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On-the-fly Stuttering in the Construction of

Deterministic ω-Automata

Joachim Klein, Christel Baier⋆

Institute of Theoretical Computer Science, Dresden University of Technology
01062 Dresden, Germany

j.klein@ltl2dstar.de, baier@tcs.inf.tu-dresden.de

Abstract. We propose to use the knowledge that an ω-regular prop-
erty is stutter insensitive to construct potentially smaller deterministic
ω-automata for such a property, e.g. using Safra’s determinization con-
struction. This knowledge allows us to skip states that are redundant
under stuttering, which can reduce the size of the generated automaton.
In order to use this technique even for automata that are not completely
insensitive to stuttering, we introduce the notion of partial stutter insen-
sitiveness and apply our construction only on the subset of symbols for
which stuttering is allowed. We evaluate the benefits of this heuristic in
practice using multiple sets of benchmark formulas.

1 Introduction

Automata on infinite words, ω-automata [1, 2], play a vital role in the au-
tomata theoretic approach [3, 4] to formal verification. In this context, ω-
regular properties specifying desired behavior, often formalized in Linear
Temporal Logic (LTL) [5], are translated into nondeterministic Büchi au-
tomata (NBA), which can then be used to verify, using graph algorithms,
that the property is not violated by a given system design. In some situ-
ations, e.g. the quantitative analysis of Markov decision processes [6–8],
deterministic instead of nondeterministic automata are needed. The de-
terminization construction from NBA to deterministic Rabin automata
(DRA) can lead to a worst-case 2O(n log n) blowup in automata size, mak-
ing the whole translation from LTL formula to DRA double exponential.

Despite this complexity, in practice and using several minimization
heuristics [9], we were able to generate automata of usable size for many
benchmark formulas using Safra’s determinization algorithm [10]. The
automata generated by our tool ltl2dstar are used in practice for example
by LiQuor [11], an explicit state model checker for Markov decision pro-
cesses, providing quantitative and qualitative analysis of ω-regular prop-
erties.
⋆ Both authors are supported by the EU project CREDO.



One desirable characteristic for ω-regular properties is insensitiveness

to stutter, i.e. that the property can not distinguish between traces that
differ only by stuttering, the finite repetition of similar states. Stutter
insensitive specifications provide an abstraction from the implementation
choices [12] and are a prerequisite for the application of powerful opti-
mizations like partial order reduction in model checking [13–15].

We propose to use knowledge about the stutter insensitiveness of a
formula and the corresponding automaton during the determinization
construction by modifying the transition function to skip states that are
redundant under stuttering, with the goal of generating smaller DRA in
practice. Our construction can be applied on-the-fly, i.e. without building
the whole original deterministic automaton first. This has the benefit that
the intermediate, skipped states do not have to be fully expanded. We can
apply this construction as well for automata that are only partially stut-
ter insensitive, by determining the set of symbols for which stuttering is
allowed. Our technique is independent of the underlying determinization
construction and can also be used e.g. in the construction of the union
automaton for two DRA. It can also easily be adapted for deterministic
Streett or parity automata.

After defining our basic notations, LTL and the automata used in Sec-
tion 2, we explain our construction in Section 3. We have incorporated this
proposed heuristic in our tool ltl2dstar (http://www.ltl2dstar.de/)
and report on experimental evaluation using benchmark formulas in Sec-
tion 4.

2 Notations, LTL and Automata

For a (non-empty) set S, let S∗ denote the set of finite sequences s =
s0, s1, . . . , sn over S and let Sω denote the set of infinite sequences s =
s0, s1, . . . over S, with si ∈ S. Let s|i be the suffix si, si+1, . . . of a sequence
s starting at index i. If S is an alphabet Σ, the sequences are called words

over Σ. For two words α ∈ Σ∗ and β ∈ (Σ∗∪Σω), the concatenation of α
and β is denoted by α ·β. For a letter a ∈ Σ, the word ai consists of the
i-times repetition of the letter a, a0 being the empty word ε. A language
L over Σ is a subset of Σω: L ⊆ Σω. The complement language, denoted
by L, is defined as the words from Σω that are not in L, L = Σω \L. For
a set S, 2S denotes the power set of S (the set of all subsets of S).

