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Abstract

Despite a solid theoretical foundation and straightforward application to struc-

tural design problems, 3D topology optimization still suffers from a prohibitively

high computational effort that hinders its widespread use in industrial design.

One major contributor to this problem is the cost of solving the Finite Element

equations during each iteration of the optimization loop. To alleviate this cost

in large-scale topology optimization, the authors propose a projection-based

Reduced Order Modeling approach using Proper Orthogonal Decomposition for

the construction of a reduced basis for the FE solution during the optimization,

using a small number of previously obtained and stored solutions. This basis

is then adaptively enriched and updated on the fly according to an error resid-

ual, until convergence of the main optimization loop. The Method of Moving

Asymptotes is used for the optimization. The techniques are validated using

established 3D benchmark problems. The numerical results demonstrate the

advantages and the improved performance of our proposed approach.
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additive manufacturing, 3D printing.

1. Introduction

Topology optimization, first introduced by [1] has matured over the last few

decades [2, 3] and has had a significant influence on design optimization re-

search.

The classical topology optimization problem consists of optimizing material dis-

tribution in two or three dimensions so as to minimize the structural compliance,

i.e. finding the density distribution over a voxel grid for a chosen volume fraction

under a prescribed set of external loads and boundary conditions. Density-based

methods are today the most widely used by engineers along with level-set meth-

ods [4], topological derivative procedures [5, 6], phase field techniques [7], etc

[8]. A comprehensive review of developments in topology optimization post 2000

may be found in [9].

With the modern-day mastery of additive manufacturing techniques, topology

optimization is increasingly being applied in the design of engineered materials

for aerospace applications [10]. However, it is surprisingly far from attaining

mainstream popularity among structural engineers, despite nearly two decades

of research that have been devoted to the subject. One of the key challenges

in topology optimization has been dealing with large-scale or high-dimensional

design problems that could involve millions or even billions of degrees of free-

dom [11]. During each iteration of the optimization process, we need to solve

the equilibrium equations for the computation-intensive numerical/finite ele-

ment (FE) model characterizing the discretized structure. This central and still

unresolved issue of prohibitively high computational effort casts an ever-present

pall on its large-scale application to industrial design.

High-performance computing approaches have been proposed in the literature

surveyed to deal with this problem and are expectedly successful [11–14], but

most, if not all, require an increase in computing resources to realize their full
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potential in reducing the computational time.

Reanalysis methods have been used in topology optimization since the seminal

paper of Kirsch and Papalambros [15] in 2001, where they proposed a unified

approach for structural reanalysis in topology optimization. Wang et al [16]

and Amir et al [17] proposed methods based on the use of Krylov subspaces. In

a different paper, Amir et al [18] proposed the construction of a reduced basis

using the combined approximations method. Reanalysis methods were also used

in [19–21]. Yoon [22] used eigenmodes and Ritz vectors for the reduced basis in

topology optimization for vibration response. Gogu [23] extended the approach

of [15] and used Gram-Schmidt orthonormalization to construct a reduced basis

on the fly based on the violation of an error residual. A survey of the available

literature reveals a recent resurgence of interest in reanalysis in topology opti-

mization [24–26].

Reduced order modeling (ROM), in particular, supervised manifold learning has

become a popular approach in a variety of fields today including computational

mechanics and structural optimization [27]. The basic premise of projection-

based reduced order modeling [28] involves mapping the higher dimensional

physics onto a lower dimensional space through an appropriate reduced basis

calculated using various methods depending on the nature of the problem at

hand. While the field is still in its infancy (given the magnitude of potential

improvements), the results obtained thus far have been more than promising.

Principal Components Analysis (PCA) ([28, 29]), Proper Generalized Decom-

position (PGD) ([30]), hyper-reduction [31] and Reduced Basis methods ([32])

are the three prominent schools of this field today. Of these, PCA, also called

Proper Orthogonal Decomposition or POD [33–42], is an a posteriori statistical

method that learns the covariance structure of complex multivariate data.

With the very recent exceptions of [8, 43, 44], to the knowledge of the au-

thors, virtually no work has been done on coupling topology optimization with

POD. The work of [8] involves applying POD to the density map and yields a

very efficient numerical scheme which loses precision depending on the number

of modes. Since their ROM was not computed ’on-the-fly’ i.e. with constant
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monitoring using the full-field model, could have resulted in the dependence of

their obtained optimized topology density map on basis size. In addition, [44]

presented a novel approach to ROM-supplemented topology optimization us-

ing inexact linear solutions by incremental SVD during the initial stages of the

optimization (when the accuracy is not expected to be as strict), and Krylov

subspace methods with ROM recycling closer to convergence, where greater ac-

curacy is expected.

In this work, inspired by [15, 23], we improve the computational efficiency

by mapping displacement field quantities of the large-scale problem to a low-

dimensional space through an appropriate basis, that we calculate using POD.

To render the method more accessible on a workstation, we use an iterative

solver for the full-field solution. The Method of Moving Asymptotes (MMA) is

used for the optimization as an alternative to the classical Optimality Criteria

(OC) method, based on a dedicated version of sensitivity analysis.

The remainder of the paper is organized in the following manner: in section

2, the theoretical formulation is formally presented beginning with classical

topology optimization, followed by the reduced-order basis construction and

sensitivity analysis. In section 3, we summarize the algorithm for on-the-fly ba-

sis construction using POD. Section 4 details the numerical investigations using

benchmark 3D compliance minimization problems followed by a discussion. The

paper closes with concluding comments and recommendations for future work.

