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A unified viewpoint on the dynamics of spatio-temporal organization in various reaction

diffusion systems is presented. A dynamical similarity law attained near the instability points 

plays a decisive role in our whole theory. The method of reductive perturbation is used 

for extracting a scale-invariant part from original macroscopic equations of motion. It is 

shown that in many cases the dynamics near the instability point is governed by the time

dependett Ginzburg-Landau equation with coefficients which are in general complex numbers. 

A~ important effeCt of the imaginary parts of these coefficients on the stability of a spatially 

uniform limit cycle against inhomogeneous perturbation is also discussed. 

§ 1. Introduction 

Macroscopic spatia-temporal organization of matter IS a most striking and at

tractive feature met in far-from-equilibrium situations.n In chemical and biochemical 

kinetics, a large number of theoretical models which can explain, to some extent1 

each individual phenomenon has been proposed,n. 2> yet a unified viewpoint which 

is of conceptual as well as practical importance seems still lacking. The present 

paper aims to find out a universal feature emerging near the instability points in a 

fairly wide class of nonlinear chemical kinetics. Specifically, a universal form of 

macroscopic ,equation of motion valid near the instability points will be found. 

Such an equation also serves as an idealized model for a self-organized system 

which is not necessarily near the instability point. 

Landau's classical theory of the second-order phase transition or more advanced 

scaling theorl> tells us that the macroscopic properties of seemingly quite different 

systems may be described near the critical point with an identical equation if one 

makes an appropriate scaling of some physical quantities. Such a great simplicity 

of description is entirely due to the existence of a small parameter, i.e., the measure 

of deviation from the critical point, In other words, the role of this small para

meter is to single out a few relevant variables or parameters from .many ones, 

thus leading to a scale-invariance or a siniilarity property. In far-from-thermal 

equilibrium one often finds a similar situation near the catastrophe of a certain 

phase. It should be remenbered, however, that our main concern in the present 

paper is not to discuss the critical phenomena in its ordinary sense but to find 
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688 Y. Kuramoto and T. Tsuzuki 

out a simple description near the instability point for· primary understanding of 
the formation of space-time structure from a unified viewpoint. 

We shaH make a reduction of macroscopic equation of motion including a· small 
parameter by means of reductive perturbation.'> The present paper may ·he regard
.ed as an extension of. previous work,5> where the Prigqgine-Lefever-Nicolis modeln 
for nonlinear chemical kinetics was studied, to a general two-component system 
under chemical reaction and diffusion. 

As was discussed by Tomita et al.,6> possible types of instability in a system 
with a couple of degrees of freedom may ,be classified. into two groups, namely, 
the soft mode instability and the hard mode instability. In the former case. a 
single eigenmode becomes unstable and its eigenvalue vanishes at the marginal 
situation. In the latter case a couple of modes becomes unstable simultaneously; 
The real parts of their eigenfrequencies do not vanish at the marginal situation, 
thus leading to a time order beyond instability. It will turn out that the usefulness 
of such a classification is essentia:lly unchanged when the spatial inhomogeneity 
is introduced. A most important conclusion from the pr~sent paper is that the 
dynamics near the hard mode instability point can be described with a :eneralized 
form of the time-dependent, Ginzburg-Landau equation (abbreviated as the TDGL 
equation hereafter) for a complex field W pe'"' ~hi~h has a certain relation with 
concentration fields. This equation has the form 

(1·1) 

where T and R are time and posthon vector each under an appropriate scaling, 
'and c, are real constants. In the case of soft mode instability, a certain restriction 
on the model should be required in order that the reductive perturbation may be 
applicable. At least for one-dimensional space order, which may be categorized 
as a soft mode instability, the ordinary TDGL equation where all c, are vanishing 
m (1 ·1), has been found. . 

