
 Open access Journal Article DOI:10.1007/S100090050044

On-the-Fly Conformance Testing using Spin — Source link

René G. de Vries, Jan Tretmans

Published on: 01 Mar 2000 - International Journal on Software Tools for Technology Transfer (Springer)

Topics: Promela, Test harness, Test case, Conformance testing and Test Management Approach

Related papers:

 Test Generation with Inputs, Outputs and Repetitive Quiescence

 A theory of timed automata

TGV: theory, principles and algorithms: A tool for the automatic synthesis of conformance test cases for non-
deterministic reactive systems

 Testing Concurrent Systems: A Formal Approach

 Principles and methods of testing finite state machines-a survey

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-fly-conformance-testing-using-spin-
h4w97j38o9

https://typeset.io/
https://www.doi.org/10.1007/S100090050044
https://typeset.io/papers/on-the-fly-conformance-testing-using-spin-h4w97j38o9
https://typeset.io/authors/rene-g-de-vries-48y7zf1dfl
https://typeset.io/authors/jan-tretmans-59a14q185x
https://typeset.io/journals/international-journal-on-software-tools-for-technology-3jlbbzz8
https://typeset.io/topics/promela-2nhk4hqy
https://typeset.io/topics/test-harness-1flg2muy
https://typeset.io/topics/test-case-7ehjd9bt
https://typeset.io/topics/conformance-testing-ag6v59ue
https://typeset.io/topics/test-management-approach-gntmmnaj
https://typeset.io/papers/test-generation-with-inputs-outputs-and-repetitive-3jduukxw3m
https://typeset.io/papers/a-theory-of-timed-automata-4c76mk41q7
https://typeset.io/papers/tgv-theory-principles-and-algorithms-a-tool-for-the-16o23fgfar
https://typeset.io/papers/testing-concurrent-systems-a-formal-approach-4wlytqc7u1
https://typeset.io/papers/principles-and-methods-of-testing-finite-state-machines-a-1hjq67qurl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-fly-conformance-testing-using-spin-h4w97j38o9
https://twitter.com/intent/tweet?text=On-the-Fly%20Conformance%20Testing%20using%20Spin&url=https://typeset.io/papers/on-the-fly-conformance-testing-using-spin-h4w97j38o9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-fly-conformance-testing-using-spin-h4w97j38o9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-fly-conformance-testing-using-spin-h4w97j38o9
https://typeset.io/papers/on-the-fly-conformance-testing-using-spin-h4w97j38o9

On-the-Fly Conformance Testing Using Spin

René de Vries and Jan Tretmans ∗

University of Twente

Formal Methods and Tools group, Department of Computer Science

P.O. Box 217, 7500 AE Enschede, The Netherlands

{rdevries,tretmans}@cs.utwente.nl

Abstract

In this paper we report about the construction of a tool for conformance testing based

on Spin. The Spin tool has been adapted such it can derive test primitives from systems
described in Promela. These primitives support the on-the-fly conformance testing process.
Traditional derivation of tests from formal specifications suffers from the state-space ex-

plosion problem and from complexity. Spin is one of the most advanced model checkers with
respect to handling large state spaces. This advantage of Spin has been used for the derivation
of test primitives from a Promela description.
To reduce the state space, we introduce the on-the-fly testing framework. Within this

framework the Primer is distinguished. This Primer derives test primitives from a model of

a system according to a well defined and complete testing theory. Algorithms are presented

which enable us to derive test primitives from a Promela description. These algorithms have
been implemented in the adapted version of the Spin tool which acts as the Primer in the
framework. As a result of this prototype study it is concluded that it is in principle possible

to derive these primitives automatically from Promela descriptions, and to perform testing.

1 Introduction

Testing is the activity of doing experiments with system implementations in order to gain confidence
in their correct functioning. What correct functioning is, is determined by the system specification,
which captures its functional behaviour. Preferably, this specification is given using a formal
language, e.g., Lotos, Estelle, SDL, Z or Promela. Such formal languages have well defined
semantics and do not suffer from problems of ambiguity and impreciseness, thus making them
suitable as the basis for validation, implementation and testing. Moreover, formal languages allow
processing by tools.

Whereas formal system verification is aimed at checking properties of a system by exercising a
model of it, testing is aimed at exercising the real, physical system. Due to complexity inherent
in most systems, testing can only exercise part of all possible system behaviour and, consequently,
can never lead to certainty about the satisfaction of a property. Using model checking, on the
other hand, system properties can be proved (with more or less rigour), however, this prove only
applies to the model of the system and not to the real, physical system.

An example of a formal verification tool is the model checker Spin [Hol91]. This tool can be
used to support system validation and verification by automatically assessing the validity of a
property expressed in Linear Temporal Logic (LTL). This assesment is performed on a system

∗This research was partly supported by the Dutch Technology Foundation STW under project STW TIF.4111:

Côte de Resyste – COnformance TEsting of REactive SYSTEms.