Extension to non self-adjoint problems is discussed in the Appendix.
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2. Theoretical formulation

The mathematical formulation of the discrete material distribution problem

may be expressed as follows:

min
ρ

c(ρ) = FTU = UTKU

N
∑

e=1

veρe = vfracV < V

0 ≤ ρe ≤ 1, e = 1, . . . , N

KU = F (1)

where c is the compliance of the structure, ρ is the vector of design variables

consisting of the individual element (e) densities ρe, F is the external forces

vector, U is the FE displacement vector, K is the global stiffness matrix of the

structure, ve the volume of an element e and V the maximum prescribed volume

for the entire structure. The number of elements in the 2D/3D grid is N .

Using a modified solid isotropic material with penalization model [18], the den-

sity of an element can be expressed as follows

Ee(ρe) = Emin + ρpe(Enominal − Emin) (2)

For topology optimization of large-scale structures, the bulk of the computa-

tional cost expectedly stems from the requirement to compute the numerical

solution of the equilibrium equations at each iteration:

KU = F (3)

Computing this full-field solution for large-scale topology optimization problems

involves the inversion of a very large system of equations that can consist of up

to millions or billions [11] of degrees of freedom. To improve the scalability of

the approach to allow for implementation on parallel computing systems even-

tually (not treated in this particular paper), the FEA for the full field solution

is performed using a preconditioned conjugate solver for improved scalability,

similar to [12] except using an incomplete Cholesky decomposition of K as the
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preconditioner.

The authors must point out that the PCG with incomplete Cholesky is no longer

the state of the art solver, and computation times using multi-grid precondi-

tioning [45], the current gold standard according to the literature, may well be

different from those listed in this work.

The basic operations are given in Algorithm 1, which is a standard procedure

Algorithm 1 Solution of KU = F using iterative solver (PCG)

1: procedure PCG-FEA

2: L←− Incomplete Cholesky decomposition of K

3: Preconditioner K̃ = LLT

4: R0 = F −KU0

5: Z0 = K̃−1R0

6: P0 = Z0

7: i = 0

8: while ||R0|| > tol do

9: αi =
RT

i
Zi

PT

i
KPi

10: Ui+1 = Ui + αiPi

11: Ri+1 = Ri − αiKPi

12: Zi+1 = K̃−1Ri+1

13: βi =
ZT

i+1Ri+1

ZT

i
Ri

14: Pi+1 = Zi+1 + βiPi

15: i = i+ 1

that may be found in any textbook on numerical methods. However, the itera-

tive solution is still computationally expensive since it involves a large number

of degrees of freedom, but also because of the preconditioning phase due to

the poorly conditioned matrix K (large variations between nearly void Emin

and solid Emax). To alleviate this issue, we propose a reduced-order modeling

(ROM) procedure in the following subsections.
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2.1. Projection-based reduced order modeling

To reduce the computational effort during an iteration of the optimizer loop,

we map the displacement field quantity (i.e. U) of the above large-scale prob-

lem (3) to a low-dimensional space through an appropriate orthonormal basis Φ

(i.e. ΦTΦ = I) calculated on-the-fly using solution snapshots from the previous

iterations.

The basis Φ = [φ1 . . . φNb
] is obtained using an effective set of Nb ”snap-

shots” of the displacement field U temp = [U1, U2, . . . , UNb
] each obtained by

solving (3) during the main optimization, centered around the mean snapshot

ū = (
∑Nb

k=1 Uk)/Nb (Later on, we will show that Φ may be calculated by singular

value decomposition (svd) of U temp).

The problem projected onto the reduced basis transforms into the reduced sys-

tem:

ΦTKUrb = ΦTF (4)

where Urb is the approximate solution to the higher dimensional displacement

vector, obtained by a linear combination of the projection coefficients (α):

Urb = Φα+ ū (5)

Equation (4) thus becomes:

ΦTK(Φα+ ū) = ΦTF (6)

The main consequence is that any of the displacement vector snapshots Ui may

be expressed as a finite basis linear combination:

Ui ≈ U i
rb = ū+

m
∑

k=1

αi
kφk = ū+Φαi (7)

where the αi depend on the choice of the basis Φ. The error residual is given

by:

ǫ2rb =
‖ KUrb − F ‖2

‖ F ‖2
=
‖ K(Φα+ ū)− F ‖2

‖ F ‖2
(8)

corresponding to the relative error between the internal forces stemming from

the approximate reduced basis solution and the actually applied forces. If the
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approximate solution Urb were exact, the residual would be zero because the

exact solution would satisfy the equilibrium equations KU = F .

The goal then is to use Urb in place of U for the optimization depending on the

error threshold ǫrb. If this error is unreasonable, we then run the full field FE

i.e. equation (3) at that particular loop iteration to get a fresh displacement

vector that will then be used to refine the basis. Note that in order to retain

generality as far as possible, we will hold off on presenting the exact method of

calculating the basis until the end of this section, the reason being that much of

this section is relevant regardless of the choice of Φ. The exact basis updation

scheme is described in the next subsection

2.2. Sensitivity analysis

When the reduced order model i.e. Urb is used in place of the FE solution,

the original objective function (compliance) may be expressed as:

c(ρe) = UT
rbK(ρe)Urb = (Φα+ ū)TK(ρe)(Φα+ ū) (9)

The use of this expression, however, entails the verification of some additional

constraints. The first constraint represents the Galerkin projected i.e. reduced

system of equations (replacing the original FE):

KrbUrb = Frb or

ΦTKUrb = ΦTK(Φα+ ū) = ΦTF (10)

The second constraint must be on the snapshots U1 . . . UNb
used for generating

the orthogonal basis vectors, having each (by definition) been obtained through

the solution of the full equilibrium equation during the particular iteration that

they were added to the set of snapshots:

KiUi = F where i = 1, 2 . . . Nb (11)

where Ki is simply the stiffness matrix for which the snapshot vector Ui was

obtained. In the completely general case, the sensitivity of the compliance calcu-

lated using the reduced order model is potentially different from the sensitivity
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for the original problem.