The existence of c, in the case of hard mode instability implies that the two 
kinds of degrees of freedom, i.e., p and q;, are equally important.. This is in 
contrast to the case of soft mode instability where the .equation may be expressed 
only in •terms of p. By introducing an appropriate rotating frame of reference, one 
may eliminate c0 from (1·1), but c1 and c2 cannot be eliminated. The. role o! 
these uneliminated constants turns out crucial. In fact, when a certain condition· 
is fulfilled by c1 and c2, • the spatially uniform limit cycle becomes unstable against 
inhomogeneous perturbation. Such an instability may be expected to lead to a 
new type of organized phase, though the detailed analysis will- not be given m 
the present paper. 

§ 2. Linear stability theory of a reaction-diffusion system 

A macroscopic equation of motion for a multi-component state variable X(r, t) 
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On the Formation of Dissipative Structures 689 

in a syst~m under chemical reaction and diffusion may be expressed as 

(2·1) 

where F(X) is m general a nonlinear function of X and f5 IS a diagonal matrix 

formed by diffusion constants. The diffusion constants together with the other 

parameters included in F define a parameter space. We assume that Eq. (2 ·1) 

has at least one stationary, spatially uniform and asymptotically stable solution 

X:o in some physical region of the parameter space. 

Let us now restrict our consideration to two-component system: 

X=(~). (2·2) 

D= (D'" o ). 
0 D 11 

(2·3) 

Putting 

X=Xo+x, (2·4) 

where 

Eq. (2 ·1) mp.y now be rewritten in the form 

fx=G(x), (2·5) 

where 

(2·6) 

and G is a quantity including only nonlinear terms in x. We put 

G;= (~) (2·7) 

and introduce a notation R which will frequently be used below for representing 

either P or Q. The quantity R may in general be expanded as 

(2·8) 

where t indicates a transpose; R2 and R3 are 2 X 2 coefficient matrices and 

(2·9) 
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690 Y. Kuramoto and T. Tsuzuki 

Let us now study the stability of the state x = 0 against infinitesimal perturba
tion. Introducing an operator L by 

( 

.§_+Kvv-Dyl7r2 

L ~ ( • a .17 ) at . -z- -z = at, r 

-K:g',; 

(2·10) 

Eq. (2 · 5) may be rewritten as 

(2·11) 

where 

..f (- i :t , -i/1 r) = det f' . (2·1'2) 

Let us consider for simplicity an infinitely large medium. Retaining only the 
linear part in x, and setting xocexp(iwt+ikr), one finds the dispersion equation 

(2·13) 

or 

(2 ·14) 

where 

(2 ·15) 

and 

(2·16) 

An instability occurs when the condition "a, f3<0 for all k" becomes violated. 
According to Tomita et al.,6> one has two possibilities for the occrrence of an 
instability: 

Case A (soft mode instability) 

This type of instability occurs when (3 vanishes for a certain wave number 
kc while a remains negative. It is obvious that w_ (kc) vanishes at the marginal 
situation. The wave number kc is the one which maximizes (3, that is, 

The critical condition thus becomes 

(2·17) 

(2·18) 

(2·19) 

The case kc~O is called the Turing instability!) which leads to a dissipative space 
structure. 
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On the Formation of DissiPative Structures 691 

Case B (hard mode, instability) 

This type of instability occurs when a vanishes for a certain wave number 

while {3 remains negative. Since the diffusion constants are non-negative, the criti

.cal wave number is zero. Hence at the marginal situation we have 

(2. 20) 

and the eigenvalues are 

(2·21) 

where 

(2·22) 

Clearly, two modes bec6me unstable simultaneously in this case. The non-vanishing 

frequency at the marginal situation leads to a temporal organization beyond the 

instability point. 

§ 3. Reduction of evolution equation 

In this section we shall make a reduction of Eq. (2 · 5) near the instability 

points. The two cases A and B may be treated in a parallel way. As to the 

former case, howev~r, we shall restrict ourselves to the one-dimensional Turing 

instability because the applicability of the present method to the other kinds of soft 

mode instability seems questionable as we shall discuss at the end of this section. 