Linear Temporal Logic (LTL) The set of LTL formulas over a set
of atomic propositions AP is defined by the grammar ϕ ::= true|p|¬ϕ|ϕ∨



ϕ | X ϕ | ϕ U ϕ, where p ∈ AP. The temporal operator X and U are called
“Nextstep” and “Until”, respectively.

Let α = α0, α1, . . . be an infinite word over Σ = 2AP and let ϕ be an
LTL formula over AP. Satisfaction of ϕ by α, α |= ϕ, is defined as follows:

α |= true α |= p ∈ AP iff p ∈ α0

α |= ¬ϕ iff α 6|= ϕ α |= ϕ1 ∨ ϕ2 iff α |= ϕ1 or α |= ϕ2

α |= Xϕ1 iff α|1 |= ϕ1

α |= ϕ1 Uϕ2 iff ∃k ≥ 0 : α|k |= ϕ2 and ∀ 0 ≤ i < k : α|i |= ϕ1

The language of an LTL formula ϕ is L(ϕ) = {α ∈ Σω : α |= ψ}. From
the basic operators defined above, we derive the usual propositional oper-
ators, e.g. conjunction (∧) and implication (→), as well as the temporal
operators “Finally” (Fϕ ≡ true Uϕ) and “Globally” (Gϕ ≡ ¬ F¬ϕ).

Automata A nondeterministic ω-automaton over an alphabet Σ is
defined as A = (Q,Σ, δ, q0, Ω) with a finite set Q of states, initial state
q0 ∈ Q and transition function δ : Q × Σ → 2Q. For deterministic ω-
automata, the transition function associates exactly one successor state
(|δ(q, a)| = 1) per transition and can thus be considered as δ : Q×Σ → Q,
which can be naturally extended to take a finite word from Σ∗ as input
by applying δ successively on each letter. Ω is the acceptance condition,
depending of the type of the automaton.

A run of an ω-automaton A over a word α ∈ Σω is an infinite sequence
of states π = π0, π1, . . . with π0 = q0 and πi+1 ∈ δ(πi, αi). Let inf(π) ⊆ Q

be the set of states of A that are visited infinitely often in the run π. In a
Büchi automaton the acceptance condition Ω is a set of states F ⊆ Q, and
a run π is called accepting iff F is visited infinitely often: inf(π)∩F 6= ∅. In
a Rabin automaton, the acceptance condition Ω consists of k acceptance
pairs of subsets of the states: Ω = {(L1, U1), . . . , (Lk, Uk)}, where Li ⊆ Q

and Ui ⊆ Q. A run π of the automaton is called accepting, iff there exists
an i such that Li is visited infinitely often and Ui is visited only finitely
often: ∃i ∈ {1, . . . , k} : inf(π) ∩ Li 6= ∅ ∧ inf(π) ∩ Ui = ∅. The language
L(A) of a (non-)deterministic automaton is the set of words α ∈ Σω for
which there exists an accepting run in A. We abbreviate nondeterministic
Büchi automaton as NBA and deterministic Rabin automaton as DRA.

In this paper, we will additionally use an alternative, equivalent encod-
ing of Rabin acceptance: For every state of a Rabin automaton, we can en-
code its acceptance signature as a k-tuple −→r = (−→r [1], . . . ,−→r [k]) ∈ Acck,
where Acc = {white, green, red}. Let acc : Q → Acck calculate the ac-
ceptance signature for a given state q: acc(q) = −→r = (−→r [1], . . . ,−→r [k]),
with −→r [i] = red iff q ∈ Ui,

−→r [i] = green iff q ∈ Li ∧ q 6∈ Ui and
−→r [i] = white else. We naturally extend this function to a subset of the



states, acc : 2Q → 2Acck

, acc(Q′) = {acc(q) : q ∈ Q′} to get the set
of acceptance signatures for the states. We then specify a total order
white < green < red on the three different values of Acc and define the
operator max : 2Acck

→ Acck,

max{−→r1 , . . . ,
−→rn} = −−→rmax with −−→rmax[i] = max{−→rj [i] : 1 ≤ j ≤ n}, 1 ≤ i ≤ k,

i.e. separately calculating the maximum for each of the k elements for a
set of acceptance signatures, according to the order on Acc.

