
On-the-Fly, Incremental, Consistent Reading
of Entire Databases

Calton Pu

Department of Computer Science
University of Washington

Abstract

We describe an algorithm to read entire databases with
locking concurrency control allowing multiple readers or an
exclusive writer. The algorithm runs concurrently with the
normal transaction processing (on-the-fly), and locks the en-
tities in the database one by one (incremental). We prove
the algorithm produces consistent pictures of the database.
We also show that the algorithm aborts a minimal number
of updates in the class of on-the-fly, incremental, consistent
algorithms.

On-the-fly, incremental algorithms to read entire data-
bases consistently can improve system availability and reli-
ability. Most existing systems either require the transaction
processing to stop, or produce potentially inconsistent re-
sults. Our algorithm does not change the database physical
design, so it can be adapted to existing systems by expand-
ing their lock table. Finally, we extend the algorithm in a
straightforward way to read entire distributed databases.

1 Introduction

In many situations we would like to read (i.e. access without
modification) an entire database. For example, a bank offi-
cer may want to know the total amount of deposits, or a com-
puter operator may need to make a backup copy of the data-
base (usually called a checkpoint). The data in a database
must satisfy certain assertions called consistency conshxints.
In order to preserve data consistency under concurrent ac-
cess, the usual locking concurrency control allows multiple
readers or an exclusive writer. A common assumption in

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rrct commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To

copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

the literature is that a consistent and complete picture can
be obtained only with a quiescent database. The reason is
that Z-phase locking [3] -necessary for consistency- would
require a naive reader of the entire database to lock all data
at least for a moment, thus updates must stop.

Our work differs from existing literature for three main
reasons:

1. Our algorithm reads the database entities one by one
(it is incremental), avoiding deadlocks and allowing
update activities to proceed concurrently (it works on-
the-fly).

2. Its interference with update transactions is shown to
be minimal in the class of incremental, on-the-fly al-
gorithms.

3. We extend the algorithm to produce consistent pic-
tures of entire distributed databases.

In addition, there are two characteristics facilitating its im-
plementation. First, our algorithm consumes modest hard-
ware resources; it does not maintain extra copies of the data-
base and produces only sequential output. Second, no ad-
ditional disk storage is required, so only modifications on
the concurrency control is needed t,o adapt the algorithm to
existing dat,abase systems.

We should note that there is no problem checkpointing
darabases that permit concurrent readem and a writer. In
principle, any database that maintains two versions of its
data can provide this level of concurrency [2]. However, for
efficiency reasons, most practical databases write in-place.
Our work is aimed at these systems.

The paper is organized as follows. The algorithm is de-
scribed in section 2. In section 3, we prove the consistency
of its output and show the interference with update trans-
actions is minimal. Section 4 outlines the extensions to dis-
tributed databases and further improvements. Comparison
with related work and applications of the algorithm are in-
cluded in section 5. Finally, the results are summarized in
section 6.

‘This work wan partially supported by the National Science Founda-
tion under Grant. No. MCS-8004111.

2 The Algorithm

2.1 Definitions and Introduction

In order to describe our problem and its solutions more pre-
cisely, some terms need to be defined. A database is a set
of entities [3]. Each entity can be individually read through
shared locks or written under an exclusive lock. We will
reserve the term checkpoint to denote a query reading the
enrire database. Normal transactions on the database will be
referred to as either update transactions or read-only trans-
actions [S].

Consider a naive checkpoint strategy: the entities are
read one by one. It is easy to see that a checkpoint processed
this way may not be consistent. For example, suppose we
want to calculate the total amount of deposits in a bank
by summing up the checking accounts first and then the
savings accounts. If a client moved a million dollars from
his savings to his checking account during the checkpoint,
the result would be one million short of the real amount.
The key idea of this paper is that on/y this kind of updates
can make this naive checkpoint inconsistent,.

The algorithm has three parts. First, the checkpoint
reads entities one by one. Second, entities in the database
are divided by the checkpoint into two subsets: entities not
yet read (white), and the ones already processed (black).
Third, update transactions writing both white and black
entities are not allowed to commit, because they may not be
serializable with respect to the checkpoint. In this section,
for simplicity of presentation, the algorithm processes only
one checkpoint at a time on a centralized database.

