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Abstract

We study spiral waves in a model of Ca2+ dynamics in the Xenopus laevis oocyte. Spiral waves in

the model were initiated by simulating the release of inositol 1,4,5-trisphosphate (IP3), a common

experimental protocol. No artificial heterogeneities need to be imposed on the system for the

spontaneous formation of spiral waves. Increasing the size of the IP3 additions caused a decrease

in the rotation period, and the breakup of the spiral wave solutions. After the breakup of a spiral

wave, irregular spatio-temporal patterns occurred. Similar disorganised patterns are sometimes

seen experimentally; based on our simulations we predict that a simple experimental procedure

may be sufficient to reproduce unstable spiral waves.
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1 Introduction

In practically every cell type, Ca2+ plays a major

role in the control of cellular behaviour, functioning

as a signalling agent for a variety of cellular pro-

cesses such as chemical secretion, cell division, and

cell movement. Oscillations in the concentration of

free intracellular Ca2+ have been observed in very

many cell types, and it is widely believed that the

frequency of these oscillations is one way in which

Ca2+ may carry an intracellular signal. High con-

centrations of Ca2+ inside cells are toxic, and thus a

Ca2+ oscillation lets the cell use Ca2+ as an intracel-

lular messenger, while avoiding prolonged high Ca2+

concentrations which would kill the cell. There has

thus been a great deal of recent interest in the mech-

anisms underlying oscillatory Ca2+ responses to var-

ious extracellular signals, such as hormones or neu-

rotransmitters. Experimental work has uncovered

many of the basic mechanisms that lead to Ca2+ os-

cillations, but the mechanisms involved are complex

and the details are unclear.

Study of Ca2+ oscillations is complicated by

the fact that, in most cell types, the oscillations do

not occur in a spatially homogeneous fashion, but

instead take the form of periodic intracellular waves.

When a cell is large enough, these periodic waves can

exhibit more complex spatio-temporal organisation.

For instance, in the Xenopus laevis oocyte (a very

large cell with a diameter of up to 1000 µm) a va-

riety of wave behaviour has been observed including

plane waves, pulsating patterns, and spiral waves.

Xenopus oocytes are thus an ideal cell type for the

study of the mechanisms underlying Ca2+ wave prop-

agation, and have been studied correspondingly in-

tensely [Lechleiter & Clapham 1992, Lechleiter, Gi-

rard, Peralta & Clapham 1991, Lechleiter, Girard,

Clapham & Peralta 1991].

There are a number of models for Ca2+ wave

propagation [Goldbeter et al. 1990, Somogyi & Stucki

1991, DeYoung & Keizer 1992, Li & Rinzel 1994,

Sneyd et al. 1995], all of which show a great deal of

fundamental similarity. Here we shall use only the

model developed by Atri et al. [1993], a model that

was developed using, wherever possible, parameter

values determined from Xenopus.

2 The biological mechanism

There is widespread agreement on the initial steps

of the process that leads eventually to Ca2+ waves.

When a hormone or neurotransmitter binds to its

receptor it initiates a series of reactions that ends

in the formation of a chemical called inositol 1,4,5-
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trisphosphate (IP3) (Fig. 1). IP3 diffuses through

the cell cytosol where it binds to receptors located

on the endoplasmic reticulum (ER), and probably

the nucleus also. The IP3 receptors are also Ca2+

channels, and when they bind IP3 they open, which

lets Ca2+ flow out of the ER. In this context it is im-

portant to note that, at rest, the ER expends a great

deal of energy pumping Ca2+ out of the cytoplasm

into the ER. Thus there is a very large Ca2+ concen-

tration gradient across the ER membrane. As Ca2+

is present at very high concentration outside the cell

also, there is also a large Ca2+ gradient across the

external membrane. However, this plays a minor role

in Xenopus (although not in all cell types).

