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Abstract. – We consider liquid-vapor systems in finite-volume V ⊂ R
d at parameter values

corresponding to phase coexistence and study droplet formation due to a fixed excess δN of par-
ticles above the ambient gas density. We identify a dimensionless parameter ∆∼(δN)(d+1)/d/V
and a universal value ∆c = ∆c(d), and show that a droplet of the dense phase occurs when-
ever ∆>∆c, while, for ∆<∆c, the excess is entirely absorbed into the gaseous background.
When the droplet first forms, it comprises a non-trivial, universal fraction of excess particles.
Similar reasoning applies to generic two-phase systems at phase coexistence including solid/gas
—where the “droplet” is crystalline— and polymorphic systems. A sketch of a rigorous proof
for the 2D Ising lattice gas is presented; generalizations are discussed heuristically.

Introduction. – The thermodynamics of droplets in systems with phase coexistence has
been well understood since the pioneering works [1–4]. Recently, justifications of the clas-
sic results based on the first principles of statistical mechanics have been attempted —in
both two [5–9] and higher [10–13] dimensions— and various thermodynamical predictions
concerning macroscopic shapes have been rigorously established. However, the formation and
dissolution of equilibrium droplets is among the less well-studied areas in statistical mechanics.
Indeed, most of the aforementioned analysis has focused on the situation implicitly assumed
in the classical derivations; namely, that the scale of the droplet is comparable with the scale
of the system. As is known [7, 8, 14–16], this will not be the case when the parameter values
are such that a droplet first forms. In this letter, we underscore the region of the system
parameters that is critical for the formation/dissolution of droplets. In particular, we isolate
the mechanism by which the low-density phase copes with an excess of particles and pinpoint
the critical amount of extra particles needed to cause a droplet to appear. Surprisingly, at
the point of droplet formation, only a certain fraction of the excess goes into the droplet;
the rest is absorbed by the bulk. Moreover, apart from a natural rescaling to dimensionless
parameters, all of the above can be described in terms of universal quantities independent of
the system particulars and the temperature.

In the last few years, there has been some interest in questions related to droplet formation
and dissolution with purported applicability in diverse areas such as nuclear fragmentation [17–
19] and the stability of adatom islands on crystal surfaces [15, 20]. Another issue, which is
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of practical significance in statistical mechanics, concerns the detection of first-order phase
transitions by the study of small systems with fixed order parameter (magnetization) or fixed
energy. Under these conditions, non-convexities appear in the finite-volume thermodynamic
functions (which, of course, must vanish in the thermodynamic limit), see [21–24]. Naturally,
this suggests the formation of a droplet in a system with coexisting phases. Several studies
have directly addressed the issues surrounding the appearance of droplets with intriguing
reports on finite-size characteristics [15,20,21,25,26]. We believe that the results of this letter
may shed some light on these situations.

Droplets in systems at phase coexistence. – We will start with some general considerations
which bolster the claims of the first paragraph and, at the end of this letter, describe the
principal steps of a rigorous proof for the 2D Ising lattice gas. Although the natural setting for
these problems is the canonical distribution in finite volume, intuition is often better developed
in the context of finite subsystems using the language of the grand-canonical ensemble. Here
the occurrence of droplets may be regarded as a problem in large deviation theory. This
perspective will guide our heuristic analysis as it did in the proof for the 2D Ising system.

Consider a generic liquid-vapor system. (In this letter, we adopt, for concreteness, the
language of the liquid-vapor transition. However, all considerations apply equally well to
the formation/dissolution of an equlibrium crystal against a liquid or gaseous background.)
First, suppose that the system is in the gaseous phase. According to a fluctuation-dissipation
analysis, the local fluctuations for subsystems of volume V are then of the order

√
κV , where,

modulo constants, κ is the isothermal compressibility. More precisely, the probability of
observing a particle excess δN is given by

exp
[
− (δN)2

2κV

]
. (1)

Now, when δN = O(
√

κV ), the above is just the leading-order asymptotic of a full-fledged
Gaussian (central limit) distribution, which comes equipped with power law corrections,
etc. Moreover —in the single-phase regime— the above leading order remains valid even
for (δN)2 � κV , provided that |δN | � ρGV , where ρG is the gas density.

