate maximum
average 35-iteration lead over the best alternative Gaussian pro-
cess- upper confidence bounds (GP-UCB) focusing on ΔEg
optimization in the composition space. The use of the ellipso-
metry prior to accelerate phase mapping provides a 25-iteration
lead out of the 35. Furthermore, over the 100 runs, CAMEO gets
within 1% of the optimal in the first 20 runs 31% of the time
compared to GP-UBC’s 10% (see Supplementary Fig. 10).

As seen in Fig. 3b, the optimal composition identified here lies
at the boundary between the FCC–Ge–Sb–Te (GST) phase region
and the region where there is co-existence of GST and Sb–Te
phases. The average composition of the region is Ge4Sb6Te7, and

henceforth we refer to the region as GST467. Its ΔEg is found to
be 0.76 ± 0.03 eV, which is nearly 3 times that of GST225 (0.23 ±
0.03 eV). To investigate the origin of the enhanced ΔEg of
GST467 at the phase boundary, we have performed high-
resolution transmission microscopy of this composition
(Fig. 4a) which revealed a complex nanocomposite structure
consisting of GST and Sb–Te phases. As seen in the figure, the
phases have grown coherently with the relationship GST Fm-3m
(111)//SbTe (001). (see “Methods” for details.)

This boost in ΔEg indeed directly leads to large enhancement in
optical contrast as captured in Δk= kc− ka, the difference in the
extinction coefficient (between amorphous (ka) and crystalline
states (kc)) extracted from the ellipsometry data at different
wavelengths (Fig. 4c). Δk for GST467 is 60–125% larger than that
of GST225 in the 1000–1500 nm wavelength range. The superior
physical properties of GST467 shown here were reproduced on
multiple composition spread wafers.

We have fabricated photonic switching PCM devices based on
the discovered GST467 nanocomposite. With a sequence of laser
pulses (energy and pulse width) with varying amplitude sent
through the device, the material can be switched between the
crystalline and amorphous phases (Fig. 4b). The device made of
the nanocomposite GST467 thin film was found to be stable up to
at least 30,000 cycles indicating the high reversibility of the
crystallization and quenching processes of the coherent nano-
composite. The one-to-one comparison between the devices
fabricated with our GST225 and GST467 films here (Fig. 4d and
e) shows that GST467 device exhibits a much-enhanced switching
contrast resulting in up to 50% more in the number of interval
states, important for photonic memory and neuromorphic
devices32,33.

Recent reports of nanostructured PCM materials, including
multilayer and superlattice thin films have highlighted the crucial
roles interfaces and defects play in their switching mechanisms
leading to faster switching speed and lower switching energies34,35.
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Fig. 2 Comparison of materials optimization schemes. a Simple optimization seeks to identify the property optimum with a mixture of exploration and

exploitation without knowledge of the composition-structure-property (CSP) relationship. These methods are more likely to get caught in local optima.

b The phase-map-informed optimization scheme exploits CSP relationship by recognizing that the property is dependent on phase, thus including phase

mapping in the search for the optimum. (i) Phase-mapping steps and ii) materials optimization step that exploits knowledge of the phase boundaries. This

allows a search for phase region dependent optima. c The Ge–Sb–Te CAMEO workflow began with incorporating raw ellipsometry data as a phase-

mapping prior. On each iteration, CAMEO selects a material to measure for X-ray diffraction and concurrently requests an expert to calculate ΔEg for that

material. Each cycle takes 20–25min.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19597-w

4 NATURE COMMUNICATIONS |         (2020) 11:5966 | https://doi.org/10.1038/s41467-020-19597-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Our finding of GST467 exhibiting significant boost in ΔEg, and
consequently larger optical contrast, underscores the effectiveness
of naturally-forming nanocomposites as another approach to
enhancing performance of PCM materials, especially for optical
switching devices. It is the presence of epitaxial nano-pockets of
the SbTe phase in GST467 which is locally modifying the reso-
nant bonding in the GST matrix resulting in the lowered optical
bandgap in the crystalline state, which in turn leads to the larger
ΔEg.

The discovery of a novel PCM material demonstrates that
systems similar to CAMEO will fulfill the primary goals of
materials design by accelerating the discovery and collection of
materials knowledge, streamlining the experiment cycle,
improving control over experimental variability, and improving
reproducibility, thus improving trust in scientific results. They
will also generate reference and benchmark datasets—auto-
matically processed, analyzed, and converted to actionable
knowledge with all associated metadata, for developing and
improving trust in machine learning tools. Further benefits
include automatic knowledge capture to maintain institutional
knowledge, maximizing information gain, and reducing use of
consumable resources, such as expert time, freeing up experts to
work on higher level challenges. Research at the synchrotron
exemplifies these resource demands and limitations, where
obtaining scientist and equipment time is difficult or expensive.
And potentially most impactful, placing labs under the control of
AI may greatly reduce the technical expertise needed to perform
experiments, resulting in a greater ‘democratization’ of science36.
In turn, this may facilitate a more distributed approach to science,
as advocated by the materials collaboratory concept37.