The open probability of the IP3 receptor is

modulated by both IP3 and Ca2+, a system of con-

trols that is believed to underlie Ca2+ oscillations

and waves in many cell types, including Xenopus. An

increase in the cytosolic Ca2+ concentration causes

a transient increase in the open probability of the

IP3 receptor, as Ca2+ first activates the receptor and

then, on a slower time scale, inactivates it. Further-

more, the steady state open probability of the recep-

tor is a bell-shaped function of Ca2+. Thus, the dual

action of Ca2+ on the receptor can be seen both in

the transient and the steady state responses.

IP3 and Ca2+ diffuse through the cytosol in-

ducing further release of Ca2+, and the Ca2+ released

from the ER is pumped back into the ER or out of

the cell. IP3 is metabolised into a variety of other

inositol phosphates whose function in many cases is

unknown [Putney & Bird 1993]. In essence, the cyto-

plasm of the cell can form an excitable medium. The

release of a small amount of Ca2+ through the IP3

receptor causes the release of a much greater amount,

in a positive feedback process called calcium-induced

calcium release, or CICR. It is this excitability, linked

by Ca2+ diffusion, that is believed to underlie the

propagation of Ca2+ waves in many circumstances.

However, when the concentration of IP3 is in some

intermediate region (which we show explicitly later)

a stable limit cycle appears in the kinetics, and thus

the model becomes oscillatory. For these IP3 con-

centrations, wave propagation can occur even in the

absence of excitability. Because of the technical dif-

ficulties involved in the measurement of IP3 concen-

trations, it is not yet clear whether spiral waves in

Xenopus cytoplasm occur in the excitable regime, or

in the self-oscillatory regime.

In Xenopus oocytes, Ca2+ waves travel at

speeds ranging from 10–30 µms−1; the spiral waves

have period around 6–10 seconds, and wavelength

around 200 µm [Lechleiter & Clapham 1992, Lech-

leiter, Girard, Peralta & Clapham 1991]. Very little
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work has been done on the dispersion properties of

Xenopus cytoplasm, and the exact shape of the dis-

persion curve is not known.

3 Mathematical model

A partial differential equation model based on the

mechanisms outlined above was developed by Atri

et al. [1993]. The model assumes that the Xenopus

cytoplasm is spatially homogeneous and continuous.

Although these assumptions are known to be inaccu-

rate in some parameter regions (for instance, at low

IP3 concentrations, Ca2+ release occurs at discrete

hot spots [Lechleiter & Clapham 1992], which vio-

lates the assumption of homogeneity), for the kind

of behaviour we shall study here they are sufficiently

accurate, as we shall consider only the responses to

large additions of IP3.

Furthermore the partial differential equation

model is in two dimensions instead of three dimen-

sions. The principal reason for this is that some ex-

perimental data indicate that in the Xenopus oocyte

the calcium wave activity is localised to a region near

the surface of about 100µm thick [Parys et al. 1992].

More recent data, that show that wave activity can

extend as far as 200 µm into the cell or even further,

throw some doubt on whether or not this assump-

tion is entirely defensible but that is not an issue

we explore here. Therefore, as an approximation,

the calcium wave activity may be modelled as a two-

dimensional phenomenon.

Furthermore, we shall assume that the spirals

live on a planar two-dimensional surface. Although

the outer layer of the Xenopus oocyte is clearly spher-

ical in geometry, the large diameter of the oocyte

(about 1000 µm) compared to the wavelength of a

typical spiral (150–200 µm) means that an assump-

tion of planar geometry will be sufficiently accurate

for our purposes.

We assume that IP3 diffuses passively through

the cytoplasm, and is not degraded. Thus

∂P

∂t
= Dp(Pxx + Pyy), (1)

where P denotes the concentration of IP3. Thus, we

are simulating experiments using non-hydrolysable

analogues of IP3 that are degraded only very slowly

if at all.

Similarly, we assume that Ca2+ diffuses pas-

sively, is released through the IP3 receptor (Jchannel),

is pumped into the internal store (Jpump), and leaks

into the cell from the ER or from outside (Jleak).