Following [15, 23], the conventional way to calculate the modified sensitivity is

by using the adjoint equation, using Lagrange multipliers µi, λi, i = 1 . . . Nb for

the two constraints in (10) and (11).

The modified objective function may then be represented as:

c(ρe) = (Φα+ ū)TK(Φα+ ū)− 2µT [ΦTK(Φα+ ū)− ΦTF ]

−

Nb
∑

i=1

λT
i (KiUi − F ) (12)

This expression may be simplified as:

c(ρe) = [αTΦTKΦα− 2µT (ΦTKΦα− ΦTF )] + [2ūTKΦα+ ūTKū

−2µTΦTKū]− [

N
∑

i=1

λT
i (KiUi − F )] = c1(ρe) + c2(ρe) + c3(ρe) (13)

where c1,c2 and c3 are the terms within the square brackets.

Each of the three terms may then be individually evaluated as follows:

∂c1
∂ρe

= 2(α− 2µ)T
∂ΦT

∂ρe
KΦα+ 2(α− µ)TΦTKΦ

∂α

∂ρe

+(α− 2µ)TΦT ∂K

∂ρe
Φα+ 2µT ∂ΦT

∂ρe
F (14)

∂c2
∂ρe

= 2(α− µ)TΦTK
∂ū

∂ρe
+ 2(α− µ)TΦT ∂K

∂ρe
ū+ ūT ∂K

∂ρe
ū

2(α− µ)T
∂ΦT

∂ρe
Kū+ 2

∂αT

∂ρe
ΦTKū+ 2

∂ūT

∂ρe
Kū

= 2[(α− µ)TΦT + ū]K
∂ū

∂ρe
+ [2(α− µ)TΦT + ū]

∂K

∂ρe
ū

+2
∂αT

∂ρe
ΦTKū+ 2(α− µ)T

∂ΦT

∂ρe
Kū (15)

and the last term:

∂c3
∂ρe

= −

Nb
∑

i=1

λT
i

∂Ki

∂ρe
Ui −

Nb
∑

i=1

λT
i Ki

∂Ui

∂ρe
(16)

In order to solve the adjoint equation, we remember that we are free to choose

the Lagrange multipliers as we see fit. A useful substitution is µ = (α + ΦT ū)
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giving:

∂c1
∂ρe

= −2(α+ 2ΦT ū)T
∂ΦT

∂ρe
KΦα− 2ūTKΦ

∂α

∂ρe

−(α+ 2ΦT ū)TΦT ∂K

∂ρe
Φα+ 2(α+ΦT ū)T

∂ΦT

∂ρe
F (17)

and

∂c2
∂ρe

= 2
∂αT

∂ρe
ΦTKū− 2ūTΦ

∂ΦT

∂ρe
Kū− ūT ∂K

∂ρe
ū (18)

From the above we end up with:

∂c

∂ρe
= −2(α+ 2ΦT ū)T

∂ΦT

∂ρe
KΦα− (α+ 2ΦT ū)TΦT ∂K

∂ρe
Φα

+2(α+ΦT ū)T
∂ΦT

∂ρe
F − 2ūTΦ

∂ΦT

∂ρe
Kū

−ūT ∂K

∂ρe
ū−

[

Nb
∑

i=1

λT
i

∂Ki

∂ρe
Ui +

Nb
∑

i=1

λT
i Ki

∂Ui

∂ρe

]

(19)

which may further be simplified to the following:

∂c

∂ρe
= −UT

rb

∂K

∂ρe
Urb + 2UT

rbΦ
∂ΦT

∂ρe
(F −KUrb)

−

[

Nb
∑

i=1

λT
i

∂Ki

∂ρe
Ui +

Nb
∑

i=1

λT
i Ki

∂Ui

∂ρe

]

= −UT
rb

∂K

∂ρe
Urb + 2UT

rbΦ
∂ΦT

∂ρe
∆F −

[

Nb
∑

i=1

λT
i

∂Ki

∂ρe
Ui +

Nb
∑

i=1

λT
i Ki

∂Ui

∂ρe

]

(20)

The above equation is a generalized version of the expression obtained by [23],

in the context of an orthonormal basis Φ and including the effect of the mean

snapshot ū, and is valid for any reduced approach in the Galerkin family. (Note

that if the mean ū were assumed to be = 0 (centered snapshots) the second set

of terms within parentheses would vanish yielding the same exact expression as

in [23]).

To go further and obtain a final expression, we present the updation strategy

in the next sub-section.

2.3. On-the-fly reduced basis construction and updation strategy

In the last equation of the previous subsection, we still need to determine

λ1..λNb
and ∂Φ

∂ρe

so as to obtain ∂c
∂ρe

, and these will depend on the particular
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updation strategy, which is explained in detail in this subsection.

After i ≥ Nb iterations of a classical topology optimization procedure, we ex-

pect to have already calculated Nb displacement vectors (U1 . . . UNb
) by the

usual process of inverting the full equilibrium equations in (3). As hinted ear-

lier, the subspace generated by these Nb previously calculated vectors can be

used to calculate a reduced basis Φ that could be used to estimate the displace-

ment vector for the next iteration (i+ 1).

This means that the corresponding (approximate) displacement vector is ob-

tained using the reduced order model in equation (5), which calculates the

reduced state variables at the current iteration (i + 1) (and, thus, an approx-

imation of U) by solving the equilibrium equations projected on the subspace

generated by the Nb displacement vector snapshots.

At iteration (i + 2), a new approximation of the displacement vector can still

be calculated using the reduced order model with the same subspace generated

by the first Nb displacement vectors. This process may be applied until the

approximate solution using the reduced order model is no longer sufficiently

accurate, based, for example, on a threshold on the value of the residual ǫrb in

equation (8), at which point we use (3) to get a fresh snapshot vector to replace

the oldest stored vector and thus refine the basis Φ.