Methods
M0 Outline of sections. A description of the closed-loop, autonomous system for
materials exploration and optimization (CAMEO) scheme can be found in M1
beginning with a detailed description of results and a description of materials and
device synthesis and characterization in section M2. The description of CAMEO is
broken down into the subsections: M1a detailed results, M1b Initialization and data
pre-processing, M1c Phase mapping, M1d Knowledge propagation, M1e Active
learning, M1f Statistics and performance measures. The materials and device
section is broken down into the subsections: M2a Sample fabrication, M2b Map-
ping of phase-change temperature, M2c Structural mapping, M2d High-angle

annular dark-field scanning transmission electron microscopy (HAADF-STEM) of
Ge4Sb6Te7 (GST467), M2e Modeling and calculation of the ellipsometry spectra,
M2f GST467 photonic device fabrication and measurement.

M1 CAMEO. CAMEO’s methodology follows the diagrams of Figs. 1 and 2c (main
text), where active learning drives measurement and expert input. Active-learning-
driven synthesis and simulation are excluded for this work. The materials are pre-
synthesized as a composition spread and, if desired, the AFLOW.org density
functional theory (DFT) simulations are run prior to CAMEO’s control of the X-
ray diffraction measurement. For this work, DFT calculations were run to build a
prior for the Fe–Ga–Pd phase mapping. DFT data were not used for the Ge–Sb–Te
material system, instead ellipsometry data was used to build a phase mapping prior.
The combinatorial library is physically loaded into the high-throughput X-ray
diffraction system, and any data captured from external or internal databases is
automatically imported into CAMEO. All preliminary data is analyzed to build the
first estimated phase map along with uncertainty quantifications. This kicks off the
iterative autonomous process where the phase map and material property estimate
and estimate uncertainty are used to inform the active-learning-driven selection of
the material to query next. At each iteration, CAMEO selects a material to study
and requests and obtains structure and functional property data for the query
material, with automatic X-ray diffraction pre-processing. In parallel, results and
predictions are presented to the expert user and pertinent knowledge is captured
from the expert. All gathered knowledge is then stored in a database. A description
of the capabilities of CAMEO are presented in Supplementary Table 1.

CAMEO’s specific implementation of Eq. 1 is shown in Eq. 2:

gðxÞ ¼
PðxÞ; c < 80%

FðxrÞ ¼ μðxrÞ þ βσðxrÞ þ γdðbfxrÞ; else

�

ð2Þ

Recent use of active learning in materials science seeks to optimize functional
material properties as a function of only the material synthesis parameters, e.g.,
composition. However, a material’s properties are clearly not just dependent on its
composition. Fundamental to functional properties are a material’s lattice
structure, microstructure, stress, etc. The general function g provides a framework
for incorporating these different pieces of knowledge as well as an active learning
scheme for acting on the knowledge. Here we take the simplest action scheme,
switching between one phase of optimization (phase mapping) to another
(materials optimization). However, g is a general function, flexible for other
implementations, such as combining knowledge of composition, lattice structure,
and functional property (as well as microstructure, and other information) in one
integrated acquisition function. Future work will explore the pros and cons of these
other implementations.

For this work, the first set of iterations maximize phase map knowledge until
the estimated phase map convergences to the user defined threshold c, at which
point the system switches to materials property optimization. A separate Gaussian
Process is fit to each individual phase region for the functional property, allowing
for phase region dependent hyperparameter optimization. This exploits the CSP
relationship to improve functional property prediction accuracy, accelerate
materials optimization, and provide potential computational resource savings. The
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phase regions are then ranked by the maximum expected functional property value
and the top R regions are selected for optimization, with R a user defined variable.
Here R is set to 1. Optimization balances exploitation and exploration through the
mean μ(xr) and weighted variance βσ(xr) (the iteration dependent β follows ref. 38

and is described below). The optimization acquisition function also allows the user
to target points closer or further from phase boundaries via γd(xr), where d(xr) is
the distance from point xr to the nearest phase boundary and γ is a user-defined
parameter—negative (positive) to emphasize points near the edge (center) of the
phase region. Here the value is set to 10. Myopia to particular phase regions can be
removed with an additional exploration policy.

Pre-synthesized (pseudo) ternary combinatorial spreads are used to provide a
pool of hundreds of materials to investigate. While for this demonstration the
autonomous system must select samples from the given pool of pre-synthesized
samples, this is only a limit of the current physical experimental system and not a
limit of the presented ML methodology.

