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ABSTRACT: The mechanism of the seasonal persistence barrier (SPB) is studied in the framework of an autoregressive

(AR) model. In contrast to the seasonal variance, whose minimum is modulated mainly by the minimum growth rate or

noise forcing, the SPB is caused primarily by the declining growth rate or increasing noise forcing, instead of the minimum/

maximum of the growth rate or noise forcing. In other words, the SPB is caused by the declining signal-to-noise ratio (SNR)

rather than the weakest SNR. In a weakly damped system, the phase of the SPB is delayed from that of declining SNR by

about a season. The mechanism is further applied to explain the observed SST variability in the tropical and North Pacific.

For the tropical Pacific, the spring SPB could be caused by the decreasing growth rate from September to March and weak

annual mean damping rate, instead of the minimum growth rate in spring. Over the North Pacific, the increasing noise

forcing fromMarch to June may lead to the summer SPB. Our mechanism provides a null hypothesis for understanding the

SPB of climate variability.
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1. Introduction

The seasonal persistence barrier (SPB) is well known in the

study of El Niño–Southern Oscillation (ENSO) prediction. It

has been noticed in the observations of the tropical Pacific sea

surface temperature anomalies (SSTA) (e.g., Niño-3.4, 58S–

58N, 1708–1208W; Ren et al. 2016) variability and the following

variability in rainfall (Walker and Bliss 1932; Wright 1979) and

sea level pressure (Troup 1965; Webster and Yang 1992). This

SPB for ENSO features a band ofmaximumdecline ofmonthly

autocorrelation at a fixed phase (or month, typically around

May–June), as seen from themonthly autocorrelation of SSTA

variability over central-eastern Pacific and its lag gradient (e.g.,

Ren et al. 2016; Liu et al. 2019). This maximum decline of

persistence of fixed phase shows that, regardless of the initial

month of forecast, a damped persistence forecast loses its

predictability most rapidly in the following May, forming the

so-called the spring SPB of ENSO. Recent studies have also

shown similar SPB features in many other areas such as the

western North Pacific reemergence region (388–428N, 1608E–

1808; Alexander et al. 1999) (Zhao et al. 2012) and Southern

Ocean (Liu et al. 2019), where SSTA variability also exhibits a

band of maximum persistence decline at the fixed calendar

month, or phase locked to the specificmonth/season. In spite of

these studies, it has remained unclear what exactly is the cause

of the SPB, and in particular what factor determines the phase

of a SPB.

In the theories where ENSO is considered as a self-sustained

interannual oscillator in the tropical Pacific (Chen et al. 2004;

Yeh et al. 2004; Mu et al. 2007), the growth of initial error is

responsible for the predictability and SPB of ENSO (Zebiak

1989; Goswami and Shukla 1991). Chen and Cane (2008) found

that model initialization and data assimilation were important

for ENSO SPB. In the analysis of ENSO prediction in 10 dif-

ferent ocean–atmosphere coupled general circulation models

(CGCMs), Jin et al. (2008) suggested that the seasonal cycle of

initial conditions has an overwhelming role in ENSO SPB.

On the other hand, ENSO has also been considered in a

damped noise-driven framework (Penland and Sardeshmukh

1995; Thompson andBattisti 2000; Kim and Jin 2011). Here the

spring SPB phenomenon has been studied extensively using

the cyclostationary autoregressive (AR) model (Torrence and

Webster 1998; Moon and Wettlaufer 2017), as well as theo-

retical oscillator models with a seasonal cycle (Stein et al. 2010;

Levine and McPhaden 2015). In these simple models, the

seasonal growth rate is considered to play a significant role in

ENSO spring SPB. Liu et al. (2019) derived a simple analytical

solution for the SPB as the asymptotic solution of the damped

persistence model with seasonal growth rate and noise forcing

(i.e., a Langevin equation of seasonally varying coefficients).

This solution showed explicitly that the amplitude of the sea-

sonal cycle, either in growth rate or noise forcing, has to

exceed a threshold to generate a SPB. This theory also
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suggests a general phase relationship between the seasonally

varying variance and lag-1 autocorrelation coefficient (persis-

tence) (Jin et al. 2019a).

Previous studies have also discussed the formation mecha-

nism of the SPB, especially in the context of ENSO. Xue et al.

(1994) attributed the spring SPB of ENSO to the small variance

in spring. Webster (1995) suggested that the tropical coupled

system was at its most stable state during the boreal spring with

the minimum signal-to-noise ratio (SNR). Using a cyclosta-

tionary AR model, Torrence and Webster (1998) further

concluded that in the absence of seasonal noise forcing, the

spring SPB of ENSO was caused by the low growth rate in

spring. These studies may lead to the impression that it is the

minimum growth rate in spring that causes the lowest variance

and, in turn, SNR in spring, which then leads to the SPB in

spring. In this view, SPB is caused by, and then concurs with,

the minimum growth rate or variance. This, however, does not

seem to be always true in the analytical solution of Liu et al.