So whenever the reduced order model is used, we have Nb basis vectors that

are only updated as and when the residual exceeds our pre-specified tolerance,

by re-running (3) and replacing the oldest snapshot vector2. When the residual

is below the tolerance, we use Urb instead.

This means that we do not use a continuously evolving basis Φ in this work past

the first Nb iterations (that are used to determine the initial basis), rather our

basis is only updated using a fresh FE solution to modify U temp when the error

residual ǫrb in equation (8) is unacceptably high. If the residual is within the

tolerance, we re-use the existing Φ.

2Refining the basis by discarding the older less relevant information in favor of more recent

information is a fairly standard strategy, also used by [23]
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Algorithm 2 Topology optimization with on-the-fly ROM construction

1: procedure TopOpt-ROM

2: System Initialization (volume fraction, filter, etc)

3: Pre FEM operations (mesh parameters, load definitions, etc)

4: while iteration ≤ Nb do

5: U temp ←− solution of KU = F

6: if iteration = Nb then

7: Φ←− calculated from U temp

8: else

9: Urb ←− = solution of ΦTKUrb = ΦTF

10: ǫrb ←−
||KUrb−F ||

||F ||

11: if ǫrb > ε then

12: Remove oldest snapshot from U temp

13: U temp ←− solution of KU = F

14: Φ←− calculated from U temp

15: else

16: U ←− Urb

17: Calculate sensitivities ( ∂c
∂ρe

)

18: Apply density filtering to calculated sensitivities

19: update element densities (ρe).

20: iteration = iteration+ 1

12

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



The basic approach is given in Algorithm 2.

In addition, when the reduced basis Φ is used to get Urb, K1 . . .KNb
and

U1 . . . UNb
are not continuous functions of the current density ρe (having been

previously obtained during the basis-changing iterations). This in turn applies

to the basis Φ (obtained from the snapshots Ui). So most of the terms in the

previously obtained expression will vanish.

This ultimately means that we recover the classical expression for the sensitivity

for our particular approach.i.e.

∂c

∂ρe
= −UT

rb

∂K

∂ρe
Urb (21)

In the next subsection we complete this section by describing the procedure of

constructing Φ from the FE solutions U1 . . . UNb
using PCA.

2.4. Construction of ROM (Φ and Urb) using PCA

As explained earlier, we map the displacement field quantity of the above

large-scale problem (i.e. U) to a low-dimensional space through an appropriate

orthonormal basis Φ. The higher dimensional data may then be reconstructed

by linear combination of the projection coefficients α using (5), thus leading to

the reconstruction error in (8). The PCA approach in this paper uses singular

value decomposition to calculate Φ using the matrix of the M displacement

vector snapshots to minimize this reconstruction error.

The basic idea behind ’economical’ singular value decomposition (SVD) of a

real matrix DN×M where N > M is expressing it as under:

D = ΨΣV
T (22)

where ΨN×M and V M×M are both unitary/orthogonal matrices and ΣM×M is

a diagonal matrix (i.e. Σij = δij). It can be easily shown that Ψ is the matrix

of eigenvectors of the square covariance matrix C
v = DDT while the elements

along the ’diagonal’ of Σ squared are its eigenvalues.

Constructing the centered snapshot matrix D using M stored FE solutions

centered around the mean snapshot ū:

D = [U1 − ū . . . UM − ū] (23)
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gives the reduced basis Φ composed of the first Nb columns of Ψ, where the

number of modes Nb is selected according to the energy criterion:

ǫPCA = 1−

∑Nb

i=1 si
∑M

j=1 sj
(24)

Note here that since the actual calculation process here involves a relatively

small Nb (total number of snapshots) in the first place, compared to the number

of degrees of freedom in the full-field model, we can use all the Nb modes without

truncation i.e. Nb = M .

Algorithm 2 is then completed with details about the construction of Φ and

therefore Urb as shown below in algorithm 3.

3. Benchmark tests

To demonstrate the effectiveness of the approach presented in this paper, we

first compare the PCA-based approach with an ROM based on Gram-Schmidt

orthonormalization [23] for a 2D benchmark compliance minimization problem.

Next we use two benchmark 3D tests and minimize the structural compliance

with the classical SIMP (Single Isotropic Material with Penalization) assump-

tion. The elastic parameters: maximum and minimum (dimensionless) Young’s

moduli Enominal = 1 and Emin = 10−9, Poisson’s ratio ν=0.3. The penalty

factor p=3 and a density filter radius of 1.5 has been applied in both cases.

As an alternative to the frequently used Optimality Criteria approach [46–48]

we have used the Method of Moving Asymptotes [49, 50] for the optimization

loop in this work. This method is based on a convex representation of the

objective function and is conveniently adapted to the problem of topology opti-

mization due to its ease of use. The method has already been demonstrated to

work very well on a vast variety of topology optimization problems [13, 51], and

lends itself to increased scalability due to the separable nature of the convex

approximation.
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Algorithm 3 Topology optimization with iterative (PCG) solver and on-the-fly

reduced basis construction using PCA

1: procedure TopOpt-PCA

2: System Initialization (volume fraction, filter, etc)

3: Pre FEM operations (mesh parameters, load definitions, etc)

4: while iteration ≤ Nb do

5: U temp ←− solution of KU = F

6: if iteration = Nb then

7: ū ←− mean (U temp)

8: Φ←− svd(U temp − ū)

9: else

10: α←− = solution of ΦTKΦα = ΦTF − ΦTKū

11: ǫrb ←−
||K(Φα+ū)−F ||

||F ||

12: if ǫrb > ε then

13: Remove oldest snapshot from U temp

14: U temp ←− solution of KU = F

15: ū ←− mean U temp

16: Φ←− SV D(U temp − Ū)

17: else

18: Urb ←− Φα+ ū

19: Calculate sensitivities ( ∂c
∂ρe

)

20: Apply filtering to calculated sensitivities

21: update element densities (ρe).