M1a CAMEO detailed results. CAMEO was benchmarked on a material system
previously extensively studied by the authors39. Efficacy was compared to a range of
alternative methods as shown in Supplementary Fig. 1 with phase mapping perfor-
mance measured with the Fowlkes-Mallows index (FMI) and Bayesian optimization
performance measured by minimum percent deviation from optimal. The mean
performance and 95 % confidence intervals over 100 iterations are plotted in Sup-
plementary Fig. 1. The algorithm provides significant accuracy improvement and
lower variance in phase mapping. Additionally, each level of increased physical

knowledge further accelerates phase mapping. The benchmark optimization challenge
was to maximize a functional property that is a simple function of composition with
one broad, dominant peak in one phase region and a smaller peak with a maximum
in another phase region. For this simple challenge, CAMEO provides improved
performance compared to the next best optimization scheme—Gaussian process-
upper confidence bounds (GP-UCB). For more information about the benchmarking
process see (Active learning—materials optimization: benchmark system).

Once tuned, CAMEO was placed in active control over the high-throughput X-ray
diffraction system at SLAC and a commercial in-house diffraction system. Here,
the material optimization goal was to identify an optimal phase change material in the
Ge–Sb–Te system, characterized by maximizing ΔEg—the difference between the
amorphous and crystalline optical bandgap. Scanning ellipsometry measurements
were performed on the spread wafer in amorphous and crystalline states ahead of the
CAMEO run, and we fed the unprocessed ellipsometric spectra as a prior for building
the phase map model. At each iteration, the query material was indicated to the
experimentalist (human-in-the-loop) who then performed the intensive task of
processing the raw optical data to obtain ΔEg and provided this data to CAMEO (see
section “M2e” for full description). This procedure identified the material with the
largest ΔEg over 19 iterations taking approximately 10 h, compared to 90 h for the full
set of 177 materials. A post-analysis is shown in Fig. 4 (main text), where 100 runs are
performed comparing CAMEO to alternative methods. CAMEO provides an
approximate maximum average 35-iteration lead over GP-UCB. More importantly,
the algorithm is able to mine and make use of information regarding phase
distribution across the spread hidden in the complex raw spectroscopic data.
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Fig. 4 Nanostructure and device performance of (Ge4Sb6Te7) GST467. Newly identified phase-change memory material GST467 shows large optical

contrast ideal for photonic-switching device applications such as neuromorphic computing. a High resolution transmission electron microscopy image

reveals formation of coherent nanocomposite of GST structure matrix and SbTe. The dotted lines denote the atomically sharp interface. The FFT (inset) of

this region indicates structural similarity of the adjacent phases; b endurance of the GST467: it is stable over 30,000 cycles indicating the robustness of

the nanocomposite structure defined by local composition variation. The dotted lines indicate the range of each state in relative optical transmission ΔT/To

at 1500 nm. Laser pulses were 50 ns with 183 pJ for quenching and 500 ns with 3.3 nJ for crystallization. The fluctuations in ΔT/To are due to the thermal

fluctuation of the device measurement set-up; c comparison of the optical contrast here indicated by difference in the extinction coefficient k between

crystalline and amorphous phases (kc− ka) for the wavelength range of 1000–1500 nm for various compositions within Ge–Sb–Te system. GST225 and

GST467 data are from this work. The GeTe data are from ref. 55. GST467 shows higher extinction difference over other known compositions; one-to-one

comparison of d GST225 (left) and e GST467 (right) for multi-level switching in optical transmission at 1500 nm (ΔT/To) using 500 ns, 6 pJ pulses:

GST467 having larger optical contrast results in substantially more states than GST225. Device fabrication and characterization details are in Methods.
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M1b System initialization and data pre-processing
Physical system initialization. The system is initialized by loading the composition
spread into the X-ray diffraction system, either the Bruker D8* or the SSRL dif-
fraction synchrotron beamline endstation. For the SSRL system, a network con-
nection is used for sending commands to the X-ray diffraction system via the SPEC
interface40. Exposure time for each point measurement was 15 s.

Importing external data: ICSD and AFLOW.org. The user first indicates the
material system of interest. A database of known stable phases, derived from past
phase diagrams, is then used to automatically identify pertinent phases. Structure
data is then automatically assembled for these phases from the Inorganic Crystal
Structure Database (ICSD)—a database of critically evaluated experimental struc-
tures, and the AFLOW.org41 density functional theory database. All retrieved
structures are then used to generate simulated diffraction patterns through a call to
Bruker’s Topas42. After data is collected from the databases, the pool of material
samples is updated to contain both the samples on the composition spread and
those derived from databases. Previously it was shown that external structure data
improved phase mapping performance in the case of exhaustive data collection42.
For this work, the AFLOW.org computed ternary energy hull is imported and
converted to region labels which are used as phase region (i.e. cluster) priors, see
Supplementary Fig. 2 and Phase mapping prior.

