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SUMMARY

The body force on stellar material produced when radiation is absorbed or
scattered by atoms, that is, the force derived from the radiative stresses, is
studied for the case in which the radiation is produced by line emission of a
two-level atom according to the mechanism of non-coherent scattering with
complete redistribution. The force is considered for cases with either Doppler
or Voigt absorption profiles in static atmospheres with and without the effect
of an overlapping continuum, and also in rapidly expanding atmospheres.
Approximate analytic results are obtained in several asymptotic regimes.
It is suggested that for static atmospheres the force is represented to order-
of-magnitude accuracy by the result for L'TE with the damping wings and
the overlapping continuum omitted. This gives a simple relation, that for
optical depths which are greater than unity in the line, but less than unity
in the continuum, the force varies as the inverse of the optical depth. The
force due to the line alone is very small for optical depths greater than unity
in the continuum. In rapidly expanding atmospheres the force is also repre-
sented by this formula, except that the optical depth takes the velocity
gradient into account. A consequence of these relations is that the force due
to an optically thick line is independent of the strength of the line.

I. INTRODUCTION

The most plausible explanation for stellar winds in early-type stars appears
to be a flow which is driven by the force of radiation in the spectral lines acting
on the material (¢f. Lucy & Solomon 1970). Simple estimates, based in part on
the results of this paper, and to be reported elsewhere (Castor 1974, in prepara-
tion) indicate that a very large number of lines may make important contributions
to the total force. In such a situation one must use the simplest possible expressions
for the radiation force due to individual lines in terms of atmospheric properties
such as temperature, velocity, and optical depth. The purpose of this paper is
to gather in one place a number of results of this kind, for subsequent use in a
statistical treatment of the line contribution to momentum balance in the flow.
Some of these results are believed to be new; others have been reported previously.
It was thought to be most useful if all the results were brought together in a
homogeneous notation.

The force contributed by radiation in a spectral line is computed in this paper
for three radiative transfer situations: a line formed by a two-level atom according
to the process of non-coherent scattering and for which continuum processes
are neglected; the same case with continuum processes included; and the case
of a line formed according to non-coherent scattering in a spherical atmosphere
with a large velocity gradient, for which continuum processes are again neglected.
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These cases are treated in Sections 2, 3 and 4 of the present paper, respectively.
The main object in each case is to obtain an asymptotic expression for the radiation
force in the relevant regimes of the parameters. The techniques used are drawn
heavily from the monograph by Ivanov (1973), except in the third case for which
the result has been given by Sobolev (1957).

2. TWO-LEVEL ATOM WITHOUT CONTINUUM

In this model it is assumed that the line is formed by transitions between two
bound states of an atom, with all other states and other stages of ionization being
neglected. Further, it is supposed that the only processes affecting the population
of the two states are the radiative transitions themselves, and inelastic collisions
of the atom in either state with another particle such as an electron. It is also
assumed that a photon emitted by one of these atoms can be absorbed only by a
similar atom, i.e. that there is no competing absorption mechanism. In this case
the mass absorption coefficient, that is, that quantity which when multiplied by
the mass density gives the probability per unit distance of an absorption, is

given by
Kqu(x) .

In this expression x is the frequency displacement from the centre frequency
of the line, measured in units of the Doppler width. The latter quantity is
Avp = vovin/c where vin/4/2 is the rms value of a component of the atom’s
velocity. In this section it will be assumed that the stellar material is at rest, so
#(x) will be independent of direction and given by the usual Doppler or Voigt
formula. It is assumed to be normalized:

f:¢(x)dx -

The energy emitted in the line near the frequency x for a unit mass and unit
intervals of time, solid angle and «x is equal to

KLcﬁ(x)S

where S is the line source function, which can be expressed in terms of the popula-
tions of the atomic states. On the assumption that the photons are completely
redistributed in angle and frequency after each scattering, S is independent of
angle and frequency and depends only on depth in the atmosphere. With the
additional assumption of plane symmetry, S is given by

f l_ld/u f : $(x)dxI (x, )+ B (2.1)

in terms of the intensity of the radiation at frequency x and angle cos™! u to the
outward direction. In this expression B is the Planck function at the line frequency
for the local electron temperature, and ¢ is the probability that an excited atom
will not decay radiatively. When the equation of transfer is introduced, and the
familiar manipulations are performed (see, for example, Hummer & Rybicki
1971), the following is obtained:

I—e¢

S=

S(1) =(1—¢) f: S(O)K1(t—7)dt + eB(7). (2.2)
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This is the basic equation of the two-level atom transfer problem. The kernel
function K1(#) which appears here is defined as

K = [ $Elt| b

and its properties are studied in detail by Ivanov (1973, this work will be referred
to henceforth as IB; it should be noted that Ivanov uses different conventions on
normalization than those of the present paper). The independent variable in
equation (2.2) is line optical depth defined by

[ee]
T = f kLpdr’.

r

Equation (2.2) may be solved by a variety of techniques. The solution will
be quoted here in the form which arises from an application of the Wiener-Hopf
method (Kourganoff 1963; Busbridge 1960). Let equation (2.2) be used to define
S(7) for all real values of . (B(7) = o for 7 < 0.) Separate S into positive and
negative parts as follows:

S(7) = Si(7)+S-(7)
Si(r)=0,7<0; S(r)=0,7 =0,
so that equation (2.2) may be written

Si(r)+8(7) = (1—¢) f ) _Su(OKa(t=)de+ <B(r). (2.3)
The Fourier transform, defined by
f#) = [ eterpiayar
is applied to equation (2.3), with the result

SRz — (1 — 9RA(B)] + S(k) = <B(). (2.4)

The function 1 — (1 — €)Ki(k) is then factored as follows

1—(1— e)[Zl(k) =

H(1Jit)H (—1/ik)

where H (I/zk) is analytlc and non-vamshmg in the complex k plane cut on the
positive imaginary axis. The function H () is studied in detail in IB (Chapter 3,
Section 4). Multiplication of equation (2.4) by H(— 1/ik) gives

}—%%+H(~i;)§_(k) - ot (- 1) B (2.5)

An inspection of equation (2. 3), bearing in mind that K; is normalizable, indicates
that Si(k) is analytic in the lower half plane, not including the real axis, while
S_(k) is analytic in the upper half plane, including the real axis. A similar de-
composition of the right-hand side of equation (2.5) can be effected with Cauchy’s
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integral theorem. This yields

H (—M)B(k) - =1, eH(— z,;?)ﬁ(k’) ]%

27

+ L eH( ,)E(k’)%,

21

where the contours Cy and C- are illustrated in Fig. 1. The origin is included
within C,. When the terms which are analytic in each region are identified on
each side of equation (2.5), the following result is found

S.(k) = (Z‘k) L f +EH( )B(k) k'. (2.6)

Im(4)

Re(4)

Fi1c. 1. Contours in the complex k plane used for the integral in equation (2.6), and
elsewhere.

The uniqueness of this separation and the neglect of the integrals over large
semicircles is guaranteed by the fact that .S, S_, and B, being Laplace transforms
of functions which are finite at the origin, are O(1/k) for large k.