(2019). For example, in the case of seasonal damping rate (i.e.,

negative growth rate), the solution of Liu et al. (2019) implies

that the phase of the SPB changes, qualitatively, with both the

annual mean damping rate and the amplitude of the annual

cycle (parameters b and A, respectively; see their Fig. 3b). As

the annual mean damping rate (parameter b) diminishes, the

response of system tends to be delayed, with the maximum

delay of 908 (three months), and the timing of SPB is also

shifted later. As the amplitude of seasonal cycle (parameterA)

increases, the timing of SPB will also be delayed. As such, the

SPB can even occur in the maximum growth rate/variance for

certain range of b and A [Fig. 3a in Liu et al. (2019)]. This

implies that, in general, the minimum growth rate/variance is

unlikely to be the major cause of the SPB.

In spite of its qualitative utility, the analytical solution ofLiu et al.

(2019) is difficult to use to study the exact mechanism for the phase

of the SPB, because it uses a smooth harmonic form of the seasonal

cycle of growth rate or noise forcing. Therefore, the nonharmonic

annual cycle will be needed to further answer the question of the

formation mechanism of SPB, especially for the relationship be-

tween the growth rate/noise forcing and the SPB.

This paper is an attempt to further understand the formation

mechanism of the SPB, especially its phase, beyond the theory

of Liu et al. (2019). Here, we will use an idealized nonharmonic

annual cycle to pinpoint the cause for the formation of the SPB.

Our major conclusion is that the SPB is caused by the de-

creasing growth rate or increasing noise forcing, instead of the

minimum growth rate or the maximum noise forcing (weakest

SNR).An application of ourmechanism to the observation shows

that the SPB for ENSO is forced by the decreased growth rate

fromSeptember toMarch and is then further delayed by theweak

annual mean damping whereas the summer SPB in North Pacific

is caused by the increasing noise forcing from March to May.

The paper is organized as follows. Section 2 describes the

models used here. The SPBs in the idealized cases forced by

growth rate and noise forcing are shown in sections 3 and 4,

respectively. The application of our mechanism to the Pacific is

carried out in section 5. Finally, a summary and discussion will

be addressed in section 6.

2. Models

a. AR model

In this study, we will explore the SPB numerically in the

AR(1) model (e.g., Torrence and Webster 1998; Lu and Liu

2018) instead of the stochastic climate model (Hasselmann

1976). This is because we will consider various forms of the

seasonal cycle of growth rate/noise forcing, which could not be

studied easily in analytical solutions in a stochastic climate

model as in Liu et al. (2019). The cyclostationary AR(1) model

with the seasonal cycle can be described as

X
t11

5 a
m
X

t
1N

t11
, (2.1)

whereX represents the variable (e.g., SSTA) and the subscript t

is the timemeasured in months starting from year zero; am is the

growth rate at calendar monthm; Nt is the random noise drawn

from the 12 Gaussian white noise of zero mean and variances

s2
Nm (Torrence and Webster 1998; Lu and Liu 2018; Liu et al.

2019; Jin et al. 2019a). We note that in the observations, noise

forcing may not be a pure white noise, especially for the tropical

Pacific (Levine andMcPhaden 2015). For the SPBphenomenon,

however, the types of noise used in this study do not play a

significant role (more details can be seen in appendix A).

The variance s2
m and autocorrelation function rkm (k being the

lagmonth from the initial calendar monthm) of Eq. (2.1) can be

derived analytically, following Torrence and Webster (1998), as
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. (2.2)

The physical meaning of Eq. (2.2) is that the variance in a specific

monthm is dominantly caused by the noise forcing of this month,

and second influenced by the noise forcing of previous month

m2 j (j from 1 to 12) damped by the growth rate ofmonths from

m 2 l (am2l) to m 2 j (am2j) as the weight coefficient.

The autocorrelation function rkm is described as

rkm 5
s
m

s
m1k
P

k21

j50 am1j
. (2.3)

All the figures for AR(1) model are from the analytical solu-

tions of Eqs. (2.2) and (2.3).

The SNR can be defined as in Torrence andWebster (1998) as
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SNR
m
5

s2
m 2s2

Nm

s2
Nm

. (2.4)

b. The recharge oscillator model

To test whether the AR model has the ability to explain

observational ENSO spring SPB, we also introduce the re-

charge oscillator model (Stein et al. 2010). This recharge os-

cillator captures the dynamic relationship between equatorial

Pacific thermocline anomalies H and eastern SSTA T by the

following form:

dT

dt
52b(t)T1v

0
H1sj , (2.5)

dH

dt
52v

0
T , (2.6)

dj

dt
52rj1w(t) . (2.7)

In this model, 2b is the ENSO growth rate of SST anomalies

(Stein et al. 2010). The relationship between the growth rate in

recharge oscillator model and AR(1) model can be further

checked in appendix D. Note that b(t) is seasonally varying,

which is the cause of ENSO phase locking of variance (Chen

and Jin 2020) and SPB (Levine andMcPhaden 2015). The term

v0 is ENSO linear frequency (control ENSO cycle). In this

paper, we set v0 5 p/24 month21 (Stein et al. 2010). Also, s is

the noise amplitude,w(t) is white noise, and j is red noise with a

decay time scale of 1/r.

3. Seasonal persistence barrier forced by growth rate

a. Seasonal persistence barrier in relatively strongly damped

system

We first discuss a case of strong annual mean damping

(a5 0:7) in this subsection. This case is relatively easier to

examine the relationship between the modulation of growth

rate and the SPB, because the lag of the response is not large

according to Liu et al. (2019).