With these tools, we can reformulate Rabin acceptance as follows:
Let Rinf = acc(inf(π)) be the set of acceptance signatures of the states
that occur infinitely often in a run π, then −−→rinf = max(Rinf ) represents
the element-wise maximum of these acceptance signatures. Then π is
accepting iff there exists at least one 1 ≤ i ≤ k such that −−→rinf [i] = green.

3 Stuttering the Determinization Construction

3.1 Stuttering

In the literature (e.g. [12, 16–18]), stuttering is usually considered in the
context where all the different letters from the alphabet Σ are allowed
to be stuttered. For our purposes, we refine this notion and more gener-
ally consider the effect on the language of allowing stuttering for only a
subset S ⊆ Σ of the letters (partial stuttering). The usual definitions of
stuttering are then obtained by using S = Σ.

Let Σω be the set of infinite words over Σ and let S ⊆ Σ be a subset
of Σ. Let α = α0, α1, . . . be an infinite word from Σω. A letter αi is called
redundant iff αi = αi+1 and there exists a j > i such that αi 6= αj .

Let ♯S : Σω → Σω be an operator that removes all the redundant
occurrences of all symbols σ ∈ S from α. Two words α, β ∈ Σω are called
S-stutter equivalent iff ♯S(α) = ♯S(β). We denote by [α]∼= S = {β ∈ Σω :
♯S(α) = ♯S(β)} the equivalence class of S-stutter equivalent words of α.

A language L over Σ is called closed under S-stuttering iff for every
α ∈ L, all the S-stutter equivalent words are in L as well, [α]∼= S ⊆ L.
Note that if a language L is closed under S-stuttering then L is also closed
under S′-stuttering for any subset S′ ⊆ S and that if L is closed under
S1- and S2-stuttering then L is closed under S1 ∪ S2-stuttering.

An LTL formula ϕ is called S-stutter invariant iff the language L(ϕ) is
closed under S-stuttering. An automaton A is called S-stutter insensitive

iff the language L(A) is closed under S-stuttering.



3.2 Checking for Closure under Stuttering

Unfortunately, checking whether the language of a given LTL formula or
NBA is closed under Σ-stuttering is PSPACE-complete [18], assuming
a fixed (non-trivial) alphabet Σ. However, for any formula ϕ from the
subset of formulas LTL\X that do not contain the Nextstep operator X, it
can be shown that ϕ is Σ-stutter invariant [12, 17] and can thus be easily
identified by a simple syntactic check.

For the other formulas that do contain the X operator, we would like
to determine the maximal set S ⊆ Σ = 2AP for which such a formula ϕ
with atomic propositions AP is S-stutter invariant.

In a prototypical implementation in our tool, we accomplish this by
successively checking for {σ}-stutter invariance for all the symbols σ ∈ Σ.
Checking for {σ}-stutter invariance of a formula ϕ is PSPACE-complete
as well, again assuming a fixed alphabet Σ: Membership in PSPACE can
be shown by allowing only stuttering of σ in the algorithm for Σ-stutter
invariance checking from [18]. PSPACE-hardness follows from the fact
that Σ-stutter invariance checking can be reduced to checking {σ}-stutter
invariance for all the σ ∈ Σ.

Our implementation checks {σ}-stutter invariance by calculating the
stutter-closure under stuttering of the symbol σ, denoted by cl∼= σ(A),
for the nondeterministic Büchi automaton A obtained from ϕ, similar to
what is proposed in [19]. By construction, L(cl∼= σ(A)) =

⋃

α∈L(A) [α]∼= σ.
Then, A is {σ}-stuttering insensitive iff L(cl∼= σ(A)) = L(A) which is
equivalent to L(cl∼= σ(A)) ∩ L(A) = ∅. This condition can be checked
using a standard emptiness check on the product automaton cl∼= σ(A)×A.
Rather than obtaining A by complementing A, we simply generate the
NBA for the negated formula ¬ϕ.

