
Ann. Henri Poincaré 2 (2001) 605 – 673
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On the Formation of Singularities in Solutions of
the Critical Nonlinear Schrödinger Equation

Galina Perelman

Abstract. For the one-dimensional nonlinear Schrödinger equation with critical
power nonlinearity the Cauchy problem with initial data close to a soliton is con-
sidered. It is shown that for a certain class of initial perturbations the solution
develops a self-similar singularity in finite time T ∗, the profile being given by the
ground state solitary wave and the limiting self-focusing law being of the form

λ(t) ∼ (ln | ln(T ∗ − t)|)1/2(T ∗ − t)−1/2.

Introduction

Consider the nonlinear Schrödinger equation

iψt = −�ψ − |ψ|2pψ, x ∈ Rd, (1)

with initial data
ψ|t=0 = ψ0 ∈ H1.

It is well known that for p ≥ 2
d the problem has solutions that blow up in finite

time [G]. The case p = 2
d marks the transition between the global existence and the

blowup phenomenon. In this paper we study the participation of nonlinear bound
states in singularity formation in the one-dimensional critical case : d = 1, p = 2.

The NLS (1) has an important solution of special form- soliton : eitϕ0(x),
where ϕ0 is the “ground state solitary wave”. Ground states are orbitally stable
relative to small perturbations of initial data in the subcritical case and unstable in
the critical and supercritical case. In fact for p ≥ 2

d initial data arbitrary close to a
ground state may give rise to a solution that blows up in finite time. In the critical
case , however, a kind of orbital stability result is still valid provided one extends
a definition of the ground state orbit taking dilation as well as translations into
account. More precisely, any blowup solution ψ with L2 norm close to L2 norm of
ϕ0 is close (in L2) to the set

{eiµλ1/2ϕ0(λ(x+ b)), µ, b ∈ R, λ ∈ R+}

for t close enough to the blowup time, see [MM], [W4]. Although giving some
information on the spatial structure of the solutions near the blowup time this
result does not answer the question of what the asymptotic behavior of the system
is. Toward an understanding of this asymptotic behavior we have the following
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result. We consider the Cauchy problem for (1) (p = 2, d = 1) with even initial
data close to a soliton :

ψ|t=0 = ϕ0 + χ0, (2)

where χ0 is small in suitable sense. We show that for a certain set (open in X =
{χ0 ∈ H1, xχ0 ∈ L2}) of initial perturbations the solution ψ blows up in finite
time T ∗, admitting the following asymptotic representation

ψ(t, x) ∼ eiµ(t)λ1/2(t)ϕ0(λ(t)x), t→ T ∗, (3)

λ(t) ∼ (T ∗ − t)−1/2 (ln | ln(T ∗ − t)|)1/2 , µ(t) ∼ ln(T ∗ − t) ln | ln(T ∗ − t)|. (4)

Thus, up to a phase factor the formation of the singularity is self-similar with a
profile given by the ground state.

In the multidimensional case the existence and stability of the blowup solu-
tions with the asymptotic behavior (3), (4) have been conjectured and formally ex-
plained by several authors, see, for example, [DNPZ], [Fr], [KSZ], [LPSS], [LePSS1],
[LePSS2], [M1], [M2], [M3], [SF], [SS1], [SS2].

The asymptotics (3), (4) clearly can not be true for all blowup solutions
starting from data close to a ground state since there is a family of explicit blow
up solutions with a different blowup rate :(

T ∗

T ∗ − t

)1/2

ei
x2

4(t−T∗)+i tT∗
T∗−tϕ0(

T ∗x

T ∗ − t
). (5)

However it may be reasonable to expect the exceptional set of initial data to be a
one-codimensional manifold and the corresponding solutions to behave (up to the
invariances of the equation) like the explicit ones (5), see [BW]. This phenomenon
is due to a certain degeneracy of the model and is unstable with respect to per-
turbations of the equation. For Zakharov equation (that can be considered as a
physical refinement of (1)) the solutions with the blowup rate (4) disappear : the
minimal blowup rate is given by that of the explicit solutions, see [GM], [Me3].

The structure of this article is briefly as follows. It consists of two sections
fairly different in nature. The first contains a complete proof of the indicated
result with reference to certain estimates for the linearized operators. The second
contains a systematic treatment of the properties of the linearized operators, and,
in particular, a proof of the estimates mentioned in Section 1. The expositions
in the two sections are essentially independent up to the overlap concerning the
estimates mentioned.

A brief variant of the present article containing a description of the main
results was published in [P].

1. Asymptotic behavior of solutions of nonlinear equation

We start by devoting subsection 1.1 to a description of preliminary concepts and
to the exact formulation of the results. Subsections 1.2 and 1.3 are devoted to the
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proof of (3) for the solution of the Cauchy problem(1) , (2). Up to some technical
modifications the main line will repeat that of [BP1], [BP2].

1.1 Preliminary facts and formulation of the result

1.1.1 The nonlinear equation

We formulate here the necessary facts about the Cauchy problem for the equation

iψt = −ψxx − |ψ|4ψ (1.1.1)

with initial data in H1.

Proposition 1.1.1 The Cauchy problem for equation (1.1.1) with initial data
ψ(0, x) = ψ0(x), ψ0 ∈ H1 has a unique solution ψ in the space C([0, T ∗) → H1)
with some T ∗ > 0 and

(i) ψ satisfies the conservation laws∫
dx|ψ|2 = const, H(ψ) =

∫
dx[|ψx|2 −

1
3
|ψ|6] = const;

(ii) if T ∗ <∞, then ‖ψx‖2 →∞ as t→ T ∗ and

‖ψx‖2 ≥ c(T ∗ − t)−1/2;

(iii) if H(ψ0) < 0 then T ∗ <∞.
Suppose in addition that xψ0 ∈ L2. Then xψ ∈ C([0, T ∗) → L2) and ψ

satisfies the pseudo-conformal conservation law∫
dx|(x+ 2it∂x)ψ|2 −

4
3
t2
∫

dx|ψ|6 = const.

The assertions stated here can be found in [CW1], [OT], for example.
Equation (1.1.1) is invariant with respect to the transformations :

ψ(x, t)→ (a+ bt)−1/2eiω+i bx2
4(a+bt)ψ(

x

a+ bt
,
c+ dt

a+ bt
), (1.1.2)

where ω ∈ R,

(
a b
c d

)
∈ SL(2,R).

1.1.2 Exact blowup solutions

Equation (1.1.1) has a family of soliton solutions

ei
α2
4 tϕ0(x, α), α > 0,
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where ϕ0 is a positive even smooth decreasing function satisfying the equation

−ϕ0xx +
α2

4
ϕ0 − ϕ5

0 = 0.

As |x| → ∞, ϕ0 ∼ ϕ∞(α)e−
α
2 |x|.

One has a relation

ϕ0(x, α) =
(α
2

)1/2
ϕ0(

α

2
x), (1.1.3)

where ϕ0(x) stands for ϕ0(x, 2). One can give an explicit expression for ϕ0 :

ϕ0(x) =
31/4

ch 1/22x
.

Applying the transformations (1.1.2) to (1.1.1) one gets a 3-parameter family
of solutions

eiµ(t)−iβ(t)z2/4λ1/2(t)ϕ0(z), z = λ(t)x, (1.1.4)

where µ, β, λ are given by

λ(t) = (a+ bt)−1, β(t) = −b(a+ bt), µ(t) =
c+ dt

a+ bt
.

Remark that λ(t), β(t), µ(t) satisfy the system

λ−3λt = β, λ−2βt + β2 = 0, λ−2µt = 1.

If b �= 0, solution (1.1.4) blows up in finite time. It is known that equation
(1.1.1) has no blowup solutions in the class

{ψ ∈ H1(R), ‖ψ‖2 < ‖ϕ0‖2},

see [W3]. The solutions (1.1.4) are the only blowup solutions (up to Galilei invari-
ance) with minimal mass, see [Me1], [Me2].

1.1.3 Extended manifold of blowup solutions

The 3-parameter family (1.1.4) can be considered as the boundary a = 0 of the
4-parameter family of formal solutions w(x, σ(t)),

w(x, σ) = eiµ−iβz2/4λ1/2ϕ(z, a), z = λx,

σ = (µ2 , λ, β, a), λ ∈ R+, β, µ, a ∈ R. Here

ϕ(z, a) =
∞∑
n=0

anϕn(z) (1.1.5)
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is a formal solution of the equation

−ϕzz + ϕ− az2

4
ϕ− ϕ5 = 0, (1.1.6)

Equation (1.1.6) is equivalent to the following system for ϕn :

L0+ϕn =
z2

4
ϕn−1 + Fn, n ≥ 1,

where
L0+ = −∂2

z + 1− 5ϕ4
0,

Fn being a homogeneous polynomial of ϕk, k ≤ n − 1 of degree 5. In particular,
ϕ1 is characterized by the equation :

L0+ϕ1 =
z2

4
ϕ0.