Initialize phase mapping. Phase mapping is initialized with a user-selected expected
number of phase regions for the material system, 5 for Fe–Ga–Pd and 10 for
Ge–Sb–Te. While this number is used to initialize the phase map model, the phase
mapping technique will converge to either a larger or smaller number of phase
regions as described in the GRENDEL (graph-based endmember extraction and
labeling) section. All other phase mapping hyperparameters were optimized on the
benchmark system, and these values were used without modification for the
Ge–Sb–Te system. Other default parameters include: graph distance multiplier is
1.2 and max number of iterations is 100.

Selection of first sample to seed processes. If prior material structure data is
imported, such as data from AFLOW.org, that knowledge is used to initialize phase
mapping (see Phase mapping prior), with the active learning criterion used to select
the most informative material to query next. However, if no such prior data is used,
the first sample queried can be selected randomly or using some other informative
process. For benchmarking, the initial material was selected at random with uni-
form probability. For the live application to the Ge–Sb–Te system, the first sample
was selected to be the one at the composition center of the materials on the
composition spread. This sample was selected as it is potentially the most infor-
mative, given no other knowledge of the samples. The live run for the Ge–Sb–Te
system completed after all the materials were measured, allowing for later analysis
of active learning methodologies. To compare these methods, the initial material
was again selected at random with a uniform prior.

Measurement and data pre-processing: collection, integration, background subtrac-
tion. Once the next query material has been identified, the system then measures
the query material for X-ray diffraction using a programmatically generated script
via SPEC for the SLAC high-throughput system or a GADDS script for the Bruker
system. For the Bruker system, the diffraction image is integrated into a diffraction
pattern automatically, and for the SLAC system, integration is performed as well43.
The background signal is then automatically identified and subtracted.

The background signal from sample to sample can vary significantly, requiring
a background subtraction method capable of handling these variations. For both
the SLAC and Bruker diffraction measurements, Matlab’s envelope function
with the ‘peak’ setting and the parameter value of 50 was used to identify and
remove the background curve.

M1c Phase mapping
Main method: GRENDEL—list of physical constraints. Phase mapping was per-
formed using the physics-informed phase region and constituent phase identifi-
cation method GRENDEL44. This method represents the material composition
space as a graph, where each material is represented by a vertex that is connected
by edges to neighboring materials in composition space (or wafer x–y coordinate).
Neighboring materials are defined by Voronoi tessellating the composition space44.
Mathematically, G= {V, E}, where V is the set of vertices, E is the set of edges with
all edge weights set to 1. G is used to define a Markov Random Field (MRF)45

where materials identified with the same vertex label belong to the same phase
region, and each phase region is described by a set of constituent phases. This
method encodes a list of physical constraints through the methods listed in Sup-
plementary Table 2.

This method identifies a phase map for hundreds of samples in tens of seconds,
on the same order of X-ray diffraction measurements at SSRL which typically takes
30 s, and measurements on the Bruker D8 which takes over 10 min.

GRENDEL hyperparameters include the MRF segmentation (i.e., graph cut)
weight and the balance between the material-phase region matrix based on
clustering and that based on phase mixture44. As the graph cut weight is increased,
a greater number of clusters becomes possible, increasing the phase mapping

performance using the measured described in the text, while also increasing cluster
complexity. For the Fe–Ga–Pd a graph cut weight of wgc ¼ 100*n3=53 was found

to output the desired number of clusters n. The full set of phase mapping
parameters are described in the text.

During the GRENDEL process, if the number of clusters drops below 90 % of
the number of clusters used when starting the process, GRENDEL is terminated
and the computed phase map labels and constituent phases from the previous
internal GRENDEL iteration are output.

Phase mapping prior. Material property data is incorporated into the MRF model as
a prior through the edge weights of the composition graph G, where the original
edge weights of G are modified by a functional property graph Gp with edge
weights of 0 (disconnected) or 1 (connected) and f : E; Ep ! E. If e 2 E\ Ep then

e ¼ 1þ ϵe else e ¼ 1� ϵe . The value of ϵe was varied for the benchmark material
system and the value of ϵe ¼ 0:5 selected as it demonstrates clear improved phase
mapping performance during the first active learning selected measurements and
worse performance near the end of the run. This is to be expected as prior
knowledge can benefit initial analysis but can overwhelm knowledge gained from
data if the prior is weighted too heavily. A smaller (larger) value of ϵe demonstrates
a smaller (larger), similar effect.

For the benchmark system an AFLOW.org based phase map prior was used, as
shown in Supplementary Fig. 2, where the AFLOW.org tie-lines are used to define
regions. Points that fall in the same region are given the same label, resulting in a
prior for phase mapping. For materials that share a graph edge and a clustering
label, the edge weight in Ep is set to 1, otherwise the edge connecting them is
removed from Ep.