22: iteration = iteration+ 1
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3.1. 2D case : ROM comparison between Gram-Schmidt and PCA

As has been mentioned in the introductory section, a ROM approach for

topology optimization using Gram-Schmidt orthonormalization was proposed

in [23]. To compare our proposed approach. i.e. PCA-based on the fly reduced

order model, we use the same classical benchmark 2D Messerschmitt-Bolkow-

Blohm (MBB) problem (figure 1) to assess computational effort, time and ac-

curacy.

Figure 1: 2D Messerschmitt-Bolkow-Blohm (MBB) benchmark problem

The problem parameters have been set as follows: 150×50 and 600×200

(voxel) FE mesh/grid, nominal and minimum (dimensionless) Young’s moduli

Enominal =1 and Emin = 10−9, Poisson’s ratio=0.3, a maximum allowable vol-

ume fraction νf of 0.5, a penalization factor p=3 and a density filter radius of

1.5, with the optimization iterations stopped when the density variation within

any of the elements is less than 1%.

In order to ensure the convergence of each result of every test, we may set a

larger value for the maximum number of iterations: here we set 6000, just to be

on the safer side. For both reduced order models, the number of PCA modes

Nb is selected as 4, residual threshold ǫrb is selected as 0.01. All these param-

eters are fixed, allowing us to change the filter size rmin on both convergence

speed and accuracy of the objective function. The optimized topology and cor-

responding computing results are summarized in the following discussion.

Figure 2 gives the optimal topologies obtained using the reference routine (i.e.

without any ROM), the PCA-based reduced order model as well as the Gram-
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Schmidt approach, on a FE mesh of grid resolution 150 × 50 (resolution given

in voxels). From the figure, we can see that the three topologies are visually

indistinguishable, which means both ROMs yield almost identical design results

to that obtained with the reference full order model in the 2D case.

Figure 2: Optimal topologies generated using the Gram-Schmidt with rmin = (a) 1.5 (b) 2.0

(c) 2.5, PCA with rmin = (d) 1.5 (e) 2.0 (f) 2.5 and reference routine with rmin = (g) 1.5

(h) 2.0 (i) 2.5 for 150 × 50 2D grid

The corresponding results are summarized in Table 1 and figure 3. One can

see from Table 1 that various minuscule features (like a tiny hole that appears in

the ”optimal” topology) fade away before our naked eyes with a slight increase

of filter size from 1.5 to 3 for each computation method in each column. How-

ever, the boundary of optimal topology for all models gets smoother but fuzzier

as we increase the filter size, which may lead to the illusion of the hole getting

smaller or even disappearing. We may also draw a conclusion from the table

that less optimization time is needed if we use a larger value of filter size (within

the adequate range) for any method (reference, PCA and Gram-Schmidt), but

larger values of filter size lead to a poorer optimal compliance. It is noteworthy

that when using filter size rmin=3, the performance shows a downtick which

indicates us there is an optimal filter size.

Moreover, by comparing the PCA approach and Gram-Schmidt routines, we find
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Method Filter itrns Relative density Full FE optimal

rmin error (c) variation solutions compliance

1.5 412 0 0.010 412 198.0312

Reference 2.0 391 0 0.010 391 200.8855

2.5 224 0 0.009 224 208.2528

3.0 322 0 0.010 322 212.4484

1.5 408 0.00191 0.009 175 198.0274

PCA 2.0 394 0.0004 0.007 162 200.8847

2.5 227 0.00149 0.009 89 208.2497

3.0 395 0.01483 0.010 101 212.4169

1.5 402 0 0.009 265 198.0312

Gram- 2.0 388 0.000060 0.010 246 200.8867

Schmidt 2.5 224 0.00173 0.008 131 208.2492

3.0 643 0.04749 0.006 190 212.3475

Table 1: Comparison of performance for 150 × 50 2D grid resolution

that the PCA method requires less optimization time and a remarkably fewer

number of full solutions (but more iterations) than the Gram-Schmidt method

for the same filter size. This validates the PCA ROM as more efficient than the

Gram-Schmidt at each iteration step. As far as accuracy of the final objective

function is concerned, PCA and Gram-Schmidt methods are basically similar.

If we investigate in detail, the former has a slightly higher precision than the

latter. To explain the advantage of the PCA approach over Gram-Schmidt in

accuracy, it is instructive to analyze the evolution of the residual throughout the

whole iteration process. From figure 3 we can very clearly see that PCA method

has a clearly lower residual than the Gram-Schmidt method when solving for

intermediate displacement vectors during the entire optimization process.

Under the same control precision of design density (1%, here), PCA approach

always converges earlier and has a higher convergence accuracy compared to

the Gram-Schmidt method for a given rmin, a clear improvement in both effi-
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Figure 3: Residual comparison between Gram-Schmidt and PCA with (a) ǫrb=0.1 Nb=4

and (b) ǫrb=0.1 Nb=10 (c) Nb=40 ǫrb=0.1 (d) Nb=4 ǫrb=0.05 and (e) ǫrb=0.05 Nb=10 (f)

ǫrb=0.01 Nb=4

ciency and accuracy in this 2D case. We may therefore conclude that the PCA

method outperforms the Gram-Schmidt method, at least for this particular 2D

benchmark problem.

It is important to note that none of this is counter-intuitive, since the Gram-

Schmidt is basically an approximation to the POD with the modes directly

obtained from the snapshots by orthonormalization rather than going through

the procedure of finding the optimal modes through SVD.

3.2. 3D Case 1 : Simply supported beam

This test-case is a 3D variant of the MBB benchmark problem (figure 4) - a

simply supported beam under flexion in 3D.
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Figure 4: First 3D test-case and boundary conditions.