Clearly, this approach to checking stutter invariance is computation-
ally hard, but our experiments in Section 4 suggest that – at least for
our benchmark formulas – determining S can be performed in a reason-
able amount of time. Alternative approaches like [18] or [20] should be
evaluated for their performance in practice.

3.3 The Stuttered Deterministic Rabin Automaton

Given a DRA A = (T,Σ, δ, t0, Ω) with Ω = {(L1, U1), . . . , (Lk, Uk)}
which is S-stutter insensitive, we will provide a construction for a DRA
B = (Q,Σ, δ∼=S , q0, Ω

B), which we call the stuttered DRA and which ac-
cepts the same language as automaton A.



A state from the set of statesQ = T×Acck of B consists of a state from
A augmented with an acceptance signature, (t,−→r ) ∈ Q. The acceptance
condition ΩB = {(LB

1 , U
B
1 ), . . . , (LB

k , U
B
k )} of B is determined as follows:

For every state (t,−→r ) ∈ Q and every 1 ≤ i ≤ k, the state (t,−→r ) ∈ LB
i iff

−→r [i] = green and (t,−→r ) ∈ UB
i iff −→r [i] = red , i.e. the acceptance condition

is chosen to correspond to the acceptance signature −→r . The initial state
q0 = (t0,

−→r0) with −→r0 = acc(t0) is a copy of the initial state from A with
its acceptance signature.

To determine δ∼=S(q, a) for a state q = (t,−→r ) we consider the sequence
of states ti = δ(t, ai), with i = 1, . . . (i.e. the infinite run on the word aω

in A starting at t). As all ti ∈ T and T is finite, there will eventually be
a cycle of states that are visited infinitely often. Thus we can partition
the sequence into a prefix segment and a cycle segment as follows:

t
a
−→ t1

a
−→ . . .

a
−→ tprefix

︸ ︷︷ ︸

prefix

a
−→ tcycle

a
−→ . . .

a
−→ tcycle+i

a
−→ . . .

a
−→ tcycle+c = tcycle

︸ ︷︷ ︸

cycle

Note that the prefix may be empty, i.e. tcycle = t1. We now choose one of
the cycle states from {tcycle , . . . , tcycle+c} in such a way that, whenever we
have to chose from the same cycle, always the same state is chosen. This
can be accomplished e.g. by defining an order on T and always choosing
the smallest state w.r.t. this order. Let tcycle+i be that chosen state and
let stuttert,a = cycle + c + i. It is now easy to see that δ(t, astuttert,a) =
tstuttert,a = tcycle+c+i = tcycle+i, i.e. we go from t to the chosen state with
a number of stuttert,a consecutive a-transitions visiting every state on the
prefix and cycle and then continuing to the chosen state:

t
a
−→

all states in prefix
︷ ︸︸ ︷

t1
a
−→ . . .

a
−→ tprefix

all states on cycle
︷ ︸︸ ︷
a
−→ tcycle

a
−→ . . .

a
−→ tcycle+c

go to chosen state again
︷ ︸︸ ︷
a
−→ . . .

a
−→ tcycle+c+i

︸ ︷︷ ︸

stuttert,a transitions

We now define δ∼=S((t,−→r ), a) = (t′,−→r ′
) with t′ = tstuttert,a and −→r ′

=
max(acc({t1, . . . , tcycle+c})). If the automaton A is not S-stutter insensi-
tive for symbol a, a 6∈ S, then we set stuttert,a = 1, i.e. we go to the state
(t1, acc(t1)) just as in the original, unstuttered automaton A.

With this construction, we skip ahead stuttert,a−1 states and modify
the acceptance signature of the resulting state to reflect the acceptance
signatures of the skipped states.