1

model expressed in the formal language Promela. A Promela model of the system design or
implementation is developed especially for checking such properties.

Once a Promela system model is available, one might consider to (ab)use this model as the basis
for the generation of tests to test system implementations. In this way, the Promela model is
regarded as the specification of prescribed behaviour. A next step then is to develop tools to
automate the derivation of tests from system descriptions in Promela. This paper describes the
development of such a tool.

In order to derive test cases, we need, apart from a specification, a test derivation algorithm.
Moreover, to express such an algorithm and to reason about it (its soundness and exhaustiveness)
we need to express formally when an implementation conforms to a specification. This is done
by defining an implementation relation between the class of envisaged implementations and the
class of specifications [ISO96]. In the realm of Promela, specifications and implementations can
both be conceived as special kinds of labelled transition systems. Implementations are modelled
as input-output transition systems, a kind of transition system where inputs are always enabled.
Specifications are labelled transition systems in which inputs and outputs can be distinguished
(but not necessarily always enabled). Hence, an implementation relation in this realm is a relation
between input-output transition systems and labelled transition systems. We take the relation ioco
introduced in [Tre96] together with the corresponding test derivation algorithm as our theoretical
basis. For a rationale for this particular implementation relation we refer to [Tre96].

The goal of this paper is to report about the construction of a tool for conformance testing based
on Promela specifications and the implementation relation ioco. The tool derives test cases and
also to immediately execute them, i.e., performs on-the-fly test derivation and execution. The tool
has been implemented based on Spin, adapting Spin to generate the information needed in the
test derivation algorithm, and taking advantage of the capabilities of Spin in dealing with large
state spaces.

We start in the next section with recalling the formal models, the implementation relation ioco
and the test derivation algorithm from [Tre96]. In Section 3 we elaborate on the on-the-fly method
of testing and we discuss the tool architecture for test derivation and execution. Section 4 ex-
plains how the test derivation algorithm and on-the-fly testing can be applied to Promela and
Spin, what restrictions and assumptions are necessary for Promela descriptions to be viewed
as transition system specifications, and how advantage can be taken from Spin as the basis for
the implementation of the test derivation tool. Section 5 explains what has been achieved, what
lessons were learned and what remains to be done.

2 Formal Preliminaries

This section recalls those aspects of [Tre96] which are used to develop the test derivation algorithm
and tool for Promela.

Labelled transition systems Labelled transition systems provide a formalism to specify, model,
analyse and reason about system behaviour. A labelled transition system description is defined in
terms of states and labelled transitions between states.

Definition 2.1
A labelled transition system is a 4-tuple 〈S,L, T, s0〉 where

◦ S is a non-empty set of states ;

◦ L is a finite set of labels;

◦ T ⊆ S × (L ∪ {τ})× S is a set of triples, the transition relation;

2

◦ s0 ∈ S is the initial state.
2

The labels in L represent the observable interactions of a system. The special label τ
∈ L represents
an unobservable, internal action. We denote the class of all labelled transition systems over L by
LTS(L). Transition systems without infinite compositions of transitions with only internal actions
are called strongly converging. For technical reasons we restrict LTS(L) to strongly converging
transition systems.

A trace is a finite sequence of observable actions. The set of all traces over L is denoted by L∗,
with ǫ denoting the empty sequence. If σ1, σ2 ∈ L∗, then σ1·σ2 is the concatenation of σ1 and σ2.
Some additional notations and properties are introduced in definitions 2.2 and 2.3.

Definition 2.2
Let p = 〈S,L, T, s0〉 be a labelled transition system with s, s′ ∈ S, and let µi ∈ L ∪ {τ}, ai ∈ L,
and σ ∈ L∗.

s ǫ−→ s′ =def s = s′

s µ−→ s′ =def (s, µ, s′) ∈ T
s µ1·...·µn−−−−−−→ s′ =def ∃s0, . . . , sn : s = s0

µ1−−→ s1
µ2−−→ . . . µn−−→ sn = s′

s µ1·...·µn−−−−−−→ =def ∃s′ : s µ1·...·µn−−−−−−→ s′

s
µ1·...·µn−−−−−−−→/ =def not ∃s′ : s µ1·...·µn−−−−−−→ s′

s
ǫ
=⇒ s′ =def s = s′ or s τ ·...·τ−−−−→ s′

s
a
=⇒ s′ =def ∃s1, s2 : s

ǫ
=⇒ s1

a−→ s2

ǫ
=⇒ s′

s
a1·...·an======⇒ s′ =def ∃s0 . . . sn : s = s0

a1==⇒ s1

a2==⇒ . . .
an==⇒ sn = s′

s
σ
=⇒ =def ∃s′ : s

σ
=⇒ s′

s
σ

=
⇒ =def not ∃s′ : s
σ
=⇒ s′

2

We will not always distinguish between a labelled transition system and its initial state: if p =
〈S,L, T, s0〉, then we will identify the process p with its initial state s0, and we write, for example,

p
σ
=⇒ instead of s0

σ
=⇒ .