In the two-phase regime, small excesses can be again absorbed into background fluctuations
but, in addition, a second mechanism exists through which the system can handle an excess
of particles; namely, the formation of liquid-phase droplets. The minimal cost of a droplet of
volume δV goes as

exp
[
−τW(δV )

d−1
d

]
, (2)

where τW denotes the (surface) free energy of an ideal-shape droplet of unit volume. For
an isotropic system, τW = τSd, where τ is the surface tension and Sd = 2πd/2/Γ(d

2 ) is the
surface area of the unit sphere in R

d. In general, τW is obtained by minimizing the Wulff
functional [3]. As noted already in [1–3], by isoperimetric inequalities, scenarios involving
multiple macroscopic droplets are far less likely.

Now the number of excess particles δN in a droplet of volume δV is just δN = (ρL−ρG)δV ,
where ρG and ρL are the ambient gas and liquid densities, respectively. Thus, comparing
eqs. (1) and (2), the droplet mechanism dominates when δN � ΘV d/(d+1), where Θd+1 =
(κτW)d(ρL−ρG)1−d, while the fluctuation mechanism dominates when δN � ΘV d/(d+1). We
note that, from the perspective of rigorous analysis, significant progress has been made in
the single-phase regime and in the above-mentioned extreme cases of the two-phase regime.
For the Ising model, this was done for low temperatures in the exhaustive paper [7], while [8]
extended this result throughout the coexistence region in the case d = 2.
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Previously, the crossover region δN ≈ ΘV d/(d+1) has not received adequate attention. To
study this region, we introduce the appropriate dimensionless parameter

∆ =
(ρL − ρG)

d−1
d

2κτW

(δN)
d+1

d

V
(3)

and investigate finite (but large) size systems as ∆ varies. The key to the whole picture is
that, for the entire range of ∆, there is a forbidden interval of droplet sizes. To be precise, let
us categorize droplets according to their surface area: We will say a droplet is of intermediate
size if its surface area is large compared with log V but small compared with V (d−1)/(d+1).
Droplets with surface areas outside this range will be called large and small as appropriate.
We will show that, with overwhelming probability, there are no intermediate droplets.

We begin with some observations: Suppose we specify the amount of excess which goes into
intermediate and large-scale droplets and fix the location of these droplets. Then, through-
out the rest of the system, the fluctuations-dissipation result in eq. (1) is valid, at least to
leading order. Indeed, the only obstructions to Gaussian-type bulk fluctuations are: 1) the
appearance of droplets beyond the logarithmic scale, which we have already separated for a
special treatment, and 2) an exorbitant surface-to-volume ratio. Since δN ≈ ΘV d/(d+1) (i.e.,
∆ < ∞), the second possibility does not occur. Let

δN = δNL + δNI + δNS, (4)

where δNL is the amount of excess particles in large droplets, and similarly for δNI and δNS.
By eq. (1), the distribution of the excess given in eq. (4) has a cost exp[−(δNS)2/(2κV )] for
the fluctuation part. The cost of intermediate droplets will be of the order of their combined
surface. If there are n such droplets, then isoperimetric reasoning forces us to pay at least
exp[−τWC(δNI)(d−1)/dn1/d], where C is a constant of order unity. On the other hand, if all
of δNI were to go into small-scale fluctuations, we would simply have to pay exp[−(δNS +
δNI)2/(2κV )]. Comparing the two mechanisms we find, using δNS � ΘV d/(d+1) and δNI �
nΘV d/(d+1), that

(δNS)2

2κV
+ τWC(δNI)

d−1
d n1/d � (δNS + δNI)2

2κV
, (5)

whenever n ≥ 1. Hence, the probability of even a single droplet of the intermediate scale is
utterly negligible.

Having established the absence of intermediate-scale droplets, isoperimetric inequalities
rule out the possibility of more than one large droplet. Thus, we are down to the simplest
possible scenario: There is (at most) a single large droplet in the system —the cost of which
is governed by eq. (2)— absorbing some of the excess, while the rest goes into background
fluctuations —which are described by eq. (1). Thus, the probability that the droplet contains
the fraction λ of the excess particles is, in the leading order, given by

exp

[
−τW

( δN

ρL − ρG

)d−1
d Φ∆(λ)

]
, (6)

where Φ∆(λ) is defined by
Φ∆(λ) = λ

d−1
d + ∆(1− λ)2. (7)

In particular, with overwhelming probability, the fraction of excess particles taken by the
droplet corresponds to a value of λ that minimizes Φ∆(λ).
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Fig. 1 – The graph of the universal function Φ∆ in d = 2. Here the parameter λ represents the trial
fraction of the excess that goes into the droplet; Φ∆ has the interpretation of a free-energy function.
In (a), ∆ = 0.8 < ∆c, and the function is minimized by λ = 0. In (b), ∆ = 0.96 > ∆c and the
function is minimized by a λ = λ∆ > 2/3. The maximum that interdicts between λ = 0 and λ = λ∆

presumably plays the role of a free-energy barrier for the formation of the droplet.