The optimization iterations have been stopped when the density variation

within any of the elements is less than 1% (or when 100 iterations have been

completed).

We focus on the influence of varying the ROM error threshold ǫrb and the num-

ber of snapshots Nb used to construct the basis Φ, as well as the scalability of

the approach with grid resolution.

3.2.1. Scalability of performance with grid resolution

Four different grids were considered here in increasing order of resolution: a

coarse 96×24×64 grid, a finer 108×27×72 grid), an even finer grid (132×33×88)

and a high resolution 156×39×104. The 3D topology results are shown in figure

5(a) - (d).
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(a) (b)

(c) (d)

Figure 5: Optimized 3D topologies for the MBB beam problem, using four different grids with

increasing resolution (a) 96×24×64 grid, (b) finer 108×27×72 grid) (c) finer grid (132×33×88)

and (d) 156×39×104 obtained using PCA

Figures 6 (a) and (b) compare the traditional (without ROM) topology op-

timization performance with the PCA-coupled approach, for 100 iterations, and

the scalability of the savings, respectively. The break point represents the tran-

sition where more calls have been made to the ROM rather than the full-field

model. It is immediately evident that the number of function calls to the full-

field FEM drops off and stabilizes as the number of calls to the significantly less

computationally intensive PCA routine increases gradually (after the first Nb

iterations and progressively stabilizes). This leads to a dramatic reduction in

computational time and effort as seen from the CPU times required for each case.
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Figure 6: (a) Typical 132×33×88 grid comparison of computational effort between traditional

and PCA approach (b) Scalability of ROM performance with grid size using four different grid

resolutions - comparison of computational effort with and without ROM

It is thus clear that coupling the ROM using the on-the-fly calculated PCA

basis significantly improves the computational efficiency of the overall optimiza-

tion routine. This improvement scales up with the grid resolution. Next, we

will attempt to identify some ”best practices” for choosing appropriate Nb and

ǫrb.

3.2.2. Performance of ROM with varying Nb and ǫrb

For this parametric study, we have used all the snapshots without trun-

cation of the basis (Nb = M). In the first part, we vary Nb (number of

modes/snapshots) from 2 to 20, so as to compare the number of calls to the

ROM with calls to the full field solution, as earlier. The threshold is fixed at

ǫrb = 0.1. The results are shown in figures 7 (a) and (b) for two different grid

resolutions and 8.
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Figure 7: 96×24×64 and 132×33×88 grids - comparison of PCA computational effort for

different Nb (no truncation) and ǫrb=0.05
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Figure 8: 132×33×88 grids - Semilog plot comparison of PCA computational effort for different

Nb (no truncation) and ǫrb=0.05

These results are summarized in table 2. It is interesting that there is no

monotonic relationship between Nb and the number of full-field calls, and 10

modes being the ideal basis size for this particular problem.

Figures 9 and 10 show the influence of varying the error threshold ǫrb from 0.01

to 0.2 on the performance of the ROM-coupled topology optimization, when the
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Nb calls to Calls to Break CPU time Compliance

(modes) FEM ROM point (sec)

2 29 71 24 1930.1 20.846

4 24 76 22 1748.4 20.333

6 22 78 24 1641.1 19.72

8 23 77 28 1590.3 19.553

10 10 90 20 864.29 14.902

14 14 86 28 1064.9 15.188

18 36 74 36 2252.5 24.678

20 42 58 40 2515.0 31.331

Table 2: Performance comparison for various Nb over 100 iterations for the first 3D test case

(using a 132×33×88 grid)

number of snapshots/modes Nb is fixed at 5. There is an ’expectedly’ monotonic

trend in the number of full-field calls with reducing ǫrb.
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Figure 9: 132×33×88 grid comparison of PCA computational effort for Nb = 5 modes and

varying ǫrb (no truncation)
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Figure 10: 132×33×88 grid - Semilog plot comparison of PCA computational effort for dif-

ferent ǫrb (no truncation) and Nb=5 (below) zoomed in to the marked region

The above results are summarized in table 3.

While calls to the ROM/full-field model are a crucial performance indicator,

it is important to distinguish between a reduction in full-field calls and a reduc-

tion in CPU time. if a full-field call is followed by a single ROM call before we

require another full-field call, we have gained nothing from the ROM. The CPU

time reduction is therefore the final litmus test for the ROM.

Summing up, the error threshold determines the position of the ”break/transition

point” where the optimizer makes more calls to the ROM compared to the full

field FE solution, since raising ǫrb increases the admissibility of the ROM solu-

tion Urb, thus increasing the number of calls to the ROM while reducing the calls

25

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



ǫrb calls to Calls to Break CPU time Compliance

FEM ROM point (sec)

0.01 48 52 62 2506.5 20.156

0.02 32 68 28 1931.0 20.098

0.05 29 71 24 1815.0 20.158

0.1 24 76 12 2018.9 20.422

Table 3: Performance comparison for various ǫrb over 100 iterations for the first 3D test case

(using a 132×33×88 grid)

to the full field FEM. However, there is a tradeoff since increasing the threshold

beyond a certain point reduces the precision of the solution thus potentially

reducing the performance of the procedure. For this particular problem, 0.05

appears to be a reasonably good choice.

One would expect increasing Nb to improve the ROM but this is not necessarily

the case. By increasing Nb we increase the amount of information in the ROM

but also the number of less relevant modes, leading to a loss of efficacy. The

number of modes to be retained for this particular problem appears to be around

10 where both computational efficiency and precision are both simultaneously

maximized. Too few (or too many) modes retained will reduce the performance

of the ROM, at least for this case.

3.3. 3D Case 2 : MBB beam

We next consider another classical 3D benchmark topology optimization

test-case: the original Messerschmitt-Bolkow-Blohm/MBB problem in 3D. The

boundary conditions of the beam are given in Figure 11. Just like in the previ-

ous test-case, we study the effect of Nb, ǫrb and grid resolution (for scalability).