If a specific form is taken for B(7), the contour integral in equation (2.6) can
be evaluated. An application of the inversion formula for the Laplace transform
(another integral over the contour Cy) then gives S(7). This last step will not
be required. Since the neglect of continuous absorption can be justified only
if the continuous optical depth is small, the most realistic assumption regarding
B(r) is that it is constant. (Chromospheres are ruled out by this assumption.)
In that case B(k) = B/ik so that the integrand in equation (2.6) is analytic within
the contour, except for a simple pole at the origin. Equation (2.6) becomes

(H(0) = 1/V/€)
S (k) = \/ei H (i)B, (2.7)

which is the form that will be used in the succeeding development.
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Once the source function has been obtained, the next problem is to evaluate
the radiation force. This is computed by first finding the rate at which a unit
mass of material absorbs energy from a parallel beam of monochromatic radiation.
This quantity is then divided by ¢ to give the rate at which momentum is absorbed,
and multiplied by u to give the rate at which the radial component of momentum
is absorbed. Finally, an integration over all frequencies and angles gives the
force per unit mass of material. There is no force associated with the emission
process since the emission occurs isotropically. The following expression is
found

froa = 27 [ i [ playasI s, ), (2.8)

(See also Milne 1930, p. 100.) From the same analysis as that which led to equation
(2.2) one finds

Frad = ﬂ‘%‘ﬂ f : S()Kaa(t—7)ds, (2.9)
where the kernel function Kjzs(?), following the notation of IB, is
Kunlt) = sga()} [ $0B|t| ).
It will be convenient to write this as the derivative of another kernel:

Koo(t) = —%Kal(t),

Kan) = 3 [ $Ea(|t] () (2.10)

Since equation (2.9) expresses fraq as the convolution of Kaa with S, it suggests
that the Fourier transform be applied to equation (2.9). The result of this opera-
tion, and use of the relation between Kog and K3y, is

Fraa(k) = @ kK 31(k)S+(F). (2.11)
Finally, equations (2.7) and (2.11) can be combined to give
Fraa(k) = ‘lf“";_A"D /€ BRgy(k)H (zik) (2.12)

Two results of interest can be obtained directly from equation (2.12). First,
by setting € to unity and noting that in that case the H function is identically
unity, the LTE result is found:

A
Fraa(r) = ”ﬂ%_@ BKs(7). (2.13)

Second, suppose it is desired to find fraq for optical depths large compared with
the thermalization depth (where 1—Ki(1/7) & €). The main contributions to
fraq in the Fourier inversion will come from values of & for which |1— Kl(k)| <€
and therefore H(1/ik) = 1/4/e. It follows that the result (2.13) obtains in that
case also.
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No simple analytic result has been found for the value of fyaq at = = o. Equa-
tion (2.12) suggests that it should be of the order 4mxrAvpy/ € BJc since H (1/ik)
and Kj; are both of order unity for & of order unity. The main result of interest
to be found from equation (2.12) is the behaviour of fyaq for optical depths which
are large compared with unity, but small compared with the thermalization
depth. That is, 7 is made to become infinite, and simultaneously e tends to zero,
so that e/(1—Ky(1/7)) tends to zero. As e tends to zero, the H function tends
to a limit, the H function for conservative scattering, designated H (=) in IB.
(This notation will be avoided.) This limit is non-uniform in z, but for any value
of ¢, H(z) agrees with the limiting value to moderate accuracy if 2 is smaller than
the thermalization depth for that value of e. The accuracy is better the smaller
is & with respect to the thermalization depth. The assumption that = is small
compared with the thermalization depth guarantees that the main contributions
to fraa come from values of & for which the H function is well approximated by
the conservative function. Therefore H in equation (2.12) will be considered
to be that function. The next step is to seek limiting expressions for Ksi(k) at
small £, and H (%) at large 2, and introduce these into equation (2.12). The Fourier
inversion then gives fraq for large . Since these limiting forms depend on the
line profile function, the discussion will be carried out separately for the two
profiles of interest: Doppler and Voigt.

2.1 Doppler profile

'The inversion formula for the Fourier transform is applied to equation (2.12),

following which the path of integration is deformed in the & plane so that it follows
C+ in reverse. This gives the result

Jraa(7) = 4meLAvp \VeB Lf e~"Ydy [H (——I +i8)1€31(iy— 8)
c 27t J ¢ y

—H (—;—iS)Kgl(iy+8)].
8 is a positive infinitesimal. With the substitution ¢ = yT, this becomes
Jraa(r) = 4meLAvp / <B LJ e—tdt[H (——T+i8)lz31 (Z—t— 8)
c T 2w Jo t T (.14)
-H (-;—iS)Kggl(g-{- 8)]

As 7 tends to oo with ¢ fixed, /¢ tends to oo and ¢/ tends to o. Therefore, expan-
sions of H and Kg; for large and small argument, respectively, are required.

"The asymptotic form of H(z) can be found using the technique of IB, Section
5.4, but generalized to complex values of 2 not lying on the negative real axis.
'The method proceeds from the integral equation (IB 5.4. 18')

I 2’ H(2") N
5H(z)f0 WG(z)dz = I (2.15)
with

G@z) = 2 °:)¢2(x)dx

where %(2) is the solution of ¢(x) = 1/2. For the Doppler profile, G(z) is related
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to the complementary error function, so that its asymptotic form is known. The
asymptotic form for H(z) is then found by inserting a hypothetical form for
H(z), = complex, with the known form for G(2) into equation (2.15) and requiring
that the resultant equation be satisfied, in the limit of z large. In this way one
finds

H ()~ 2 a2 (m lfl )1’4, (2.16)

w
—7 < arg g < .

The kernel K3; is defined by equation (2.10). Applying the Fourier transform

gives
S YRR P |
Ks1(k) = 2 f 2 |9 —tan ) dx (2.17)
The variable of integration in equation (2.17) is now changed to y, defined by

x = yx(1/|k])
with the result

— a1 ¢3(yx(1/|k|)) k ey S
Kanlk) = 21/ *]) o [~ a1
It is possible at this point to use a special property of the Doppler profile:
o B [R])) _ g, 2O |R]) _ {00 y<1
R TS seriR) T o v

and the following two limits

lim - (g—tan~1! g
tim % ( ) =

[FSI

lim %(z-—tan“l )=0 (Rez #0)

22—

to find
> 2 _ 2 I
Ksi(k) ~ gx(1/|k]) = 3«/1n"—7\/7r|k|° (2.18)

Inserting equations (2.16) and (2.18) into equation (2.14), one finds

_ 4mtAvp eB 4 t—1/2 L (l - )3/4dt
frad(’r) c \/T 3773/2 © n \/wt ’

but, since for large = with ¢ fixed,

In—— ~1In——

\/ 7t V4 s
the logarithmic factor can be taken outside the integral to give the final result
g
o ﬂ.mcLAVD \/eBi( T \3/4
Sraa(7) . r3m In vz IR (2.19)

This can be compared with the asymptotic form of the source function itself for
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the same regime (IB 5.5.42b)

§() ~ v BT (ln 2 ) M (2.20)

T

2.2 Voigt profile
An analysis analogous to that which led to equation (2.16) gives in the case
of a Voigt profile
1/4
H(z) ~ (_95) :

2ma
—7 < argz < . (2.21)