Let us suppose that an instability occurs when a set of parameters ~=(Kat~> 

Da, ···) takes the value ~ 0 • Near the instability point we put 

(3·1) 

. where e is a small quantity. To save notations, let (Kap, Da, · · ·) represent ~ 0 • 

Thus, near the instability point, we have only to make the following substitution 

in (2·5): 

( 
Kafl) ( Kafl ) ( r afl ) 

~a ~ ~a + 82 ~a • 
(3·2) 

The reduction scheme presented below is quite similar to the one adopted by 

Newell and Whitehead 7 ~ in the problem of the Benard convection. From the 

expression for the eigenvalue (J) one may easily find that the new characteristic 

·time- and length-scales. of the order e- 2 and e-I, respectively, appear near the 

instability point of the type either A or B. Therefore, it is natural to describe 

the dynamics in terms of the new variables T and R defined by 

C~>O) (3·3) 

and 
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692 Y. Kuramoto and T. Tsuzuki 

R=exr. (x =real) (3·4) 

Here ~ and X are constants which will be chosen later in such a way that the 
final equation of motion may take a simplest form. To make a unified treatment 
of the cases A and B, it is convenient to introduce a notation .f, by 

for Case A, 

for Case B. 

Then, in either case one has from the linear theory 

x==ah +a*f-1 

(3·5) 

at the instability point, whe!e a is a constant. vector with a certain orientation 
but an arbitrary length. As one goes slightly beyond the instability point, the 
expression (3 · 6) should be modified due to the appearance of slow variation . in 
space and time such as the one described in terms of ~· and T. This effect may · 
be taken into account by regarding a as a function of R and T. Equation (3 · 6) 
should further be modified due to the· small contri,bution from harmonics other 
than J±1· On the other hand, the characteristic amplitude of x near the instability 
point is expected to be of order e by the analogy· of the classical theory of the 
second-order phase transition. From these arguments we expect that x may be 
expanded near the instability point as 

where 

"" "\;' n 
X= .::_. e Xn, 

n=l 

"" 
Xn = ~ Xn (~) (T, R)]". . 

ll=-00 

(3·7) 

(3·8) 

Accordingly, the operators f) /at and f7,. appearing in (2 · 5} may be replaced by 

and 

]_ +e2~ _!_ 
at aT (3·9) 

(3 ·10) 

respectively. Substituting (3·2), (3·7), (3·9) and (3·10) into f, .£, Land G, 
one may express these quantities in. the following expansion forms. 

T=To+ ef1 + ···, 

.£ =..fo+ e.£1 + e~.£2+ ··· , 

L=Lo+eLl+ ···, 

G=e2Gz+ e8G8:+ ···. 

The explicit forms of a few terms in each expansion .are as follo~s: 

(3 ·11a) 

(3-llb) 

(3·llc) 

(3·11d) 
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On the Formation of DissiPative Structures 693 

(3 ·12) 

..fo = (.2_ + Kxx- D xP ,.2) (.2_ + Kw- PvP ,.2 ) - K~vKyx , 
at at · 

(3 ·13) 

.£1 = ~2xP,.J7 R {nv .(:t +Ku) +Dx(:t +Kyy) -2DxDvJ7 ,.2}, (3 ·14) 

(3 ·15) 

where 

Jl1=22_+Kxx+Kyv- (Dx+Dy)J7,.2, 
at -

(3 ·16) 

Jl2=- {(2_+Kxx-D..,P,.2) (yyy-dvP/) + (2_+Kvv-DvP,.2) 
at . - 'at 

·X Cr:c.x-dxP./)- (KyxYxy+Kxyry:c)} (3·17) 

and 

(3 ·18) 

(3·19) ( 
a . . 2 

. .. _-+Kvv-DyP .. 
~ · at · 
Lo'= 

. . -Ky:c 

-K:cy ) 

a 2 . ' 

-+Kx:c-D:cPr at . 
. . . 