Thus, letting c denote the concentration of Ca2+, we

have

∂c

∂t
= Dc(cxx + cyy) + Jchannel − Jpump + Jleak (2)
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where

Jchannel = kfluxµ(P )h

(
b +

(1− b)c

k1 + c

)
, (3)

Jpump =
γc

kγ + c
, (4)

Jleak = β, (5)

µ(P ) = µ0 +
µ1P

kµ + P
. (6)

The expressions for Jpump and Jleak are

straightforward, but Jchannel is more complicated,

being a product of three terms (kflux is merely a

scaling parameter); µ denotes the fraction of recep-

tors that have bound IP3, b+(1−b)c/(k1+c) denotes

the fraction of receptors that have been activated by

Ca2+, while h denotes the fraction of receptors that

have not been inactivated by Ca2+. Activation by

Ca2+ is assumed to act instantaneously, but inacti-

vation by Ca2+ occurs on a slower time scale, and

thus

τh
dh

dt
= h∞(c)− h, (7)

where

h∞(c) =
k2
2

k2
2 + c2

. (8)

This assumption of fast activation and slow in-

activation is based on the experimental results of

a number of groups [Finch et al. 1991, Parker &

Ivorra 1990, Parker & Yao 1992].

The parameters for Jchannel were chosen so

as to agree with the experimental data of [Parys

et al. 1992]. It is important to note that the pumping

efflux measured by Parys et al. [1992] was at a steady

state Ca2+ concentration. When the Ca2+ concen-

tration is changing, as it does during oscillations, the

rate at which the channel activates and inactivates

is important in determining the Ca2+ concentration

flux.

Jpump models the pumping of Ca2+ out of the

cytosol and is a simple hyperbolic function of c. The

term Jleak represents a flux due to leakage into the

cytosol from outside the cell. In many experiments

with Xenopus in which Ca2+ waves were observed,

the extracellular Ca2+ concentration was maintained

at very low levels [Lechleiter & Clapham 1992]. Be-

cause of this leakage through the cell membrane was

very small. Therefore the term Jleak was set to zero

for all the simulations. A non-zero leak makes no

qualitative difference to our results.

The parameter values used in the model are

shown in Table 1. Parameter values were chosen to

match up with known experimental results, where

these were available. Note that the diffusion coeffi-

cient of Ca2+ is set at a low value to simulate the

effects of Ca2+ buffering [Sneyd et al. 1995].

An insight into the type of solutions the

model has may be gained by considering the spa-

tially homogeneous equations, that is, the equations

without diffusion. At a constant IP3 concentration
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these equations are ordinary differential equations for

which µ functions as a bifurcation parameter. The

bifurcation diagram is given in Figure 2. A branch

of periodic solutions appears via a Hopf bifurcation

at µ = 0.5, and disappears at a homoclinic bifurca-

tion at about µ = 0.29. When studied on a finer

scale (Figure 2B) it can be seen that a lower Hopf

bifurcation point also exists (at µ = 0.2926) but the

branch of periodic orbits arising from this bifurcation

soon disappears in a homoclinic bifurcation when it

intersects the branch of unstable steady states, and

is thus of no physiological interest.

3.1 Numerical methods and initial

conditions

The equation for P ([IP3]) is a diffusion equation

and was solved using the Peaceman-Rachford algo-

rithm, an alternating-direction implicit method. The

equation for c ([Ca2+]) is a reaction-diffusion equa-

tion and was solved using a generalisation of the

Peaceman-Rachford algorithm. With no flux bound-

ary conditions, the resulting system of equations is

tridiagonal, and was solved using the NAG fortran

subroutine f04lef. The ordinary differential equation

for h (the inactivation variable) was solved using a

second order Taylor series approximation.