To illustrate that the SPB is not caused by the minimum

growth rate, we discuss two cases (Fig. 1a). In particular, the

sharp change in the seasonal cycle of the growth rate (Fig. 1a) is

designed to examine the relationship between the timing of

SPB and growth rate. For profile b, the growth rate reaches its

minimum in February, then increases sharply to its maximum

in March and remains constant to September, when it declines

sharply in October, and then lasts to January before its de-

crease to the minimum in February. Using this seasonal growth

rate in Eqs. (2.2) and (2.3), the variance and persistence map

are shown in Fig. 1b. While the minimum growth rate is in

February, the minimum variance occurs in March, lagging the

growth rate by one month. As discussed previously (Liu et al.

2019; Jin et al. 2019a), the phase difference between the sea-

sonal growth rate and seasonal variance depends on the annual

mean growth rate (a5 1/12�
m512

m51 am). Profile b has a lag of

1 month because it has a rather strong damping (a5 0:7). Now,

the variance decreases from October to March, with the

maximum reduction occurs in October (left panel of Fig. 1b,

red plus sign), 1 month lagging the growth rate. The SPB,

however, occurs in November (right panel of Fig. 1b). This case

shows that the SPB seems to follow the months of maximum

growth rate decline (GRD) time (September) or maximum

variance decline (October), rather than the minimum growth

rate (February). In this section, as s2
Nm 5 1, according to

Eq. (2.4), SNRm is proportional to the seasonally varying

variance, such that the decreasing variance corresponds to the

decreasing SNR. Therefore, the SPB also follows themonths of

maximum SNR decline.

To confirm the role of GRD in determining the SPB, we

study the second case, in which the minimum growth rate still

remains in February (the same as profile b), but the GRD

occurs earlier, now in June (profile c in Fig. 1a). Here, for a fair

comparison, we have also kept the magnitude of the annual

mean a and GRD (da) the same as in profile b, since both

parameters are important in determining the timing of SPB

(Liu et al. 2019), a point to be returned later. Now, the mini-

mum variance still occurs in March as in Fig. 1b, whereas the

maximum variance decline occurs earlier, following the GRD

in July (left panel of Fig. 1c). Meanwhile, the timing of SPB is

also shifted earlier to September (right panel of Fig. 1c), fol-

lowing the shift of the GRD. The comparison of Figs. 1b and 1c

suggests clearly that the timing of SPB (November in Fig. 1b,

and September in Fig. 1c) is determined by themaximumGRD

(October in Fig. 1b, July in Fig. 1c), rather than the timing of

the minimum growth rate (February). A further discussion of

the minimum growth rate can be checked in appendix B.

To examine systematically the factors that determines the

SPB, especially the minimum growth rate (variance) or the

maximum GRD, we perform a set of experiments by varying

the timing of the maximum GRD from March to December

while keeping the minimum growth rate fixed at February

[growth rate profiles are similar to those in profiles b and c

(Fig. 1a); a and da are still unchanged]. It is seen that the timing

of SPB (black square) varies almost linearly with themaximum

GRD (black line) [or the maximum variance decline time (red

plus sign)] (Fig. 1d). In contrast, the minimum variance re-

mains unchanged in March. This set of experiments further

suggests that the SPB is generated by maximum GRD, instead

of minimum growth rate. This role of GRD may seem rea-

sonable in retrospect, because the definition of the SPB is the

maximum persistence decline for the specific initial month,

instead of the lowest persistence in the specific lag month. This

maximum persistence decline seems to be produced by the

GRD, instead of the lowest growth rate.

b. Seasonal persistence barrier in weakly damped system

We now further examine the relationship between the GRD

and SPB in the case of a weak damping (a5 0:9). With a weak

damping, the relationship between GRD and SPB may be less

obvious as the timing of SPB will be delayed by the delayed

response (weak damping system), according to Liu et al.

(2019). Figure 2b exhibits a case of the same seasonal cycle of

growth rate as the profile b in Fig. 1b, with the maximumGRD

in September, except for a weaker annual damping rate. The

shapes of seasonal variance in both cases are similar (peaking

in October in both Figs. 2b and 1b). This similarity is caused by
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the nonharmonic annual cycle. The SPB timing is, however,

delayed to February in the weak damping a5 0:9 case. This

delay makes the SPB timing appearing to be consistent with

that of minimum growth rate, which may give one the wrong

impression that the SPB is caused by theminimum growth rate.

If the maximum GRD is shifted early to June (profile c in

Fig. 2a; a and da are the same as profile b in Fig. 2a), the SPB is

also shifted earlier to December (Fig. 2c). Now the timing of

SPB seems to lag the maximum GRD by 6 months, in contrast

to in the strong damping cases (Figs. 1b,c), when the lag is

about 3 months. This shift of SPB is reasonable given the weak

damping and in turn delayed response of the system.