2.2 Basic Checkpoint Algorithm

The following data structures are needed in the volatile stor-
age, as an addition to the lock table:

l One entity color bit per entity. (Entities can only take
one of two (Lcolorsn, black or white.)

. One paint bit per database, used in a trick to repaint
all entity color bits.

l Accompanying the paint bit we have a checkpoint se-
maphore to guarantee only one checkpoint runs at any
time.

At database (lock table) initialization time, the paint bit
is copied onto all entity color bits. Checkpoints can start
only after all entity color bits agree with the paint bit. We
also assume the update transactions will not start until the
initialization is complete. In case of a crash, the recovery
consists simply of a re-initialization.

The basic checkpoint algorithm in figure 1 has several
properties. First, the checkpoint locks and reads the enti-
ties one by one, so the checkpoint, will not cause deadlocks.
Second, the checkpoint does not use additional disk access
other than the necessary entity reading. Third, in order
to adapt the algorithm to an existing database, its physical
design (disk format) does not have to be changed.

The basic checkpoint terminates when all entities are
painted black. This will happen some time because every
loop in step 2 paints another entity black. The while loop
will not be blocked until all remaining white entities are
exclusively locked. At that time, the checkpoint queues a
lock request and eventually will succeed given a fair lock
management.

2.3 Concurrency Control

As we have seen in our banking example, the naive check-
point algorithm alone may produce inconsistent pictures.
The checkpoint’s consistency is maintained by ensuring that
all update transactions writing both white and black enti-
ties (gray transactions) are aborted. In order to enforce this
rule, if a checkpoint is in progress, every update transaction
needs to pass an additional color tesf before it can execute

and commit. After the acquisition of all exclusive locks (be-
fore commit), the color bits of exclusively locked entities
have to be checked. If all color bits are the same, the up-
date can proceed, otherwise it is aborted. Please note that if
no checkpoint is executing, all entity color bits are the same
and the updates always pass the color t,est,.

{ Pre-condition: all entity color bits are the same a3 the paint bit (black). }
step 1: P(semaphore) { Checkpoint runs in a critical section. }

Change the paint bit. (This re-paints all entities white. }
step 2: WHILE there are white entities {This loop paints the white entities black. }

DO BEGIN

step 3:

IF all white entities are exclusively locked { Unordered set optimization. }
request shared lock on a white entity and wait until lock is granted

ELSE lock any sharable white entity;
read entity, change entity color, release entity lock.

END WHILE { All entity are black, the same as the paint bit. }
V (semaphore) { Let the next checkpoint go. }

Figure 1: Basic Checkpoint

Informally we argue that the remaining transactions and
the checkpoint are consistent:

1. When the checkpoint paints all entity color bits white,
all uncommitted updat,e transactions become white
(writing only white entities).

2. All white t,ransactions terminate and are serialized be-
fore t,he checkpoint. (The checkpoint reads the white
entities after the white transactions have released their
exclusive locks.)

3. When the checkpoint terminates, all uncommitted up-
dat,e transactions must be black (only black entities
remain).

4. All black transactions are serialized after the check-
point. (The checkpoint has read all black entities be-
fore they were painted.)

5. Other read-only transactions do not conflict with the
read-only checkpoint.

This informal argument is summarized in table 1. An im-
portant observation is that once an update transaction has
the exclusive lock on an entity, that, entity’s color will not
change during the transaction. This happens because the
checkpoint can only paint an entity it has a shared lock on.
A more formal proof of checkpoint consistency follows in
section 3.

2.4 Entity Creation and Deletion

The creation of new entities require special attention from
the concurrency control mechanism. As we have seen in sec-
tion 2.3, the gray transactions are aborted. So at commit
time, we have three possibilities. The entity-creating trans-
action may be white, black, or colorless. We will consider
each case in turn.