Definition 2.3
Let p be a (state of a) labelled transition system and let P a set of states.

1. init(p) =def { µ ∈ L ∪ {τ} | p µ−→ }

2. init(P) =def

⋃
{ init(p) | p ∈ P }

3. traces(p) =def { σ ∈ L∗ | p
σ
=⇒ }

4. p after σ =def { p′ | p
σ
=⇒ p′ }

5. P after σ =def

⋃
{ p after σ | p ∈ P } 2

Input-output transition systems We assume that the label set L can be partitioned into input
actions LI and output actions LU : L = LI ∪LU and LI ∩LU = ∅. Moreover, we consider systems
which always accept any input. In terms of transition systems: all inputs, i.e., all actions in LI ,
are always enabled in any state of the transition system. Such transition systems are called input-
output transition systems. In input-output transition systems, inputs of one system communicate
with the outputs of the other system, and vice versa, (cf. IOA [LT89]).

Definition 2.4
An input-output transition system p is a labelled transition system in which the set of actions L
is partitioned into input actions LI and output actions LU (LI ∪ LU = L,LI ∩ LU = ∅), and for
which all inputs are always enabled in any state:

whenever p
σ
=⇒ p′ then ∀a ∈ LI : p′

a
=⇒

3

The class of input-output transition systems with input actions in LI and output actions in LU is
denoted by IOTS(LI , LU) ⊆ LTS(LI ∪ LU).

2

Implementation relation The major issue of conformance testing is to decide whether an
implementation is correct with respect to a specification. This requires a notion of correctness,
which is covered by defining an implementation relation. An implementation relation is a (formal)
relation between the domain of specifications and the domain of models of implementations, such
that (i, s) is in the relation if and only if implementation i is a conforming implementation of
specification s.

We will use the relation ioco as implementation relation. This relation assumes that the specifica-
tion is expressed as a labelled transition system in which inputs and outputs can be distinguished
(not necessarily IOTS), and that the implementation behaves as, i.e., can be modelled by, an input-
output transition system (cf. test hypothesis [ISO96]): ioco ⊆ IOTS(LI , LU)×LTS(LI ∪ LU).

An implementation i ∈ IOTS(LI , LU) is ioco-correct with respect to the specification s ∈
LTS(LI ∪ LU) if i can never produce an output which could not have been produced by s in
the same situation, i.e., after the same trace. Moreover, i may only stay silent, i.e., produce no
output at all, if s can do so. The absence of outputs is called quiescence and is denoted by a special
label δ (δ
∈ L ∪ {τ}), cf. [Vaa91].

To formalize this notion of conformance ioco we first have to define quiescence as the absence of
outputs. Then we have to extend traces of actions with the special action δ. Occurrence of δ in
a state p, denoted by p δ−→ , expresses that state p cannot produce any output. Since no ‘normal’
action in p is executed in that case, p cannot move to another state, so always p δ−→ p. Traces in
which both normal actions in L and the special action δ may occur are called suspension traces.
To denote suspension traces the notations µ−→ and

σ
=⇒ (definitions 2.1, 2.2 and 2.3) are extended

to traces in (L ∪ {δ})∗. Note that this overlapping of notation does not introduce conflicts.

Definition 2.5
Let p ∈ LTS(LI ∪ LU).

1. A state q of p is quiescent, denoted by q δ−→ q, if ∀µ ∈ LU ∪ {τ} : q
µ

−−→/

2. The suspension traces of p ∈ LTS(LI ∪LU) are: Straces(p) =def { σ ∈ (L∪{δ})∗ | p
σ
=⇒},

where
σ
=⇒ is as in definition 2.2 extended with δ-transitions q δ−→ q.

2

We can now define the possible outputs out(p after σ) of a process p after a suspension trace σ.
The action δ may occur in out(p after σ) as a special action indicating that after σ it is possible
to observe no outputs at all, i.e., quiescence. Using out(p after σ) the definition of ioco is now
straightforward by requiring that after any suspension trace of the specification any possible output
of the implementation should be a possible output of the specification.

Definition 2.6
Let p be a (state of a) labelled transition system, and let P a set of states; let i ∈ IOTS(LI , LU)
and s ∈ LTS(LI ∪ LU), then

1. out(p) =def { x ∈ LU ∪ {δ} | p x−→ }

2. out(P) =def

⋃
{ out(p) | p ∈ P }

3. i ioco s =def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)
2

For more details about the relation ioco, for a rationale for its use, and for more generic definitions
we refer to [Tre96].