Structure of B. For a given state q in B and an a ∈ S, this construc-
tion leads to the following structure, with qcycle having an a-self loop:

(t,−→r )
︸ ︷︷ ︸

q=(t,−→r )

a
−→ (t′,max(acc{t1, . . . , tcycle+c})

︸ ︷︷ ︸

qprefix=(t′,−→rp)

a
−→ (t′,max(acc{tcycle , . . . , tcycle+c})

︸ ︷︷ ︸

qcycle=(t′,−→rc )

When −→rp = −→rc , both qprefix and qcycle collapse to a single state. In
the special case that max{−→r ,−→rp ,

−→rc} = max{−→r ,−→rc} and a ∈ S, we can
stutter skip qprefix and set δ∼=S(q, a) = qcycle , i.e. behave as if reading two
a’s instead of one, which is safe as B is S-stutter insensitive, too.

Please note that the intermediate qprefix states can not be avoided in
general: Consider for example the LTL formula ϕ = GFa ∧ GF¬a, with
AP = {a}, Σ = 2AP. Assume there is a DRA recognizing L(ϕ) with no
qprefix states, i.e. with every state q having a self loop for symbol a ∈ Σ

if there is an incoming edge to q with symbol a. As L(ϕ) is non-empty,
there exists a state q, reachable from q0 via the prefix α · a, with α ∈ Σ∗

and a ∈ Σ, such that the acceptance signature of q has at least one green

element. But by assumption, q has an a-self loop and the word α · aω

would be accepted, contradicting the fact that it is not in L(ϕ).

Proposition 1. A and B accept the same language, L(A) = L(B).

Proof. We first show how we can relate runs in B with runs in A. Given
an infinite word β = β0, β1, . . . and the corresponding run πB(β) in au-
tomaton B, we can construct a word α and corresponding run πA(α) in
the original automaton A. Let πB(β) = q0, q1, . . ., with qi = (tqi

,−→rqi
), be

the run in B for β. We know for each transition (tqi
,−→rqi

)
βi−→ (tqi+1

,−−→rqi+1
)

the number st i = stuttertqi
,βi

used in the construction of δ∼=S to deter-
mine the number of states to skip for this transition. By constructing
α = βst0

0 ·βst1
1 · . . . , i.e. stuttering the symbols βi the appropriate number

of times st i, we get the corresponding run in A, πA(α). By construction,
α and β are S-stutter-equivalent, α ∈ [β]∼=S , because we only stutter
symbols in S as our construction guarantees that st i = 1 for all βi 6∈ S.

The two runs πA(α) and πB(β) then run in parallel, for every transition
with βi in πB(β) there are st i transitions with βi in πA(α):

πB(β) :
βi−1

 qi = (tqi
,−→rqi

)
βi−−−−−−−−−−−−−−→ qi+1 = (tqi+1

,−−→rqi+1
)

βi+1

 

πA(α) :
βi−1

 tqi

βi−−→ tqi,1
βi
−−→ . . .

βi
−−→ tqi,sti

βi+1

 

By construction, tqi+1
= tqi,sti

and −−→rqi+1
= max(acc({tqi,1, . . . , tqi,sti

})).



Lemma 1. πB(β) and πA(α) are both accepting or both rejecting.

We show max(acc(inf(πA(α)))) = max(acc(inf(πB(β)))), which is an
even stronger claim. To determine the sets inf(πA(α)) and inf(πB(β)) of
infinitely visited states, we determine the index j for β such that, from
that point on, all transitions that occur in πB(β)|j appear infinitely of-
ten. As the set of possible transitions Q × Σ is finite and the run is
infinite, such a j is guaranteed to exist. Let j′ = Σ

i<j
i=0st i be the corre-

sponding index for α such that πA(α)|j′ is synchronized with πB(β)|j . In
general, inf(π) = inf(π|j) for any j as we consider only the infinitely re-
peating behavior, which allows us to start as “late” in the run as we
want. It is easy to see that the set of infinitely visited states in the
run are exactly the states that occur as the destination states of the
infinitely occurring transitions. Because the two runs are synchronized,
for every transition visited infinitely often in πB(β)|j with destination
state qi+1 = (tqi+1

,−−→rqi+1
), the corresponding transitions with destination

states tqi,1, . . . , tqi,sti
in πA(α)|j′ are visited infinitely often, too. As ev-

ery infinitely occurring transition in πA(α)|j′ can be related to at least
one infinitely occurring transition in πB(β)|j , this approach covers all the
transitions and thus also all infinitely visited states in πA(α)|j′ .