(3 ·20) 

(3. 21) G ( P2,s) 
2,s= .·Q· , 

2,3 

where 

(3·22) 

and 

(3 ·23) 

Fo~ the sake of brevity, we further introduce some notations. Let Gn cv> and Rn cv> 

denote the ·coefficients of expansion of Gn and Rn in various harmonics: 

(9·24) 
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694 Y. Kuramoto and T. Tsuzuki 

R.. = L: R.. '"'f. . 
• 

Regarding _f,. as a function of· -i(a/at) and -il7,. like 

.r,.=.r,. ( -i:t, -ir,.). 
let us further define a quantity _f,.(v) .by 

_f,.(v) = { _f,.(O; vk.) 
_f,.(JJ{J)o, 0) 

for Case A, 

for Case B. 

In a similar manner we define quantities L,.(v), f',.(v) and Jl,(v). 
In the lowest order in e, Eq. (2 · 5) reduces to 

ToXl=O' 

which yields the neutral solution 

where 

x1 m = x1 c-l>* = aC'W(T, R), 

x 1'"' = 0 for JJ~ ± 1 , 

a= ( ! ), 
a= -f'o(1).,.,/f'o(1).,11 = -Fo(1)~.,/f'o(1) 1111 . 

= Lo(1)1111/ L0 (1).,11 == Lo (1) 11 :~:/ Lo (1).,.,, 

(3·25) 

(3·26). 

(3·27). 

(3·28) 

(3·29) 

(3·30) 

and C' is, in general, a parameter of complex. number; the .role of C' is similar to 
that of ~ and X· What we have to do below is to find an evolution equation for 
W which determines the dynamics near the instability point. 

The second- and third-order balance equations from (2 ·11) are given by 

_fox2+_f1x1=LoG2 (3·31) 
and 

(3·32) 

respectively. Equation (3 · 31) enables us to express x2 in terms of Was follows. 
Putting (3·29) into (3·22), one finds ' 

(3·33) 

and 

(3·34) 

These equations together with the fact that .I1x 1 = 0 are sufficient to obtain the 
following expression for x 2'"' from (3 · 31): 
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On the .Formation of Dissipative Structures 695 

(3. 35) 

(3 ·36) 

and 

x/•> = 0 if v~O, ± 2, ± 1. (3. 37) 

The quantity x 2 <±D cannot be determined at this stage, which does not cause any 

trouble as one sees below. 

Let us -consider the e3-balance equation (3 · 32) from which the equation for 

W may be determined. As to the fundamental wave component, Eq. (3 · 32) sepa

rately yields the balance equation 

(3·38) 

or, written explicitly, 

.£2 (1) X1 m = fo (1) xxP3 <ll + fo (1) xyQ3 <1> (3. 39) 

and 

(3·40) 

where we have used the facts that ..L'o(1) =.£1(1) =0 and that G2 cannot yield 

fundamental wave. From the neutral solution (3 · 29) and the first nonlinear 

correction (3 · 35) rv (3 · 37) one obtains 

[ ( 
a*'Fza ) 

R 3<1l = ICI 2CI WI 2W 4.£o -I (O)a}Rzio (0) 
a*'Qza 

,~ ~ ( ati{a) 
+2.£0- 1 (2)a* RzLo(2) ~ 

· . atQ2a 

+2atRaaa*+a*'Raaa ]. 

where 

A=( 1 0 ) a- . 
0 a · 

Substituting (3 · 29) and (3 · 41) into (3 · 39), we finally find 

.£z(1) W= -I Cl 2gl Wl 2W, 

where 

(3·41) 

(3 ·42) 

(3·'13) 
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696 Y. Kuramoto and T. Tsuzuki 

+2.1'0- 1 (2)a*'M2L0 (2) ( :~~~::) 

. + 2a'Msaa* + a*' Msaa]. 