Since L0+ϕ
′
0 = 0, the operator L0+ is invertible being restricted to the sub-

space of even functions. As a consequence, the above equations have a unique even
solution decreasing as |z| → ∞. More precisely,

|ϕn(z)| ≤ c 〈z〉3n e−|z|, z ∈ R.

We use the notation 〈z〉 = (1 + z2)1/2.
Function w(x, σ(t)) is a formal solution of (1.1.1) if σ(t) satisfies the system

λ−3λt = β, λ−2βt + β2 = a, λ−2µt = 1, at = 0, (1.1.7)

which gives, in particular, λ = (d2t
2 + d1t+ d0)−1/2, a = d2

1/4− d2d1. Here dj are
constant.

We shall use the notations ϕN (z, a) =
N∑
k=0

akϕk(z),

ϕN (z, α, a) =
(α
2

)1/2
ϕN (

α

2
x,

16a
α4 ).

1.1.4 Linearization of (1.1.1) on a soliton

Consider the linearization of (1.1.1) on the soliton eitϕ0(x) :

iχt = −χxx − ϕ4
0χ− 2ϕ4

0(χ+ e2itχ̄).

Introduce the function f : χ = eitf. Then f satisfies the equation

i 'ft = H0 'f, 'f =
(
f

f̄

)
,
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H0 = (−∂2
x + 1)σ3 + V (ϕ0), V (ξ) = −3ξ4σ3 − 2iξ4σ2,

σ2, σ3 being the standard Pauli matrices :

σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

H0 is considered as a linear operator in L2(R → C2) defined on the natural
domain. In this section L2 stands for the subspace of the standard L2 consisting
of even functions.

The operator H0 satisfies the relations

σ3H0σ3 = H∗
0 , σ1H0σ1 = −H0, (1.1.8)

where σ1 =
(

0 1
1 0

)
.

The continuous spectrum of H0 consists of two semi-axes (−∞,−1], [1,∞)
and is simple.

The point E = 0 is an eigenvalue of the multiplicity 4. By differentiating the
solution w with respect to the parameters it is easy to distinguish an eigenfunction
'ξ0

'ξ0 = iϕ0

(
1
−1

)
, H0'ξ0 = 0,

and three associated functions 'ξj, j = 1, 2, 3,

H0'ξj = i'ξj−1,

where

'ξ1(x) =
1
4
(1 + 2x∂x)ϕ0

(
1
1

)
, 'ξ2(x) = −i1

8
x2ϕ0(x)

(
1
−1

)
,

'ξ3(x) =
1
2
ϕ1(x)

(
1
1

)
,

ϕ1 being the second coefficient in the expansion (1.1.5).
Since

< 'ξ3, σ3'ξ0 >= −ie, e = ‖xϕ0‖22
8

�= 0,

vectors 'ξj , j = 0, . . . , 4, span the root subspace of H0 corresponding to the eigen-
value E = 0.

It will be shown in Section 2 that E = 0 is the only eigenvalue of H0 .
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1.1.5 Main theorem

Consider the Cauchy problem for equation (1.1.1) with initial data

ψ|t=0 = ψ0, ψ0(x) = e−iβ0x
2/4(ϕN (x, β2

0) + χ0(x)), β0 > 0, (1.1.9)

where χ0(x) = χ0(−x) and χ0 satisfies the estimate

‖χ0‖X = O(β2N
0 ). (1.1.10)

Here ‖f‖X = ‖f‖H1 + ‖xf‖L2 .
Assume that
(i) N is sufficiently large;
(ii) β0 is sufficiently small.
These conditions give, in particular,

H(ϕN (β2
0) + χ0) = −2β2

0e+O(β4
0) < 0,

which together with the conformal invariance implies that the solution ψ of the
Cauchy problem (1.1.1), (1.1.9) blows up in finite time T ∗ <∞.

Our main result is the following.

Theorem 1.1.1 The solution ψ of the Cauchy problem (1.1.1), (1.1.9) blows up in
finite time T ∗ = 1

2β0
(1+ o(1)), as β0 → 0, and there exist λ(t), µ(t) ∈ C1([0, T ∗)),

λ(t) = const(T ∗ − t)−1/2(ln | ln(T ∗ − t)|)1/2(1 + o(1)),
µ(t) = const ln(T ∗ − t) ln | ln(T ∗ − t)|(1 + o(1)), t→ T ∗,

(1.1.11)

such that ψ admits the representation

ψ(x, t) = eiµ(t)λ1/2(t) (ϕ0(z) + χ(z, t)) , z = λ(t)x,

where χ is small in L2 ∩ L∞ uniformly with respect to t ∈ [0, T ∗). Moreover,
‖χ‖∞ = o(1), as t→ T ∗. The constants in (1.1.11) are independent of initial data.

Remark. Due to the conformal invariance the same result remains valid for initial
data of the form

ψ̃0(x) = eiω−ibz2/4λ1/2ψ0(z), z = λx,

where ω ∈ R, λ ∈ R+, b > − 1
T∗ .

Remark. In principle our approach makes it possible to obtain an explicit value of
the constant assumed in the hypothesis (i). But this would make the calculations
less transparent and the result would be very far from the optimal one (we expect
the theorem be true for N > 2).
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1.1.6 Outline of the proof

The proof contains two main ingredients : the ideas of the works [BP1], [BP2],
[SW1], [SW2] where the asymptotic stability of solitary waves were considered
and the asymptotic constructions of the works mentioned in the introduction,
especially, that of [SF]. We shall now briefly describe the main steps of the proof.

Step 1. Splitting of the motion. Following [BP1], [BP2] we start by introducing
some new coordinates for the description of the solution with initial data (1.1.9).
The new coordinates posses an important property : they allow us to split the
motion into two parts, the first part is a finite- dimensional dynamics on the
manifold of formal solutions {w(·, σ)} and the second part remains small in some
sense for all t ∈ [0, T ∗). To describe these coordinates we introduce a quasi-solution
ϕ̃(z, a) of (1.1.6). One of the principal difficulties in the description of the critical
blow-up comes from the fact that (1.1.6) has no admissible solutions for a >
0, which explains the presence of a correction to the self similar blowup rate
(T ∗ − t)−1/2, see again [DNPZ], [Fr], [KSZ], [LPSS], [LePSS1], [LePSS2], [M1],
[M2], [M3], [SF], [SS1], [SS2]. By admissible we mean a solution with the purely
outgoing behavior at infinity

ϕ ∼ const ei
z2h
4 |z|− 1

2−
i
h , h =

√
a,

as |z| → ∞, which would give a finite energy blowup solution w of (1.1.1) with
the blowup rate (T ∗ − t)−1/2. To overcome this difficulty we follow the approach
of [SF]. Instead of (1.1.6) we consider a modified equation where the quadratic
potential −az2

4 is replaced by zero outside the interval h−1[−2 + δ0, 2 − δ0] with
some δ0 > 0. For a sufficiently small this modified equation has a solution ϕ̃ that
decreases exponentially as |z| → ∞. The obtained profile ϕ̃ almost satisfies (1.1.6) :

−ϕ̃zz + ϕ̃− az2

4
ϕ̃− ϕ̃5 = F0(a),

the error F0 is exponentially small (with respect to a). Choosing δ0 sufficiently
small we shall make F0 to be almost of the same order as the effective small pa-

rameter of the problem e−
S0
h , S0 =

2∫
0
ds
√
1− s2/4 (we use this expression for S0

instead of the explicit value in order to underline its obvious semi-classical mean-
ing). The exact assertions related to the modified profile ϕ̃ as well as a description
of the spectral properties of the corresponding linearized operator H̃ are given in
subsubsection 1.2.1.

Using the profile ϕ̃ we decompose the solution ψ of (1.1.1), (1.1.9) as follows.

ψ(x, t) = eiµ(t)−iβ(t)z2/4λ1/2(t)(ϕ̃(z, a) + f(z, t)),

the decomposition being fixed by some suitable orthogonality conditions that have
a natural interpretation in terms of the spectral objects associated to H̃, see sub-
subsection 1.2.2. For the present the parameter δ0 in the definition of ϕ̃ is arbitrary.
We fix it only at the last steps of the proof.
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The functions σ(t) = (µ(t)
2 , λ(t), β(t), a(t)) and f satisfy the system of coupled

equations :
i 'fτ = H(a)'f +N ′(a, f), (1.1.12)

στ = G′(a, f), (1.1.13)

where H(a) = (−∂2
z +1− az2

4 )σ3 + V (ϕ̃(a)), G′, N ′ are some nonlinear functions,

τ is a changed time variable : τ =
t∫
0
dsλ2(s), τ →∞, as t→ T ∗.