This delay between SPB and maximum GRD compared

with strong damping cases is seen more systematically in a set

of experiments with the timing of maximum GRD changed

systematically, while fixing the minimum growth rate at

February (Fig. 2d, similar to Fig. 1d). Overall, the timing of

GRD is still correlated positively with that of SPB. However,

the timing of SPB lags that of maximum GRD by about

3–6 months (Fig. 2d), which is systematically longer than the

FIG. 1. Themonthly growth rate, variance, and lagged correlation of a cyclo-stationaryAR(1) process [Eq. (2.1)]. (a) The seasonal cycle

of growth rate for profile b and profile c, respectively. The thick line suggests the timing of the maximum growth rate decline (GRD). The

variance and persistencemap are forced by (b) profile b and (c) profile c. For each panel, seasonal variance is shown at left (the gray circle

meansminimumvariance, the red plus sign shows themaximumvariance declines, and the thick line indicates the variance declines caused

by the maximum growth rate decline) and the persistence map is shown at right (the black circles on the persistence map mark the month

of maximum persistence decline, and the black square suggests the timing of SPB). (d) The minimum variance (gray circle), maximum

variance declines (red plus sign), and timing of SPB (black square) are forced by the different seasonal cycle of growth rates like in (a) with

their maximum growth rate decline ranges from March to December. The black line means the SPB month is equal to the timing of the

maximum GRD.
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1–4 months in the strong damping cases (black squares in

Fig. 2d vs Fig. 1d), while the minimum variance remains un-

changed at March. This delayed response of SPB is consistent

with the weaker damping and in turn longer response time.

Therefore, the weak damping may make the SPB appearing

lagging from maximum GRD.

One feature different between the weak damping cases

(Fig. 2d) and strong damping cases (Fig. 1d) is that, when the

maximum GRD ranges from October to December, the SPB

remains locked in February. Therefore, for the cases of weak

damping (large a cases, more relevant to observational ENSO),

the SPB problems seem to bemore complicated, because it may

involve the interference of growth rate increase on growth rate

decrease, as discussed in appendix C.

In sum, the SPB is generated mainly by the maximumGRD,

rather than the minimum growth rate. Furthermore, the SPB

will be delayed from the GRD in the case of weak damping.

This also helps us to explain why SPB occurs during the period

of increasing growth rate in the case of weak damping both in

the theoretical solution of Liu et al. (2019) and in the obser-

vational ENSO, a point to be returned later in section 5.

4. Seasonal persistence barrier forced by noise forcing

In this section, we will discuss the role of noise forcing on

SPB. As suggested by Liu et al. (2019), a seasonal cycle of noise

forcing will also cause the SPB. As such, we set the growth rate

as a constant am 5 a and the noise forcing with a nonharmonic

annual cycle.

Similar to the case of seasonal growth rate, we will show that

it is the increasing noise forcing (INF), rather than the maxi-

mum noise forcing as one is tempted to assume, that leads to

FIG. 2. As in Fig. 1, but for a5 0:9, da 5 0.9 cases. Here in (d), black triangles mean the PB forced by the cases when a5 0:9, da 5 0.2.
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the SPB. For profile b in Fig. 3a, the noise forcing reaches its

maximum in February, then decreases sharply to its minimum

in March and remains constant in August, when it increases

sharply in September, and then lasts to January before it in-

creases to its maximum in February. Using this seasonal cycle

of noise forcing (profile b in Fig. 3a) and growth rate (a5 0.8)

in Eqs. (2.2) and (2.3), we obtain the variance (left panel of

Fig. 3b) and persistence map (right panel of Fig. 3b) forced by

the noise forcing. It shows that the SPB occurs in September,

which is in the period of increasing noise forcing (September),

instead of the maximum noise forcing (February). Meanwhile,

the variance is also increasing during this period. This is op-

posed to the growth rate case that the variance is decreasing at

the timing of SPB.

This concurrence of the SPB with increasing variance can be

explained in terms of SNR in Eq. (2.4). For the growth rate

case, as the noise forcing is constant for all the year around

s2
Nm 5 1, SNRm 5 (s2

m 2s2
Nm)/s

2
Nm is proportional to the vary-

ing variance s2
m. However, for seasonal noise forcing, the noise

forcing plays dual roles of forcing signal (s2
m 2s2

Nm) and noise

(s2
Nm). The increase of variance signal is also caused by the in-

crease of noise forcing. Therefore, the ratio, or SNR, no longer

follows the variance. In the case of Fig. 3b, when the variance

signal s2
m in the numerator increases, the SNR decreases (red

line in the left panel of Fig. 3b) because of the increase of noise

s2
Nm in the denominator; and this decrease of SNR causes the

SPB. These features are also found in the example in Fig. 3c,

whose variance and persistence map are forced by profile c in

Fig. 3a. In this case, the timing of maximum INF is moved to

June while still keeping the maximum noise forcing at February.

The SPB is also shifted to after INF in July, when the variance

increases and the SNR decreases.

FIG. 3. Themonthly noise forcing, variance, and lagged correlation of a cyclo-stationaryAR1 process [Eq. (2.1)]. As in Fig. 1, but for the

noise forcing case (a5 0:8). The red line in (b) and (c) is the signal-to-noise ratio line. The gray circle in (a) and (d) is maximum noise

forcing month. The red plus sign in (d) means the maximum variance increases.
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To further confirm the role of increasing noise forcing with

regard to the SPB, we keep the maximum noise forcing in

February, but shift the timing of themaximum INF fromMarch to

December systematically. It is seen that the SPB months and the

timing ofmaximumvariance are both shifted, while themaximum

noise forcing remains at February (Fig. 3d), further demonstrating

that the latter is not essential for the SPB.