A different technique must be used to evaluate K3; for the Voigt profile than
that used in the Doppler case. The method of Abramov, Dykhne and Napartovich,
described in IB, Section 2.4, is suitable for this case. Let

k= |k|et.
The substitution
L - Al
$(x)
is made in equation (2.17), giving
N ® o—3ia ’
R = 2 [ 7 (yeie a1 (yei) ”ﬂ’l%’j'—@ (2.22)
0

where the derivative of the function x(z) appears. Since for fixed y and small
k, x becomes large, the asymptotic form of x(2) for the Voigt profile may be

used:
1
x(2) ~ (@) 2
o

@~ ()"

2 \7%

When these results are used in equation (2.22) one gets

31(k) ;l—k‘l o Y78 (ye an~1 (yet®))dy. (2.23)
The further substitution
u = ye*

then gives
ve (o
Ksi(k) ~ ( a ) f w2 (u—tan~1 u)du,

7r|k|ei“ 0

where the path of integration is the line arg (#) = «. This path may be deformed
to become either the positive or negative real axis, depending on «. The result
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when the integral is evaluated is

LT\ 2 w
—1 —T<a<-——
5 2
o , @ ,—1/2
f w2 (u—tan—1 u)du = %f widu _ vz “Tca<l
0 5Jo0 I+u? 5 2 2
iw T<a<m
5 2
which gives the asymptotic form of Ks;:
_ % 2_LZ Re (k) < o
Ka(k) ~ {77 — (2.24)
~A/2—m Re (k) > o.
5N k

The asymptotic expression for fraq is obtained by combining equations (2.14),
(2.21) and (2.24):

1/4
fraa ~ 47 Avp VB [(1/4) (187761) . (2.25)
c X T
'The corresponding expression for the source function (IB 5.5.42c) is
~ 4 (97}
S(t) ~ v/ eB e fa) (27762) . (2.26)

It is also useful, in conjunction with equation (2.13), to have asymptotic
expressions for K3i(7). These follow directly from IB equation (2.6.38). For the
Doppler profile K3; becomes

Ksi(7) ~ m (2.27)

and for the Voigt profile it is

Ksi() ~ % A/ 2 (2.28)

T

3. TWO-LEVEL ATOM WITH CONTINUUM

The assumptions in this case are identical with those in the preceding case
with the exceptions that a background continuum is assumed to exist, so that
photons are emitted and absorbed by continuum processes as well as by line
processes, and that the Planck function is not assumed to be constant with depth.
It is assumed that the continuum is in L'TE, so that the continuum source function
is equal to the Planck function. The relative magnitudes of line and continuum
absorption coefficients are given by the parameter

KC
KL

which, with ¢, is assumed to be constant with depth.
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Equation (2.1) for the line source function remains valid, but, since the
equation of transfer is complicated by absorption and emission at the line frequency
in the continuum, equation (2.2) assumes a modified form

S(r) = (1—¢) f : Ki(r—t, B)S(H)dt+ (1 — e)B f : Ku(r—1, B)B()dt+ B(r) (3.1)

in which new kernels K;(¢, 8) and Kj(¢, B) appear. These functions are defined
and discussed in IB, Section 7.1. (The functions as they will be used in this
paper are one half times those defined in IB.) The normalization of K is given
by

|” Kt prar = x-po(e) G-2

where

N G
3B) = f_wqb(x)wd '

The function 6(B) is essentially the ordinate of the curve of growth, just as 1/8
is the abscissa. Equation (3.1) is solved by the same procedure as in the absence
of a continuum. The Fourier transform of the equation is taken, with the result

§+(I—(I—€)K1)+S_ = (€+(I—-€),BK11)E. (33)

(B(7) is taken to vanish for negative r.) Introducing the H function exactly as
before, we see that equation (3.3) becomes

S+(k) I\ g _ I ~ =~
e /z.k)+H( —ﬁe)S_(k) _H ( - Z%)(e+(1— OBRu(BNB(R).  (3.4)

Let the right-hand side of equation (3.4) be used to define a function Q(k):

Q) = H (= 3 )le (x - SBRu(RNBE) G-5)

This function is separated into parts which are analytic in the upper and lower
half planes by means of the Cauchy integral,

[ QR Q(k")dk’

2mi)o, K=k am)o. kK —k

Q(k) = = Q.(k)+Q_(k).

Therefore S.(k) is given by

Sk = 1 (f)euy - mr(3) L[ SN 3.6)

27
The intermediate steps are easily justified, as before, since for large k the H
function is unity, Ki; vanishes, and S functions and B are O(1/k). The quantity
B3(B) represents the destruction probability of photons by continuous absorption,

just as e is the destruction probability by collisional de-excitation of the upper
state. If B8(B) is much less than ¢, then since

Rulo) = [ Kutt, B = 5(9), (-7

it follows that the Kj; term in equation (3.5) can be neglected, with the result
that equation (3.6) reduces to equation (2.6). In that case B also has no effect

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny 9| uo Jasn sonsnr Jo wawpedaq 'S'N Aq ¥52296/622/2/69 1 /31911e/SeIul/Wwod dno olWwspeose//:sdyy Wwolj peapeojumod


http://adsabs.harvard.edu/abs/1974MNRAS.169..279C

FI972VNRAS, 169- ~Z79C!

No. 2, 1974 Absorption of spectral line radiation 289

on the H function, since B affects K;j(k) only for values of % such that
II—Kl(k)‘ < €,

and therefore where H(1ik) & 1/4/e. The line source function for the case
that B8(8) is much smaller than e is therefore the same as in the absence of a
continuum, discussed in the previous section.

The overlapping continuum has a dominant effect if 86(B) is large compared
with e. In this case it is € which has a negligible effect on the source function.
In many cases of interest the Planck function is essentially constant for line optical
depths which are small compared with 1/8, that is, for small continuum optical
depths. In that case the major contributions to the integral in equation (3.6)
come from values of &’ of order B. Therefore if % is large compared with B8, we
can write

~ I I - I 1 ’
S.(k) = Z%1[1(1._]@).; Q. 3.8)

The integral in this equation can be related to the surface value of the source
function:

S(0) = lim kS, (k) = —H(0) Lf Q(k")dk' = —Lf Q(k"dk'  (3.9)
k—o 2T J o+ 27 J o+
and so the transform of the source function for & large compared with 8 becomes

Si(k) = S(o) ZIE H (i) (3.10)

This is the same as equation (2.7) for the case B = o, except that S(o) is no
longer equal to 4/eB. The H function is also different, in principle, but for
k > B the H function is well approximated by that for conservative scattering,
considered above. The value of S(0) can be found from equations (3.5) and
(3.9) if a form is taken for B(r). In particular, if B is constant, then S(o) becomes

S(0) = — H (——Z%)[e+(1 ~ pRu(k’, B)1B ‘% (3.11)

27t

The singularities of the integrand within the contour consist of a simple pole
at the origin, and the branch cut associated with Kj;. The residue at the pole
is

H(o0)[e+ (1 — €)BK1(o, B)]B.
Using equation (3.2) and the definition of the H function gives

H(o) = (e+(1—€)B3(B))~12.

In the notation of IB,

A= (1-€)(1—B3(B))

and

1-A= e+ (1~ €)B3(B), (3.12)
so that the residue at the pole is
(1—A)1V2B.
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To evaluate the contribution to S(o) of the cut, we require the representation

of Ki1:
Rult ) = [ s 6o L) 613

Go(s) = 2 :z) S(w)dx.