M2.s=Lo(1),,A,s+Lo(1),..11Q2,3 · 

(3·44) 

(3·45) 

It is easy .to confirm that Eq. (3·40) yields an equation identical to ·(3·43). 
To see this one has only to prove 

(3·46) 
where 

(3·47) 

The equality (3 · 46) directly follows from Eq. (3 · 30) and the .fact that 

det L0 (1) =det F0 (1) =0. (3·48) · 

By the use of (3 ·15) r-.J (3 ·18) one may rewrite Eq, {3 ·43) in the form 

(3-·49) 
'' 

Here Re r>O and Re r<O correspond to. th.e post-critical and sub-critical situations, 
respectively. The coefficients r, D and g have the' following expt~ssions- for re-
spective types of instability. ' ' 

Case A 

r=- {(K,,+D,k.2) (ruv+dvkc2) + (K1111+D.yk.2) (r, ... +d,k.2) 

- (Kv,r:ev+K,vrv:e)}/ {K,.,+Kuu+ (D,+:Ov)k/}, 

D= -2(D~K.,,+D,Kvv)/{K,,,+K 11 v+(D,+D 11 )kc 2 }>0, 

g=gj{K,.,+K1111+ (D.,+D11)k/}. 

The quantities appearing in g are given as follows . 

...fo (0) = K.,$1111 - K.,11K 11., , _ 

..£0 (2) = (K.,...+4D,k/) (K7111 +4Dvk/) -K.,11K 71.,, 

(3·59) 

(3·51) 

(3·52) 

(3·53) 

(3·54) 

(3·55) 

(3·56) 

(3·57) 

(3·58) 
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Case. B 

On the. Formation of DissiPative. Structures 

f=-! (r~:c+Jyy) + 2 ~ 0 {K,,(rv!i-r,,) 

- (K,ur!!,+Kv,r:cu) }, 

D=D++ iK,,D_' 
Wo 

1 
D±~ 2 (D,±D 11 ), 

fJ= -ig/2Wo; 

-Lo (2) = (2iwo + K:c,) (2iwo + Kuv) - K:cuKv:c , 

~ ( 2iwo+Kuv -K:c11 ·) L 0 (2) = 
- K 11:c 2iw0 + K:c:c ' 

M2,a = (iwo + K 1111) P2,a- K:c/J2,a , 

697 

(3. 59) 

(3. 60) 

(3 ·61) 

(3·62) 

(3·63) 

(3·64) 

(3 ·65) 

a= - iwo + K:c:c Ku:c (3 . 66) 
K:cu iwo+K1111 

By definition the quantities _f0 (0) and L 0 (0) have expressions identical to (3 ·53) 

and (3 ·55) respectively; 

The expressions above show that all the coefficients in Case. A are real while 

they are complex in Case B. This is because in Case A the operator P,. .appears 

only through P ,.Z giving the real contribution k/ in contrast to Case B where 

the operation ()jot yields the imaginary contribution iw0• 

The condition Re fJ>O is necessary in order that the amplitude W may not 

diverge. If this condition is .violated, the phase transition will be of a discontinuous 

type and the present method is not applicable. Assuming Re ?J>O and choosing the 

parameters ~. X and r; as 

and 

~=IRe rl, 

l=IRe r//Re i5 

I r:/ 2 = j Re r//Re g ' 

one may further reduce Eq. (3 · 49) to 

where 

oW= {(±1+ic0) -t (l+icl)P'R2- (1+ic2) /W/ 2} W, 
aT . 

Co =Im r /IRe rl' 

c1=Im D/Re i5 

(3·67) 

(3·68) 

(3·69) 

(3·70) 

(3·71) 

(3·72) 
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698 Y. Kuramoto and T. Tsuzuki 

and 

c2=Im ?J/Re g. (3 ·73) 

In Case A we have c0 =c1 =c2=0. In Case Bone may eliminate c0 by transforming 

Eq. (3 · 70) into the equation for W defined by 

(3·74) 

That is, one gets 

(3·75) 

Finally we give the reason why we have excluded from our consideration 

the cases of two- and three-dimensional space order and also the case in which a 

soft mode with k = 0 becomes unstable. In two- and three-demensions the critical 

wave vector kc has an arbitrariness in its orientation. In particular, one may 

always find a set of critical wave vector satisfying the relation 

kcl +kc2+kc3=0·. (3. 76) 

This fact makes the €2 balance equation (3 · 31) meaningless because the funda

mental wave, e.g., e-ik" .. , appears on the right-ha'nd side through' the product of 

the neutral solutions corresponding to kc2 and k 03 while on the left-hand side the 

fundamental wave cannot appear due to the operation of .£0 and ,.£1• In the case 

of soft mode instability with kc = 0 one meets with the same kind of contradiction. 
When only a couple of order parameters corresponding to ± kc is essentiaL to the 

emergence of space order, the above difficulty may be avoided since the problem 

then becomes essentially the same as that for one dimension. 