Because max(acc(qi+1)) = max(−−→rqi+1
) = max(acc({tqi,1, . . . , tqi,sti

}))
for all the transitions in πB(β)|j , it follows that max(acc(inf(πA(α)|j′))) =
max(acc(inf(πB(β)|j))).

We will now use the above to show language equivalence of A and B:
L(A) ⊆ L(B): Let β ∈ L(A) and let πB(β) be the run for β in the

modified automaton B. As shown above, we can construct a word α by
only stuttering a ∈ S. By Lemma 1, the run πA(α) in A is accepting iff
πB(β) is accepting. Because α is S-stutter equivalent to β and A is S-
stutter insensitive, it follows that α ∈ L(A) and that πA(α) is accepting,
hence πB(β) is accepting, too, and β ∈ L(B).

L(A) ⊇ L(B): Let β ∈ L(B) and let πB(β) be the accepting run for β
in B. As shown above, we can construct α and the corresponding accepting
run πA(α) in the original automaton A. It follows that α ∈ L(A). Because
α and β are S-stutter equivalent and A is S-stutter insensitive, it follows
that β ∈ L(A). �

Number of states. Our construction merges states along path fragments
in the DRA A. This can lead to B having more reachable states than A
if the states, transitions and acceptance signatures in A are arranged
in a compact, interleaved way that is destroyed by merging the stuttered
transitions. Therefore our technique should be considered as an additional



heuristic in the toolbox to generate smaller automata. In practice, only
in three of the cases evaluated in Section 4 were the stuttered automata
B larger than the corresponding standard automaton A.

If A has n reachable states and k acceptance pairs, the number of
reachable states n′ in B is bound by n′ ≤ n · |Acck| = n · 3k. Ignoring the
special case of skipping qprefix which can only lead to fewer states, n′ is
bound as well by the number of reachable transitions in A, n′ ≤ n · |Σ|,
as δ∼=S(q, a) for q = (t,−→r ) is uniquely determined by t and a.

4 Implementation and Experimental Results

In our tool ltl2dstar, we have implemented the construction of stuttered
DRA for Safra’s construction and for the union construction, which gen-
erates two DRA for each of the subformulas in a formula ϕ = ϕ1∨ϕ2 and
then builds the DRA for ϕ by building the union automaton from the
two subformula automata. Each of the subformula automata can be con-
structed again with stuttering, with potentially differing sets of stutter
insensitive symbols for ϕ1 and ϕ2.

As we are interested in generating small automata in practice, we per-
formed an evaluation of our heuristic. We used the standard tool ltl2ba

from [21] as the external generator for the nondeterministic Büchi au-
tomata from LTL formulas.

Example formula We consider the formula ϕ = GFa → GFb ≡
FG¬a ∨ GFb, representing a strong fairness condition (“infinitely often
a implies infinitely often b”). The NBA generated by ltl2ba has 5 states,
from which our implementation of Safra’s algorithm, with the heuristics
presented in [9] disabled, generates a DRA with 61 states. With our min-
imization heuristics enabled, the generated DRA has 12 states, which is
mostly thanks to the use of the union construction. With the stuttered
construction, our tool generates a DRA with only 4 states, by building
the union of the two now stuttered DRA for the subformulas, each having
the minimal size of two states per automaton (Fig. 1 shows the DRA for
the subformula GFb).