From equation (3.13) we see that Kj; has a branch cut on the imaginary axis
from 7B to ico and from —iB to —ioo. Along the cut we have the relations

Rutiszo, ) =2 [ Gof 1) oo 57 m 6o 7=g) Gno

where s is real and of magnitude greater than 8. An application of equation (3.14)
gives for the contribution of the cut in equation (3.11) the following (with

= 15):
I g 1 \ds
L9 [ H (Yoo 1) % (3-15)
giving the final expression for .S(0) in the isothermal case
S(o) = [(1—,\)1/2—~ (I——e)ﬁf H z)Go( ;e )dz] (3.16)

The integral in equations (3.15) and (3.16) is called ago in IB (Section 7.35)
and is tabulated (Tables 34 and 35) for Voigt profiles in the case € = o. From the

relationships
[N

H(s) < H(o0) = (1—})"V2

where

we obtain the limits
La-re(te S5)B < SE) < (- N2B (3.17)

given previously by Hummer (1968, for p = 1). For more precise results, it is
necessary to use numerical values of ago.

While equations (3.10) and (3.17) may give a satisfactory representation
of S(7) for 7 € 1/B, results are still desired for the other limit, > 1/B. In this
case it is possible to take advantage of the exponential decay of K; and Kj; at
large 7, and treat the atmosphere as if it were infinite. For an infinite atmosphere
the equation analogous to equation (3.1) can be solved directly by Fourier
transforms giving

Sty = Sulty = U= WEHEL) B, (3.18)

By introducing the H function and using equation (3.5), equation (3.18) can be
written

Suh) = H ()2,
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so that the error committed in treating the atmosphere as infinite is given by

~ _ _gft\ L Q(k")dk’

S.(k)—Su(k) = —H (Z.k) x f R (3-19)

Since B(k) is analytic in the lower half of the k-plane, while K31 and the H func-
tion are analytic in the strip — 8 < Im(k) < B, it is necessary only for the contour
C_ to enclose the portion of the imaginary axis from —z8 to —z0co. Therefore
the integral in equation (3.19) is analytic in the region Im(k) > —B. The H
function in equation (3.19) is analytic in the region Im(k) < B, so Si(k)— Su(k)
is analytic in the strip —fB < Im(k) < B. This suggests that |S(7)—Sq(7)| is
exponentially bounded for large =:
| S(7)—Sa(r)| < Me—s", (3.20)

where s is any positive real number less than B. Therefore if S(7) is replaced by
Sa(7) in the calculation of the radiation force, the error which is committed is
of order exp (— 7).

The expression for the radiation force given in equation (2.9) must be
generalized to account for the continuum processes. The total radiation force,
continuum and line together, is given by

foalr) = 472 [7 @)+ pran ! [T 9w () + B
x sgn (7' —7)Ea((¢(x)+ B)| 7' — 7|)dr’.

In order to obtain a finite result, the integration over x in equation (3.21) must
be taken over some very large finite interval containing the line. Equation (3.21)
can be re-written in terms of new kernel functions as follows:

Feaal7) = ‘l’l‘I;_A”—D [ f : S(r')Kaa(r' —7)dr' + B f : B(+")Kay(r' — T)df'] (3.22)

where

(3.21)

Ku?) = dsgn () [ 0600+ ABAFW +BI T (3.23)

and
Kl = bsgn () [+ HBA$(w) +B)l ). (3-24).

The integral in equation (3.24) is cut off as described following equation (3.21).
In order to find the line contribution to the force, the continuum part must be
subtracted. The continuum force is found by simply ignoring the presence of the
line within the band; this is accomplished by replacing ¢(x) with zero in equation

(3.21) giving

oa, o) = 472 [7 g [ pB(r) sgn ('~ BBl =) (3.29)
The line contribution to the force is then the difference of equation (3.22) and
(3-25)
fisa, 1) = 4TI [ S () Kaale” s’ =B [ B K’ - ', 3.26)
where

Ku(r) = hogn (o) [ [BElv])~ (46 + DEG)+ Bl Tl (3.27)
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No cut-off is necessary in equation (3.27) to assure convergence. The two kernel
functions in equation (3.26) can also be represented as follows

Koalr) = = £ Kau() (3-28)
and
Keulr) = = & Kal7), (3-29)
where
Kou(r) = 3 [ 4)B(@(0) +B)| ), 330
and
Kor) = 3 [ [Ba(Bl])~ B9+ B) 7]l (337

By integrating by parts in equation (3.26) and making use of equations (3.28)
and (3.29), the line force can be cast into the following form

©dS
o dr’

_ B(0)BKse(r) — : 3‘? BKse(r' — T)df'}. (3.32)

K3o(v'—7)dr’

fraa, 17) = 4TEAYD {S(o)Ksa(v)Jr

From equations (3.30) and (3.31) we see that the normalization of K3, and K,
is given by

|7 Kaumyir = [ pKatrrir = 13(6). (339

If B(7) is essentially constant over intervals in 7 which are small compared
with 1/B, then dB/d7 is of order SB. From this assumption and equation (3.33)
we see that the terms in B in equation (3.32) are no larger than order B8(B)B.
At small values of the continuum optical depth, i.e. for 7 < 1/B, the S terms in
equation (3.32) are dominated by the contribution from optical depths smaller
than the thermalization depth. (In the region interior to the thermalization depth
dS|dr" = dB|dr" = O(BB), so the contribution from this region is no larger
than order B5(B)B.) However, in the region exterior to the thermalization depth
S(7’) is given, according to the arguments above, by equation (2.20) or equation
(2.26), in which, from equation (3.17), € is replaced by 1—A, or approximately
by the larger of € and B3(B). Furthermore, exterior to the thermalization depth
7' is necessarily smaller than 1/B, so the function K3, can be approximated by
K3;. In short, the line force reduces to that calculated in the previous section,
except for the replacement of e with 1— ), and the understanding that B is an
average over the range o < 7 < thermalization depth. It can be verified that
the force is larger than B5(B)B.

For continuum optical depths larger than unity, evidently the line force
altogether is of order B5(8)B. In order to evaluate it more precisely we use equation
(3.18), which is valid in this region. Equations (3.26), (3.28) and (3.29) give for
the Fourier transform of the line force the expression

Fraa, ) = FTIRR R 0S8 - BRa B (334
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With equation (3.18), equation (3.34) becomes

4.7TK]';AVD ik [€+(I 6)/8K11 Ks _IBKBC]B

(= Ok, (3.35)

frad, LR
We seek to obtain a diffusion-type expression from equation (3.35). To this

end we need expansions in powers of & of the transforms of the kernels appearing
in equation (3.35). These are given by

K = —f #2(x) tan~1 ——— ¢() B
N L
8(B) 3f f -+ ... (3.36)

@B s ) ey
- f f $(x) tan—1 de
-0 [l gttt 69
Rua =5 [ #6060 +B2 (gt W) d
=t e gttt G

and

) o K k
Rio = oy f N [(¢(x)+ BRant o tan—IB_qu(x)]dx

LR #3+30%B+386% ;.