For the Ge–Sb–Te material system, the prior was determined based on optical
data collected. For each material, the complex reflectance ratio amplitude ψ and
phase difference Δ for the amorphous and crystalline phases were collected for the
set of angles θ= {50°, 55°, 60°, 65°, 70°} relative to the laser’s plane of incidence,
creating 20 spectral measurements for each material consisting of different

measurement types m 2 ψcrystalline; ψamorphous;Δcrystalline;Δamorphous
� �

. Example

optical data used for the prior is shown in Supplementary Fig. 3.
To define a prior for the phase diagram, the set of all spectra are reduced into a

set of similarity weights defining a similarity of 0 or 1 for each pair of samples,
which can then be used to evaluate Ep. The following equations are used for
mapping of spectra to similarity values. First the Euclidean difference between each
set of materials (i, j) is computed for each spectral measurement type and angle {m,
θ}. These differences are then averaged for each pair of samples (i, j) over the set of
angles θ and then normalized to between 0 and 1 for each measurement type m.
These values are then averaged again over measurements m, resulting in a final
dissimilarity value for each pair (i, j). A threshold is then used to convert the
continuous dissimilarity values to 0 or 1, defining whether an edge between (i, j)
exists (1) or does not (0). The threshold of DThreshold= 0.07 was selected to achieve
a ratio of jEpj=jEj ¼ 0:49 � 0:5, i.e., the prior removes approximately half the

edges from the initial graph.

Dm
i;j ¼ mean

θ
½dEuclideanðmi;θ ;mj;θÞ� ð3Þ

D0mi;j ¼ Dm
i;j �minDm

i;j

h i

= maxDm
i;j �minDm

i;j

h i

ð4Þ

�Di;j ¼ mean
m

D0m
i;j

h i

ð5Þ

Gp ¼ �Di;j <DThreshold ð6Þ

M1d Knowledge propagation
Phase mapping knowledge propagation. Once the phase map has been identified for
the given data, the phase region labels must be propagated to the materials that
have yet to be measured for structure. To exploit the graph-described data
manifold, the semi-supervised learning technique Gaussian random field harmonic
energy minimization46 (HEM) is used. HEM computes the likelihood of each
material belonging to each phase region and then assigns each material to the phase
region with the greatest likelihood, thus defining the most likely phase map for
the full set of materials on the composition spread. Using this information, alter-
native phase maps can also be identified along with their likelihoods. The edge
weights Ep define the similarity matrix used to define the graph Laplacian.

Phase mapping knowledge propagation—comparison method: nearest neighbor
(NN). The phase mapping knowledge propagation harmonic energy minimization
method is compared to the use of 1-nearest neighbor, where any material without a
phase region label takes on the label of its 1st nearest neighbor with a label. First
nearest neighbor was implemented using MATLAB’s knnsearch function with
default parameters.

Functional property knowledge propagation: Gaussian process regression. GPR was
implemented using MATLAB’s ‘fitrgp’ function with default parameters.
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M1e Active learning. In the Bayesian optimization47 literature, the following
formalism is used:

y ¼ f xð Þ þ ε ð7Þ

x
*
¼ argmaxx f xð Þð Þ ð8Þ

where y is the target property to be maximized, x2R
d is the set of material

synthesis and processing parameters to be searched over, f(x) is the function to
optimize, ε is typically independent stochastic measurement noise, and x

∗
defines

the material synthesis and processing parameters that result in the maximal
material property (for the minimum, replace argmax with argmin). When f(x) is
unknown, a surrogate model is used to approximate it based on given data. The
surrogate function is then used to identify the best next material to study. Each
subsequent material is selected to identify the optimal material x

∗
in the smallest

number of experiments possible. Identifying extrema of a function involves a
balance between exploiting prior data to identify nearby extrema and exploring to
identify extrema far from prior data. An alternative active learning objective is to
select experiments that will best improve the overall prediction accuracy of the
surrogate model, or in other words, select experiments to most efficiently learn the
unknown function f(x). Such a campaign learns the general trends of f(x), which is
highly useful when attempting to quantify anomalous behavior of novel materials.

Active learning for phase mapping: risk minimization. The active learning method
used to select the next material to query for phase mapping is based on risk
minimization46. HEM propagates phase region labels to unmeasured material and
identifies the likelihood of each material belonging to each phase region. These
likelihoods can be aggregated to define the set of potential phase diagrams and their
associated likelihoods. The set of potential phase diagrams form a hypothesis space
of phase diagrams. Risk minimization seeks to identify the optimal material to
query next for its structure that will most rapidly whittle down the hypothesis set
and most rapidly hone-in on the optimal phase map for the full set of materials, i.e.,
minimize expected total phase region label misclassification error and equivalently
maximize knowledge of the phase map.