Step 2. Effective equations. Assuming that a(τ) is a small slowly varying
function we single out the main order terms in N ′, G′ and derive a model system
that we expect to describe qualitatively the dynamics (1.1.12), (1.2.13). The model
system has the form

ifτ = (−∂2
z + 1− a

z2

4
)f + F0(a),

λ−1λτ = β, βτ + β2 = h2, µτ = 1, hτ = −ch−1e−
S0
h (1 +O(h)),

f |τ=0 = χ0, λ(0) = 1, β(0) = h(0) = β0, µ(0) = 0,

where c is a positive constant. At this stage the constructions are formal and quite
similar to those of [SF]. Solving the equation for h one gets h ∼ ln−1(τ + τ∗),

τ∗ ∼ e
2S0
β0 β3

0 , which leads to (3), (4).
Step 3. Estimates of the solution. To prove that the complete dynamics

(1.1.12), (1.1.13) is indeed close to the model one we employ the standard per-
turbation methods, the same methods were used in [BP1], [BP2]. To ensure that
the correction terms in (1.1.12) can be treated perturbatively one requires suit-
able time-decay estimates (local in space) for the dispersive solutions of the linear
equation

i 'fτ = H(a(τ))'f.

In our case this local decay is a consequence of the corresponding properties of the
group e−iτH(a) restricted to the subspace of the “continuous” spectrum of H(a),
see proposition 1.2.7, and the fact that a depends on τ slowly.

1.2 Splitting of motions

1.2.1 Modified ground state

Consider the equation

−ϕ̃zz +
α2

4
ϕ̃− az2

4
θ(hz)ϕ̃− ϕ̃5 = 0, h =

√
|a| > 0, (1.2.1)

α, a ∈ R. Here θ ∈ C∞
0 (R), θ(ξ) = θ(−ξ), θ(ξ) ≤ 1,

θ(ξ) =
{

1, |ξ| ≤ 2− δ0
0, |ξ| > 2− δ0/2

,
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δ0 > 0 is sufficiently small (θ can be considered as a family of cut-off functions
parametrized by δ0). One has the following proposition.

Proposition 1.2.1 For α in some finite vicinity of 2 and for a sufficiently small,1

equation (1.2.1) has a unique positive even smooth decreasing solution ϕ̃(z, α, a)
which is close to ϕ0(z, α). Moreover,

(i) as a→ 0, ϕ̃(z, α, a) admits the asymptotic expansion (1.1.5) in the sense

|ϕ̃− ϕN | ≤ c|a|N+1 < x >3(N+1) e−
1
h S̃α,a(h|x|),

S̃α,a(ξ) = 1
2

∫ ξ
0 ds

√
α2 − (a)+s2θ(s);

(ii) ‖e 1
hSα,a(h|x|)ϕ̃(α, a)‖∞ ≤ c, Sα,a(ξ) = 1

2

∫ ξ
0 ds

√
α2 − sgn as2θ(s).

The similar formulas are valid for the derivatives of ϕ̃ with respect to z, α, a.
Here (a)+ stands for max(a, 0).

See subsection 2.2 for the proof.
Introduce a linearized operator H̃(a) associated to the modified ground state

ϕ̃(z, a) = ϕ̃(z, 2, a)

H̃(a) = (−∂2
x + 1− az2

4
θ)σ3 + V (ϕ̃(a)).

The continuous spectrum of H̃(a) is the same as in the case of the operator H0.
The point E = 0 is an eigenvalue of H̃(a) of the multiplicity 2. There are an
eigenfunction ζ̃0(a)

ζ̃0(a) = iϕ̃(a)
(

1
−1

)
, H̃ζ̃0 = 0,

and an associated function ζ̃1(a)

ζ̃1(a) = ∂αϕ̃(α, a)|α=2

(
1
1

)
, H̃ζ̃1 = iζ̃0,

〈
ζ̃1, σ3ζ̃0

〉
= i4ea+O(a2).

A more detailed description of the discrete spectrum can be obtained by
means of the standard perturbation methods. In particular, the following propo-
sition is proved in subsubsection 2.3.2.

Proposition 1.2.2 For a sufficiently small the discrete spectrum of the operator
H̃(a) in some finite vicinity of the point E = 0 consists of 0 and two simple
eigenvalues ±λ(a), λ(a) = i

√
aλ′(a), where λ′ is a smooth real function of a. As

a → 0, λ′(a) = 2 + O(a). Let ζ̃2(a) be an eigenfunction corresponding to λ(a)
normalized by the condition〈

ζ̃2, 'ξ0

〉
=
〈
ζ̃0, 'ξ0

〉
− λ2

〈
'ξ2, 'ξ0

〉
.

1The constants here and below depend on δ0.
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Then ζ̃2(a) is a smooth function of a1/2 admitting the following asymptotic expan-
sion as a→ 0

ζ̃2 = ζ̃0 − iλζ̃1 − λ2'ξ2 + iλ3'ξ3 + iaλ2
(

1
−1

)
(h0 +O(a)) + iaλ3

(
1
1

)
(h1 +O(a)),

where hi, i = 1, 2, are some real even smooth exponentially decreasing functions.
O(a) corresponds to the L∞-norm with the weight e

1−γ
h S̃a(h|x|), S̃a(ξ) = S̃2,a(ξ),

γ > 0. This asymptotic representation can be differentiated any number of times
with respect to x and a.

Let us mention that
σ1ζ̃2 =

¯̃ζ2.

In the subspace generated by ζ̃j(a), j = 0, . . . 3, where ζ̃3 = σ1ζ̃2 is an eigen-
function corresponding to the eigenvalue −λ, we introduce a new basis {'ej(a)}3j=0 :

'e0 = ζ̃0, 'e1 = ζ̃1,

'e2 =
1
2λ2

(
−ζ̃2 + ζ̃3 + 2ζ̃0

)
, 'e3 = − i

2λ3

(
ζ̃2 + ζ̃3 + i2λζ̃1

)
,

'e2 = e2
( 1
−1

)
, 'e3 = e3

( 1
−1

)
, ēj = (−1)j−1ej .

It follows from proposition 1.2.2 that as a→ 0,

'e2 = 'ξ2 − iah0

(
1
−1

)
+O(a2),

'e3 = 'ξ3 + ah1

(
1
1

)
+O(a2).

1.2.2 Orthogonality conditions

Return to the Cauchy problem (1.1.1), (1.1.9). Using the profile ϕ̃ one can rewrite

the initial data ψ0 in the form : ψ0 = e−i
β0x

2

4 (ϕ̃(β2
0) + χ′

0), ‖χ′
0‖X = O(β2N

0 ).
Below we shall omit “ ′ “ in the notation of χ′

0.
Write the solution ψ as the sum

ψ(x, t) = eiΦλ1/2(t) (ϕ̃(z, a(t)) + f(z, t)) , Φ = µ(t)− β

4
z2, z = λ(t)x, (1.2.2)

where ϕ̃(z, a) = ϕ̃(z, 2, a), σ(t) = (µ(t)
2 , λ(t), β(t), a(t)) being an arbitrary curve in

R+ ×R3, it is not a solution of (1.1.7) in general.
The decomposition can be fixed by the orthogonality conditions〈

'f(t), σ3'ej(a(t))
〉
= 0, j = 0, . . . , 3. (1.2.3)
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This means that σ has to satisfy the system

Fj(ψ, σ) = 0, j = 0, . . . 3, (1.2.4)

Fj(ψ, σ) = λ1/2
〈
'ψ, σ3e

iΦσ3'ej(λ·, a)
〉
− 〈'e0(a), 'ej(a)〉 = 0, 'ψ =

(
ψ

ψ̄

)
.

The solvability of (1.2.4) for ψ in some small L2− vicinity of ϕ0 is guaranteed by
the smoothness of the basis 'ej(a), j = 0, . . . , 3 and the non-degeneration of the
corresponding Jacobi matrix

B0 =
{
∂Fj
∂σk

} ∣∣
ψ=ϕ0

σ=(1,0,0,0)
.

It is not difficult to check that

B0 = −2
{〈

'ξk, σ3'ξj

〉}3

k,j=0
, detB0 =

∣∣∣2〈'ξ1, σ3'ξ2

〉∣∣∣4 = (8e)4 �= 0.

So, one can assume that the initial decomposition obeys (1.2.3) :〈
'χ0, σ3'ej(β2

0)
〉
= 0, j = 0, . . . , 3.

To prove the existence of a trajectory σ(t) we need the following orbital
stability result :

Proposition 1.2.3 For any ε > 0 there exists δ > 0 such that for any ψ0, ‖ψ0 −
ϕ0‖H1 ≤ δ, E(ψ0) < 0, there exists µ(t) ∈ C([0, T ∗)) such that the solution ψ
corresponding to the initial data ψ0 satisfies the inequality

‖ψ(t)− λ1/2(t)eiµ(t)ϕ0(λ(t)·)‖2 ≤ ε, 0 ≤ t < T ∗,

where λ(t) is given by

λ(t) =
‖ψx(t)‖2
‖ϕ0x‖2

.