3 B 5B (#+h)?

45+ 5B+ 10§92+ 1028 + 5B
= G+ B Bt

If expansions (3.36)—(3.39) are inserted in equation (3.35), and the resulting
expansion for the expression in brackets is truncated at the k2 term, the following
result is found

fraa, L = @ |:<5 e ,3 (/3)) fww(¢fﬁ)2d +; 3/52,523)] ik3B, (3.40)

which indicates that in the region 7 > 1/B the line force is given by

k) = BR[0T 000) 3 [

+X algg)] 4B, 0(‘2 1:)+0(e—/3’) (3-41)

The first part of the error is due to neglected higher terms in & in equation (3.35);
the second part is due to the error in equation (3.18).
Equation (3.41) can be simplified by assuming a specific profile function,

. (3-39)
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Doppler or Voigt. In either case there is the relation
L® 4 4 1 d5(B)
= X = —— . 3.42)
ol e - (
In the Doppler case, if 8 is small compared with unity, we have
5(B) ~ 2 Jm L (3-43)
V7
and
dsg) . _ I
B~ "BV ivap o4

If a Voigt profile is applicable, and the line is on the damping part of the curve
of growth (i.e. @ > =g In (1/4/7B)), then the functions are

5(8) ~ wjﬁ (3.45)

asB) . = Ja
g —ZA/BE)’. (3.46)

Furthermore, we can write the derivative of the Planck function in terms of
continuum optical depth 7c = Br. The result is that the line force in the Doppler
case can be written

_ _4mxiAvp 2 A/ 1 d3B
fraa, 1fr) = =*—=="."F [ln VB drd (3-47)

and

and in the Voigt case it is

_ 4metAvp [3 1 w(1—e€)VaP — d3B
Jrag, 1(7) = I [I—O—E mv&—ﬁ] mVap dred (3.48)

'The force exerted in the continuum, in this diffusion regime, in a band of
width Ax = 8(B) is equal to (4mkrAvp[3c)BS(B).dB/drc. For realistic Planck
functions it is also true that d3B/dr.3 is small compared with dB/dr. if 7¢ > 1.
‘Then we see from equations (3.47) and (3.48) that the line force is a small cor-
rection to the force exerted in the continuum in the same frequency band. That
is, in the part of the atmosphere which is optically thick in the continuum, the
inclusion of a line does not alter the radiation force in the lowest order. This
statement needs further qualification, since in the present discussion the effect
of a line has been considered with the temperature distribution held fixed. Another,
indirect effect of inclusion of a line is the alteration of the temperature distribu-
tion, i.e. the ‘ backwarming’ effect, which raises the temperature gradient. In
the region of the star which is opaque in the continuum this effect is fully taken
into account by including the lines in the Rosseland mean opacity used to establish
the temperature distribution.

4. LARGE VELOCITY GRADIENT

‘The third and final radiation transfer situation for which the force of line
radiation on the stellar material is desired is that of a line formed in an atmosphere
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which is expanding (or contracting) rapidly. The continuum contributions to
line formation are neglected, except that at the inner boundary radius, 7., of the line
formation region an incident intensity with a continuous spectral distribution
is assumed. This situation was considered by Castor (1970), and, except for the
incident intensity, by Sobolev (1957), Rublev (1961, 1963), and Lyong (1967)
in a number of papers. Rybicki (1970) has given an excellent review of this theory.
The radiation field at line frequencies is separated into two parts, one which is
simply the attenuated incident continuous radiation, and another, the diffuse
component, which is the line radiation emitted within the line forming region.
In this section the line forming region will be called the envelope of the star,
to distinguish it from the part of the star inside the inner boundary radius, 7,
which will be called the core. In the event that the velocity is large compared
with the thermal velocity, and if the velocity increases in magnitude outward,
both of which are true for stellar winds, it is very unlikely that a photon emitted
in the line in one part of the envelope will be absorbed in a remote part of the
envelope. Therefore the transfer problem of the diffuse component of the line
radiation field becomes local to an excellent approximation. This simplification
makes the problem tractable.

The notation of Castor (1970) will be used. The intensity is given as a function
I(x, p, 2), where x is the displacement from line centre, in Doppler units, of the
inertial-frame frequency, p is the impact parameter of the light ray with respect
to the centre of the star, and z is the distance of a point from the mid-plane of
the star as measured along the ray, increasing away from the observer. The
dominant effect of the velocity is due simply to the Doppler-shift of the line
absorption coeflicient; other, smaller, effects due to time dilation and the abbera-
tion of light will be neglected in this paper. The line source function .S is assumed
to be independent of frequency and angle. Variations in the thermal Doppler
width are neglected. The formal solution of the transfer equation for I(x, p, 2)
is given by equations (1a) and (1b) of Castor (1970), which are repeated here for
convenience:

fww S(r') exp [7(x, p, 3)—7(x, p, #')]d(x, p, 2"),

o(,p,2) p>recorz>o0
T(z,p,2max)
I(x, p, 2) = J‘T(wm) S(r') exp [7(x, p, 2)— 7(x, p, 2")|d7(x, p, &) (4-1)

+ IC(P) €xp [T(x: b, 2)—1(x, p, Zmax)]
p<reand g <o

[ = (p2+22)1/2 > re).
The definitions of 7’ and 2max are
= (PR ()Y
and
Zmax = — (re2— pRL2,
In the second part of equation (4.1) I¢(p) is the intensity of the radiation incident
from the core, as a function of the impact parameter to allow for limb darkening.

The quantity 7(x, p, ) is the optical depth at frequency x along the ray with
impact parameter p, and is an increasing function of 2. It is taken to be zero at

20
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the observer (3 = — ), so that =(x, p, o) is the total optical depth along the
ray unless the ray intersects the core. For rays which do intersect the core, the
parts with positive and negative 2z are disconnected, and the zero point of
7(x, p, 2) can be chosen separately in each part. The expression for 7(x, p, 2) is

W) = [l (x5 2D )as -2)

In the case that p < 7., then 7(x, p, 2) is undefined for |z| < (7c2— p2)1/2, and
if also 2 > (r¢2—p2)V/2 the region |2'| < (re2—p2)V/2 is omitted from the
integral.

Equation (2.8) for the line force, modified for the present case, becomes

A 1 ®
fraa = 4mKLAVD T f_ludu f—qu(x—p%t%))I(x, r(1—p2)V2 —ur)dx. (4.3)

4 2

When equations (4.1) and (4.3) are combined, the line force becomes the sum
of two parts,

Sfraa = frad, coret fraa, aift, (4-49)
where
Srad, core = 2mkLAvp fl on ( v(r))
e Ja-myn pdp _mqﬁ B
x Io(p) exp [(x, p, 2)— 7(x, p, Fmax)}dx  (4.5)
. (p=(@—pH)2r, 2= —pr)
an
1 0
Srad, aite = ———ZﬂKI;Ava Md.uvf ¢(x I (r))dx
- —~ o0 Vth
T(x,p,2 Mmax)
X f o S(r') exp [7(x, p, 2)— 7(x, p, 2")]d7(x, p, %) (4.6)
(P2
=(1 — p)V2r, 2 = —pr, r'=(p2+(2')?)V2, 2max = © if p > rc or 2 > o.
p

The two parts of the line force will be treated separately in the discussion to
follow.