§ 4. Some remarks 

So far we have concentrated on deriving the reduced dynamical equations 

which are valid near the points of the two types of instability, namely, the time 

order and the one-dimensional space ~rder. We have restricted ourselves to a 

two-component system so that the coefficients in the final equation (3 · 49) may 

be expressed explicitly in terms of the _parameters appearing in the original equation 

(2·5). It is almost obvious, however, that such a restriction is not essential to 

our qualitative conclusion. In fact, from the analysis of a simplified model of 
n-component controlled biochemical system with negative feedback, we have obtain

ed completely the same type of equation as (3 · 70), which will be reported else

where. 

Equation (:3 · 70) may be regarded as an idealized model for a self-organized 

system. The case of the temporal organization is of particular interest. In this 

case Eq. (3 · 70) describes the motion of an infinite number of self-sustained oscil

lators coupled to each other through the diffusion term with a complex diffusion 
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coefficient. The motion of each nonlinear oscillator in the absence of the coupling 
is quite simple just as the motion of a harmonic oscillator. Such a simplified picture 
will surely provide a starting point with which the macroscopic theory of a wide 
variety of temporally organized system may be developed. 

Finally we shall give a comment on an important role possibly played by the 
coefficients c1 and c2 in (3 · 75). Only the post-critical situation will be concerned 
below. Let us put 

One may easily find that Eq. (3 · 75) has the spatially uniform solution 

Po2= 1, 

(/Jo= -c2T, 

(4·1) 

(4·2) 

which represents a limit cycle. That is, the concentrations X and Y which are 
uniform in space m~ke a self-sustained oscillation about the point X 0• We have 
now to ask whether this solution is stable against a spatially non-uniform perturba
tion. Assuming the space-time dependence of the ·perturbation around ( 4 · 2) as 
exp(iQT + iKR), we find from the linearized" perturbation equation, that 

Q± =i{ (1 +.[(2) ±-./ D}, 

D= (1 +K2) 2 -2(1 +clc2)K2 - (1 +c/)K4 • 

It IS clear from this expression that the solution ( 4 · 2) is unstable if 

1+clc2<0 

(4·3) 

(4·4) 

since iQ becomes positive for sufficiently small K. It may easily be confirmed 
from the results of previous work5> that the conditi<;m ( 4 · 4) can actually be satisfi
ed by the Prigogine-Lefever-Nicolis model. Beyond the instability a certain spatial 
pattern which is oscillating in time is expected to appear. However, the detailed 
analysis of this problem will be given elsewhere. 

Acknowledgement 

The authors thank Professor H. Mori for valuable discussions. 

References 

1) P. Glansdorff and I. Prigogine, Thermodynamic Theor;y of Structure, Stability and Fluc
tuations (Interscience. New York, 1971). 

2) See for instance, G. Nicolis and J. Portnow, Chern. Rev. 73 (1973), 365. 
3) H. E. Stanley, Introduction to Phase. Transitions and Critical Phenomena (Oxford U. P., 

New York, 1971). 

4) T. Taniuti and C. C. Wei, ]. Phys. Soc. Japan 24 (1968), 941. 
See also, Prog. Theor. Phys. Suppl No. 55 (1974). 

5) Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys. 52 (1974), 1399. 
6) K. Tomita and H. Tomita, Prog. Theor. Phys. 51 (1974), 1731. 

K. Tomita, T. Ohta and H. Tomita, Prog. Theor. Phys. 52 (1974), 1744. 
7) A C. Newell and ]. A Whitehead, ]. Fluid Mech. 38 (1969), 279. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

4
/3

/6
8
7
/1

9
1
5
0
7
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