The result of a straightforward computation is that there is a constant ∆c, given by the
expression

∆c =
1
d

(d + 1
2

)d+1
d

, (8)

which separates two types of behavior: For ∆ < ∆c, the unique global minimizer of Φ∆(λ)
is λ = 0, while for ∆ > ∆c, the unique global minimum of Φ∆ occurs at a non-trivial value
λ∆ > 0, see fig. 1. Moreover, the quantity λ∆ increases monotonically with ∆ and the value
of λ∆ at ∆ = ∆c, denoted by λc, can be computed exactly,

λc =
2

d + 1
. (9)

In particular, we have λ∆ ≥ λc for all ∆ ≥ ∆c. See fig. 2.
Let us interpret the results in the context of the canonical distribution: The region ∆ < ∆c

minimized by λ ≡ 0 is the remnant of the “phase” δN � ΘV d/(d+1); the entire excess is
taken up by background fluctuations. For ∆ > ∆c, a large droplet occurs which absorbs
the fraction λ∆ of the particle excess. Although this is obviously a precursor to the droplet-
dominated “phase” (where δN � ΘV d/(d+1)), the physics is somewhat different since a finite
fraction of the excess —namely (1 − λ∆)δN particles— is still handled by the background.
We emphasize that λ∆ and ∆ are related via a simple algebraic equation. The system-specific

1. 0

1.0

λ c λ∆

∆

Fig. 2 – The graph of λ∆, the fraction of the excess that goes into the droplet, as a function of ∆, the
dimensionless rescaled parameter that measures the total excess. Here d = 2. Notice that λ∆ = 0 for
∆ < ∆c ≈ 0.918, but as ∆ ↓ ∆c, λ∆ tends to λc = 2/3. The behavior of the system at ∆ = ∆c has
not been fully elucidated.
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details and dependence on external parameters are encoded into the factor (ρL−ρG)(1−d)/d
κτW

from eq. (3); the dimensionless parameter λ∆ is a universal function of ∆.
We remark that in [14–16], similar conclusions had been reached by various circuitous

routes under the mantel of specialized assumptions or approximations. In this letter, the
exact formula has been derived on the basis of simple-minded droplet/fluctuation-dissipation
arguments, all of which can be rigorously proved in at least one case.

Mathematical results for 2D Ising model. – In the context of the two-dimensional Ising
lattice gas, the above reasoning has been elevated to the status of a mathematical theorem,
which, for convenience, we state in the language of the equivalent spin system. Consider the
square-lattice Ising model with the (formal) Hamiltonian

H = −
∑
〈x,y〉

σxσy, (10)

where σx = ±1 and 〈x, y〉 denotes a nearest-neighbor pair. For each inverse temperature β,
let m� = m�(β) be the spontaneous magnetization, χ = χ(β) the magnetic susceptibility, and
τW = τW(β) be the minimal value of the Wulff functional for droplets of unit volume. As is
well known, m�(β) > 0, 0 < χ(β) < ∞ and τW(β) > 0 once β > βc = 1

2 log(1 +
√

2).
Consider now an L × L square in Z

2 denoted by ΛL and let ML =
∑

x∈ΛL
σx be the

overall magnetization in ΛL. Let vL ≥ 0 be such that m�|ΛL| − 2m�vL is an allowed value
of ML for all L. Let P+,β

L,vL
be the canonical distribution on ΛL with plus boundary conditions,

inverse temperature β, and ML fixed to the value m�|ΛL| − 2m�vL. In the present setting,
the parameter ∆ in eq. (3) becomes

∆ = 2
(m�)2

χτW
lim

L→∞
v
3/2
L

|ΛL| , (11)

where we presume that the limit exists.
In Ising systems, a convenient description for the spin configurations is in terms of their

Peierls’ contours, i.e., the lines separating spins of opposite type. Moreover, in the present
context, the boundaries of droplets are exactly these contour lines. Our first claim concerns
the absence of contours of intermediate size, regardless of the value of ∆.
Theorem I. Let β > βc and suppose that the limit in eq. (11) exists with ∆ ∈ (0,∞). Let AL

be the event that there is no contour Γ in ΛL with

K logL ≤ diamΓ ≤ 1
K

L2/3. (12)