The integrand in equation (4.2) is sharply peaked near the point in the envelope
where the frequency x is in resonance with the appropriate component of the
local fluid velocity. With this in mind, equation (4.2) is simplified by changing
to the fluid-frame frequency as the variable of integration then evaluating all
slowly varying factors in the integrand at the resonant point on the ray. This
gives the expression

0 p3) = || (a2 (47)

+ou? 7 Utn

in terms of the new quantities defined by

no(r) = S0 4-8)
3@ = [ s, (4.10)
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and where the subscript ‘ res’ signifies evaluation of the expression in brackets
at the resonant point along the ray. When equation (4.7) is inserted in equation
(4-5), a further simplification is possible. This comes about because of the presence
of the factor ¢ in the integrand. The result is that the main contributions to the
force come from those frequencies for which the point of evaluation of the force
is almost the same as the resonant point for each ray. Therefore the expression
in brackets in equation (4.7) can be evaluated locally. In this case it is also true
that the core is well away from the resonant point and =(x, p, 2max) can be re-
placed by 7o/(1 + op2). With these substitutions, equation (4.5) becomes

A
Srad, core = ATKLEVD f(l reryi/? #d#IC(P)f exp [ Iioyy)]dy’ (4.11)
or
A 2

The factor in front of the 1ntegral can be combined with the 7¢ in the denominator
by means of equations (4.8) and (4.9) to give the form

o d
Jrad, core = 27 J‘(l rety: pdy[c(p)[(l— 2) +F' d‘:]

Jrmer (2] oo

The line will be called optically thin or optically thick according to whether
the quantity 7o/(1+ ou?2) is smaller than unity or larger than unity over most
of the range in u. If the line is optically thin, then we see from equation (4.12)
that the force reduces to (krAvp/c)Fe, where F, is the local continuum flux.
This is just what is expected for the optically thin case. If the line is optically
thick, then the second expression in square brackets in equation (4.13) can be
replaced by unity, so the force becomes

voFe (dvy
Jraa, core = '57; (E)av’ (4.14)

where the quantity (dvi/dl)av is the angle average of the directional derivative
of the projected velocity, the quantity in the first set of brackets in equation
(4.13). The interpretation of this result is very simple. The radiation in an element
of solid angle dQ at direction cosine w, in a frequency band Av, and crossing an
area dA perpendicular to the beam carries with it an amount of radial momentum
per unit time equal to

momentum _ HﬁdQAvdA
time ¢ :

If the width of the intrinsic line profile is neglected, each frequency within the
band is absorbed at the particular point along the direction of propagation where
it becomes resonant with the projected fluid velocity. Therefore the band width
Av corresponds with a distance A/ along the light path equal to (¢/vo)Av/(dv1/dl).
If the radiation is completely absorbed, its momentum is given to the material
contained in the cylinder with dimensions d4 by Al, of which the mass is pd AAL
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The corresponding force per unit mass of material is then

force  uledQ (dvl)
_— Vo .

N dl

mass pc?
If this result is integrated over solid angle to obtain the total force, equation
(4.14) is recovered. An explicit expression can be found for (dvi/dl)ay by trans-
forming, in equation (4.13), to the direction cosine p’ at the core radius 7, in
place of the direction cosine yu at radius 7. The relation between them is

(1= p?) =" (1= ()2

with the result that (dvi/dl)sy can be written

B s
dl)av  dr r2 H.)\dr 1)’ 415
where H; and N, are the first and third Eddington moments of the continuum
radiation emitted by the core, evaluated at the core radius. On the reasonable
assumption that I increases with u’, but Io/u’ decreases, the ratio N¢/H, must
lie between o-5 and 0-6.

The reduction of fraq, airt follows the analysis of Sobolev (1957), and is attended
by several difficulties which do not arise for fraq, core. The angle integration
which gives the core component of the force is a sum of positive quantities owing
to the fact that the core radiation is confined to the outward direction. In contrast,
the diffuse part of the force involves the difference between contributions of
the out-going and the in-going radiation, so that approximations which are valid
for the core force are not for the diffuse force. The diffuse force owes its existence
to whatever anisotropy exists in the diffuse radiation field. Such anisotropy can
be due to radial gradients of the line source function and the absorbing atom
density, and to curvature in the velocity law. The effects of the absorbing atom
density and the velocity can be neglected if the line is optically thick, with the
main anisotropy in that case deriving from the source function gradient. This
is not the case if the line is optically thin. However, if the line is optically thin,
we expect that the diffuse field will be weak compared with the direct radiation
from the core, so the diffuse component of the force would be unimportant.
In the following discussion only the part of the diffuse force due to the source
function gradient will be considered. This is also the approach taken by Sobolev
(1957)-

Equation (4.6) is simplified by using equation (4.7) to evaluate =(x, p, 2) and
7(x, P, %max), and also by neglecting the spatial dependence of the quantity
70/(1 + op?), which is assigned its value at the point where the force is to be
found. This approximation is equivalent to the neglect of the density and velocity
effects discussed above. When this is done, equation (4.6) becomes

2 Av 1 2max , ,
Sraa, aire = —W—K%——D f deq,pf S(r')dz
-1

4

24"

|7
* (o PV afo— B ) expl =T [T g
xf-w¢(x vth)¢(x vth)eXp[ I+0#2fx—‘% ¢(x)dx]dx'
(4-16)
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Equatlon (4.16) can be written more simply by introducing a new function which
is related to the line profile,

F(t, 7) = f ww [1 _exp (— . f :H(ﬁ(x’)dx’)]dx, 4.17)

for which
Fyt, 7) = ﬁfgt_ﬂ — : $x+1) exp (_T f :HqS(x')dx’)dx
— : (x) exp [—T f :_tq&(x')dx’]dx (4.18)
and

Fyu(t, ) = 3—2%%1) = —72 fcjooqﬂ(x)gé(x—t) exp [—7‘ fx qS(x’)dx']dx

T—

== |7 gt |7 [ s 419)

The new form of equation (4.16) is therefore

Z
rad, diff = Mf—lc'%f #dﬂfm S(r )L P( Z'u ) ("Ftt(t’ ;1“((;‘2))‘12’
(4.20)
where ¢ is given by
g BB
Uth  Uth

(4.21)

The primed variables here and in equation (4.16) refer to evaluation at the point
b, 2, where p is r(1—p2)1/2, The integration variable 2’ in equation (4.20) is
next changed to ¢, using the approximation

- —t ‘vthr/‘v(r)
FTEE 0/02'(W'v' o) 1+op? (4.22)
The source function is expanded in a MacLaurin series in ¢,
dSor’ [ ¢ (u'v
S(r) = 8-t L)L ()4 (4.23)

of which only the second term is kept. (The first term gives zero contribution to
equation (4.20).) When the derivatives are evaluated, equation (4.23) becomes

" vin?[v(7) ;_l§+

S(r’) = S(r)-t I+op? dr

(4.24)
Equations (4.22) and (4.24) are substituted into equation (4.20), and the factors
7o are combined with the line opacity using the definition (4.8), to give the
result

Jraa, aint = 47TV0:th dS 2duf ( Fu( ))dt (4.25)
pe +op?