The relationship between the SPB month and the timing of

maximum INF can also be seen for a weaker damping a5 0:9 in

Fig. 4. Here, we keep the shape of the noise amplitude (profiles b

and c in Fig. 4a) the same as Fig. 3a, except that a is increased to

a5 0:9. Again, the SPB timing increases with that of the INF,

similar to the case of a5 0:8 (Fig. 4d vs Fig. 3d). In comparison

with the case of seasonal growth rate forcing, the annual mean

damping rate plays a less important role in the SPB month here.

This reduced sensitivity of SPB to mean damping rate may be due

to two reasons. First, in the growth rate case, when a increases to a

larger value, in some months am may exceed 1 when the system

becomes unstable andwill growby itself. This strong intensification

of the signal may overwhelm the signal in the damped period

driven by the noise forcing, complicating the signal and in turn

SPB. However, for the case of noise forcing, the system is damped

all the time (am , 1), which is relatively straightforward to un-

derstand. Second, according toEq. (2.3), the SPB is caused both by

the variance ratio (variance is also controlled by am) and by am in

the growth rate case. However, for the noise forcing case, the SPB

is only caused by the variance ratio (am is constant all months

around). Therefore, the role of the growth rate is much harder to

understand compared with noise forcing case, especially for weak

damping cases when a is close to 1.

In short, for the noise forcing case, the SPBmonth, as well as

the timing of maximum variance increase, is caused by the

maximum INF, because it leads to maximum decrease of SNR.

The maximum noise forcing (or weakest SNR) is related more

FIG. 4. As in Fig. 3, but for the a5 0:9 case.
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to the lag-1 autocorrelation coefficient, instead of the SPB, as

discussed by Jin et al. (2019a).

5. Application to the tropical Pacific and North Pacific

In sections 3 and 4, we show that either a decreasing growth

rate or an increasing noise forcing will lead to a SNR decrease,

and in turn the SPB. Here, we will apply this understanding to

the tropical Pacific and North Pacific SSTA. We will use the

monthly sea surface temperature data from the Hadley Centre

Sea Ice and Sea Surface Temperature (HadISST) from 1960 to

2005 (Rayner et al. 2003). The SSTA is derived after sub-

tracting the climatological seasonal cycle and linear trend. The

monthly growth rate and noise variance are obtained from the

observation using the AR(1) model solution (Liu et al. 2019).

We first discuss the case of tropical Pacific SSTA variability

of ENSO, where the SSTA minimum variance occurs in April

and the SPB occurs in May–June, as shown in the persistence

map of the observed SST (Fig. 5a, also see Liu et al. 2019). This

so-called spring SPB has been recognized to be forced by the

seasonal growth rate (Liu et al. 2019). It can be studied here

using the AR(1) model by keeping the annual cycle of growth

rate the same as from the observation (left panel of Fig. 5b) but

changing the noise forcingmagnitude as the annualmean constant

throughout the year. The variance and persistence map can be

derived fromEqs. (2.2) and (2.3), respectively. The right panel of

Fig. 5b shows a distinct SPB phase locked to late spring (April).

This spring SPB is caused by the seasonal growth rate, which is

consistent with Levine and McPhaden (2015).

In the one-dimension model of tropical Pacific, the SPB is

caused by the GRD from September to March in the presence

of a weak annual mean damping. We verify this by changing

the slope of the GRD from September toMarch to be confined

to a single month of September–October (left panel of Fig. 5c),

while keeping the rest of growth rate (including the minimum

growth rate inMarch) the same as the original growth rate (left

panel of Fig. 5b). The forced persistence map (right panel of

Fig. 5c) shows that the SPB is shifted early from April to

March. This can be understood as the GRD occurs slightly

earlier and therefore shifts the SPB slightly earlier. On the

other hand, if we decrease the annual mean growth rate from

a5 0:91 to a5 0:81 while keeping the shape of seasonal growth

rate the same as the left panel of Fig. 5c, the SPB month is

shifted earlier by ;3 months to December (right panel of

Fig. 5d). This suggests that the weak damping rate (large an-

nual mean growth rate) in the observed ENSO delays the SPB

from immediately after the GRD (December) to 3 months

later (in spring). Therefore, the well-known ENSO spring SPB

FIG. 5. (a) The seasonal variance and autocorrelation function (persistencemap) in the tropical Pacific (Niño-3.4 region; 58S–58N, 1708–

1208W) calculated directly from monthly SST anomaly in the observation. (b) The seasonal cycle of growth rate calculated by tropical

Pacific SST is shown in the left panel. Seasonal variance (black) and SNR (red) and persistence map, shown in the center and right panels,

respectively, are forced by this seasonal growth rate. (c),(d) As in (b), but for different seasonal growth rate cases.
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is caused by the GRD from autumn to spring and then further

delayed by the weak damping rate to late spring. This spring

timing of SPB occurs coincidentally with, but is not caused by,

the minimum growth rate in spring.