Unless otherwise stated, all simulations were

run on a 200 by 200 square grid, and a time

step of 0.05 seconds was used. After each time

step the [Ca2+] values were output as a Hierarchal

Data Format (HDF) file, and the collection of files

were viewed using the scientific visualisation software

Transform (Fortner Research). Dispersion curves,

and branches of periodic orbits, were calculated us-

ing AUTO (written by E. Doedel et al., available

from ftp.cs.concordia.ca), and xppaut (written by B.

Ermentrout, available from ftp.math.pitt.edu).

We used a variety of initial conditions, all of

the same basic form (Figure 3). At time t = 0 the

[IP3] is set to a constant concentration (usually zero)

over the grid. The [Ca2+] and h are set at the steady

state values for that steady [IP3]. The steady state

is disrupted by adding boli of IP3 at arbitrarily se-

lected places in the domain (labelled blocks A, B,

and C in the figure). There were no other imposed

heterogeneities in the domain. For all simulations

presented here we added IP3 at the same places, in

order to facilitate comparison between the simula-

tions.

When the IP3 boli are added IP3 rapidly

diffuses through the square. Within a short time

(≈ 50− 100 s) the [IP3] is nearly constant through-

out the square, the concentration approaching a long

term [IP3]. Corresponding to the long term [IP3]
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is a bifurcation parameter µ value set by Eq. (6).

The long term µ value and the long term [IP3] were

recorded for each simulation.

4 Results

4.1 Initiation of stable spiral waves

Numerically computed spiral waves in this model,

quantitatively similar to those seen experimentally,

have been found by Atri et al. (1993). Atri et al.

(1993) first initiated periodic plane waves by the re-

lease of a bolus of IP3, and then used arbitrarily se-

lected regions to block passage of the waves, leading

to breakage of the wave front, and consequent spiral

formation. After a short time, the blocking regions

were removed, and the spirals thus continued to ro-

tate in a homogeneous medium. However, one major

criticism of these computations has been that spirals

were initiated by artificial conditions that were not

likely to exist in the cell, as it was difficult to jus-

tify the assumption of temporary blocking regions

on purely physiological grounds.

In Figure 4 we show how spirals may be ini-

tiated in the Atri model without the use of any arti-

ficially imposed blocking regions. Three boli of IP3

are released in the cell at arbitrarily selected posi-

tions, as shown in Figure 3. The released IP3 is then

allowed to diffuse across the cell, releasing Ca2+ as

it does so. The diffusion of IP3 sets up a natural

heterogeneity in the cell cytoplasm such that multi-

ple spirals begin to form spontaneously by 300 sec-

onds. Note that, apart from the heterogeneity re-

sulting from the diffusion of IP3, the cell cytoplasm

is homogeneous in all other respects; there are no ar-

tificial blocking regions. By 1600 seconds the spirals

have taken over the entire domain, and comparison of

the panels for 1600 and 2000 seconds shows that the

spiral centers are rotating slowly around each other.

Thus, the spirals are not stationary. This behavior

persists up to at least 4000 seconds (computations

not shown). At long times, the concentration of IP3

is approximately constant at 2.012 µM, which corre-

sponds to µ = 0.3904. From Fig. 2 we note that this

value is well within the region where the kinetics are

self-oscillatory.

4.2 Breakup of spiral waves, and pe-

riodically spiral waves

Calcium waves in Xenopus can sometimes form

spatio-temporal patterns considerably more complex

than simple spirals. In an effort to gain some under-

standing of this more complex wave behaviour, we

wish to investigate under what conditions the spi-

ral wave solutions persist, or whether breakup of the
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spirals can lead to more complex behaviour. In order

for the results to be useful, we wish further to show

that spiral breakup can be generated by a procedure

that can be reproduced in the laboratory.