Active learning comparison methods: random, sequential, and 10% sampling. The
risk minimization method is compared to (1) random sampling—selecting each
subsequent material at random from the wafer, with a uniform prior, (2) sequential
sampling—where each sample is selected in the order it appears on the wafer, and
(3) where 10% of the materials are selected in a pre-determined design. Random
sampling is expected to provide increasingly poor performance relative to active
learning as the search space increases in dimension due to the curse of dimen-
sionality48. The pre-determined 10% selection of materials in (3) are chosen to
provide maximal coverage of the composition space. However, the use of 10% is
not a generalizable benchmark. For a given number of data points, the density of
data points decreases as the dimensionality of the composition space increases,
with each point describing a larger volume. The optimal number of benchmark
materials is thus dependent on the expected size of phase regions. If smaller phase
regions are expected, a larger number of materials will be required to identify the
phase regions.

The Fe–Ga–Pd composition spread contains 278 samples. For the 10%
sampling, the 28 samples are indicated in Supplementary Fig. 4a. They were
selected to provide uniform coverage of the composition space described by the
spread. For the sequential sampling, the order of samples is shown in
Supplementary Fig. 4b.

Active learning—materials optimization: Gaussian process upper confidence bounds.
For CAMEO and GP-UCB the iteration dependent weight parameter β is used38.

β ¼ 2 log DI2π2=6λ
� �

ð9Þ

Where D is the total number of samples, I is the current iteration number, and λ=
0.1.

Active learning—CAMEO: phase mapping convergence. The phase maps
identified at each iteration i is compared to the iteration (i—4) using the FMI
performance measure. Convergence is defined as FMI >= 80%.

Active learning—materials optimization: benchmark system. The target opti-
mization for the benchmark system is maximizing remnant magnetization, as
measured by scanning SQUID voltage. One modification was made to the remnant
magnetization signal: The signal saturates over a large range of the composition
spread. For BO benchmarking, it is preferred that one material is identified as the
optimum. As such, the saturated values were modified with a squared exponential
function, in effect “hallucinating” the remnant magnetization values as if sensor
saturation had not occurred, converting the signal from Supplementary Fig. 5a to
5b. The squared exponential function used to modify the voltage was defined in
cartesian space. For the ternary composition (αFe, bGa, cPd):

x ¼ ðb=100Þ þ ðc=100Þ � sin 30�ð Þ; y ¼ ðc=100Þ � sin 60�ð Þ ð10Þ

Nxy μ ¼ 0:19; 0:05ð Þ; σ2 ¼ 0:001
� �

ð11Þ

Mapping to ternary space gives μ ¼ Fe78Ga16Pd6 .

M1f Statistics and performance metrics
Confidence interval. The 95 % confidence interval was computed for the variable of
interest over 100 experiments at the given iteration with:

CI95 ¼
σ
pn

 !

F�1 p; νð Þ ð12Þ

Where F−1 is the inverse of the Student’s t cumulative distribution function, σ is
the standard deviation, n= 100 is the number of experiments, p= {2.5%, 97.5%},
and ν= 99 is the degrees of freedom.

Phase mapping. Phase mapping performance is evaluated by comparing phase
region labels determined by experts with those estimated by CAMEO for the entire
phase map (after the knowledge propagation step). To evaluate system perfor-
mance, the Fowlkes-Mallows Index (FMI) is used, which compares two sets of
cluster labels. The equations are presented below for the expert labels l 2 L and the

ML estimated labels l̂ 2 L̂, where the labels are enumerated L ! N and L̂ ! N.
If the number of phase regions is taken to be too large by either the user or the

ML algorithm while the phase mapping is correct, some phase regions will be
segmented into sub-regions with the dominant phase boundaries preserved. For
example, peak shifting can induce phase region segmentation42. To ensure that the
performance measures ignore such sub-region segmentation, each estimated phase
region is assigned to the expert labeled phase region that shares the greatest
number of samples. The number of phase regions is monitored to ensure that
increases in model accuracy are not driven by increases in model complexity.

Fowlkes�Mallows Index : FMI ¼ TP=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ
p

ð13Þ

TP ¼ 1

2

X

i

X

j
ðli ¼ lj & l̂i ¼ l̂jÞ ð14Þ

FP ¼ 1

2

X

i

X

j
ðli ≠ lj & l̂i ¼ l̂jÞ ð15Þ

FN ¼ 1

2

X

i

X

j
ðli ¼ lj & l̂i ≠ l̂jÞ ð16Þ

TN ¼ 1

2

X

i

X

j
ðli ≠ lj & l̂i ≠ l̂jÞ ð17Þ

M1g Live visualizations. CAMEO provides live visualizations to support algo-
rithm interpretability. Phase mapping is supported by Supplementary Fig. 11a, b,
where each filled circle indicates a sample in the combinatorial library. Samples
labeled with the same color are identified as likely belonging to the same phase
region. Samples with a black border have been measured for X-ray diffraction and
the sample indicated by the red diamond is the sample that CAMEO will query
next. The size of each sample marker indicates the probability of the sample
belonging to the color-indicated phase region. Thus, areas of the composition
diagram where filled circles are small indicate a high likelihood region for a phase
boundary. Supplementary Fig. 11b presents the CAMEO predicted values of the
target functional property. Here each predicted phase region is analyzed using its
own Gaussian process (see “Methods” Section “M1”). Supplementary Fig. 11c
shows the associated Gaussian process predicted variance which has been mapped
using the sigmoid function to values between 0 and 1.