4

Testing In order to generate and execute tests, we first have to define what a test case is, how
test cases are executed, what a test run is, how a verdict is assigned and when an implementation
passes a test case. We adopt, and adapt a little bit, the definitions of [Tre96].

Definition 2.7

1. Let a ∈ LI and LU = {x1, x2, . . . , xn}. A test case t defined as

t ::= pass | fail | a; t | x1; t 2 x2; t 2 . . . 2 xn; t 2 θ; t

The special label θ
∈ L ∪ {τ, δ} will be used in a test case to detect quiescent states of an
implementation, so it can be thought of as the communicating counterpart of a δ-action.

2. The finite sequence of pairs (t0, i0) · (t1, i1) · (t2, i2) · . . . · (tm, im), representing the parallel
computation of a test case t and an implementation i, is a test run of t and i iff

• t = t0 and i = i0, and

• tm = pass or tm = fail, and

• for all j with 1 ≤ j ≤ m, either:

– (* internal step *)
tj−1 = tj and ij−1

τ−→ ij , or

– (* offer input *)
tj−1 = a; tj and ij−1

a−→ ij, or

– (* accept output *)
tj−1 = x1; t

1
j 2 . . . 2 xk; t

k
j 2 . . . 2 xn; t

n
j 2 θ; tθj and ij−1

xk−−→ ij and tj = tkj , or

– (* accept quiescence *)
tj−1 = x1; t

1
j 2 . . . 2 xn; t

n
j 2 θ; tθj and ij−1 = ij and

∀µ ∈ LU ∪ {τ} : ij−1

µ
−−→/ and tj = tθj

3. An implementation i passes a test case t if all possible test runs of t and i end with tm = pass,
otherwise i fails t. 2

Test derivation Now all ingredients are there to present an algorithm to generate test cases
from a labelled transition system specification for the implementation relation ioco.

Algorithm 2.8
Let s be a specification with initial state s0. Let S be a non-empty set of states, with initially
S = s0 after ǫ . Then a test case t is obtained from S by a finite number of recursive applications
of one of the following three nondeterministic choices:

1. (∗ terminate the test case ∗)
t := pass

2. (∗ give a next input to the implementation ∗)
t := a ; t′

where a ∈ LI , S
′ = S after a
= ∅, and t′ is obtained by recursively applying the algorithm

for S′.

3. (∗ check the next output of the implementation ∗)
t := x1; t1 2 x2; t2 2 . . . 2 xn; tn 2 θ; tθ
where, with 1 ≤ j ≤ n:
if xj
∈ out(S) then tj = fail
if δ
∈ out(S) then tθ = fail
if xj ∈ out(S) then tj is obtained

by recursively applying the algorithm for S after xj

if δ ∈ out(S) then tθ is obtained

by recursively applying the algorithm for {s ∈ S | s δ−→}.

5

2

This algorithm was proved in [Tre96] to produce only sound test cases, i.e., test cases which
never produce fail while testing an ioco-conforming implementation. Moreover, it was shown that
any non-conforming implementation can always be detected by a test case generated with this
algorithm. Algorithm 2.8 will be the basis for test derivation from Promela specifications in the
next sections.

3 On-the-Fly Testing

Derivation of test cases as explained in the previous section may involve the consideration of a
large number of transitions and states. The encountered complexity is mainly due to the fact that
in each state of the specification we have to consider all possible responses of the implementation.
After this step, again all possible responses for all possible responses of the previous step have
to be considered. Due to nondeterminism, parallelism, data instantiation and recursive processes
there may be many different responses, and all these possible responses have to be recorded and
represented in the generated test case. This is illustrated in example 3.2, but before giving this
example, first an algorithm for test execution is presented. This algorithm, in fact, operationalizes
the abstract concept of test run from definition 2.7.2 by giving the actions to be performed to
obtain a test run.

Algorithm 3.1
Let t be a test case, a ∈ LI , xj ∈ LU and let i ∈ IOTS(LI , LU) be an implementation under test.
Then test execution proceeds by the following rules:

WHILE t
∈ {pass, fail}
{ apply one of the following choices:

◦ (∗ offer an input ∗)

If t = a ; t′ and i
a
=⇒ i′ then t := t′; i := i′

◦ (∗ accept quiescence ∗)
If t = x1; t1 2 . . . 2 xn; tn 2 θ; tθ and ∀x ∈ LU ∪ {τ} : i

x
−−→/ then t := tθ

◦ (∗ accept output ∗)

If t = x1; t1 2 . . . 2 xj ; tj 2 . . . 2 xn; tn 2 θ; tθ and i
xj

==⇒ i′ then t := tj ; i := i′

}

2

Example 3.2
Consider a simple coffee-machine modelled by s ∈ LTS(LI ∪ LU), where LI = {coin} and LU =
{coffee, tea}. The specification s of the coffee machine is given in Figure 1, together with a test
case which has been derived from the specification using algorithm 2.8. The sequence of observable
actions which can be observed during a possible test run of the test case with an implementation,
which is able to execute the (erroneous) trace coin · tea · tea, is also given in Figure 1. The solid
lines of the test run denote the actions that actually occurred during test execution. The dotted
lines denote the actions that might have occurred during test execution, i.e., possible responses, but
which did not actually occur. Since the end state is fail, we conclude that the tested implementation
is not conforming.