In Figure 5, we show the result of a compu-

tation similar to that shown in Figure 4, except that

now the size of the bolus in block C is slightly in-

creased. In this simulation, the long term value of µ

is 0.39547, which corresponds to a steady IP3 concen-

tration of about 2.17 µM. By 900 seconds, the cen-

tral spiral has formed, but the smaller spirals around

its edge have broken up to disordered behavior. In-

terestingly, at 1200 seconds we see that the central

spiral itself starts to breakup, but by 1500 seconds

has spontaneously reformed. This periodic appear-

ance and disappearance of the spirals is a character-

istic feature of our simulations; we call these kinds

of waves periodically spiral waves.

When the size of the IP3 bolus in block C is

increased still further (long term value of µ is 0.3965,

[IP3]=2.20 µM), we get an earlier, and more com-

plete, breakup of the central spiral.

4.3 Discussion

We have shown that spiral waves can be initiated by

a procedure that mimics experimental procedures.

Simple addition of IP3 in a number of different places

can lead spontaneously to spiral wave formation. No

artificial heterogeneities need to be imposed on the

system, apart from those arising naturally as the re-

sult of the heterogeneous distribution of IP3.

By varying the size of the IP3 additions, we

can generate different long-term IP3 concentrations;

as the long-term [IP3] increases, the spirals become

unstable, and break up to form irregular spatio-

temporal patterns. This instability is not caused by

the slight heterogeneities that exist in [IP3] at large

times. We showed this by simulations in which the

background IP3 was set to be constant (at its steady

state value) once the spiral had formed, but before

it had broken up (for instance, at time 500 seconds

in Figure 5). In these simulations (not shown here)

the spirals still broke up in the same manner. In

our simulations, spiral breakup occured first at the

spiral core, when the wave given off by the core in-

tersected the refractory region behind the previous

wave; this mechanism for destabilising spirals has

been described before in other models [Panfilov &

Holden 1991].

As shown in Figure 7, the spiral period de-

creases with increasing long term IP3 concentration.

If the spiral period is less than a critical value of

about 8.5 seconds then the spiral is unstable. Other

models, such as the Noble model for cardiac tis-
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sue, also have a critical value for the rotation period

[Karma 1993]. However, the exact reasons for this

critical spiral period in this model are unclear. Close

to the critical spiral period, the spiral core breaks up

and reforms in a regular manner, leading to the for-

mation of what we call periodically spiral waves. In

these simulations the spirals that form can take over

considerable portions of the domain before finally go-

ing unstable and breaking up, whereupon the core

reforms and begins to form another spiral which can

itself grow to considerable size before it breaks up.

Further away from the critical period, spirals do not

reform to any significant extent.

The domain size is important in determin-

ing the long term behaviour of the system. With the

same long term IP3 concentration, but with a smaller

domain of 250 µm by 250 µm, the spiral waves be-

come unstable at lower steady state IP3 concentra-

tions (computations not shown). Thus on a smaller

domain the patterns that form are less stable, a result

that has been proven for spiral waves in an oscilla-

tory medium [Paullet et al. 1994].

Our results predict that a dose-response se-

ries of IP3 additions will lead to destabilisation of the

observed spiral waves, and irregular behaviour. Such

dose-response experiments have been performed in

Xenopus by Parker and his colleagues [Parker &

Yao 1992] but have used low concentrations of IP3,

close to the threshold of wave propagation. To our

knowledge, these experiments have not been per-

formed at the higher IP3 concentrations needed to

test our predictions.
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Table Caption

Table 1: Parameter values for the model. Parameter values were chosen to match up with known

experimental results, where these were available.
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Figure Captions

Fig. 1: The biological mechanism for Ca2+ oscillations. A hormone or neurotransmitter binds to

a receptor. This stimulates the activation of the enzyme phosphodiesterase (PLC), which catalyses

the break up of phosphotidylinositol-(4,5)-bisphosphate (PIP2) into inositol trisphosphate (IP3) and

diacylglycerol (DAG). Both IP3 and DAG simulate further cellular responses, but via different reaction

pathways. IP3 diffuses through the cell cytosol where it activates receptors located on the endoplasmic

reticulum (ER). This brings about the release of Ca2+ from the ER. The release of Ca2+ from the

ER activates the further release of Ca2+ until, at higher Ca2+, the receptor inactivates. Both IP3 and

Ca2+ diffuse through out the cytosol inducing further release of Ca2+.