The decreasing growth rate from September to March and

weak damping rate cause ENSO spring SPB in the numerically

solution of the recharge oscillator model [Eqs. (2.5)–(2.7)],

which is consistent with the results using AR(1) model (Fig. 6

vs Fig. 5). Forced by an idealized seasonal growth rate on an

annual harmonic (left panel of Fig. 6a), both the recharge os-

cillator model and the AR(1) model show that the seasonal

growth rate could cause the ENSO spring SPB [Fig. 6 herein vs

Fig. 5d in Liu et al. (2019)]. The main difference between two

models is that the negative ACF occurs in the recharge oscil-

lator model.We change the slope of the decreasing growth rate

while keep the rest value the same with left panel of Fig. 6a.

Figure 6b suggests that the timing of SPB moves from June to

May. Then, we decrease the annual mean growth rate while

keeping the shape of seasonal growth rate the same as the left

panel of Fig. 6b. The SPB month happens in March (Fig. 6c),

which is two months earlier than the large growth rate case

(Fig. 6b). The results are similar to those in the AR(1) model,

which show that these two models have the similar sensitivity

for SPB.

As the damping rate (or annual mean growth rate a) plays an

important role in the timing of ENSO SPB, we want to em-

phasize the role of a in physics. Physically, it describes the

strength of large-scale ocean–atmosphere feedback. For the

tropical Pacific, it can be assessed in terms of the Bjerknes

stability index (Jin et al. 2006, 2019b). An increase (decrease)

in a means that the system becomes more (less) persistent. As

such, it can be used to identify the decadal modulation of the

ENSO variability after the twenty-first century (e.g., Lübbecke

and McPhaden 2014)

Seasonal noise forcing has been recognized as the main

cause for the SPB in North Pacific (Liu et al. 2019). The SSTA

variability in the North Pacific can also be simulated in an

AR(1) model. Note, the noise forcing in our model Eq. (2.1)

indicates the ‘‘effective noise forcing,’’ which is proportional to

the atmospheric noise forcing divided by the surface ocean

heat content. Physically, an increasing noise forcing in the

North Pacific is caused by a shallowing mixed layer in the

summer. Figure 7a suggests that variance peaks in the August

and SPB occurs in June for North Pacific (Zhao et al. 2012; Liu

et al. 2019). The role of seasonal noise forcing on the SPB here

can be seen in an AR(1) model in Fig. 7b. The annual cycle of

noise forcing remains the same [left panel of Fig. 7b; same as

Liu et al. (2019)] while the growth rate is replaced with the

annual mean growth rate. Taking this seasonal noise forcing

and growth rate to Eqs. (2.2) and (2.3), an SPB still remains

largely unchanged, with the month shifted slightly earlier to

May (Fig. 7b) when the variance (SNR) increases (decreases).

In contrast to ENSO, the INF fromMarch to June is now the

key factor that determines the SPB in North Pacific. The large

noise forcing, however, is related to the small lag-1 autocor-

relation (Jin et al. 2019a), not the SPB. As discussed in

section 4, the INF is the cause of SPB. To see more clearly the

formation mechanism for the SPB in the North Pacific, we

change the slope of the INF fromMarch to June to be confined

to a single month of February to March while keeping the

FIG. 6. As in Figs. 5b–d, but for the recharge model. Here the relationship between the growth rate 2b in the recharge model and the

growth rate a in the AR(1) model is 2b 5 a 2 1 (see appendix D).
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maximum noise forcing in summer (left panel of Fig. 7c). The

result suggests that the timing of SPB is shifted earlier from May

to April (right panel of Fig. 7c). We also experiment by keeping

the shape of this seasonal noise forcing, but decreasing the annual

mean growth rate from 0.78 to 0.68 (stronger damping in Fig. 7d).

The timing of SPB is shifted slightly earlier from April to March.

Therefore, for the North Pacific, the increasing noise forcing from

March to June is the main reason for the summer SPB.

6. Summary and discussion

As a follow up of Liu et al. (2019), this paper attempts to un-

derstand the formation mechanism of SPB in the framework of the

AR(1) model. In particular, we use idealized nonharmonic seasonal

forcing to help isolate the mechanism. It is found that the minimum

variance is mainly modulated by the small growth rate or noise

forcing. However, the SPB is caused by the maximum growth rate

decreasing (GRD) or increasing noise forcing (INF), corresponding

to the period of decreasing SNR, instead of the minimum growth

rate or maximum noise forcing (weakest SNR). Meanwhile, a small

damping rate will delay the SPB significantly up to a season. This

mechanism offers an explanation that in the weak damping case

[such as that in Fig. 3b of Liu et al. (2019)], the SPB occurs in the

period of increasing growth rate. It also provides an explanation for

theobservationalENSOSPBas forcedby thedecreasedgrowth rate

from September to March and then further delayed by the weak

damping to late spring, but not forced by the minimum growth rate

in spring. In this view, we have to consider the decreasing air–sea

coupled instability (growth rate) from autumn to spring as the key

process of for ENSO spring SPB, rather than the low coupled in-

stability in the spring. In an accompanying paper, we linked the

mathematical growth rate with physical BJ coupled-stability index

(Jin et al. 2006) to study the physical process of driving the ENSO

spring SPB (Jin et al. 2019b). We also apply our mechanism to the

North Pacific SSTA and find that the increasing noise forcing from

March to May is the key factor that determines the summer SPB

there, rather than maximum noise forcing in summer.

Given that the SPB can be caused by either decreasing growth

rate or increasing noise forcing, it is possible that twoSPBs canoccur

simultaneously, if there are twoGRDsor INFs in the seasonal cycle.