First, a white transaction has written on at least a whit.e
entity. In this case the entities it creates should be painted
white. Since at least one whit,e entity is exclusively locked
by the white transaction, the checkpoint will wait for it. and
read all new white entities when the update commits.

Second, a black transaction has writt,en on black entities
only. Since the checkpoint will not come back and read the
updated black entities, the newly created entities should be
painted black so the checkpoint will not read t,hem.

Third, a colorless t,ransaction has not. written on exist-
ing entit.ies but has created new entities. The nrw entities
must be painted black so the checkpoint will not read t,hem.
We should not paint these entities white because of a race
condition at the checkpoint t,ermination.

There is no difficulty with deletions. We assume the enti-
ties being deleted are locked exclusively. White transactions
are serialized before the checkpoint, so deleted white enti-
ties will not be seen by the checkpoint, as expected. Black
transactions are serialized after the checkpoint, so black en-
tities are deleted after the checkpoint has read them. The
checkpoint reflects all black entities it has read, as it should.

3 Proof of Consistency

3.1 More Definitions

Eswaran et al. [3] defined formally the terms to be intro-
duced here. A transaction is a sequence T = ((T, oi, ei))F==,
of n steps where T is the transaction name, a; is t,he action
at step i and ei is the entity act,ed upon at step i. Typical
actions are lock, unlock, read and write. Any sequence ob-

tained by collating the actions of transactions Tl.. . . , T, is
called a schedule for Tl , . . . , T,,. A schedule is serial if ac-
tions from one transaction form a contiguous group without
interleaving with actions from other transactions.

Informally, the dependency relation induced by schedule
S, DEP(S) is a set of ternary relations (‘I’, , e, Tz) such that
entity e is an output of Tl and an input of T2 where one
of the transactions Tl or Tz updates the entity e. We say
that. two schedules, S1 and Sz are equivalent if DEP(Sl) =
DEP(S2). A schedule S, is consistenf if it has an equivalent
serial schedule.

A well-/armed transaction locks an entity e only once,
works on it, and unlocks it. A two-phase transaction re-
quests locks during its growing phase, and after entering the
shrinking phase, signaled by the first unlock, the transac-
tion cannot issue a lock action on any entity. Finally, in a

legal schedule, no two transactions can hold the same lock
at the same time. We will need the theorem 8d from 13): if
transactions T1, . ., T, are each well-formed and two-phase
then any legal schedule is consistent.

3.2 Basic Checkpoint Consistency

We assume that normal transact,ions are well-formed and
two-phase in order to avoid foreign inconsistencies. A check-
point Q is well-formed but not two-phase, because it unlocks
an ent.ity before it locks the next one. Since the checkpoint
is a read-only t.ransaction, there is no conflict with other
read-only transactions so it is sufficient to show t,hat Q can
be serialized with respect to update t,ransactions except the
gray ones. The proof divides the act,ions on t,he database
into three periods: before Q, during t.he execution of Q,
and after Q.

Table 1: Summary of Check3oint Serialization
transaction-

type read-only white updates black updates gray updates

checkpoint before after
, serialization

concurrent
checkpoint checkpoint

incompatible

371

Lemma 1 The Jchedule of transactions committed before
the checkpoint Q has started is consistent.

Proof: Since we assumed that all normal transactions are
well-formed and two-phase, applying theorem 8d from [3] we
have lemma 1.

Theorem 1 The schedule So of transactions committeddur-
ing the ezecution of (and including) Q is consistent.

The proof of theorem 1 builds a serial schedule SJ based
on SO and shows that DEP(Ss) = DEP(So), thus prov-
ing the consistency of SO. The idea is to characterize the
class of gray transactions and show that their elimination is
sufficient to achieve a serial schedule.

We start by extracting a sub-schedule S1 from SO, with
the elimination of all Q actions. We need to remember the
dependencies taken out in this occasion. First we define the
subset DEP(Q).

Definition 1 DEP(Q) is a set of ternary relation8
(T1, e, Tq) from DEP(So) satisfying

either I.l/ Tz = Q and T1 is a white
transaction writing on e;

or 1.2) T1 = Q and Tz is a black
transaction writing on e.

