
IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 12, DECEMBER 2009 953

On the Fly Gaussian Elimination for LT Codes
Valerio Bioglio, Marco Grangetto, Senior Member, IEEE, Rossano Gaeta, and Matteo Sereno, Member, IEEE

Abstract—We propose an improved algorithm for decoding
LT codes using Gaussian Elimination. Our algorithm performs
useful processing at each coded packet arrival thus distributing
the decoding work during all packets reception, obtaining a
shorter actual decoding time. Furthermore, using a swap heuris-
tic the decoding matrix is kept sparse, decreasing the cost of
both triangularization and back-substitution steps.

Index Terms—LT codes, Gaussian elimination decoding, incre-
mental decoding.

I. INTRODUCTION AND BACKGROUND

RECENTLY, rateless codes have attracted much attention
in the research community. Such codes, the most well

known being LT [1] and Raptor [2] codes, are a class of
erasure codes capable to reach optimal erasure recovery on the
binary erasure channels (BEC) without fixing the rate. Belief
Propagation (BP) algorithm presented in [1] is a fast decoding
algorithm for LT codes, but for small code block length 𝑘,
Gaussian Elimination (GE) (or Incremental Gaussian Elimina-
tion (IG) proposed in [3]) could be used. BP is simple and fast
but for small 𝑘 it requires a large overhead to decode while IG
is slower but with a smaller overhead. Both algorithms execute
almost all their operations at the end of the transmission,
so their time complexity is concentrated on the last packets
arrival. In this letter, we propose a GE-like algorithm, called
On the Fly Gaussian Elimination (OFG), to decode LT codes.
Our algorithm exhibits a noticeable computational saving w.r.t.
IG and also spreads the computations over all packet arrivals.
In this way we obtain a faster decoder due to the smaller
overhead and more evenly distributed complexity.

II. DECODING LT CODES

In an LT code, 𝑘 source packets 𝑚 = [𝑚0,𝑚1, . . . ,𝑚𝑘−1]
are encoded into a (theoretically) infinite stream of coded
packets 𝑦 = [𝑦0, 𝑦1, . . .]. A coded packet 𝑦𝑖 is obtained by
choosing a degree 𝑑, i.e., 𝑑 random integers 𝑟0, . . . , 𝑟𝑑−1 in
the interval [0, 𝑘 − 1], and xoring the source packets at the
corresponding positions, so that 𝑦𝑖 = 𝑚𝑟0⊕𝑚𝑟1⊕. . .⊕𝑚𝑟𝑑−1

.
Degree 𝑑 is chosen using the Robust Soliton distribution
𝜇(𝑐, 𝛿) [1]. For every coded packet 𝑦𝑖 the decoder needs an
equation 𝑏𝑖 = [𝑏𝑖,0, 𝑏𝑖,1, . . . , 𝑏𝑖,𝑘−1] of the positions of packets
xored to obtain 𝑦𝑖, i.e., 𝑏𝑖,𝑗 = 1 if 𝑚𝑗 was used to calculate
𝑦𝑖, 𝑏𝑖,𝑗 = 0 otherwise. Let us assume that the decoder receives
𝑛 coded packets (𝑦 = [𝑦0, 𝑦1, . . . , 𝑦𝑛−1]) and call 𝐵 the
𝑛 × 𝑘-matrix of equations: 𝑚 can be decoded if the system

Manuscript received September 9, 2009. The associate editor coordinating
the review of this letter and approving it for publication was V. Stankovic.

The authors are with the Dipartimento di Informatica, Università di Torino,
Corso Svizzera 185, 10149 Torino, Italy (e-mail: {bioglio, grangetto, gaeta,
sereno}@di.unito.it).

Digital Object Identifier 10.1109/LCOMM.2009.12.091824

𝐵𝑚 = 𝑦 can be solved. We can also consider the 𝑘 × 𝑘-
matrix 𝐺 and the 𝑘-vector 𝑦′ obtained from 𝐵 and from 𝑦
by deleting redundant, i.e., linear dependent, equations. The
related subsystem 𝐺𝑚 = 𝑦′ has to be solved to decode 𝑚. Of
course, both systems yield the same solution. In the following
the 𝑖-th row of a matrix 𝑄 will be denoted as 𝑄[𝑖].