Figure 8 shows one idealized example in the AR(1) model for two

barriers. InFig. 8a, thereare twoGRDs,one in Juneand theother in

January (left panel inFig. 8a). Thepersistencemap (Fig. 8a) exhibits

one strongSPB inSeptemberandaveryweakSPBinFebruary.The

strong SPB is caused by the GRD in June with no subsequent in-

crease of growth rate, whereas the weak SPB is caused by theGRD

in January but canceled partly by the subsequent strong increase of

the growth rate in March. As the GRD intensifies in January and

weakens in June (Fig. 8b), the weaker SPB is intensified while the

stronger SPB isweakened, leading to comparable SPBs. If theGRD

further increases in January and decreases in June, February SPB

becomes the dominant SPB, while the August SPB diminishes

(Fig. 8c). This phenomenon of multiple SPBs also exists in the ob-

servation.We can see it in the eastern North Pacific in the so-called

reemergence region (268–428, 1308–1168W; Fig. 9). There are two

very strong barriers in July andNovember, respectively. Therefore,

our mechanism can also explain the features of more than one

barrier in the real-world ocean.

FIG. 7. As in Fig. 5, but for North Pacific (388–428N, 1608E–1808) case. Here (b)–(d) are forced by the seasonal noise forcing.
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Themechanism in this paper helps us further understand the

cause of SPB and understand the SPB features in the real-

world ocean. Moreover, it can serve as a null hypothesis for the

SPB of climate variability in general.
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APPENDIX A

The Role of Different Kinds of Noise Forcing in SPB

According to Levine and McPhaden (2015), in the tropical

Pacific the noise is red noise, which fits better in the observation.

Here in order to identify the role of different kinds of noise forcing

in ENSO SPB, we use white noise forcing and red noise forcing

under the seasonally varying growth rate, respectively, both in the

recharge oscillator model and the AR(1) model. The recharge

oscillator model is used in Eqs. (2.5)–(2.7). The seasonal growth

rate [2b(t), the same as in Stein et al. (2010), their Fig. 0.2] is in the

left panel of Fig.A1. Forwhite noise forcing and red noise forcing,

the decorrelation time scale is 0 and 45 days, respectively, which is

consistent with Levine and McPhaden (2015).

The main features of persistence map for white noise forcing

and red noise forcing are nearly the same, as suggested by

Fig. A1. The SPB features in Figs. A1a and A1b are mainly

caused by the seasonally varying growth rate, regardless of the

different noise forcing.

As for the Langevin equation that incorporates a seasonal

cycle in the growth rate

dT

dt
52b(t)T1sj , (A.1)

dj

dt
5 rj1w(t) , (A.2)

mathematically, the Langevin equation is the special case of

recharge model when v5 0. Therefore, when v is smaller, the

feature between recharge model and Langevin equation is

more similar.

There is also little difference for SPB in the Langevin equation

between white noise forcing and red noise forcing (Fig. A2). The

FIG. 8. (a) The variance (shown in thecenter panel) and persistence map (shown in the right panel) are forced by the seasonal growth rate

(shown at left). (b),(c) As in (a), but forced by different seasonal growth rates (see their left panels).

FIG. 9. As in Fig. 7a, but for the eastern North Pacific (268–428N,

1328–1168W).
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SPB features of Fig. A2 are nearly the same as in Fig. A1. It is

reasonable asENSO inherent cycle is large (v5p/24month21).

Therefore, it is not important about red noise or white noise

when we consider SPB phenomenon, although red noise forcing

is closer to observation.Hereweusewhite noise,mainly because

the theoretical solution of Liu et al. (2019) is based on the white

noise forcing.

APPENDIX B

The Role of Minimum Growth Rate

We now confirm that the minimum growth rate leads to the

minimum variance, but not the SPB, in another example in

Fig. B1. Now, the minimum growth rate is shifted from

February to October, while a and the timing of GRD remain

the same as in profile c of Fig. 1a. This shift of minimum

growth rate shifts the minimum variance to November (left

panel of Fig. B1), demonstrating that the minimum growth

rate does determine the minimum variance. Meanwhile, shifting

this minimum growth rate from February to October also

produces a strong effect on the variance increase between April

to the peak in July (left panel of Fig. B1). According toEq. (2.2),

the growth rate in February plays a more critical role for vari-

ance from April to July than the growth rate in October. In

Fig. B1, the growth rate in February is much larger than that

in the profile c of Fig. 1, which causes a larger forced variance in

Fig. B1. Although the minimum variance is shifted because of

FIG. A1. The persistencemap for (a) white noise forcing (shown in the right panel) and (b) red noise forcing in the rechargemodel. Shown

in the left panel of (a) is the seasonal growth rate.

FIG. A2. As in Fig. A1, but for Langevin equation.
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the minimum growth rate, the SPB month (the right panel of

Fig. B1b) is almost the same as Fig. 1c. This example suggests

again that the SPB is determined more by the GRD, instead of

the minimum growth rate.

APPENDIX C

The Interference of Growth Rate Increase on Growth

Rate Decrease

In this appendix, we focus on the question why the timing of

SPB is locked in February for maximum GRD ranging from

October to December in Fig. 2d. We will show that the in-

creasing growth rate from February toMarch cancels the effect

of GRD, because the latter occurs sufficiently close to the

former and therefore blocks the shift of SPB.