The elastic parameters are the same as before, i.e. Young’s moduli (maximum

and minimum), Poisson’s ratio. vfrac is chosen as 0.1, the penalization = 3, and

the density filter radius is 0.5.

In addition, three different maximum allowable volume fractions vfrac have been
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considered: 0.1, 0.2 and 0.3.

Figure 11: Boundary conditions for the second test-case: 3D MBB beam problem.

As in the previous test-case, we will focus on the influence of different vfrac

((
∑N

1 ve)/V ), ROM error threshold ǫrb and the number of snapshots Nb used

to construct the basis Φ, as well as the scalability with grid resolution.

3.3.1. Performance and scalability of ROM

Three different grid resolutions (in voxels) were considered in this work: a

fairly coarse 12×12×72 grid, a finer 24×24×144 grid and (c) very fine grid

48×48×288.

The volume fraction vfrac=0.1 here.
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(a) (b)

(c)

Figure 12: Comparing optimized 3D topologies for the MBB beam problem, using three

different grids with increasing resolution (a) coarse 12×12×72 grid, (b) finer 24×24×144

grid) and (c) very fine grid (48×48×288) obtained using PCA

Figure 12 shows the optimized topologies generated by the TopOpt-PCA

algorithm, which are, as expected, visually indistinguishable from those obtained

without using the ROM. The results are shown in Figure 13.

3.3.2. Performance of ROM with varying Nb and ǫrb

In the first part, we have used all the snapshots without truncation of the

basis, and varied Nb (number of modes/snapshots) from 2 to 20, and compared

the number of calls to the ROM with calls to the full field solution, with the

threshold ǫrb = 0.1 (fixed). In the second part, we show the influence of varying

the error threshold ǫrb from 0.02 to 0.1 on the performance of the ROM-coupled

topology optimization routine. The number of snapshots/modes Nb here is fixed

at 8.
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Figure 13: Comparing number of function calls to FE solver vs PCA using Nb = 4 modes (10

total snapshots) and ǫrb = 0.1 for three grids with increasing resolution)
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Figure 14: Performance of PCA varying (a) Nb (without truncation and ǫrb = 0.01) and (b)

ǫrb (using Nb = 8 modes) on a 24×24×144 grid

The results are shown in figures 14. with a summary given in tables 4 and

5. From the above results, it is clear that Nb and ǫrb are vital parameters, that

are unfortunately problem and grid resolution dependent.
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Figure 15: 24×24×144 grid - Semilog plot comparison of PCA computational effort for dif-

ferent Nb (no truncation) and ǫrb=0.01
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Figure 16: 24×24×144 grid - Semilog plot comparison of PCA computational effort for dif-

ferent ǫrb and Nb=8 modes
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Nb calls to Calls to Break CPU time Compliance

(modes) FEM ROM point (sec)

2 279 221 144 3591.6 51.286

4 285 215 254 4509.6 52.166

6 271 229 236 4002.0 52.963

8 286 214 292 4006.2 52.969

10 271 229 292 4107.3 52.761

14 277 223 272 4317.7 52.130

18 274 226 356 4348.7 52.186

20 266 234 374 5246.6 52.211

Table 4: Performance comparison for various Nb for 500 iterations for the second 3D test case

(using a 24×24×144 grid)

3.3.3. Effect of material volume fraction

Finally, we consider three different vfrac=0.1, 0.2 and 0.3 in order to study

the evolution of the computational savings with increasing material volume frac-

tion. The results are shown in figure 17 below:
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Figure 17: ROM (PCA using Nb = 8 modes without truncation and ǫrb = 0.1) performance

for three different volume fractions (vfrac) 0.1, 0.2 and 0.3 on a 24×24×144 grid

The corresponding optimized topologies are shown below in figure 18:
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ǫrb calls to Calls to Break CPU time Compliance

FEM ROM point (sec)

0.02 245 255 434 6047.5 52.969

0.05 232 268 378 4258.3 52.967

0.07 220 280 336 4040.7 52.964

0.1 214 276 292 4006.2 52.969

0.2 186 314 124 3750.4 52.962

Table 5: Performance comparison for various ǫrb for 500 iterations for the second 3D test case

(using a 24×24×144 grid)

(a) (b)

(c)

Figure 18: 3D topologies for the three volume fractions (a) 0.1, (b) 0.2 and (c) 0.3 on a

24×24×144 grid

It is interesting to note that the material volume fraction has a striking

influence on the ROM performance. As we increase material volume fraction,

the proportion of calls to the ROM increases. In [51], it is noted that for low
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vfrac (i.e. below 10%) the convergence of the topology optimization routine

becomes more tedious due to oscillations. The benefit of using the ROM is in

being able to avoid unnecessary full-field calculations by extracting the most

relevant modes (of the density map).

3.4. Discussion

The PCA algorithm significantly enhances the performance of the topology

optimization routine with a significant reduction in computational effort and

CPU time in all test-cases investigated. We note that the improvement in

performance scales up with the grid resolution. It is also clear that there is an

improvement in the reduction in computational effort as we increase the volume

fraction - though this may simply be because the higher volume fraction problem

would be expected to converge faster .

A conceivably less obvious advantage of the ’on-the-fly’ ROM, applied to the

displacement vector, with constant monitoring for precision using the full-field

model as a stand-by, very likely allows for a basis size (Nb)-independence of

the optimized density map. It stands to reason that if ǫrb were inflated to an

unreasonable level, we would lose this benefit.

4. Perspectives: Extension of approach to non self-adjoint problems

We have, in this paper, focussed on developing an ROM approach for self-

adjoint problems, with a primary focus on the popular compliance minimization.