After offering a coin to the coffee-machine, we have to consider all possible actions that could
follow, i.e. θ, coffee and tea, which are partially marked by a dotted line in the test run. Since
the system actually responds with a tea action after inserting the coin, we do not have to pay any
attention to the subsequent behaviour of coin·θ and coin·coffee in the test case. This behaviour

6

fail

coffee

coin

θ
tea

θcoffee tea

test run

tea

coin

coffee

specification

θ

pass

tea

tea

fail fail fail pass fail

fail

coin

coffee

coffee θtea coffee

test case

θ

Figure 1: Execution of a test case

has been considered during the generation of the test case. We only have to resume consideration
of the possible actions after coin·tea and continue test execution at that branch. When the next
output tea is processed by the tester, the algorithm will terminate.

2

Example 3.2 shows the partial usage of the test case in the test execution Algorithm 3.1. The
implementation under test produces in each state just one actual response, and all other responses
which were considered during test derivation are not used, and were considered for nothing.

The aim of on-the-fly testing is to reduce the number of states and transitions to be considered
by using the actual responses of the implementation under test. Only the part of the test case
used during test execution is derived during on-the-fly testing. Of course, this implies that the
actual responses of the implementation must be known during test derivation. Since the test run
is not known beforehand, the derivation of the test case cannot be completed beforehand either.
It should be done dynamically, during the execution of the test case.

From a certain state of the specification we need to derive the possible input actions, the expected
output actions, and the possibility of quiescence. These are called test primitives. Let S be the
set of states in which the specification may be after a particular partial test run, then these test
primitives are in the set (init(S) ∩ LI) ∪ out(s).

The derivation of these test primitives from the specification while at the same time executing
these actions is called on-the-fly testing. Intuitively, on-the-fly test execution can be characterized
as a kind of feedback system in which information obtained during execution is fed back to test
case derivation. Test cases are not explicitly generated and stored during on-the-fly testing.

Next input

Check output
or quiescence

Observe output

Offer input

or quiescence

Primer Driver IUT

Figure 2: On-the-fly tester architecture

Figure 2 depicts schematically a possible architecture for an on-the-fly tester. The Primer analyses
the specification and generates all the possible test primitives. It is an entity representing all
possible current states of the specification taking into account the test actions executed during the
current test run, including the responses from the implementation under test (IUT). Each time the
Driver asks for the next test primitive from the Primer, it will immediately execute this primitive.

7

The Driver observes the responses from the IUT and feeds them back to the Primer.

Following the on-the-fly approach, the test case generation and test case execution algorithms,
i.e, algorithms 2.8 and 3.1, have to be merged. This is done in Algorithm 3.3. By looking one
observable transition ahead, Algorithm 3.3 is able to construct a sound test case during testing.
This is the task to be done by the Driver. Based on the output generated by the IUT the Driver
chooses one of the rules to be applied during execution.

Algorithm 3.3
Let initially TERMINATE = FAILURE = false; let s be the specification and let S = s after ǫ ;
let i ∈ IOTS(LI , LU) be the implementation under test. Then i is checked by application of the
following rules. An implementation is ioco-conforming to the specification s, when the algorithm
terminates with FAILURE = true. If the algorithm terminates with FAILURE = false, then we
have one test run which does not produce fail, i.e., our confidence in the correct functioning of the
implementation increases, although, formally, no judgement about conformance can be given.

WHILE not (TERMINATE or FAILURE)
{ apply one of the following choices:

1. (∗ offer an input ∗)
Select an a ∈ init(S) ∩ LI , then S := S after a ; i := i′

where i
a
=⇒ i′

2. (∗ accept quiescence ∗)

If ∀x ∈ LU ∪ {τ} : i
x

−−→/ and δ ∈ out(S) then S := { s ∈ S | s δ−→ }

3. (∗ fail on quiescence ∗)
If ∀x ∈ LU ∪ {τ} : i

x
−−→/ and δ
∈ out(S) then FAILURE = true

4. (∗ accept output ∗)

If ∃x ∈ LU : i
x
=⇒ i′ and x ∈ out(S) then S := S after x ; i := i′

5. (∗ fail on output ∗)

If ∃x ∈ LU : i
x
=⇒ i′ and x
∈ out(S), then FAILURE = true

6. (∗ terminate the loop ∗)
TERMINATE = true

}

2

Example 3.4
Consider Figure 3 with the specification s of the coffee machine. An erroneous trace of implemen-
tation i, coin·tea·tea is tested on-the-fly using algorithm 3.3. The choices within Algorithm 3.3
are successively (S = {s0} initially):

• choice 1: a = coin ∈ init(S) ∩ LI and S = S after a = {s2}; i := i2

• choice 4: since tea ∈ LU : i
tea
===⇒ i′ and tea ∈ out(S) then S := S after tea = {s4}; i := i4

• choice 5: since tea ∈ LU : i
tea
===⇒ i5 and tea /∈ out(S) then FAILURE = true

Since FAILURE is true at termination of the algorithm, the implementation is not conforming to
specification s.