Supplementary Fig. 11d presents the FMI score between each subsequent phase
mapping iteration, quantifying the percent change in phase mapping from iteration
to iteration. Supplementary Fig. 11e shows convergence in materials property
optimization computed as the difference in the max identified property in
consecutive iterations.

Bayesian optimization. Bayesian optimization performance is measured with
minimum percent deviation from optimal, related to simple regret.

Minimumpercent deviation from optimal ¼ 100% �min
i

ðptarget � piÞ
ptarget

ð18Þ

Simple Regret ¼ min
i
ðptarget � piÞ ð19Þ

M2 Materials synthesis and characterization
M2a Sample fabrication. Amorphous thin-film composition spreads encompassing
a region of the Ge–Sb–Te ternary (separated into 177 samples using a gridded
physical shadow mask) were fabricated on 3-inch silicon wafers with SiO2 layers (2
μm) by co-sputtering Ge, Sb, and Te targets at room temperature. Different
(average) thickness composition spreads (covering the same composition range)
were fabricated for different measurements: they were 20 nm, 100 nm, 200 nm, and
500 nm for optical, structural, resistance, and composition mapping, respectively.
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To obtain a crystalline state, some of the wafers were annealed at 300 °C for 10 min
following their characterization in the amorphous state.

The composition mapping of the spreads is measured using the wavelength
dispersion spectroscopy. For every separated sample region on a spread, three
random spots are measured, and the average composition value is used for the
actual stoichiometry mapping in Supplementary Fig. 6.

M2b Mapping of phase-change temperature. Upon increasing the temperature, a
phase-change memory material undergoes a structural transition from amorphous
to crystalline states with up to four orders of magnitude in the change of resistance.
The temperature at which the resistance drop takes place can be taken as the phase-
change temperature, Tcp (Supplementary Fig. 6). The entire spreads were measured
in a scanning four-probe station combined with a Keithley 2400 from room
temperature up to 300 °C. Tcp of GST467 was found to be ~200 °C, which is much
higher than that of GST225 (≈140 °C). The higher Tcp of GST467 indicates higher
stability of the amorphous state of GST467 compared to GST225.

M2c Structural mapping. Synchrotron diffraction on crystallized spreads was car-
ried out at Beamline 10-2 at SLAC. In addition to the remote-controlled CAMEO
run, we have also carried out diffraction of entire spreads in order to obtain the
complete structural phase mapping of the probed Ge–Sb–Te region and to verify
the accuracy of the phase diagram determined by CAMEO. Supplementary Fig. 7
shows an example set of diffraction patterns taken across the spread. Along the
marked line in the composition map, the evolution of diffraction patterns indicates
phases going from the distorted FCC–Ge–Sb–Te (GST) structure region to the
phase co-existence region (GST and Sb–Te) to the Sb–Te region.

SbTe (R�3m), Sb2Te2 (P�3m), and Sb2Te3 (R�3m) all have very similar diffraction
patterns and atomic projections of the [100] zone-axis, except for different lattice
periods along the [001] direction. These three phases are present across the Sb–Te
region depending on the local composition on our spread. The predominant Sb–Te
phase in GST467 is SbTe (below).

M2d HAADF-STEM of GST467. We have performed cross-sectional high-angle
annular dark-field scanning transmission electron microscopy (HAADF-STEM)
measurements on the GST467 thin film and found that there are nanometer-sized
SbTe regions grown coherently inside the distorted cubic GST matrix as shown in
Fig. 4a of the main text. To distinguish between similar phases (SbTe, Sb2Te2, and
Sb2Te3), analysis of electron diffraction rings was carried out (not shown here), and
Sb–Te phase in the GST467 was identified to be Sb1Te1.

M2e Modeling and calculation of the ellipsometry spectra. The experimental ellip-
sometry data (J.A. Woollam company) of the combinatorial Gs–Sb–Te spread was
analyzed in the range from 200 to 1000 nm using the CompleteEASE software. The
dielectric function ε(ω) used in the model contains49 (1) a constant, (2) a Drude-
type contribution for free carriers in the case of crystalline state, and (3) a Tauc-
Lorentz oscillator to describe the onset of optical transition:

amorphous state : ε ωð Þ ¼ εconst þ εTauc�Lorentz ωð Þ; ð20Þ

crystalline state : ε ωð Þ ¼ εconst þ εDrude ωð Þ þ εTauc�Lorentz ωð Þ ð21Þ
For the Drude model:

εDrude ωð Þ ¼ ε1 ωð Þ þ i � ε2 ωð Þ ¼ 1 ε 1ð Þð Þ �
ω2
p

ω2 þ Γ2
þ i �

ω2
p � Γ

ω � ω2 þ Γ2ð Þ
ð22Þ

where ωp ¼
ffiffiffiffiffiffiffi

N�e2
m�ε0

q

, and ωp is the plasma frequency, Γ is the collision frequency.