Now we can capture the checkpoint dependencies in our first
equality lemma.

Lemma 2 DEP(Q) = DEP(Sa) - DEP(&)

Proof: (c) By construction, relations defined by con-
ditions 1.1) and 1.2) are both members of DEP(So) but not
DEP(S,).

(2) Consider any relation (Tl,e,Tz) in DEP(So) but
not in DEP(S1). Either TI or Tz has to be Q, otherwise it
would be in DEP(S1). First cast, (Tl,e,Q): TI has to be
white because e is input to Q. Second case, (Q, e. TJ): TX
has to be black because e comes from Q. q

Proceeding in our construction, we observe that by in-
troducing a checkpoint and aborting some updates, no in-
consistency is created.

Lemma 3 The schedule S1 is consistent.

Proof: The consistency of S1 is guaranteed by the underly-
ing concurrency control mechanism because all transactions

in S1 are well-formed and two-phase. In addition, Q does
not update any entity in the database. q

The next building block in our construction is the mono-
tonic color change of entities:

Lemma 4 There is no relation (Tl,e,TZ) in DEP(Sl),
8uch that T1 is black and T2 is while.

Proof: An entity starts white, and Q atomically paints it
black. So once a black transaction T1 has seen an entity e
black, no transaction in SO can see it white. q

Now we can separate white transactions from black ones:

Lemma 5 There is a serial schedule S2 equivalent to S1,

such that all white transactions precede all black transac-
lions.

Proof: S1 is consistent by lemma 3, so there is an equivalent,
serial schedule &I. For every entity e, lemma 4 guarantees
the precedence of white transactions in S11. Moreover, If
a black transaction happens to precede a white transaction
in Sll, they certainly access disjoint sets of entities. There-
fore we can swap their contiguous positions in the schedule
without changing the dependency. Doing this repeatedly we
have S2. More concisely,
S2 = (white transactions, black transactions). q

The final step in our construction is t,o put the checkpoint
Q back in the middle, making:
Ss = (white transactions, Q, black transactions).
We still need to show that Ss is equivalent to So, so WC ha.vr
a second equality lemma.

Lemma 6 DEP(Q) = DEP(Ss) - DEP(S2)

Proof: (C) Because DEP(S2) = DEP(S,), relat,ions de-
fined by conditions 1.1) and 1.2) cannot be in DEP(S-).
However, those relations must be in DEP(Ss) because Q is
the same.

(2) Similar to the proof of lemma 2, replacing SO wit.11
Ss, and S1 with S2. o

Finally we have theorem 1. Schedule Ss is serial by
constru&on. Lemmas 2, 5, and F show that DEf’(So) =

DEP(Ss), SO So and Ss are equivalent. Therefore SO is
consistent.

The last theorem guarantees that no problem can occur
after the checkpoint is complete.

Theorem 2 The schedule 01 transactions committed after
Q has terminated is consistent and those transartions can
be serialized alter Q.

Proof: Since all remaining transactions are normal, there is
a consistent schedule. We only have to show that there is no
white transactions running after Q has terminated. Suppose
there is a white transaction still running; it must have at
least one exclusive lock on a white entity. This contradict,s
the hypothesis that Q has terminated and all entities have
been painted black. o

Combining lemma 1, theorems 1 and 2, we conclude that
the checkpoint can be serialized with respect to all normal
transactions, except the gray ones which are aborted.

3.3 Minimal Update Interference

In the previous section we have shown that there is a price
in breaking the 2-phase locking, namely that all gray trans-
actions which write on two or more entities are aborted.
Update transactions which write only on one entity receive
the color of that entity and are never aborted because of thr
checkpoint. Read-only transactions are not aRected by our
concurrency control modification at all.

It is not hard to see that this price is necessary for all

372

incremental algorithms that read and write each entity only
once.

Theorem 3 In order to obtain a consistent checkpoint of
the database incrementally, without locking the entire data-
base, and reading/writing each entity only once, it is neces-
sary and suficient to distinguish the entities already read by
the checkpoint (white) from those to be read (black) and abort
the transactions which update both white and blark entities.