2

Using algorithm 3.3, on-the-fly testing can be performed based on any specification formalism which
can be expressed in labelled transition systems. The only thing which is needed is to develop a

8

coin

tea

tea

coffee

i1

i2

i3

i5

i4

i

s1

s2

s4 s3

coin

tea coffee

s

Figure 3: On the fly test execution example

Primer component which generates the test primitives captured by the sets init(S)∩LI and out(S),
and means for state selection i.e., S after a for that specification formalism. Promela is such a
formalism that can be expressed in labelled transition systems [Hol91]. Hence, the next section
will discuss the derivation of the test primitives from Promela specifications using Spin.

4 Test Derivation for PROMELA

The developed test theory in the previous sections is based on the assumption that the underlying
model of the specification is a labelled transition system (LTS). The underlying model of Promela
is a composition of communicating finite state machines. The participating state machines com-
municate with each other and the environment by means of channels, i.e., finite queues. The state
of the composite state machine is determined by the global context and the local context of each
individual state machine. The context is determined by the variables and queue contents.

By making some restrictions and assumptions on the usage of the Promela model, it is possible
to apply the theory developed in the previous sections. To do this, we assume that a Promela
model can be considered as an LTS (Promela-LTS) from which the input and output operations
on some channels are observable. The behaviour of the model is characterized by the sequences of
input and output actions on these observable queues.

This means that, contrary to a Promela model used to validate a system, we have to enhance the
specification for derivation of test primitives, in order to be able to distinguish between observable
and non observable channels. A channel should be explicitly declared as an observable channel, for
which we extended the Promela language with the keyword observable. Moreover, for testing
there is no need to specify the environment within a specification, i.e., we do not use closed models,
in contrast with the case of validation. For technical reasons due to the implementation of the
Primer based on Spin, we insist that these observable channels are rendez-vous channels.

All the other actions occurring in the Promela model are mapped onto internal τ actions, includ-
ing, e.g., assignments and actions on non-observable channels. Specifications with infinitely many
outgoing transitions in one state are not allowed.

In order to obtain the test primitives at a particular stage of the testing process, we define the
super state S = s after σ
= ∅, where σ ∈ L ∪ {δ}. Intuitively, a super state S contains all the
states in which the specified system can be after the partial test run σ. The test primitives at that
super state are then out(S) ∪ (init(S) ∩ LI). We denote S a−→S′ as the next super state after an
action a ∈ L∪{δ}, i.e., S′ = S after a . Obviously, s0 after σ·a =

⋃
{ s′ after a |s′ ∈ s0 after σ },

where s0 is the initial state of specification s. These characterizations of the test primitives and
super states are the basis of the operations required by Algorithm 3.3, e.g., performing a δ-, input-

9

or output-transition from a super state to the next super state and obtaining the possibles actions
at a super state.

Since we aim at developing an automatic test derivation tool based on Spin we have some more
requirements for an algorithm supporting these operations. Due to technical reasons of Spin’s
generated machine representation, the transitions from a certain state are ordered. For instance
when we consider a state (element of a super state) with several outgoing transitions a1, a2 . . . an,
we inspect the actions in sequence from a1 till an. The inspection of a transition using Spin’s
representation to obtain the action associated with that transition involves actually making that
transition, i.e., going to another state. A backward transition is then necessary to bring us back to
the original state. By using this property, a depth-first search for test primitives and a new super
state is in favour in order to reduce the computations by the algorithms. The presented algorithms
are designed such that the initial super state S = {s0} is sufficient to be the root state.

An algorithm to determine the test primitives from a super state is presented in Algorithm 4.1.
Example 4.2 shows the application of the algorithm to the specification s depicted in Figure 4.