If K = K(β) is sufficiently large, then

lim
L→∞

P+,β
L,vL

(AL) = 1. (13)

We remark that this is the rigorous (albeit 2D-Ising specific) analogue of our general
argument in eqs. (3)-(5). The above theorem is far and away the most difficult part of the
mathematical analysis. Notwithstanding, the flow of the proof parallels closely the derivation
that was given here. The reader may have noticed that, in the present derivation, we have not
used in any obvious way the lower bound defining the scale of intermediate droplets. The issue
is somewhat delicate since some log-scale droplets will naturally emerge from the background
fluctuations. The constant K must be chosen large in order to enforce the distinction between
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“natural” and “unnatural” as well as to control the translation entropy of the purported
intermediate droplets.

Our next goal is to specify the typical configurations in measure P+,β
L,vL

depending on the
value ∆ as compared with ∆c. Let BL,K be the event that there is no contour Γ in ΛL with
diamΓ ≥ K logL. Furthermore, let CL,K be the event that there is one contour Γ0 with
diamΓ0 ≥ 1

K L2/3 while all other contours Γ in ΛL satisfy diamΓ ≤ K logL.
Theorem II. Let β > βc and suppose that the limit in eq. (11) exists with ∆ ∈ (0,∞). Let ∆c

be as in eq. (8) and, for ∆ > ∆c, let λ∆ be the unique minimizer of Φ∆(λ).
1) If ∆ < ∆c and K = K(β) is sufficiently large, then

lim
L→∞

P+,β
L,vL

(BL,K) = 1. (14)

2) If ∆ > ∆c and K = K(β) is sufficiently large, then

lim
L→∞

P+,β
L,vL

(CL,K) = 1. (15)

Moreover, with probability approaching one, the unique “large” contour Γ0 has volume (λ∆ +
o(1))vL and its shape asymptotically optimizes the surface-energy (Wulff) functional for the
given volume.

Theorems I and II completely classify the behavior of the Ising system for all ∆ �= ∆c. We
emphasize that the situation at ∆ = ∆c has not been fully clarified. What can be ruled out,
according to theorem I, is the possibility of a complicated scenario involving intermediate-size
droplets on a multitude of scales. Indeed, when ∆ = ∆c, in (almost) every configuration we
must have either a single large droplet or no droplet at all; i.e., the outcome must mimic the
case ∆ > ∆c or ∆ < ∆c. It is conceivable that one outcome dominates all configurations or
that both outcomes are possible depending on auxiliary conditions.

Our last statement concerns the decay of the probability (in the grand-canonical distribu-
tion) that the overall magnetization takes value m�|ΛL| − 2m�vL. Let P

+,β
L be the (Gibbs)

probability distribution on spins in ΛL with plus boundary condition and inverse tempera-
ture β.
Theorem III. Let β > βc and suppose that the limit in eq. (11) exists with ∆ ∈ (0,∞).
Introduce the shorthand pL = P

+,β
L (ML = m�|ΛL| − 2m�vL). Then

lim
L→∞

v
−1/2
L log pL = −τW inf

0≤λ≤1
Φ∆(λ). (16)

Sketch of the proofs. – Here we outline the steps necessary to prove the above theorems.
As already noted, first we reduce the problem to the study of large-deviation properties of the
“grand-canonical” distribution P

+,β
L using the relation

P+,β
L,vL

(A) = P
+,β
L (A|ML = m�|ΛL| − 2m�vL), (17)

valid for all events A. The next technical step is then a proof of the large-deviation lower bound

pL ≥ exp[−τW
√

vL(Φ∆(λ) + εL)], (18)

which is produced by forcing in a contour of the appropriate size and evaluating the contribu-
tions from surface tension and bulk fluctuations. Here εL → 0 as L → ∞, uniformly in λ. A
comparison with this lower bound then shows that, with overwhelming probability in P+,β

L,vL
,
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the total surface area of contours Γ with diamΓ ≥ K logL is at most of order
√

vL while their
combined volume is at most of order vL. This puts us in a position to carry out the argument
in eq. (5), which ultimately leads to the proof of theorem I. Having eliminated the intermediate
contours, we are down to the scenario with at most one large contour. Optimizing over the
contour volume/shape proves theorem II and also produces a large-deviation upper bound,
which completes the proof of theorem III.

Theorems I-III pretty much tell the story for this particular case. Complete proofs and
additional details will appear elsewhere [27].
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