Proof: The sufficient part has been done in section 3.2. The
necessary part is based on the earlier banking example. We
need to show that any incremental (non-two-phase locking)
checkpoint algorithm, which allows a gray transaction G to
commit, cannot guarantee the checkpoint consistency.

Consider such a non-two-phase checkpoint algorithm.
There must be a part of database that is locked during the
early stage of a checkpoint Q and unlocked before some other
part of the database is locked. (Otherwise Q must be two-
phase and lock the entire database at some time.) Let us
call the first part being unlocked “black” and the next part
being locked “white”. The allowed gray transaction G first
writes on a white entity e, while Q is reading the black
part, and waits for Q to unlock the black part, then writes a
black entity eg. Since the checkpoint reads and writes every
entity only once, we have both (Q,eb,G) and (G,e,,Q)
in DEE’(G). Consequently G cannot be serialized either
before or after Q.

4 Extensions

4.1 Distributed Databases

In this section we extend the basic checkpoint algorithm to

read a distributed database. Again we assume an under-
lying concurrency control which handles the consistency of
logical entities. Issues such av physical replication and par-
tial unavailability of database are beyond the scope of this
paper.

The basic checkpoint can be processed in parallel by di-
viding the set of entities into subsets. A coordinator (fig-
ure 2) would start t,he checkpoint and the server processes
(figure 3) to read the subsets; the coordinator then waits and
synchronizes the completion of server processes. The initial-
ization and concurrency control modifications are similar to
the centralized case.

Although we have replicated the paint bit using the crit-
ical section created by the checkpoint semaphore, there is
only one paint bit value. Only one paint value implies that
only one checkpoint can execute at any time in the dis-
tributed database.

The modification on the concurrency control is the same
as in the centralized system. Since Section 2.3 applies di-
rectly to centralized concurrency control methods, we need
only look at what is added by the distributed concurrency
control. The distributed color test is a straightforward cx-
t,ension. All local processes test their own entity color bits
for uniformity. At commit time, the transaction manager re-
ceives the commit votes with their colors. The transaction
is committed only if all votes have the same color. Other
possible extensions in a distributed concurrency control like
replication do not impact our algorithm, which assumes that
the possession of a shared lock is sufficient to guarantee en-
tity consistency.

A harder quest,ion is what to do when a part of the dis-
tributed database is not available or crashed. As stated,
our coordinat.or process will block, waiting for the server to

{ Pre-condition: all entity color bits are the same as the paint bit. }
step 1: P(semaphore) { Checkpoint runs in a critical section.)

Change the paint bit. (Painting all entities white.)
step 2: Send the new paint bit to the server processes, starting them. See figure 3.

Wait for their completion.
step 3: All servers terminated: merge the results if necessary;

V(checkpoint semaphore) { Let the next checkpoint go. }

Figure 2: Coordinatcr Process

step 1: Receive the new paint bit from the coordinator. See figure 2.
step 2: WHILE there are white entities { Entity color bit different from new paint bit. }

DO BEGIN
IF all white entities are exclusively locked

request a shared lock on a white entity and wait until lock is grant,ed
ELSE lock any sharable white entity;

read ent,ity, change entity color, release entity lock.
END WHILE { All ent,ity are black, the same as t.he paint. bit.)

step 8: Ret,um to the coordinator.

Figure 3: Server Processes

373

read the unavailable part. If the definition of “entire data-
base” includes t,he unavailable part, this is the correct pro-
cedure. When the unavailable part is reincorporated to the
distributed database, a new server process should be started
to complete the checkpoint. The recovery from a coordina-
tor crash consists of certifying that the coordinator is indeed
dead (which may be non-trivial) and initializing a new one.

4.2 Further Extensions

In this paper we have described algorithms to take a consis-
tent picture of centralized and distributed databases. There
are some restrictions that will be relaxed in a future report
(121. For example, the algorithm can be extended to handle
concurrent checkpoints with multiple sets of data structures

drscribed in Section 2.2. Similarly, it is possible to use the
same idea to read predefined partitions of a database.