Algorithm 4.1
Let S be a set of states of a Promela-LTS, and LI and LU are the input, respectively the output
actions. Let the global set A initially be empty, being the result set with obtained test primitives.
The set of test primitives in the super state S is obtained by application of the following rule:

For each s ∈ S apply the following recursive procedure P(s, true)

Procedure P(s, δ)
Select each transition s a−→ s′ from the ordered list of transitions from state
s and apply the following rules:

• if a ∈ LI then A := A ∪ {a}

• if a ∈ LU then δ := false and A := A ∪ {a}

• if a = τ then δ := false and apply recursively procedure P(s′,true)

if δ = true then A := A ∪ {δ}
2

s0

bx

s5

s4s2s1

s3

ττa

Figure 4: Specification s

Example 4.2
Consider Figure 4 where specification s with LI = {a, b} and LU = {x} is depicted. To obtain the
test primitives of the initial state S = {s0} we apply the rules of Algorithm 4.1 as follows:

S = {s0} and A = ∅

1. call P(s0,true)

2. select s0
a−→ s1 ; A := A ∪ {a} = {a}

3. select s0
τ−→ s2; δ = false; call P(s2,true)

(a) select s2
x−→ s3; δ = false; A := {a} ∪ {x} = {a, x}

10

(b) δ = false do nothing

4. select s0
τ−→ s4; δ = false; call P(s4,true)

(a) select s4
b−→ s5; A = {a, x} ∪ {b} = {a, x, b}

(b) δ = true so A = {a, x, b} ∪ {δ} = {a, x, b, δ}

5. δ = false do nothing

Since the algorithm terminates the set of test primitives A = {a, x, b, δ}.

2

An algorithm to perform a δ-transition on super states in the Promela-LTS, S δ−→S′, is presented
in Algorithm 4.3.

Algorithm 4.3
Let S be a set of states of a Promela-LTS. LI and LU are the input, respectively the output
actions. Let the global set Q initially be empty, being the resulting super state after a δ-transition.
This super state Q is obtained by applying the following rule:

For each s ∈ S apply the following recursive procedure P(s, true)

Procedure P(s, δ)
Select each transition s a−→ s′ from the ordered list of transitions from state
s and apply the following rules:

• if a ∈ LI then nothing

• if a ∈ LU then δ := false

• if a = τ then δ := false and apply recursively procedure P(s′,true)

if δ = true then Q := Q ∪ {s}
2

An algorithm to make an input or output test primitive transition on super states in the Promela-
LTS, S a−→S′, with a ∈ L, is presented in Algorithm 4.4.

Algorithm 4.4
Let S be a super state of a Promela-LTS and z ∈ LI ∪LU an input or an output primitive. Then
the successor global super state vector Q (initially empty), S z−→Q, is obtained by application of
the following rule:

For each s ∈ S apply the following recursive procedure P(s)

Procedure P(s)
Select each transition s a−→ s′ from the ordered list of transition(s) from state
s and apply the following rules:

• if a = z then Q := Q ∪ {s′}

• if a = τ then apply recursively procedure P(s′)
2

As a result of this study we have implemented these algorithms in a prototype called Trojka.
This prototype represents the primer module of the on-the-fly test architecture (Figure 2). This
module is automatically generated by a modified version of Spin, analogous to the generation of
the pan verification analyser from a Promela specification. Details about the implementation of
this prototype can be found in [Vri96].

Although due to the on-the-fly testing principle we reduced the state space considerably, the state
space still explodes during the search for test primitives. It helps, in order to reduce the number of

11

calculations by Trojka, to use as much as possible the d-step or atomic construct of Promela
to combine internal steps (τ). But more is needed. This leads to the application of the state
matching principle of Spin. An already investigated state is not assessed again. In order to
assure the soundness of the tester, we only apply state hashing with full comparison of states. An
implementation may be judged incorrectly when the out set is incomplete.

It should be noticed that we should insist that the Promela-LTS is strongly converging (Section
2), in order to claim termination of the presented algorithms. But for practical reasons experienced
during prototyping, we have also to handle (long) sequences of internal transitions, by cutting off
the search at a certain depth. This solution is not very elegant since the tester looses the soundness
property when cutting is applied. A more subtle solution like loop detection should be added to
Trojka, cf. TGV [FJJV96].

We tested Trojka by interfacing it with an interactive application, which, in fact, simulates the
Driver component. The results are very promising and it seems, despite the large number of states
to be investigated, we can handle real specifications.

In the Côte de Resyste project [STW96, CdR98], we have implemented the whole on-the-fly tester
for the specification language Lotos (i.e. Primer and Driver), which is able to test real systems.
We have replaced the LOTOS-Primer by Trojka enabling us testing using Promela specifica-
tions. In this experiment we have performed some testing of an elevator based on a Promela
specification. The results are similar to testing the elevator based on a LOTOS-specification.

5 Concluding Remarks

In this paper we discussed the on-the-fly conformance testing principle that is able to simultane-
ously generate test primitives and test an implementation. The implementation is tested on the
correctness notion defined by ioco. The on-the-fly approach reduces the number of computations
(consideration of states and transitions) during test derivation. Algorithms to derive test primi-
tives from Promela models have been presented. The algorithms have been implemented in the
Spin based tool Trojka.