Benchmark We have evaluated the effect of our stuttering construc-
tion on the benchmark formulas we used in [9]. We distinguish between
the formulas without and with the X operator, i.e. those where we can
stutter all symbols from Σ and those where we may be only allowed to
stutter a subset of Σ. The sets of benchmark formulas consist of 39 formu-
las from [22] and [23] (25 without X), 1000 randomly generated formulas
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Fig. 1. DRA for LTL formula GFb as generated by ltl2dstar, left without stuttering,
right with our stuttering technique. Bold: State, Italics: Acceptance signature

(415 without X) and 55 pattern formulas [24], which can be regarded as
typical formula types used in practice (30 without X)1.

We compared the automata sizes without and with our stuttered tran-
sition function. The other heuristics described in [9] (on-the-fly improve-
ments of Safra’s algorithm, union construction, bisimulation, etc.) were
enabled. The results of our experiments are shown in Table 1, once for
generating DRA and once for generating deterministic Rabin or Streett
automata (DSA). Depending on the formula, using the dual Streett ac-
ceptance instead of Rabin acceptance can lead to exponentially smaller
automata, and vice versa. If the user can handle both acceptance types,
we compute a DRA and a DSA and return the smaller. For further details
we refer to [9].

In addition to listing the sum of the number of states of the automata,
the time needed for computing the automata is detailed. For the formulas
with the X operator, we list how much of that time was spent calculating
the set S of stutter insensitive symbols and the average of how many
symbols of Σ for each formula are stutter insensitive.

The results show that significant reductions are obtainable using our
proposed heuristic, even for the formulas containing the X operator. While
determining the exact set S for theses formulas takes a significant amount
of time, it allows reductions especially for the practically relevant pattern
formulas, with large subsets of Σ being stutter insensitive. As explained
in Section 3.3, in three cases the stuttered automata were slightly larger
(170 states instead of 157, 14 instead of 11 and 9 instead of 8). It should
be noted that all the reductions in the size of the automata are in addition
to those achieved by the other heuristics and bisimulation quotienting.

1 The tests were carried out with an Intel Pentium M 1.5 Ghz, 512 MB RAM, running
Linux. The same machine was used for the benchmarks in [9].



Table 1. Combined size of the automata, time spent during the construction and
average ratio of stutter insensitive symbols to full alphabet (for formulas with X).

Formula set DRA states Time DRA/DSA states Time
(without X) Normal Stuttered Norm. Stutt. Normal Stuttered Norm. Stutt.

[22, 23] 278 168 (-39.6%) 0.3s 0.3s 215 140 (-34.9%) 0.5s 0.5s

Patterns 311 189 (-39.2%) 0.3s 0.3s 126 121 (-4.0%) 0.3s 0.3s

Random 1820 1499 (-17.6%) 3.9s 4.0s 1621 1405 (-13.3%) 4.6s 4.8s

Formula set DRA states Time Average
(with X) Normal Stuttered Normal Stuttered Calc. S |S|/|Σ|

[22, 23] 107 79 (-26.2%) 0.3s 6.8s 6.5s 75.9%

Patterns 103318 17731 (-82.8%) 207.5s 99.4s 15.5s 92.7%

Random 3441 3081 (-10.6%) 5.6s 10.6s 3.8s 49.6%

Formula set DRA/DSA states Time Average
(with X) Normal Stuttered Normal Stuttered Calc. S |S|/|Σ|

[22, 23] 53 51 (-3.8%) 0.3s 6.9s 6.5s 75.9%

Patterns 6273 2731 (-56.5%) 55.3s 78.8s 15.4s 92.7%

Random 2882 2750 (-4.6%) 6.5s 12.0s 3.9s 49.6%

5 Conclusion

We have shown that, in practice, stuttering the determinization construc-
tion is a useful tool to obtain smaller deterministic ω-automata, even for
properties that are only partially insensitive to stuttering.

The problem of efficiently determining in practice the exact set S ⊆
Σ for which an NBA or LTL formula is S-stutter insensitive provides
opportunities for further research. It would be especially interesting to
find heuristics for syntactically determining or approximating S.

We would like to thank Carsten Fritz for his input and the anonymous
reviewers for helpful commentary.
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