According to equation (4.25), the dependence of the diffuse force upon the
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profile and the optical depth is contained in the factor
"t - Fuft, 0 ))dt, 26
fo t( u( ot (4.-26)
which can also be written, by means of an integration by parts, as
. 70 T0
i [ (1 o) = )| (4:27)

The following properties of F are easily established from equations (4.17) and
(4.18):

F(o,7) =0 (4.28)
Fyo,7) = 7 (4.29)

and
Fyoo, 7) = 1—€". (4-30)

If the line is optically thin, expression (4.26) can easily be evaluated using
equation (4.19), with the result

«© T0 T0 2 [»
—- _ = A(dt .
fo t( Ftt(t’ I—I-ouz))dt (I—l—auz) J‘o tA()dt, (4.31)

where A(?) is the autocorrelation function of the profile:

A0 = [ s+ (+32)
The diffuse force in the optically thin case becomes
iy = —47vovm a5 zflﬂ_z f‘”
Jraq, aite ot dr ™ o (1% op)? du . tA(t)dt. (4.33)

Comparison of this result with equation (4.13) for the core force shows that
the diffuse force is smaller by roughly a factor 7o, which is the factor by which
the diffuse radiation field is weaker than the core radiation. Since equation (4-33)
is also not expected to be very accurate, owing to the neglected effects of density
gradient, etc., no more will be said about the optically thin case.

To treat the optically thick case, equation (4.27) is used, and so the asymptotic
form of F is required, when ¢ tends to infinity and 7 is large. First it is noted that

the quantity in brackets in equation (4.17) is symmetric about x = —¢/2, so that
equation (4.17) can be rewritten
© z+t
F,v)=2 f dx[l —exp (—-—7- f qS(x')dx')]. (4-34)
—t/2 z

Now the upper limit of the integral over ' can be replaced by oo, since it always
exceeds #/2. Furthermore, if x is negative the exponent in equation (4.34) is
always more negative then — /2, so that the exponential can be neglected. This
gives the following result for F in the limit of large ¢, if 7 is also large:

F(t, 7) ~ t+2f: [I—-—exp (—rquﬂ(x')dx')]dx. (4.35)
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When equations (4.27), (4.30) and (4.35) are combined, it is found that
f #(— Fu(t, 7))dt = 2f [I—exp (—-rf H(x")dx' )]dx (4.36)

If the profile function is Gaussian, as for Doppler broadening, the technique
which led to equation (2.18) can be used, with the result

*® T
J‘o t(—F;t(t, T))dt ~ 2A/1n m, (437)
which is between 2 and 6 for the expected range of 7. Equation (4.25) becomes
. _ 877V07Jth dS A/
Jraa, aitt 3pc? f 3 2\/”(1 + (o) du, (4-38)

which is the result given by Sobolev (1957).

If the profile function is actually Voigt, and if 7 is so large that the line is
on the damping part of the curve of growth, then the following approximation
should be used for the integral in the exponent of equation (4.36):

| s = 2, (4-39)

where a is the damping constant. Unfortunately, if this expression is substituted
in equation (4.36), the integration over x diverges in x —> co. This is also the
result if equation (4.39) is used directly in equations (4.27) and (4.34) instead of
equation (4.36). To assess the seriousness of this state of affairs, a finite upper
limit ¥max can be taken in the integral, after which the sensitivity to Xmax is €X~
plored. A reasonable choice for ¥max would be V/vin, where V is the maximum
velocity in the envelope. The cut-off integral gives

f :m K= Fult, 7))dt = zxmax(I—Eg(ﬂxmax)), (4.40)

which takes the following two limiting forms

2ar TTX)
= In 2 for <1, (4.41)
T ar TXmax
and
ar
2%max for > 1. (4-42)
TXmax

Clearly, if the case (4.42) applies, the dependence on Xmax is serious. The signi-
ficance of the condition ar/m = xmax can be seen in this picture: For a particular
frequency of a photon, and a certain ray in the envelope, there is a region of
finite size along the ray within which the photon stands an appreciable change
of being absorbed. For a Doppler profile, that is the region in which the velocity
is within oy, of the resonant velocity for the photon. If the profile is Voigt, and
the line is on the damping part of the curve of growth, the region is extended to
become that in which the velocity lies within (a7/m)vin of the resonant velocity.
If this velocity exceeds the maximum available velocity, ¥, then the region be-
comes the entire envelope and clearly the assumption of localness of the radiative
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transfer breaks down completely. That is, the case (4.42) is disastrous for this
model. Even in case (4.41) the local approximation gets worse and worse as the
limit ar/m = xmax 1s approached. Reasonable values for a and xmax are 1073
and 102, respectively (with Wolf-Rayet and Of stars in mind), so that the limit
on 7 is about 105. This limit is likely to be violated by the resonance lines, but
probably not by very many others. It should also be pointed out that when the
local assumption breaks down, it does so for both the diffuse force term and
the core force term, although the results in the latter case tend to hide that fact.
It is of considerable interest to compare the core and diffuse forces in the
optically thick case, i.e. to compare equation (4.14) with equation (4.25) into
which one of equations (4.37), (4.41) and (4.42) has been inserted. One finds

T arT
A/ln»oﬂ 70 < ¢
24/ ar

Jraa, aie , 87 vin (—1/Fe)|dS]dr)aro | ( aV ) arg  V
—_— " — _— 1< — < —, .
Frad. core 3 0 (o)dod)ay) 7w T \arovm I G )

V atg V

- >

Uth ™ Vth

It seems reasonable to assume that the relative gradient in the source function is
never larger than the relative gradient of the velocity, so

_1dS _1 (do
dr 5o (Tii)av’ (4.44)

and consequently the diffuse force is never larger than the core force if v > vy,
and only equals it in the disastrous case (4.42). With a Doppler profile, the diffuse
force is smaller than the core force by a factor vin/v, and so is negligible in most
of the envelope. Equation (4.12) for the core force can therefore be considered
to give with adequate accuracy the total force due to the line.

5. CONCLUSION

By piecing together the results of the preceding sections, we can form a fairly
complete if not too accurate picture of the dependence of the line contribution
to the body force acting on the stellar material upon the parameters 7, ¢, B, q,
and the velocity field if any. We simply assume that in any regime some one of
the asymptotic results above is applicable, and the details of the manner in which
the transition from one regime to another occurs are ignored. This probably
gives results which are accurate to about an order of magnitude, judging from
the comparison with exact results for a particular case. For that reason, we will
also discard the numerical constants in the formulae, and slowly varying factors
like (In 7)1/2,

For static atmospheres, or the slowly moving part of expanding atmospheres,
we have the results of Sections 2 and 3. In considering the force as a function
of line optical depth, we distinguish six cases corresponding to various relative
values of the parameters ¢, B, and a, the Voigt parameter. The force in the six
cases is sketched in Fig. 2.

Case I. a < B < € < 1. Here the line source function is thermalized at the
depth 1/e, since the continuum is relatively less important than collisions and
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the damping wings are unimportant. The surface value of the source function
is 4/ €B, so the force for 7 less than unity is about (4m«1Avp/c)y/ €B. For optical
depths between unity and the thermalization depth we use equation (2.19). For
optical depths between the thermalization depth and continuum depth unity we
use equations (2.13) and (2.27). Finally, for depths large in the continuum the
force due to the line is negligible. The composite curve is shown in the first panel
of Fig. 2.

| I Ve 1/8 | | /8
~ vB —
- B -
| |
I I1
H 1/e \/a 1/B | |/a a/e? 1/8

(03)3/4 —

3/4 1/4
a B — -
vaB —
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Fi1G. 2. Sketches of the dependence of the line force on line optical depth for six cases of
the parameters €, B, and a defined in the text. The ordinate is approximately the force in
units of (4mxrLAvp/c)B. The dashed line in each panel gives the relation

f = (4mxLAvp/c)B|7.