For the Tauc-Lorentz model:

εTauc�Lorentz ωð Þ ¼ ε1 ωð Þ þ i � ε2 ωð Þ

¼ ε1 1ð Þ þ 2

π
P

Z 1

Eg

ξε2 Eð Þ
ξ2 � E2

dξ þ i �
AE0Γ E � Eg

� 	2

E E2 � E2
o

� �2þΓ2E2
h iΘ E � Eg

� 	 ð23Þ

Where A is the prefactor, Eo is the peak in the joint density of the state, Eg is the
optical bandgap, and Γ is the broadening parameter.

The optical parameters, e.g., refractive index n and extinction coefficient k, as
well as the optical bandgap, can be extracted from these models. In order to
confirm the accuracy of the optical parameters, one needs to check if the fitting
curves as well as a set of fitting parameters, e.g. thickness, carrier density, and
surface roughness, can be used to analyze the experimental data of the samples for
the entire spread wafer. Typically, a fitting procedure requires repeated steps in
order to fine-tune the parameters manually to optimize the results, and some
samples require more manual fitting steps for setting the range and the starting
values of the parameters than others.

For the CAMEO run, the unprocessed raw ellipsometry data taken at each
composition spot (for crystalline and amorphous states) are used as the prior (see
section “M1c, Phase mapping prior“). Once a spot is identified as a possible
composition with enhanced ΔEg (the difference in the optical bandgap between the
amorphous and crystalline state), the fitting procedure above is carried out on the
raw data, and the value of ΔEg is computed, the process of which includes manual

inspection of fitting parameters. Depending on the number of repeated steps, each
computation can take up to 20 min. at a composition spot, and the ΔEg value is
then fed back to the CAMEO algorithm.

The complete mapping of the optical bandgap of amorphous and crystalline
states measured and calculated from one spread are shown in Supplementary Fig. 8.
In the amorphous state, the Ge–Sb–Te based compounds are effectively covalently-
bonded semiconductors with large optical bandgaps50,51. With changing
composition, there is variation in bonding leading to slight shift in the optical
bandgap shown in Supplementary Fig. 8. In the crystalline state, the resonantly-
bonded p orbitals can delocalize the carriers resulting in the reduced bandgap49,52–54,
leading to the large contrast between the amorphous and crystalline states. In the
distorted cubic phase (i.e., GST), with changing composition, the local distortion (i.e.,
Peierls distortion) due to vacancies52,55,56 would modify the resonant bonding
shifting the optical bandgap. In the Sb–Te phase, the optical bandgap also varies with
the changing composition in Supplementary Fig. 8. When the epitaxial
nanocomposite with the SbTe phase are coherently and homogeneously grown in the
GST matrix as shown in Fig. 4a, the nano SbTe phase can act as the impurity dopant
phase in the GST matrix.

M2f Ge4Sb6Te7 photonic device fabrication and measurement. Photonic switching
devices were fabricated out of GST467 films (Supplementary Fig. 9). The 30 nm
thick nanocomposite GST467 thin film was sputtered on a 330 nm thick Si3N4 layer
on an oxidized silicon wafer. A 10 nm thick SiO2 protection layer was then coated
on the top of the GST467 thin film. Using e-beam lithography and inductively
coupled plasma etching, a 1.2 µm wide photonic waveguide was fabricated. Then
the GST467 thin film was patterned into disk shaped features 500 nm in diameter
on the top of the waveguide, and they were encapsulated with a 200 nm thick Al2O3

layer as shown in the inset of Supplementary Fig. 9.
A symmetric multi-level switching of the photonic device was investigated as

shown in Supplementary Fig. 9. In order to provide and precisely control the pump
pulses to quench or anneal the GST467 thin film in steps, pulses from a CW pump
laser were first modulated by an electro-optic modulator and then sent into an
erbium-doped fiber amplifier followed by a variable optical attenuator. The output
of the optical signal was collected with a photodetector. During the annealing
process, a sequence of pump pulse (50 ns, 2 mW) train was applied to the photonic
device. In the quenching process, a sequence of 50 ns pump pulses with gradually
increased amplitude was sent into the waveguide.

Data availability
Data that supports the findings of this study have been deposited in the github repository

and can be found with the following github or DOI link: https://github.com/KusneNIST/

CAMEO_NComm. https://doi.org/10.5281/zenodo.3998287.

Code availability
The code can be found at the following github repository or using the following DOI link:

https://github.com/KusneNIST/CAMEO_NComm. https://doi.org/10.5281/

zenodo.3998287.
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