See [LBSK], [W2], [W3] for the proof.
By (1.1.10), ψ̃0, ψ̃0 = ϕ̃(β2

0) +χ0 satisfies the conditions of the above propo-
sition. Thus, the corresponding solution ψ̃(t) admits the representation

ψ̃(x, t) = eiΦ̃λ̃1/2(t)
(
ϕ̃(z, ã(t)) + f̃(z, t)

)
, Φ̃ = µ̃(t)− β̃(t)

4
z2, z = λ̃(t)x,

where σ̃(t) = ( µ̃(t)
2 , λ̃(t), β̃(t), ã(t)), σ̃(0) = (0, 1, 0, β2

0) is a continuous trajectory
satisfying (1.2.4), ‖f̃‖2, λ̃ ‖ϕ0x‖2

‖ψx(t)‖2
−1 , β̃, ã being small uniformly with respect to

t.
By the conformal invariance we can write now the solution ψ(t) of the Cauchy

problem (1.1.1), (1.1.9) in the form (1.2.2) where

µ(t) = µ̃(ρ), λ(t) = (1− β0t)−1λ̃(ρ),
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β(t) = β0(1− β0t)λ̃−2 + β̃(ρ), a(t) = ã(ρ), ρ =
t

1− β0t
,

f(z, t) = f̃(z, ρ) satisfying the orthogonality conditions (1.2.3).
By (i) of proposition 1.1.1, λ admits the estimate

λ(t) ≥ c(T ∗ − t)−1/2. (1.2.5)

Remark that since ψ(t) ∈ C1([0, T ∗) → H−1) the trajectory σ(t) belongs in
fact, to C1.

1.2.3 Differential equations

We write a system of equations for σ and f in explicit form. Introduce a new time
variable τ :

τ =

t∫
0

dsλ2(s).

By (1.2.5), τ →∞ as t→ T ∗.
In terms of f (1.1.1) takes the form

i 'fτ = H̃(a)'f +N, (1.2.6)

where

N = N0(a, f) +N1(ϕ̃, f) + l(σ)
(
ϕ̃

(
1
1

)
+ 'f

)
− iaτ ϕ̃a

(
1
1

)
,

N0(a, f) =
az2

4
(θ(hz)− 1)σ3(ϕ̃

(
1
1

)
+ 'f), (1.2.7)

N1(ϕ̃, f) = −|ϕ̃+ f |4σ3(ϕ̃
(
1
1

)
+ 'f) + ϕ̃5

(
1
−1

)
− V (ϕ̃)'f,

l(σ) = (µτ − 1)σ3 + i(β − λτ
λ
)(z∂z +

1
2
) + (a− βτ + β2 − 2β

λτ
λ
)
z2

4
σ3.

Substitute the expression for 'fτ from (1.2.6), (1.2.7) into the derivative of the
orthogonal conditions. The result can be written down as follows :

(A0(a) +A1(a, f))'η = 'g(a, f). (1.2.8)

Here
'η = (

µτ − 1
2

,
λτ
λ
− β, βτ − β2 + 2β

λτ
λ
− a, aτ ),

A0 = 2




0 0 0 −(ϕ̃a, ϕ̃)
2(ϕ̃, ϕ̃α) 0 −( z2

4 ϕ̃, ϕ̃α) 0
0 −i((z∂z + 1

2 )ϕ̃, e2) 0 −i(ϕ̃a, e2)
2(ϕ̃, e3) 0 −( z2

4 ϕ̃, e3) 0


 ,
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(A1'η)j =
〈
l(σ)'f , σ3'ej

〉
+ iaτ

〈
'f, σ3'eja

〉
,

gj(a, f) = −〈N0 +N1, σ3'ej〉 .
By propositions 1.2.1, 1.2.2,

A0(a) = iB0 +O(a), (1.2.9)

as a→ 0.
In principle (1.2.8) can be solved with respect to the derivatives η and to-

gether with equation (1.2.6) constitutes a complete system for σ, 'f :

i 'fτ = H(a)'f +N ′(a, f), (1.2.10)

'η = G(a, f), (1.2.11)

f |τ=0 = χ0, σ|τ=0 = (0, 1, β0, β
2
0).

Here H(a) = (−∂2
z + 1− az2

4 )σ3 + V (ϕ̃(a)), N ′ = N − a z2

4 (θ − 1)σ3 'f.

1.2.4 Effective equations

In order to derive a system of effective equations consider the main nonlinear terms
of (1.2.10), (1.2.11). Below it will become clear that the function a depends slowly
on τ . More precisely,

a ∼ ln−2(τ + τ∗), (1.2.12)

with some τ∗ = O(e
2S0
β0 β3

0). We shall also see that the contribution f of the
continuous spectrum asymptotically is of the order e−

S0
h , h =

√
a, (in the uniform

norm) and of the order e−
2S0
h for z not too large. In its turn the vector η also

has the order e−
2S0
h . We shall use these facts while deriving the equations. At this

stage we are not worrying about formal justification.
The main terms of N are generated by the expression

N ∼ F0(a)
(

1
−1

)
, F0(a) = a

z2

4
(θ − 1)ϕ̃. (1.2.13)

Thus, it is clear that in the region |z| ≥ const h−1 the main order term of f is
given by the expression

f ∼ −(l(a) + 1− i0)−1F0(a), (1.2.14)

where l(a) = −∂2
z − a z2

4 .

The sign “-” (in −i0) is essential : it means that e−ihz
2

4 (l(a)+1− i0)−1F0(a)
has finite energy.

For the following it is convenient to write f = f0 + f1, f0 = −(l(a) + 1 −
i0)−1F0(a). It will become clear later that in the region |z| ≥ const h−1 f0 and
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f1 are of the order e−
S0
h and e−

2S0
h respectively while for |z| ∼ 1 both f0 and f1

have the order e−
2S0
h .

Consider (1.2.11). The main term of G is given by the expression

G ∼ A−1
0 (a)'g0(a),

where g0
j = −〈N0(a, f0), σ3'ej〉 . So we rewrite (1.2.11) in the form

'η = G0(a) +GR(a, f). (1.2.15)

Here G0(a) = −A−1
0 (a)'g0(a), GR being the remainder.

The behavior of f0(a), G0(a) in the limit a→ 0 is described by the following
proposition.

Proposition 1.2.4 For a > 0 sufficiently small, f0(a), G0(a) satisfy the estimates

‖f0(a)‖∞ ≤ ce−(1−ε)S0
h , ‖ϕ̃(a)f0(a)‖∞ ≤ ce−(2−ε)S0

h ,

‖ ̂
e−ihz

2
4 f0‖1, ‖

̂
(z∂z +

1
2
)e−ihz

2
4 f0‖1, ‖

̂
∂he−ihz

2
4 f0‖1 ≤ ce−(1−ε)S0

h ,

‖G0(a)‖ ≤ ce−(2−ε)S0
h .

Moreover, G3
0 admits the following representation

G3
0(a) = −2ν0e

− 2S0
h (1 +O(a)), ν0 =

ϕ2
∞
e
.

This asymptotic estimate can be differentiated any number of times with respect to
a. Here f̂ stands for the Fourier transform of f :

f̂(p) = (2π)−1/2
∫

dxe−ipxf(x).

Here and in what follows the letter ε is used as a general notation for small
positive constants that depend on the choice of the cut off function θ and tend to
zero as δ0 → 0. They may change from line to line.

The proof of this proposition is given in appendix 2.
In order to estimate qualitatively the behavior of a, consider the last equation

of (1.2.15) neglecting the remainder GR :

aτ = G3
0(a).

We denote by a0(τ) the solution of this equation with initial data a0(0) = β2
0 . It

is easy to check that h0 =
√
a0 admits the representation

h−1
0 (τ) =

1
2S0

(ln ν1(τ + τ∗) + 3 ln ln ν1(τ + τ∗)) +O(
ln ln(τ + τ∗)
ln(τ + τ∗)

), (1.2.16)

as τ + τ∗ → +∞, ν1 = ν0
4S2

0
, τ∗ = β3

0
2S0ν0

e
2S0
β0 (1 +O(β0)).
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1.2.5 Spectral properties of the operator H(a)

To study the behavior of solutions to (1.2.10), (1.2.11) we need some information
about spectral properties of H(a), a > 0, in the limit a→ 0. The necessary facts
are collected in this subsubsection, the proofs being given in Section 2.

We renormalize H(a) to make the principal part independent of the param-
eters :

H(a) = a1/2T (a1/4)Ĥ(a)T ∗(a1/4), (T (a)f)(z) = a1/2f(az), a > 0.