Fig. 2: A: Bifurcation diagram for the spatially homogeneous model equations, using µ (which is

equivalent to [IP3]) as the bifurcation parameter. HC, homoclinic bifurcation; HB, Hopf bifurcation;

css, steady state value of c; cmax and cmin, maximum and minumum values of c over one oscillation.

Dashed lines denote instability. A subcritical Hopf bifurcation occurs at µ = 0.5012 and this generates

a branch of periodic orbits, which is initially unstable but becomes stable in a saddle-node of periodics

bifurcation. The branch of stable periodic orbits ends in a homoclinic bifurcation at µ ≈ 0.29. For µ

slightly less than 0.2926 the system exhibits excitable behaviour. The parameter values for the model

equations are shown in Table 1. B: a detailed view of the Hopf bifurcation at µ = 0.2926. Around

this value of µ a second branch of unstable periodic orbits appears, and then disappears in a second

homoclinic bifurcation when it intersects the branch of unstable steady states.

Fig. 3: Initial conditions. At time t = 0 [IP3] is set to a constant value (usually zero), and [Ca2+] and

h are set to the corresponding steady states. At time t = 0, boli of [IP3] are released in the indicated

regions. The square size is 1000µm by 1000µm, and the spatial grid is 200 × 200. The boundary

conditions are no flux.
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Fig. 4: Formation of stable spiral waves. Block A: [IP3]=200 µM. Block B: [IP3]=240 µM. Block C:

[IP3]=65 µM. Long term value of µ is 0.3904. Long term [IP3] is 2.012 µM.

Fig. 5: Formation of unstable spiral waves, and periodically spiral waves. Block A: [IP3]=200 µM.

Block B: [IP3]=240 µM. Block C: [IP3]=79 µM. At 1 second and 100 seconds, the simulations looks

very similar to the results shown in Figure 4. Long term value of µ is 0.39547. Long term [IP3] is 2.17

µM. This value of µ is close to the boundary between instability and stability, and so large, regular

spiral waves persist in large regions of the domain. Elsewhere, the spirals are much smaller, and do

not persist, leading to more disordered behavior.

Fig. 6: Formation of unstable spiral waves, and periodically spiral waves. Block A: [IP3]=200 µM.

Block B: [IP3]=240 µM. Block C: [IP3]=82 µM. At 1 second and 100 seconds, the simulations looks

very similar to the results shown in Figure 4. Long term value of µ is 0.3965. Long term [IP3] is

2.20 µM. The center spiral becomes unstable by 700 seconds, and reforms periodically, but never

persists long enough to take over a significant portion of the domain. By 1200 seconds, irregular

spatio-temporal behavior is seen over the entire domain.

Fig. 7: Spiral period and wave speed as a function of the steady state value of µ. As µ increases

(i.e., as the background IP3 increases), the spiral period decreases, due almost entirely to an increase

in the wave speed, while the wavelength remains almost constant. However, once the spiral period is

too low, the spiral cannot sustain itself; the wave given off by the spiral core runs into the refractory

region behind the previous wave, which causes breakup of the spiral.
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Table 1: Mckenzie and Sneyd

Parameter Value

b 0.111

β 0.0

γ 2.0 µM · s−1

τh 2.0 s

k1 0.7 µM

k2 0.7 µM

kγ 0.10 µM

kflux 16.0 µM · s−1

µ0 0.29

µ1 0.30

kµ 4.0 µM

Dc 20 µm2 · s−1

Dp 300 µm2 · s−1
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Figure 1: Mckenzie and Sneyd
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Figure 3: Mckenzie and Sneyd
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Figure 4: Mckenzie and Sneyd
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Figure 5: Mckenzie and Sneyd
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Figure 6: Mckenzie and Sneyd
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