The values of d log f|/d log v are indicated next to each segment of the curves.
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Case Il. a < € < B < 1. Thermalization occurs in the continuum, and
damping wings are still negligible. The surface source function is now +/BB,
so the force is like that in Case I with e replaced by B. The region between the
thermalization depth and unit depth in the continuum has vanished, however.

Case III. B < a < € < 1. The damping constant is large enough to influence
part of the region between the thermalization depth and unit depth in the con-
tinuum, but not large enough to affect the thermalization process, which occurs
by means of collisions, as in Case I. At the optical depth 1/a, where the wings
come in, we switch from equation (2.27) to equation (2.28) in equation (2.13).

Case IV. y/aB < € < a < 1. The damping constant a is larger yet than in
Case III, so that the damping wings are important at the thermalization depth,
which becomes a/e2. We switch from equation (2.19) to equation (2.25) at the
depth 1/a, and use equations (2.13) and (2.28) between the thermalization depth
and unit depth in the continuum.

Case V. € < a < B < 1. This case is the same as Case II, since neither e
nor a affects the force.

Case VI. € < 4/aB < a < 1. Here thermalization occurs in the continuum,
but the wings become important before unit depth in the continuum is reached.
The surface source function is given by equations (3.12), (3.17) and (3.45). For
optical depths less than 1/a equation (2.19) is used, and for optical depths between
1/a and unit depth in the continuum equation (2.25) is used; in each case ¢ is
replaced by +/ap.

For all the cases with constant ¢, 8, 4, and B the force may be obtained exactly
using the method of discrete ordinates (c¢f. Avrett & Hummer 1965; Hummer
1968) and equation (3.34) once the kernel functions have been approximated by
sums of exponentials. This has been done for the case B = @ = o, which is a
limiting form of Cases I and III. The calculated force is shown as a function
of optical depth for several values of € in Fig. 3. The three sections of the curves,
with slopes o, —3, and —1, can be seen as in the first panel of Fig. 2, but the
unexpected feature is that the part of the curve with slope —1 overshoots the —1
line by quite a bit, and then approaches that line from above with increasing .
The reason for this is that the integral of the force over optical depth must give
the radiation pressure, which has its LTE value (1/3)aT4 at great depth, inde-
pendent of €. Since, for small ¢, the force is reduced at the surface compared with
e = I, it must be greater than for ¢ = 1 at larger optical depths in order to yield
the same value of the integral. This figure indicates that simply using the relevant
asymptotic formula for the force in any region of depth may give errors of an
order of magnitude.

In Fig. 2, a dashed line has been used to indicate the force on the hypothesis
of LTE and no damping wings, when the force varies as 1/7 for = greater than
unity (cf. equations (2.13) and (2.27)). Bearing in mind that the most interesting
values of 7 are about 1072 or 1073 times 1/, corresponding to continuum optical
depth 1072 or 1073, we see that the LTE result is usually within an order of
magnitude of the actual result. This suggests the very rough general formula

fraa, 7. % 4T B i (1, 1), (5.1)
In the case of a rapidly expanding atmosphere, the force is evaluated much

more simply. Since, as we have seen, the contribution to the force due to the
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F1G. 3. The line force as a function of line optical depth as calculated accurately for the
case B = a = o, B = constant, and for the values 1, 10~2, 1074, 1078, and 1078 of e.
The force is expressed in units of (47« Avp/c)B.

line from that part of the radiation field created by line emissions within the
expanding envelope of the star is negligible, the parameters ¢ and a do not enter
the expression for the force. For optical depths less than unity in the continuum,
B also does not enter. The force in this case is given by equation (4.12), which
can be cast in the following approximate form

k1. Avp
c

frad,L ~ FC min (I, I/T)’ (52)

where F_ is the local continuum flux and 7 is a modified optical depth variable,

Uth

T = KLP (d‘vl/dl)a,v. (53)

This is a local quantity, and is related not to the total column density of absorbing
atoms, but to the number of atoms in a cylinder whose height is the distance in
which the velocity changes by a thermal unit.

It is interesting to note that equations (5.1) and (5.2), expressing the force
in static and expanding atmospheres, are essentially the same. The main difference
is the significance attached to 7 in the two cases. Since 7 in the moving atmosphere
counts only a fraction of the atoms included within 7 in the static atmosphere,
the force is significantly larger in the moving atmosphere.

Equation (5.2) may be used to find the total force produced by an ensemble
of lines, which in turn yields an estimate of the rate of mass loss associated with
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a stellar wind which is driven by this process. These results will be described in
another communication.

ACKNOWLEDGMENTS

I am indebted to D. G. Hummer for placing a copy of his translation of
Ivanov’s monograph at my disposal in advance of publication. Section 4 of this
paper has benefited considerably from conversations with L. H. Auer and D. J.
Van Blerkom. I am grateful to the referee for pointing out a flaw in the argument
regarding the Voigt profile in Section 4, and for suggesting an additional reference.
"This work was supported by the National Science Foundation under grant number
GP-36111 to the University of Colorado.

Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of
Standards, Boulder, Colorado 80302, USA

Received in original form 1974 April 29

REFERENCES

Avrett, E. H. & Hummer, D. G., 19665. Mon. Not. R. astr. Soc., 130, 295.

Busbridge, 1. W., 1960. The mathematics of radiative transfer, Cambridge University
Press.

Castor, J. 1., 1970. Mon. Not. R. astr. Soc., 149, 111.

Hummer, D. G., 1968. Mon. Not. R. astr. Soc., 138, 73.

Hummer, D. G. & Rybicki, G. B., 1971. 4. Rev. Astr. Astrophys., 9, 237.

Ivanov, V. V., 1973. Theory of spectral line formation, translated by D. G. Hummer, U.S.
Government Printing Office.

Kourganoff, V., 1963. Basic methods in transfer problems, Dover Publications, New York.

Lucy, L. B. & Solomon, P., 1970. Astrophys. ¥., 159, 879.

Lyong, L. V., 1967. Sov. Astr.~Astr. ¥., 11, 224.

Milne, E. A., 1930. Handb. Astrophysik, 3, part I, chapt. 2.

Rublev, S. V., 1961. Sov. Astr.—Astr. ¥., 4, 780.

Rublev, S. V., 1963. Sov. Astr.~Astr. ¥., 6, 686.

Rybicki, G. B., 1970. In Spectrum formation in stars with steady state extended atmospheres,
eds Groth and Wellman, U.S. Government Printing Office.

Sobolev, V. V., 1957. Sov. Astr.~Astr. ¥., 1, 678,

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny 9| uo Jasn sonsnr Jo wawpedaq 'S'N Aq ¥52296/622/2/69 1 /31911e/SeIul/Wwod dno olWwspeose//:sdyy Wwolj peapeojumod


http://adsabs.harvard.edu/abs/1974MNRAS.169..279C