The operator Ĥ(a) has the form

Ĥ(a) = (−∂2
z + Ê0 −

z2

4
)σ3 + Ŵ (a), Ê0 = a−1/2,

where Ŵ (a) = a−1/2T ∗(a1/4)V (ϕ̃(a))T (a1/4).
We consider Ĥ(a) as a linear operator in L2(R → C2) defined on the domain

where the operator (−∂2
z − z2

4 )σ3 is self-adjoint. The continuous spectrum of Ĥ(a)
coincides with R. Because of the exponential decrease of the potential Ŵ at infinity
the point spectrum contains only finitely many eigenvalues, and the corresponding
root subspaces are finite-dimensional. Ĥ(a) satisfies the same relations (1.1.8) as
H0. As a consequence the spectrum is symmetric with respect to transformations
E → −E and E → Ē.

Consider the equation
(Ĥ −E)ψ = 0. (1.2.17)

One can find a basis of solutions f̂j(z,E), j = 1, . . . , 4, with the following prop-
erties. The solutions fj are holomorphic functions of E , E ∈ C, admitting the
following asymptotic representations as z → +∞

f̂1(z,E) = ei
z2
4 zν̂(E)[

(
1
0

)
+ o(1)],

f̂2(z,E) = e−i z
2
4 zν̂(Ē)[

(
1
0

)
+ o(1)],

f̂3(z,E) = e−i z
2
4 zν̂(−Ē)[

(
0
1

)
+ o(1)],

f̂4(z,E) = ei
z2
4 zν̂(−E)[

(
0
1

)
+ o(1)],

where ν̂(E) = −1
2 + i(E − Ê0).

We introduce the solutions ĝj(z,E), j = 1, . . . , 4, with standard behavior at
−∞ by

ĝj(z,E) = f̂j(−z,E).
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Consider the matrix solutions

F̂1 = (f̂1, f̂3), F̂2 = (f̂2, f̂4), Ĝ1 = (ĝ1, ĝ3), Ĝ2 = (ĝ2, ĝ4).

One can express F̂1 in terms of Ĝj , j = 1, 2 :

F̂1 = Ĝ2Â+ Ĝ1B̂,

Â = Â(E), B̂ = B̂(E) are holomorphic functions of E , E ∈ C.
The eigenvalues of the operator Ĥ lying in the upper half plane {ImE > 0}

are characterized by the equation

det Â(E) = 0.

The solutions of this equation in lower half plane {ImE ≤ 0} are called resonances.
One can prove the following result.

Proposition 1.2.5 For a > 0 sufficiently small ,
(i) the point spectrum of Ĥ(a) restricted to the subspace of even functions

consists of four simple purely imaginary eigenvalues ±iÊ1,2(a), Êj > 0,

Ê1 = O(e−(1−ε)S0/h), |Ê2(a)− λ′(a)| = O(e−(2−ε)S0/h),

(ii) there exists C0 > 0, independent of a, such that in the strip {E : −C0 <
ImE ≤ 0} the operator Ĥ(a) has only one simple resonance iÊR(a), ÊR < 0.

Moreover, ÊR admits the asymptotic estimates

ÊR = O(e−(1−ε)S0/h), ÊR + Ê1 = O(a−2e−2S0/h).

Let ζ̂j , j = 1, . . . 4, be eigenfunctions corresponding to the eigenvalues ±iÊj,
j = 1, 2 :

Ĥζ̂j = iÊj ζ̂j , Ĥζ̂j+2 = −iÊj ζ̂j+2, j = 1, 2.

Let ζ̂R be a resonant function corresponding to iÊR :

Ĥζ̂R = iÊRζ̂R,

ζ̂R ∼ e
iz2
4 σ3 |z|− 1

2−ÊR−iÊ0σ3'c,

as |z| → ∞. Here 'c is a constant vector.
Let P̂ (a) stand for the spectral projection onto eigenspace corresponding to

the eigenvalues iÊ1,±iÊ2 and to the resonance iÊR :

P̂ (a)f = n−1
1 ζ̂1

〈
f, σ3ζ̂3

〉
+ n−1

2 ζ̂2

〈
f, σ3ζ̂4

〉
+n̄−1

2 ζ̂4

〈
f, σ3ζ̂2

〉
+ n−1

R ζ̂R

〈
f, σ3

¯̂
ζR

〉
.
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The normalization constants n1, n2, nR are given by

nR =
〈
ζ̂R, σ3

¯̂
ζR

〉
, nj =

〈
ζ̂j , σ3ζ̂j+2

〉
, j = 1, 2.

The spectral projection P (a) of the operatorH(a) corresponding to the eigenvalues
iE1,±iE2 and to the resonance iER is given by

P (a) = T (a1/4)P̂ (a)T ∗(a1/4).

Introduce the operator Q(a) :

Q(a) = (I − P̃ (a))P (a)(I − P̃ (a)),

where P̃ (a) is the spectral projection of the operator H̃(a) onto the subspace
corresponding to the eigenvalues E = ±λ(a) and E = 0 :

P̃ (a)f = ñ−1
1 ζ̃0

〈
f, σ3ζ̃1

〉
− ñ−1

1 ζ̃1

〈
f, σ3ζ̃0

〉

+ñ−1
2 ζ̃2

〈
f, σ3ζ̃3

〉
− ñ−1

2 ζ̃3

〈
f, σ3ζ̃2

〉
,

ñ1 =
〈
ζ̃0, σ3ζ̃1

〉
, ñ2 =

〈
ζ̃2, σ3ζ̃3

〉
.

The following proposition is proved in subsubsection 2.4.4.

Proposition 1.2.6 The operators P , Q admit the estimates

|(Pf)(z)| ≤ c < z >−1/2+ÊR ‖e−i z
2h
4 σ3f‖H1 ,

|(Qf)(z)| ≤ c < z >−1/2+ÊR e
1
hS(h|z|)e−(3−ε)S0/h‖e−i z

2h
4 σ3f‖H1 ,

where S(ξ) =
∫ ξ
0 ds

√
(1− s2/4)+.

Let us introduce the operators F̂, Ĝ : L2(R → C2)→ L2(R → C2) :

(F̂Φ)(z) =
1√
2π

∫
R

dEF̂(z,E)Φ(E),

(ĜΦ)(z) =
1√
2π

∫
R

dEĜ(z,E)Φ(E).

Here F̂ , Ĝ are solutions of the scattering problem :

F̂ = F̂1Â
−1, Ĝ = Ĝ1Â

−1,

F̂(z,E) ∼ e
iz2
4 σ3z−

1
2+i(E−Ê0σ3)Â−1, z → +∞,

F̂(z,E) ∼ e−
iz2
4 σ3 |z|− 1

2−i(E−Ê0σ3) + e
iz2
4 σ3 |z|− 1

2+i(E−Ê0σ3)B̂Â−1, z → −∞.
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The action of the adjoint operators F̂∗, Ĝ∗ is given by

(F̂∗ψ)(E) =
1√
2π

∫
R

dzF̂∗(z,E)ψ(z),

(Ĝ∗ψ)(E) =
1√
2π

∫
R

dzĜ∗(z,E)ψ(z).

It is not difficult to show that F̂, Ĝ are bounded in L2 and satisfy the relations

Êσ̂3Ê∗σ3 = P c, Ê∗σ3Êσ̂3 = I,

where Ê : L2(R → C2)× L2(R → C2)→ L2(R → C2),

Ê'Φ = F̂Φ1 + ĜΦ2, 'Φ = (Φ1,Φ2),

σ̂3 =
(

σ3 0
0 σ3

)
, P c being the spectral projection onto the subspace of the

continuous spectrum. Moreover, one can prove the following proposition.

Proposition 1.2.7 For a > 0 sufficiently small, there exists b0, 1
2 > b0 > 0, inde-

pendent of a, such that
(i) for e−i z

2
4 σ3f ∈ H1, (F̂∗f)(E) is a meromorphic function of E in the strip

−b0 ≤ ImE ≤ 0 with the only pole in −iÊ1 and satisfies the estimate

‖F̂∗f‖L2(R−ib), ‖∂hF̂∗f‖L2(R−ib) ≤ ch−K1‖e−i z
2
4 σ3f‖H1 ,

hL ≤ b ≤ b0;
(ii) let us introduce the operators F̂b :

(F̂bΦ)(z) =
1√
2π

∫
R

dEF̂(z,E − ib)Φ(E).

For hL ≤ b ≤ b0, they satisfy the inequality.

‖(1 + |z|)−ν2 F̂bΦ‖2 ≤ ch−K2‖Φ‖2, ν2 > 1/2,

the same being true for F̂ replaced by Ĝ.
Here Kj , j = 1, 2, depend only on L.