Another optimization is based on the observation that
the gray transactions which started as black transactions
and request some white entities need not be aborted. They
can be delayed until the requested white entities have been
read by the checkpoint, painted black, and then continue as
black transactions. Finally, a new family of algorithms can
be derived by imposing a total order on the entities. The ba-
sic checkpoint marks its database traversal with entity color
bits. The new algorithms need only a watermark to keep
track of their progress, thus releasing the memory occupied
by the entity color bits.

5 Comparison and Applications

5.1 Comparison with Related Work

There are two related areas of research: database check-
points and replicated dat,abases. Checkpointing a database
has received considerable at,tention, including optimal check-
point policies, on-the-fly checkpoints, and an early attempt
on incremental checkpoint.

Studies on t,he performance of backup procedures [10,14]
have assumed that (update) transaction processing is not
allowed during the backup copying time. Several optimiza-
tion criteria and optimal checkpoint policies are based on the
above assumption [9], trading interrnpled transaction time
for short recovery time. In contrast, on-the-fly, incremental
algorithms provide overall available consistency by limiting
the distribution of entities being updated.

Two known on-the-fly algorithms to checkpoint data-
bases are Lorie’s shadow pages [ll] and Gray’s fuzzy dump
[7]. However, these methods are specific to media recovery
of databases and are not concerned with consistency con-
straints. An early attempt on incremental checkpoint algo-
rithms (called dynamic dumps) was made by Rosrnkrantz
[13]. However, it is not clear that the dumps produced by
his algorithms will always be transaction-consistent.

Replication can add availability and performance to (dis-
tributed) systems. A replica is created by copying from the
original and kept consistent by propagating updates from
the original. Attar et al. [l] use a read transaction locking

the entire replica database to stop the updates and avoid
deadlocks by delaying write locks. Fischer et al. [s] simu-
late a copy transaction system “forked” from the normal
transaction system. The copy system completes ongoing
transactions and refuses to start new transactions, obtaining
consistency when updates cease. This technique would re-
quire considerable additional hardware investment for large
databases in order to perform the updates on the copy at
(roughly) the same speed as the original. More seriously,
for distributed databases, significant communications cost
must be added. In comparison, our algorithm does not up-
date database entities and produces only sequential output.

5.2 Applications

Fischer et al. [4] have mentioned several applications us-
ing checkpoints, such as checking consistency constraint,s in
a database, and media recovery. However, like their global
checkpoint, our checkpoint is consistent but may not re-
flect any schedule based on chronological order. Consider a
checkpoint that started at t.ime tl and terminated at 12. The
checkpoint will reflect all updates committ,ed before tl. plus
all whit,e transactions which must terminate before tz. In
other words, the checkpoint may include ‘later” white trans-
actions but not “earlier” black transactions. This character-
istic should not affect applications like totals, stat,istics or
consistency checking, where the actual t,ransaction schedul-
ing is not important.

In order to use a backup copy made by our checkpoints
t.o recover from media failures, a log containing the com-
mitted transactions is still necessary. Logs in both shadow
pages and fuzzy dump methods are logs of actions on “phys-
ical addresses” because their backup copies are not neccs-
sarily consistent. Since a backup copy made with our al-
gorithms is transaction-consistent, we need only logs t,hat
contain transaction actions. There are two possibilities for
recovery. First,, we can redo the black transactions onto the
backup copy to reach the database at tz. Alternatively, one
can undo the white transactions from the backup to find the
database at tl. In either case, in addition to actions, the log
must in&de each transaction’s color.

6 Conclusion

Highly available databases [8] have become increasingly pop-
ular, making batch operations decreasingly desirable. Gray
et al. [S] mentioned typical dumping times of 10 minutes
for a lOO-megabyte database. Consistent checkpoinbs on en-
tire databases processed on-the-fly can eliminate the down
time due t,o backup copies. An inrerrsting area of research
is the performance al:d availability evaluations of on-t,he-fly,
incremental algorithms according to different distributions
of update pattern. Other applications include consiat,ency
checks, totals, and statistics over entire databases.