Consider now a typical compliant mechanism design problem (shown in figure

19) The input end A is subjected to a horizontal concentrated load Fin= 100

towards the right. Our objective is to maximize the displacement uout of output

point B.
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Figure 19: Displacement-inverter topology optimization problem

NOTE: Here, we consider the simplest possible type of compliant mechanism

in which the displacement (Uout) is prescribed at a given node or set of nodes

using the sparse vector L̃.

The optimization problem may then be posed as:

max
ρ

Uout(ρ) = L̃TU = L̃T (Φα+ ū)

such that ΦTK(Φα+ ū) = F
N
∑

e=1

veρe = vfracV < V

ρe ∈ [0, 1], e = 1, . . . , N (25)

Following subsections 2.2 and 2.3:

L(ρ, µ, λ) = L̃TK(Φα+ ū)− µTΦT [K(Φα+ ū)− F ]−

Nb
∑

i=1

λT
i (KiUi − F ) (26)

Using the same reasoning in subsection 2.3, for the on-the-fly updation strategy

the basis Φ is not a continuously evolving function of ρe, we state that ∂Φ
∂ρ

, ∂ū
∂ρ

as well as the last two terms in the derivative vanish giving:

∂L

∂ρe
= (L̃TΦ− µTΦTKΦ)

∂α

∂ρe
− µTΦT ∂K

∂ρe
Urb (27)

We choose µ such that:

(ΦTKΦ)µ = Krbµ = ΦT L̃ (28)
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where Krb is the reduced stiffness matrix from (10), allowing for inexpensive

inversion, this giving us the simple expression for the reduced sensitivity :

∂L

∂ρe
= −µTΦT ∂K

∂ρe
Urb (29)

The solution of (28) is then used to calculate the reduced sensitivity from (29).

But the system in (28) has reduced dimensionality compared to (3), indicating

that we now have a single reduced-order system with two load cases to solve.

We now apply both the above modified “on-the-fly” POD ROM as well as the

Gram-Schmidt orthogonalization [23] and investigate the influence of the type

of ROM, Nb and ǫrb on the results obtained for a displacement inverter. vfrac is

set as 0.3 and the MMA algorithm is used for the optimization. Material elastic

modulus is 1, the minimum (void) elastic modulus is 10−9 and Poisson ratio

is 0.3. The SIMP penalty factor is 3, the filter radius is 1.5 (using sensitivity

filtering). Optimization terminates when the maximum elemental density vari-

ation < 0.1% or 400 iterations have been completed.

In the design domain shown, the upper and lower ends on the left are simply

supported, middle nodes of the left and right boundaries are input (load) end

and output end (displacement) respectively. The structure is discretized by

100×100 square elements of unit volume. Linear springs simulate the structural

stiffness of the input end and output end (kin= kout= 1). Figure 20 shows the

optimal topologies of the reference model, POD and Gram-Schmidt orthogonal-

ization (simply referred to as G-S) ROMs for Nb=5, ǫrb=0.01.

Figure 20: Optimal topologies obtained (a) without ROM (b) G-S and (c) POD
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The optimal topology obtained using the POD model is almost the same

as that of G-S model as well as the reference model, by visual inspection, sat-

isfying the property of vertical symmetry and the requirements of mechanical

properties as well as actual processing and manufacturing, indicating that the

proposed method can meet the requirements of high-accuracy design.

Table 6 compares the results of the two ROMs (POD and G-S) by varying ǫrb

Method ǫrb Nb calls to calls to CPU time speedup relative

ROM full FE time (s) error (c)

Reference - - 0 400 132.43 1 0

5 337 63 96.48 1.37 0.35

0.01 10 330 70 106.18 1.25 0.23

G-S 40 315 85 116.77 1.13 0.20

0.001 5 228 172 105.03 1.26 0.12

10 156 244 120.78 1.10 0.05

40 181 219 127.49 1.04 0.11

5 351 49 90.3 1.47 0.27

0.01 10 346 54 103.63 1.28 0.09

PCA 40 326 74 115.59 1.15 0.06

0.001 5 279 121 102.73 1.29 0.18

10 263 137 108.74 1.22 0.07

40 259 141 134.57 0.98 0.02

Table 6: Performance comparison of G-S ROM and POD ROM (with reference)

and Nb. From table 6, we see that for the same ROM parameters (Nb and ǫrb),

there are significantly more calls to the POD ROM than the G-S, particularly

for smaller values of ǫrb, not to mention the ROM is used far more frequently

than the full field solution. We again note that CPU time is not necessarily pro-

portional to the number of full FE calls, since oversampling could potentially

increase the cost of updating the reduced basis, and any reduction in full FE

calls can no longer make up for the time gap.The top speed-up for the POD
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ROM is 1.47 (corresponding to 1.37 for the G-S), and time saving is about 32%

(against 27% for the G-S) and for low Nb and high ǫrb, the optimization effi-

ciency is higher.

Conclusions

In this paper we have presented an approach for efficient large scale topology

optimization based on coupling of topology optimization with reduced order

modeling by Principal Components Analysis, using on-the-fly construction of

the reduced basis with a database of previously calculated solutions of the FE

equations.

Topology optimization coupled with on-the-fly PCA calculated basis is seen to

significantly outperform the classical approach. It is important to note that we

avoid storage of the ”temporary” stiffness matrices and basis vectors during the

”basis changing” iterations, which means that the storage requirement is signif-

icantly reduced compared to previous methods. The PCA approach showed a

significant reduction in computational effort over the traditional full field solu-

tion approach. The improvement in performance scales well with the size of the

problem.

While we have focused on the compliance minimization problem, the current

method should be applicable to virtually any self-adjoint topology optimization

problem, regardless of the particular physics involved.

Another obvious area of immediate work is using high performance computing

and non-intrusive asynchronous PCA to obtain additional improvement in the

computational time and effort needed.

Finally, a formal extension of the approach to general non-self adjoint problems

is a key area of future research.
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