1.2.6 Equations on the finite interval

Following [BP1], [BP2] we consider the system (1.2.10), (1.2.11) on some finite
interval [0, τ1] and later investigate the limit τ1 →∞.

On the interval [0, t1], t1 = t(τ1) we approximate the trajectory σ(t) by σ1(t)
where σ1(t) = (µ(t)

2 , λ1(t), β1(t), a1(t)) is the solution of the following Cauchy
problem

λ−3
1 λ′

1 = β1, λ
−2
1 β′

1 + β2
1 = a1, a

′
1 = 0,
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λ1(t1) = λ(t1), β1(t1) = a1/2(t1), a1(t1) = a(t1).

We associate to the trajectory σ1 a new function g

g(y, ρ) = eiy
2�r1/2f(ry, τ),

where � = 1−βr2

4 , r = λ√
β1λ1

, ρ =
∫ τ
0 dsr−2.

Equation (1.2.10) in terms of g takes the form

i'gρ = Ĥ(a)'g +N0 +N1 +N2 +N3, (1.2.18)

where

N0 = eiy
2�σ3r5/2F0(a)

(
1
−1

)
, N1 = eiy

2�σ3r5/2N1,

N2 = eiy
2�σ3r5/2

(
l(σ)ϕ̃

(
1
1

)
− iaτ ϕ̃a

(
1
1

))
, (1.2.19)

N3 = eiy
2�σ3r5/2V (ϕ̃(a))'f − Ŵ (a)'g + (µρ − h−1)σ3'g.

Since a depends slowly on τ it is natural to rewrite the above equation in
terms of the spectral representation of Ĥ(a). Write 'g as the sum

'g = 'h+ 'k (1.2.20)

of the projections on the subspaces corresponding to the discrete and continuous
spectra of Ĥ(a). More precisely, set

'k = P̂ (a)'g.

Then
'h = (F̂b + Ĝb)σ3Φ(· − ib), Φ(E) = (F̂∗σ3'g)(E),

where −ÊR < b ≤ b0. Let us remark that due to the orthogonality conditions
(1.2.3) the four dimensional component k is controlled by h (or equivalently by
Φ).

Projecting (1.2.18) on the subspace of the continuous spectrum of Ĥ(a) one
gets an equation for Φ :

iΦρ = EΦ+D, (1.2.21)

where D = D0 +D1 +D2,

D0 = F̂∗σ3N0, D1 = iF̂∗
ρσ3'g, D2 =

3∑
j=1

F̂∗σ3Nj . (1.2.22)

Consider (1.2.21) on the line ImE = −b with some b, 0 < b ≤ b0, that will
be fixed later, rewriting it as an integral equation :

Φ(ρ) = e−iEρF̂∗(0)σ3'g0 − i

ρ∫
0

dse−iE(ρ−s)D(s), ImE = −b. (1.2.23)
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Here
F̂(0) = F̂(a(0)), g0(y) = eiy

2�0r
1/2
0 χ0(r0y),

�0 =
1− β0r

2
0

4
, r0 = (β1λ

2
1(0))

−1/2.

The relations (1.2.3), (1.2.15), (1.2.20), (1.2.23) make up the final form of the
equations which is used to investigate the dynamical system on the interval [0, τ1].

It follows from (1.2.13), (1.2.14) that the main part of D is given by D0.
The contribution of D0 in (1.2.22) allows some asymptotic simplifications. After a
natural integration by parts one gets

Φ = Φ0 +Φ1, Φ0 = − 1
E
D0,

Φ1(ρ) = e−iEρσ3Φ10 − i

∫ ρ

0
dse−iE(ρ−s)D′(s). (1.2.24)

Here Φ10 = F∗(0)σ3'g0+ 1
ED0(0), D′ = D1+D2+i

D0ρ
E . In accordance with (1.2.13)

the main order term of Φ is given by Φ0.

1.3 Estimates of the solution

Here we prove that the new coordinates indeed admit only small (in suitable sense)
deviations from their initial values. As in [BP1], [BP2], for this purpose we use the
method of majorants.

1.3.1 Estimates of soliton parameters

Introduce a natural system of norms for the components of the solution ψ :

s0(τ) = sup
s≤τ

|h(s)− h0(s)|h−2
0 (s),

s1(τ) = sup
s≤τ

|β(s)− h(s)|h−2
0 (s)p−1(s;κ1, r1),

s2(τ) = sup
τ≤s≤τ1

|β(s)− r−2|h−2
0 (s)p−1(s;κ2, r2),

M0(τ) = sup
s≤τ

‖f(s)‖∞p−1(s;κ0, r0),

M1(τ) = sup
s≤τ

‖ 〈z〉−ν3 f1(s)‖∞p−1(s;κ3, r3), ν3 ≥ 2,

M2(τ) = sup
s≤τ

‖ρδf(s)‖2p−1(s;κ4, r4),

where

p(τ ;κ, r) = e−κ
∫ τ
0 dsh0(s) + e−r

S0
h0(τ) , ρδ = e−

(1−δ)
h0

∫h0|z|
0 ds

√
1− s2

4 θ(s),
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κ4 = b0
4 , κ0 = κ3 = 7

8κ4, κ1 = 3
2κ4, κ2 = 5

4κ4, r0 = 3
4 , r1 = 15

8 , r2 = 7
4 , r3 = 4

3 ,
r4 = 3

2 , δ > 0 is supposed to be a sufficiently small fixed number.
At last, set

ŝj = sj(τ1), j = 0, 1, ŝ2 = s2(0), M̂j =Mj(τ1).

Consider equation (1.2.15). It follows immediately from (1.2.7), (1.2.9) and
from proposition 1.2.4 that

|η| ≤W (M, s)[e−(2−ε) S0
h0(τ) + e−(1−ε) S0

h0(τ) ‖ 〈z〉−ν3 f1‖∞
+‖ρδf‖22 + ‖ρδf‖2‖f‖4∞],

|GR| ≤W (M, s)[e−(4−ε) S0
h0(τ) + e−(1−ε) S0

h0(τ) ‖ 〈z〉−ν3 f1‖∞
+‖ρδf‖22 + ‖ρδf‖2‖f‖4∞].

We useW (M, s) as a general notation for functions ofMj , j = 0, 1, 2, sk, k =
0, 1, 2, defined on R6, which are bounded in some finite neighborhood of 0 and may
acquire the infinite value +∞ outside some larger neighborhood. While depending
on δ0, δ, W does not depend on β0. In all the formulas where W appear it would
be possible to replace them by some explicit expressions but such expressions are
useless for our aims.

In terms of majorants the above inequalities take the form

|η| ≤W (M, s)
[
Ψ0(M)e−2κ3

∫ τ
0 dsh0(s) + e−(2−ε) S0

h0(τ)

]
, (1.3.1)

|GR| ≤W (M, s)Ψ1(M)
[
e−

3κ3
2

∫ τ
0 dsh0(s) + e−

3r4
2

S0
h0(τ)

]
, (1.3.2)

where
Ψ0(M) =M2M

4
0 + β4

0M
2
1 +M2

2 ,

Ψ1(M) = e−γ/β0 +M2M
4
0 +M2

2 ,

with some γ > 0.
Using (1.3.1), (1.3.2) and proposition 1.2.4 it is not difficult to get the fol-

lowing inequalities
s0 ≤W (M, s)

(
s20 + β−4

0 Ψ1(M)
)
,

s1 ≤W (M, s)
(
β0s

2
1 + e−

γ
β0 + β−4

0 Ψ0(M)
)
,

s2 ≤W (M̂, ŝ)
(
ŝ1 + β0s

2
2 + e−

γ
β0 + β−3

0 Ψ0(M̂)
)
.

See appendix 3 for the proof.
Changing if necessary, functions W one can simplify these inequalities :

s0 ≤W (M, s)β−4
0 Ψ1(M),

s1 ≤W (M, s)
(
e−

γ
β0 + β−4

0 Ψ0(M)
)
, (1.3.3)

s2 ≤W (M̂, ŝ)
(
e−

γ
β0 + β−4

0 Ψ0(M̂)
)
, γ > 0.
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1.3.2 Estimates of Dj

Consider (1.2.24). Using propositions 1.2.4, 1.2.7 one gets for D0

‖D0‖L2(R−ib) ≤W (M̂, ŝ)e−(1−ε) S0
h0(τ) , (1.3.4)

‖D0ρ

E
‖L2(R−ib) ≤W (M̂, ŝ)e−(1−ε) S0

h0(τ) [|aρ|+ |βρ|+ |rρ|]

≤W (M̂, ŝ)e−(1−ε) S0
h0(τ) [|η|+ |β − h|+ |β − r−2|]. (1.3.5)

In a similar manner

‖D1‖L2(R−ib) ≤W (M̂, ŝ)h−K
0

(
|η|+ |β − h|+ |β − r−2|

)
‖e−i βz

2
4 f‖H1 . (1.3.6)

In this subsubsection and the next one we use letter K as a general notation for
nonnegative numbers independent of parameters that may change from line to
line.