There are several algorithms used for solving such a system.
The most used is the BP algorithm [1]. The system can also
be solved by the classical GE algorithm or by its improved
version IG [3].
BP algorithm: 𝐵[𝑖0] that contains only one 1 in column 𝑗0
(degree 1 packet) is selected; it follows that 𝑚𝑗0 = 𝑦𝑖0 , all the
1’s in column 𝑗0 are canceled and their 𝑦𝑖 are xored with 𝑦𝑖0 .
The above process is iterated until the matrix 𝐵 becomes all-0
matrix (decoding success) or until no more degree 1 packets
can be found (decoding failure). In case of failure a new packet
is received, the 1’s in the known positions of the corresponding
equation are canceled and decoding is reattempted.
IG algorithm: The GE triangularization step is per-
formed only once after the reception of 𝑘 encoded packets
[𝑦0, . . . , 𝑦𝑘−1]. In case of GE failure (𝐵 is partially triangular)
IG tries to fill the “bad” rows (rows without a 1 on the
diagonal) using new coded packets and the corresponding
equations. This process is incremental in the sense that rows
of 𝐵 and the new packets are xored and swapped without
repeating an expensive GE step on the whole matrix. As soon
as 𝐵 turns into triangular form back substitution is used to
complete decoding.

If 𝑛 encoded packets are needed for decoding we say that
the overhead of the code is 𝜖 = 𝑛/𝑘 − 1. Clearly, 𝜖 → 0
for 𝑘 → ∞, but convergence speed depends also on the
employed decoding algorithm. In Fig. 1 𝜖 is shown versus
𝑘 for GE and BP decoders for an LT code with 𝛿 = 0.01
and 𝑐 = 0.01, 0.1. It can be noted that for GE 𝜖 converges
faster than BP; therefore, for small 𝑘 GE-like algorithms need
less encoded packets to decode. Moreover GE performance
is far less sensitive to the parameters chosen for the degree
distribution, making the code design simpler. On the other
hand, if we compute the cost of an algorithm as the number
of row xor and swap operations needed to decode then BP
complexity turns out to be 𝑂(𝑘 log 𝑘) [1] while IG complexity
is approximatively that of one single GE, i.e., 𝑂(𝑘2) [3].

III. ON THE FLY GAUSSIAN ELIMINATION

On the Fly Gaussian Elimination (OFG) is a GE-like
algorithm that does not wait for the first 𝑘 packets to attempt
the GE triangularization as in [3]; rather it builds a triangular
matrix 𝐺 by exploiting every received packet starting from
the very first one. Moreover, OFG employs a swap heuristic
that yields a sparse triangular matrix reducing the cost of

1089-7798/09$25.00 c⃝ 2009 IEEE

954 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 12, DECEMBER 2009

Fig. 1. Average overhead using 𝜇(𝑐, 0.01) distribution.

both row xor and swap operations as well as the final back
substitution. The main idea is to write as soon as possible
matrix 𝐺 in a triangular form by deleting redundant equations
on the fly. Informally, OFG works as follows (all the details are
presented in Algorithm 1): assume 𝐺 is a partially triangular
𝑘 × 𝑘-matrix, i.e., either a row has leftmost 1 on diagonal
or it is all-zero. Upon receiving an encoded packet 𝑦𝑖 with
equation 𝑏𝑖 we find the position of the leftmost 1 in 𝑏𝑖 that
we denote as 𝑠𝑖. If 𝐺[𝑠𝑖] is all-zero then we can replace 𝐺[𝑠𝑖]
by 𝑏𝑖 otherwise we xor 𝑏𝑖 and 𝐺[𝑠𝑖] as well as 𝑦𝑖 and 𝑦𝑠𝑖 .
We then obtain a new equation 𝑏′𝑖 and a new coded packet
𝑦′𝑖. The new equation is such that the 𝑠′𝑖 > 𝑠𝑖. The row
finding and xoring are iterated until either the equation is
placed into 𝐺 or all 1’s in the equation are canceled, i.e.,
the equation is discarded. The number of iterations depends
on the probability to collide with a full row, that grows as 𝐺
is being populated. We experimentally observed that keeping
a sparser 𝐺 markedly decreases the number of iterations per
received packet, especially when 𝐺 fills up. To this end we
define the following swap heuristic that can be applied at
any iteration: if 𝐺[𝑠] is full, i.e., it has its leftmost 1 on
diagonal, but the equation to be inserted has a lower degree
than 𝐺[𝑠], the equation and 𝐺[𝑠] are swapped along with the
corresponding coded packets. Since the complexity to insert
a row in 𝐺 is 𝑂(𝑘), it turns out that the total complexity of
OFG is 𝑂(𝑘2). After the triangularization phase the source
packets are computed by means of simple back-substitution
(not included in Algorithm 1 for brevity).