At the moment the Trojka tool cannot produce test primitives which result in a granted sound
test, when the number of internal steps is very large. A mechanism for τ -loop detection should be
added to its functionality to remove this shortcoming. From experiments with large specifications
(many transitions and states), we experienced that, despite the state space reduction, the state
space is still very large. Additional mechanisms to reduce the state space should be investigated
in future work, e.g., compositional test primitive derivation.

Within the Côte de Resyste project the whole test architecture is realized based on Lotos with
well defined interfaces between the components. The Primer component used here is decomposed
into two components; a (simpler) Primer (the test primitive deriver) and an Explorer. The latter
is responsible for moving trough the transition system and inspecting transitions. The interface
is based on the Open/Caesar interface [Gar98]. It would desirable to adapt Spin such that it
supports the Open/Caesar interface, making it possible to integrate it in the whole on-the-fly
tester. Another benefit could be that more tool support for Promela specifications becomes
available.

Further study of input/output labelled transition systems has led to the definition of the imple-
mentation relation mioco. This implementation relation distinguishes between multiple channels
and uses refusal of inputs [HT97, Hee98]. For future work we suggest adaptation of the algorithms
in order to derive mioco test primitives, i.e., building a mioco on-the-fly conformance tester.

In practice, it is hard to do experiments with real systems since the pair specification - imple-
mentation is not available. In order to do coverage studies it is interesting to use Trojka with

12

some additional control as a simulator of an implementation under test. In combination with the
Côte de Resyste tester we could test a Lotos specification against a Promela description used
as implementation, and vice versa.

A final remark concerns the difference between a model used for validation and a specification
used as the the basis for testing. Although in our approach both are expressed in Promela, it
should be noted that a specification used to test an implementation should be complete, i.e., all
the functional behaviour should be specified. A model usually is incomplete in that abstractions
have been made. Hence, a validation model in Promela can usually not be used directly as a
specification for testing. Further research for testing based on partial specifications, e.g., models,
is suggested. This is also interesting with respect to test purposes (cf. [ISO91]).

Acknowledgement

The authors would like to acknowledge Axel Belinfante for his effort to interface Trojka with the
Côte de Resyste tester and his constructive comment.

References

[CdR98] Côte de Resyste consortium. Côte de resyste webpages, 1998.
URL: http://fmt.cs.utwente.nl/CdR.

[FJJV96] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification techniques
for the generation of test suites. In R. Alur and T.A. Henzinger, editors, Computer Aided
Verification CAV’96. Lecture Notes in Computer Science 1102, Springer-Verlag, 1996.

[Gar98] H. Garavel. Open/Cæsar: An open software architecture for verification, simulation,
and testing. In B. Steffen, editor, Fourth Int. Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’98), pages 68–84. Lecture Notes in
Computer Science 1384, Springer-Verlag, 1998.

[Hee98] L. Heerink. Ins and Outs in Refusal Testing. PhD thesis, University of Twente, Enschede,
The Netherlands, 1998.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inc., 1991.

[HT97] L. Heerink and J. Tretmans. Refusal testing for classes of transition systems with inputs
and outputs. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors, Formal
Desciption Techniques and Protocol Specification, Testing and Verification FORTE X
/PSTV XVII ’97, pages 23–38. Chapman & Hall, 1997.

[ISO91] ISO. Information Technology, Open Systems Interconnection, Conformance Testing
Methodology and Framework. International Standard IS-9646. ISO, Geneve, 1991. Also:
CCITT X.290–X.294.

[ISO96] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Information Retrieval, Transfer and
Management for OSI; Framework: Formal Methods in Conformance Testing. Committee
Draft CD 13245-1, ITU-T proposed recommendation Z.500. ISO – ITU-T, Geneve, 1996.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI Quar-
terly, 2(3):219–246, 1989. Also: Technical Report MIT/LCS/TM-373 (TM-351 revised),
Massachusetts Institute of Technology, Cambridge, U.S.A., 1988.

[STW96] Dutch Technology Foundation STW. Côte de Resyste – COnformance TEsting of RE-
active SYSTEms. Project proposal STW TIF.4111, University of Twente, Eindhoven
University of Technology, Philips Research Laboratories, KPN Research, Utrecht, The
Netherlands, 1996.

13

[Tre96] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools, 17(3):103–120, 1996. Also: Technical Report No. 96-26, Centre for
Telematics and Information Technology, University of Twente, The Netherlands.

[Vaa91] F. Vaandrager. On the relationship between process algebra and Input/Output Au-
tomata. In Logic in Computer Science, pages 387–398. Sixth Annual IEEE Symposium,
IEEE Computer Society Press, 1991.

[Vri96] R.G. de Vries. Conformance testing with Promela. Master’s thesis, University of
Twente, Enschede, The Netherlands, 1996.

14