Consider D2. It is not difficult to show that

‖e−i y
2
4 σ3N1‖H1 ≤W (M̂, ŝ)h−3

0 ‖e−iβz
2

4 σ3N1‖H1

≤W (M̂, ŝ)h−3
0 (1 + ‖e−iβz

2

4 f‖H1)
[
e−(2−ε) S0

h0(τ)

+‖ < z >−ν3 f1‖∞(‖∂z(e−ihz
2

4 f)‖2 + ‖ρδf‖2) + ‖ρδf‖22 + ‖f‖4∞
]
,

‖e−i y
2
4 σ3N2‖H1 ≤W (M̂, ŝ)h−K

0 |η|, (1.3.7)

‖e−i y
2
4 σ3N3‖H1 ≤W (M̂, ŝ)h−K

0

(
|µρ − r2|+ |�|+ |r−2 − h|

)
‖e−iβz

2
4 f‖H1

≤W (M̂, ŝ)h−K
0

(
|η|+ |β − r−2|+ |β − h|

)
‖e−iβz

2
4 f‖H1 .

Combining the inequalities (1.3.5)-(1.3.7) one obtains

‖D′‖L2(R−ib) ≤W (M̂, ŝ)h−K
0 (1 + ‖e−i βz

2
4 f‖H1)

×
[
|η|+ |β − h|+ |β − r−2|+ e−(2−ε) S0

h0(τ)

+‖ < z >−ν3 f1‖∞(‖∂z(e−ihz
2

4 f)‖2 + ‖ρδf‖2)
+‖ρδf‖22 + ‖f‖4∞

]
. (1.3.8)

It follows directly from the conservation laws that

‖f‖2 ≤W (M̂, ŝ),

‖∂z(e−ihz
2

4 f)‖2 ≤W (M̂, ŝ)[λ−1βN0 + |h− β|1/2 (1.3.9)
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+e−(1−ε) S0
h0(τ) + ‖ρδf‖1/22 + ‖f‖2∞].

In the last inequality we also made use of the obvious asymptotic estimate

|H(e−ihz
2

4 ϕ̃(a))| = O(e−(2−ε)S0
h ).

The inequalities (1.3.8), (1.3.9) lead to the estimate

‖D′‖L2(R−ib) ≤W (β−1
0 M̂, ŝ)h−K

0 [β2N
0 +Ψ2(M)]p(τ ;κ2, r2), (1.3.10)

Ψ2(M) = M1M
1/2
2 + (M0 +M1)2 +M2

2 . Here we have also used (1.3.1), (1.3.3)
and the obvious inequality

λ−1 ≤W (β−1
0 M̂, ŝ)e

−γ
τ∫
0
dsh0(s)

, γ < 1.

1.3.3 Estimates of f in L2

To estimate f we represent it as the sum

f = f0 + f1 + f2,

'fj = (I − P̃ (a))T (r−1)e−iy2�σ3'hj , j = 0, 1,

where
'hj = (F̂b + Ĝb)Φj(· − ib).

At last,
'f3 = (I − P̃ (a))T (r−1)e−iy2�σ3'k.

Consider f0. Using the representation
'h0 = −(Ĥ − i0)−1(I − P̂ )N0,

one can get the following estimate (see appendix 5)

‖ρδf2‖2 ≤W (M̂, ŝ)e−(2−ε)S0
h . (1.3.11)

Here and in what follows ε depends on both δ0 and δ and tends to zero as
δ0, δ → 0.

It follows from proposition 1.2.7 and (1.2.24), (1.3.4), (1.3.10) that

‖ρδf1‖2 ≤W (β−1
0 M̂, ŝ)h−K

0 [β2N
0 +Ψ2(M)]p(τ ;κ2, r2), (1.3.12)

provided b > κ2.
Using proposition 1.2.6 one can easily prove the following estimate

‖ρδf2‖2 ≤W (M̂, ŝ)h−K
0 [e−(2−ε)S0

h + |β − h|+ |β − r−2|]‖e−iβz
2

4 f‖H1 . (1.3.13)

Combining (1.3.11)-(1.3.13) and taking into account (1.3.3) one gets finally

‖ρδf‖2 ≤W (β−1
0 M̂, ŝ)h−K0

0 [β2N
0 +Ψ2(M)]p(τ ;κ2, r2)

≤W (β−1
0 M̂, ŝ)β−K0

0 [β2N
0 +Ψ2(M)]p(τ ;κ4, r4) (1.3.14)

with some K0 ≥ 0.
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1.3.4 Estimates of f in L∞

We represent f by the sum 'f = ei
βz2
4 σ3(f̃0+ f̃1), where f̃0 = e−ihz

2
4 σ3 'f0(a). Then

f̃1 satisfies the equation

if̃1
τ = (−∂2

z + µτ )σ3f̃
1 − i

λτ
λ
(
1
2
+ z∂z)f̃1 +H0 +H1, (1.3.15)

where H0 = H00 +H01 +H02,

H00 = −if̃0
τ + (µτ − 1)σ3f̃

0 + i(h− λτ
λ
)(
1
2
+ z∂z)f̃0,

H01 = e−iβz
2

4 σ3N1,

H02 = e−iβz
2

4 σ3

(
l(σ)ϕ̃

(
1
1

)
− iaτ ϕ̃a

(
1
1

))

+(e−i βz
2

4 σ3 − e−ihz
2

4 σ3)F0(a)
(

1
−1

)
.

At last, H1 = e−i βz
2

4 σ3V (ϕ̃(a))'f.
We rewrite (1.2.15) as an integral equation

f̃1 = U(τ, 0)'χ1 − i

∫ τ

0
dsU(τ, s)(H0(s) +H1(s)), (1.3.16)

where χ1 = e−i
β0z

2

4 (χ0 − f0(β2
0)), U(τ, s) being the propagator corresponding to

the equation ifτ = (−∂2
z + µτ )σ3f − iλτλ (1

2 + z∂z)f.
It follows from (1.3.16) that

‖f̃1‖∞ ≤ c[λ−1/2(τ)‖χ̂0‖1 +
∫ τ

0
ds

(
λ(s)
λ(τ)

)1/2

‖Ĥ0‖1 (1.3.17)

+
∫ τ

0
ds
λ− 1

2 (τ)λ− 1
2 (s)√

t(τ)− t(s)
‖H1‖1].

Here we made use of the obvious estimates

‖U(τ, s)f‖∞ ≤ c

{ (
λ(s)
λ(τ)

)1/2
‖f̂‖1,

λ− 1
2 (τ)λ− 1

2 (s)√
t(τ)−t(s)

‖f‖1
.

The first term in the right hand side of (1.3.17) can be estimated as follows

λ−1/2(τ)‖χ̂1‖1 ≤W (β−1
0 M, s)β2N

0 p(τ ;κ3, r3). (1.3.18)
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Consider H0. Using proposition 1.2.4 and (1.3.1), (1.3.7) one gets

‖Ĥ0‖1 ≤ c(‖Ĥ00‖1 + ‖H01‖H1 + ‖H02‖H1)

≤W (β−1
0 M, s)[β2N

0 + βL0
0 s1 +Ψ2(M)]p(τ ;κ2, r2).

Thus, the contribution of H0 in the right hand side of (1.3.17) admits the estimate

τ∫
0
ds
(
λ(s)
λ(τ)

) 1
2 ‖Ĥ0‖1 ≤W (β−1

0 M, s)β−1
0

×[β2N
0 + βL0

0 s1 +Ψ2(M)]p(τ ;κ3, r3).
(1.3.19)

The third term of (1.3.17) can be estimated as follows :

∫ τ

0
ds
λ− 1

2 (τ)λ− 1
2 (s)√

t(τ)− t(s)
‖H1‖1 ≤W (M, s)M2

∫ τ

0
ds
λ− 1

2 (τ)λ− 1
2 (s)√

t(τ)− t(s)
p(s;κ4, r4)

≤W (M, s)M2β
−1
0 p(τ ;κ3, r3),

which together with proposition 1.2.4 and (1.3.3), (1.3.17)-(1.3.19) gives

M0 +M1 ≤W (β−1
0 M, s)β−1

0 [β2N
0 +M2 + (M0 +M1)2

+β−2
0 M2

2 + β−2
0 (M0 +M1)4]. (1.3.20)

1.3.5 Estimates of majorants

Consider the system of inequalities (1.3.3), (1.3.14), (1.3.20). Introduce new scales :

M̂j = β0M̂j , j = 0, 1, M̂2 = β2K0+2
0 M̂2.