We give an intuition of how OFG works by considering
a simple example. 𝐺 is the partially triangular matrix in
Fig. 2(a) and 𝑏1 = [01100] is the new received equation. In
this case 𝑠1 = 2; since 𝐺[2] is not full, 𝑏1 inserted directly,
thus obtaining 𝐺 in Fig. 2(b). 𝐺 is still not triangular (𝐺[5]
is all zeros), therefore we need a new equation. Equation
𝑏2 = [11010] is received at this point. We get 𝑠2 = 1, but 𝐺[1]
is already full; in this case 𝑏2 and 𝐺[1] are xored, obtaining
𝑏′2 = [01000]. We should insert this equation in 𝐺[2], but
it is full. However, note that 𝐺[2] has degree 2 while 𝑏′2
has degree 1 and the swap occurs. We get 𝐺[2] = [01000]
and 𝑏′2 = [01100]. Then, xoring 𝐺[2] and 𝑏′2 we obtain
𝑏′′2 = [00100] that should go in 𝐺[3]. This latter is already full
and its degree is greater than degree of 𝑏′′2 , therefore we repeat
the swap and xor operations. Finally, OFG leads to matrix 𝐺

1 0 0 1 0
0 0 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0

(a)

1 0 0 1 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0

(b)

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

(c)

1 0 0 1 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

(d)

Fig. 2. Triangularization step in the OFG algorithm.

as depicted in Fig. 2(c). Using OFG without the swap heuristic
one obtains the matrix in Fig. 2(d). It is easily observed that
the swap heuristic yields a sparser triangular matrix.

Algorithm 1 On the Fly Gaussian Elimination
Initialize 𝑘 × 𝑘-matrix 𝐺, 𝑘-vectors 𝑌 and 𝑁𝑢𝑚𝑂𝑛𝑒𝑠 to 0
Initialize 𝐸𝑚𝑝𝑡𝑦𝑅𝑜𝑤𝑠 = 𝑘
while 𝐸𝑚𝑝𝑡𝑦𝑅𝑜𝑤𝑠 > 0 do

receive 𝑘-vector 𝑁𝑒𝑤𝐸𝑞 and encoded packet 𝑁𝑒𝑤𝑌
𝑠← LeftmostOne (𝑁𝑒𝑤𝐸𝑞), 𝐸𝑞𝑂𝑛𝑒𝑠← Degree(𝑁𝑒𝑤𝐸𝑞)
while 𝐸𝑞𝑂𝑛𝑒𝑠 > 0 and 𝐺[𝑠][𝑠] = 1 do

if 𝐸𝑞𝑂𝑛𝑒𝑠 ≥ 𝑁𝑢𝑚𝑂𝑛𝑒𝑠[𝑠] then
𝑁𝑒𝑤𝐸𝑞 ← 𝑁𝑒𝑤𝐸𝑞 ⊕𝐺[𝑠]
𝑁𝑒𝑤𝑌 ← 𝑁𝑒𝑤𝑌 ⊕ 𝑌 [𝑠]

else
Swap(𝑁𝑒𝑤𝐸𝑞,𝐺[𝑠]), Swap(𝑁𝑒𝑤𝑌, 𝑌 [𝑠])
𝑁𝑢𝑚𝑂𝑛𝑒𝑠[𝑠]← 𝐸𝑞𝑂𝑛𝑒𝑠

end if
𝑠← LeftmostOne(𝑁𝑒𝑤𝐸𝑞)
𝐸𝑞𝑂𝑛𝑒𝑠← Degree(𝑁𝑒𝑤𝐸𝑞)

end while
if 𝐸𝑞𝑂𝑛𝑒𝑠 > 0 then

𝐺[𝑠]← 𝑁𝑒𝑤𝐸𝑞 and 𝑌 [𝑠]← 𝑁𝑒𝑤𝑌
𝑁𝑢𝑚𝑂𝑛𝑒𝑠[𝑠]← 𝐸𝑞𝑂𝑛𝑒𝑠
𝐸𝑚𝑝𝑡𝑦𝑅𝑜𝑤𝑠← 𝐸𝑚𝑝𝑡𝑦𝑅𝑜𝑤𝑠− 1

else
delete 𝑁𝑒𝑤𝐸𝑞

end if
end while

IV. SIMULATION RESULTS

We experimented BP, IG and OFG algorithms for several
values of 𝑘 using an LT code with 𝛿 = 0.01 and 𝑐 = 0.01. All
the techniques have been implemented in C language using the
same level of optimization in order to obtain fair comparisons.
We run 1000 encodings/decodings for each algorithm and we
present averages of the relevant performance indexes.