We have presented an algorithm which does not volun-
tarily abort, does not cause deadlocks, does not produce
excess writes to disk, and terminates given a fair lock man-

374

agement. The basic algorithm introduces little interference
into the transaction processing, wit,h a minimal number of
updates being aborted. Assuming an in-core lock table, this
algorithm requires n bits of additional main memory for an
n-ent,ity database. The algorithm is extended to handle dis-
tributed databases wit,h little additional overhead.

The adaptation of this algorithm to existing databases
requires only modifications to the concurrency control. The
physical design, specifically the disk format, need not be
changed. The concurrency control checks the update trans-
actions to avoid confhcts with the checkpoint. The simplicity
of the data structures, crash recovery, concurrency control
modification, and the checkpoint itself makes t,his algorit.hm
and derivat,ives an attract,ive way to increase database avail-
ability.

7 Acknowledgment

This work grew out of my research in the Eden Project,
which would not have been carried out without the guidance
and support of Prof. Jerre Noe. I would like to thank Greg
Andrews, Jean-Loup Baer, and Andy Proudfoot for their
careful reading and extremely helpful comments on the first
drafts of this paper. I also want to thank Phil Bernstein,
Jim Gray, Won Kim, and Larry Snyder for their advice and
encouragemrnt.

References

[l] R. Attar, P.A. Bernstein, and N. Goodman.
Site initialization, recovery, and back-up in a

distributed database system.
IEEE Transactions on Sojlware Engineering,

SE-lO(G):645-650, November 1984.

[2] R. Bayer, fI. Heller, and A. Reiser.
Parallelism and recovery in database systems.
ACM Tranaachons on Database Systems,

5(2):139-l%, June 1980.
See also l?istributed Concurrency Control in Database

Systems by Bayer, Elhardt, Hellrr and Reiser, in
the Proceedings of 6th Int. Conf. on Very Large
Data Bases.

[.?I K.P. Eswaran, J.N. Gray, R.A. Lorie, and 1.1,. Traigcxr.
The notions of consistency and predicate locks in a

database system.
Communication3 o/ n C,ZI, 19(11):624-683, November

1976.

[‘I] 14.J. Fischer, N.D. Griffeth. and N..4. Lynch.
(;lobal states of a distributed system.

In Proceedings of Symposium on Reliability in
Distributed Software and Database Systems, July
1981.

15) H. Garcia-Molina and G. Wiederhold.

I61

PI

181

PI

WI

IllI

WI

II31

Read-only transactions in a distributed database.
ACM Transactions on Database Systems, 7:209-234,

June 1982.

J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie,
T. Price, F. Putzolu, and I. Traiger.

The recovery manager of the system R database
manager.

ACM Computing Surveys, 13(2):223-242, June 1981.

J.N. Gray.
Notes on data base operating systems.
In Operating Systems - An Advanced Course,

Springer-Verlag, 1978.
Also IBM Research Report RJ 2188, Feb. 1978.

Won Kim.
Highly available systems for database applications.
A CM Computing Surveys, 16(l), March 1984.

C.M. Krishna, K.G. Shin, and Y.H. Lee.
Optimization criteria for checkpoint placement.
Communications of A C,!4,27(10):1008-1012, October

1984.

G.M. Lohman am! J.A. Muckstadt.
Optimal policy for batch operations: backup,

checkpointing, reorganization and updating.
ACM Transactions on Database Systems,

2(3):209-222, September 1977.

R .A. Lorie.
Physical integrity in a large segmented database.
.4 CM Transaclions on Daiabase Systems, 2(1):91~104,

March 1977.

Calton Pu.
On-the-Ily, incremental, consistent reading of entire

databases.
In preparation.

D.J. Rosenkrantz.
Dynamic database dumping.
In Profeedings of ACM SICMOD Conlfrence on

nlanagement of Data, pages 3-8, May 1378.

[14] A.N. Tantawi and M. Ruschitzka.
Performance analysis of checkpointing strategies.
ACM Transactions on Computer Systems,

2(2):123-144, May 1984.