To illustrate the role of increasing growth rate, we start with

the simplest case of a minimum growth rate. We will use a

constant growth rate except for a minimum at February

(hereafter referred to as the minimum case; Fig. C1a). We in-

crease the amplitudes of the seasonal cycle, or GRD, from a

weak amplitude da5 0.1 to a large amplitude da5 0.9 for both

the strong and weak damping cases (a5 0:7 and 0:9). In the

case of strong damping a5 0:7 (black squares in Fig. C1c), the

SPB timings are always phase locked to February when da is

larger than 0.5. For the weak damping cases (a increases to 0.9;

black triangles in Fig. C1c), the timing of the SPB is also locked

to March, with a slight delay of one month. This lock of SPB

month with increasing seasonal cycle occurs because the GRD

effect (from January to February) on decreasing SNR is can-

celed by the immediate strong increase of growth rate (from

February to March). To see this more clearly, we perform

another set of experiments with a maximum in February (the

maximum case, Fig. C1b). In contrast to the minimum cases in

Fig. C1a, in the case of weak damping a5 0:9, when da in-

creases, the timing of SPB is shifted later almost linearly (blue

triangles in Fig. C1c). The shift of the SPB is caused by the

increasedGRDmagnitude, with no cancelation effect from the

growth rate increase immediately afterward. In comparison

with the strong damping case, the SPB is delayed by more than

two months (blue squares vs blue triangles in Fig. C1c).

Therefore, for weak damping (large a), the timing of the SPB

will be delayed more from the GRD and this delay increases

with the amplitude of the seasonal cycle (amplitude of GRD).

Therefore, in the absence of the increasing growth rate (the

maximum case), the SPB timing is no longer phase locked in

March, at least for the weak damping case a5 0:9. The com-

parison of the maximum case with the minimum case suggests

that it is the increasing growth rate immediately after the GRD

that cancels the GRD effect and in turn blocks the shift of SPB

with increasing GRD magnitude.

The role of increasing growth rate in blocking the SPB from

occurring after February is further studied in Fig. C2, in which

an increasing growth rate r is imposed immediately after the

GFD (January–February) from February to March with in-

creasing amplitude in the case of weak damping (a5 0:9). For a

weak r 5 0.02, the SPB occurs three months after the GRD in

May. When r increases to 0.06 and then 0.2, the SPB shifts

earlier from May to April and then to March (Figs. C2b and

A2c). Figure C2d further shows that when r increases to 0.1 and

higher, the SPB timing will be blocked to March. This case can

be used to understand the large a case in Liu et al. (2019). In

that case, the timing of SPB appears to occur in the period of

increasing growth rate (their Fig. 3b). Our study suggests that,

however, this concurrence of SPB and increasing growth rate

does not mean that the SPB is driven by the increasing growth

rate. Instead, the SPB is caused more by the GRD, and is then

delayed as the system has a weak damping.

Now we can further understand why the timing of SPB is

locked to February for weak damping (large a) cases in Fig. 2d.

For weak damping, the SPB month will lag the time of the

maximum GRD and occurs after February when the timing of

FIG. B1. As in Figs. 1a and 1c, but for different phase of growth rate case.
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the maximum GRD ranges from September to December. On

the other hand, there is a large increasing growth rate from

February to March, which prevents the phase shift of the SPB

after March if the increasing growth rate occurs after the GRD

sufficiently close. As such, the SPB is blocked in February.

When the timing of maximum GRD ranges from March to

August, the SPB month changes with the GRD because the

increasing growth rate is far away from the GRD. We also test

the effect of the amplitude of the seasonal cycle (i.e., da) on the

SPB for weak damping cases (large a). When we decrease da

from 0.9 to 0.2 (black triangle in Fig. 2d), now 1) the SPB

month is phase locked to February when the maximum GRD

time ranges from October to December, and 2) the SPB

months are closer to the maximumGRD time compared to the

cases of lager da5 0.9. This confirms that a large amplitude of

seasonal cycle da will also delay the timing the SPB, qualita-

tively consistent with the harmonic solution of Liu et al. (2019,

their Figs. 3a,b).

APPENDIX D

Comparison of Growth Rate in the Langevin Equation and

AR(1) Model

The Langevin equation with the incorporation of a seasonal

cycle of growth rate is

dT

dt
52b(t)T1N(t) . (D.1)

For Eq. (D.1), the growth rate is2b, and the seasonal Langevin

equation Eq. (D.1) is discretized in the time step of one

month as

X
t11

5 (12b
m
)X

t
1N

t11
. (D.2)

Comparing Eqs. (2.1) with (D.2), we find that

2b
m
5 a

m
2 1. (D.3)

FIG. C1. The (a) minimum and (b) maximum growth rate in February. The da ranges from 0.1 to 0.9. (c) SPB

timing (black) forced by theminimum case [in (a)] while blue indicates the SPB timing forced by themaximum case

[in (b)]; squares are the results forced by a5 0:7 while triangles indicate the a5 0:9 case.
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In this paper, am is the growth rate for the AR(1) model. This

relationship also fits well between the recharge oscillator

model and AR(1) model.
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