In Fig. 3 we show the complexity of the triangularization
step, computed by counting the total number of row xor and
swap operations, for OFG IG and BP vs. 𝑘. Moreover just
for comparison, the cost of an ideal GE triangularization, i.e.,
performed only once as soon as 𝐵 turns to be full rank, is
reported. As shown in [3], the cost of IG equals that of a
single GE triangularization, hence their curves in Fig. 3 are
overlapped. Using OFG one halves the number of operations
w.r.t. IG and GE while guaranteeing the same overhead. BP is
still faster than OFG. Furthermore, Fig. 4 shows the number
of 1’s in 𝐺 vs. 𝑘 for OFG IG and GE. It can be noted that the
proposed swap heuristic yields a sparser 𝐺 in the OFG case.

BIOGLIO et al.: ON THE FLY GAUSSIAN ELIMINATION FOR LT CODES 955

Fig. 3. Complexity of triangularization step.

Fig. 4. Number of 1’s in the triangular matrix (excluding diagonal).

Moreover, OFG computational effort is distributed on all
packet receptions. This feature turns out to be of paramount
importance when taking into account the packet reception
delay. BP and IG spend almost all the computations after the
required number of packets has been received and the actual
decoding time is the sum of the time spent to receive the
packets plus the time spent to solve the system.

On the contrary, OFG keeps triangulating the matrix while
waiting for the next packets. In this way, OFG is able to decode
almost immediately after the last packet arrival while BP and
IG start only at this point most of their decoding operations. In
Fig. 5 we report the normalized (over 𝑘) number of operations
per packet as a function of the percentage of received packets.
It can be noted that the maximum value in Fig. 5 is about
0.2, corresponding to only 𝑘/5 operations per packet. Clearly,
the row insertion cost goes up with the number of received
packets since the number of empty rows reduces. Finally,
we measured the real decoding time with a multi-threading
and concurrent implementation of the receiving and decoding
tasks. The experiments have been worked out on a 2.66 GHz
Intel Core Duo CPU equipped with 2 GB RAM. In Fig. 6
we show the CPU usage (%) as a function of the time, when
the receiver downloads 1000 bytes coded packets at 1Mbps.
LT coding with 𝑘 = 10000 is used. We observe that OFG
allows for a 12.5% reduction in the overall decoding time
w.r.t. BP and a more remarkable 28.9% w.r.t. to IG. BP needs

Fig. 5. Normalized operations per packet vs. percentage of received packets.

Fig. 6. CPU usage (%) as a function of the time for 1Mbps transmission.

more packets to start decoding due to the larger overhead
(𝜖 = 0.06). On the other hand, OFG is able to decode almost
immediately after the last packets arrival taking full advantage
of the reduced overhead (𝜖 = 5 ⋅ 10−4) and exhibits a less
intensive usage of the CPU. IG has a limited overhead as
well, but it performs most of its operations at the end, turning
out to be slowest solution in this scenario. In fact, the large
peak for IG shows up at 𝑇 = 80 s, which corresponds to the
time needed to download the first 𝑘 coded packets, and it is
mainly due to the first and unique GE.

V. CONCLUSIONS

In this letter we proposed On the Fly Gaussian Elimination
(OFG) that is an efficient version of Gaussian Elimination de-
coding for LT codes that spreads decoding complexity during
packets reception. Future investigations include the analysis
of the OFG performance for Raptor codes and the design
of alternative degree distributions with desirable properties in
terms of both overhead and decoding complexity.

REFERENCES

[1] M. Luby, “LT codes,” in Proc. IEEE Symposium on Foundations of
Computer Science, Nov. 2002, pp. 271–280.

[2] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, June 2006.

[3] S. Kim, K. Ko, and S. Chung, “Incremental Gaussian elimination decod-
ing of Raptor codes over BEC,” IEEE Commun. Lett., vol. 12, no. 4, pp.
307–309, Apr. 2008.