Remark that one can choose the function W to be spherically symmetric and
monotone. Then in terms of M̂j the inequalities (1.3.3), (1.3.14), (1.3.20) can be
written in the form

ŝ0, ŝ1, ŝ2 ≤W (M̂, ŝ)
[
e−

γ
β0 + β2

0(M̂0 + M̂1)2 + β4K0
0 M̂2

2

]
, (1.3.21)

M̂0 + M̂1 ≤W (M̂, ŝ)
[
β2N−2

0 ++β2K0
0 M̂2

]
, (1.3.22)

M̂2 ≤W (M̂, ŝ)
[
β2N−3K0−2

0 + β−2K0
0 M̂

1
2
2 (M̂0 + M̂1) + β−3K0

0 (M̂0 + M̂1)2
]
.

Taking into account the second inequality one can rewrite the third one as follows.

M̂2 ≤W (M̂, ŝ)β2N−3K0−2
0 . (1.3.23)

Choosing N > 1 + 3K0
2 one gets that for β0 sufficiently small the solution of

(1.3.21)-(1.3.23) can belong either to a small neighborhood of 0 or to some domain
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whose distance from 0 is bounded uniformly with respect to β0. Since all M̂j , sj
are continuous functions of τ1 and for τ1 = 0 are small only the first possibility
can be realized.

As a consequence, one finally obtains

M0,M1 ≤ cβ2N−K0−1
0 , M2 ≤ cβ2N−K0

0 , (1.3.24)

s0, s1 ≤ cβ4N−2K0−4
0 , τ ≤ τ1. (1.3.25)

The constant c here does not depend either on β0 or on τ1. Since τ1 is arbitrary
these estimates are valid, in fact, for τ ∈ R.

1.3.6 Asymptotic behavior of the solution as t→ T ∗

The statement of theorem 1.1.1 is a simple consequence of the inequalities (1.3.1),
(1.3.24), (1.3.25). Indeed, proposition 1.2.1 and the estimates (1.3.24), (1.3.25)
ensure that

ψ(x, t) = eiµ(t)λ1/2(t) (ϕ0(z) + χ(z, t)) , z = λ(t)x,

where χ admits the estimate
‖χ‖∞ ≤ ch0.

Consider λ = e
∫ τ
0 ds(β+η2). By (1.3.1), (1.3.24), (1.3.25),

|β + η2 − h0| ≤ ch2
0. (1.3.26)

So, one gets for λ

λ = e
∫ τ
0 ds(h0+O(h2

0) = e
2S0τ
ln τ (1+o(1)), τ → +∞. (1.3.27)

In the last equality we have made use of (1.2.16).
Consider the relation

T ∗ − t =
∫ ∞

τ

ds
1
λ2 =

1
2h0λ2 −

∫ ∞

τ

ds
1

h0λ2

(
β + η2 − h0 +

h′0
2h0

)
.

By (1.3.26), this identity implies

λ = (2h0(T ∗ − t))−1/2(1 +O(h0)) =
(
4S0(T ∗ − t)

ln τ

)−1/2

(1 + o(1)), (1.3.28)

as t→ T ∗, which together with (1.3.27) gives

ln τe−
4S0τ
ln τ (1+o(1)) = 4S0(T ∗ − t)(1 + o(1)), t→ T ∗.

As a consequence, one gets

τ =
1
4S0

| ln(T ∗ − t)| ln(| ln(T ∗ − t)|)(1 + o(1)). (1.3.29)
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Combining (1.3.28), (1.3.29), one obtains finally

λ =
(

4S0(T ∗ − t)
ln | ln(T ∗ − t)|

)−1/2

(1 + o(1)).

Consider µ = τ + 2
∫ τ
0 dsη1. By (1.3.1), (1.3.24), (1.3.25),

µ = τ(1 + o(1)),

which together with (1.3.29) implies

µ =
1
4S0

| ln(T ∗ − t)| ln(| ln(T ∗ − t)|)(1 + o(1)).

2. Properties of the linearized equations

As mentioned in the introduction, this section has a technical value : it contains
a detailed description of the spectral properties of the operators H̃(a), H(a) in
the limit a → 0. In particular, we prove here the propositions 1.2.1, 1.2.2 and
1.2.4-1.2.7. The present section consists of four subsection. In the first subsection
we collect some elementary properties of the soliton linearization H0

1 that will
be used in what follows (most of them were proved in [BP1].) In subsection 2.2 we
construct the modified ground state ϕ̃(a) and prove proposition 1.2.1. Subsection
2.3 contains a proof of proposition 1.2.2. In subsection 2.4 we prove the estimates
related to the operatorH(a). Finally, we have five appendices where some technical
details are removed.

2.1 Operator H0

2.1.1 Standard solutions

Consider the equation
H0f = Ef, (2.1.1)

Since σ1H0 = −H0σ1, it suffices to consider the solutions for ReE ≥ 0. In
[BP1] a basis of solutions fj , j = 1, . . . , 4 with the standard behavior e±ikx

(1
0

)
,

e±µx
(0
1

)
, k =

√
E − 1, µ =

√
E + 1, as x→ +∞ was constructed. We collect here

some properties of these solutions that we shall need later :
(i) the decreasing solution f0

i (x, k), i = 1, 3, and its derivatives with respect
to x are holomorphic functions of k ∈ Ωi, i = 1, 3, where

Ω3 = {k, Reµ− |Im k| > −δ1},

Ω1 = {k, k ∈ Ω3, Im k > −δ1},
1Here we consider H0 as an operator on the whole L2(R → C2).
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µ =
√
k2 + 2, the root being defined on the plane with the cuts (−i∞,−i

√
2],

[i
√
2, i∞), Reµ > 0. Here δ1 is a small positive number determined by the rate of

decrease of the potential V (ϕ0).
(ii) f0

i , i = 1, 3, have the following asymptotics as x→ +∞

f0
1 (x, k) = eikx[

(
1
0

)
+O((1 + |k|)−1e−γx)], k ∈ Ω11

f0
1 (x, k) = eikx

(
1
0

)
+ c(k)e−µx

(
0
1

)
+O((1 + |k|)−1e−Im kx−γx), k ∈ Ω12

f0
3 (x, k) = e−µx[

(
0
1

)
+O((1 + |k|)−1e−γx)], k ∈ Ω3. (2.1.2)

Here γ is some positive number, Ω11 and Ω12 are two subsets of Ω1 = Ω11 ∪
Ω12, Ω11 = {k, Reµ − Im k > δ2}, Ω12 = {k, Reµ − Im k ≤ δ2}, δ2 > 0 being a
small positive number, c(k) is a holomorphic function of k admitting the estimate
c(k) = O((1 + |k|)−1).

(iii) The increasing solutions f0
i , i = 2, 4, are holomorphic functions of k ∈

Ω2 = {k, |Im k| < δ1}, with the following asymptotic behavior as x→∞

f0
2 (x, k) = e−ikx[

(
1
0

)
+O((1 + |k|)−1e−γx)],

f0
4 (x, k) = eµx[

(
0
1

)
+O((1 + |k|)−1e−γx)], (2.1.3)

uniformly with respect to k, k ∈ Ω2.
The asymptotic representations (2.1.2), (2.1.3) can be differentiated with

respect to x and k any number of times.
(iv) One can choose f0

j in such a way that

f0
1 (x,−k) = f0

2 (x, k), f0
3,4(x,−k) = f0

3,4(x, k),

f0
1 (x, k) = f0

2 (x, k), f0
3,4(x, k) = f0

3,4(x, k), k ∈ R. (2.1.4)

The Wronskian

w(f, g) =< f ′, g >R2 − < f, g′ >R2

does not depend on x if f and g are solutions of (2.1.1).
(v) The system of Wronskians for f0

j has the form

w(f0
1 , f

0
2 ) = 2ik, w(f0

1 , f
0
3 ) = 0,

w(f0
1 , f

0
4 ) = 0, w(f0

3 , f
0
4 ) = −2µ, k ∈ Ω2. (2.1.5)
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The solutions with standard behavior as x→ −∞ can be obtained by using
the fact that the operator H0 is invariant under the change of variable x → −x.
Let

g0
j (x, k) = f0

j (−x, k), j = 1, . . . , 4.

In addition to scalar Wronskian we shall also use matrix Wronskian

W (F,G) = F t′G− F tG′,

where F and G are 2 × 2 matrices composed of pairs of solutions. The matrix
Wronskian do not depend on x.

We introduce the concrete matrix solutions

F 0
1 = (f0

1 , f
0
3 ), F

0
2 = (f0

2 , f
0
4 ), G0

1 = (g0
1 , g

0
3), G2 = (g0

2 , g
0
4).

Since V decays exponentially H0 cannot have more than a finite number of
the eigenvalues, all of them being of finite multiplicity. It was shown in [BP1] that

Proposition 2.1.1 The eigenvalues of the operator H0 in the domain ReE ≥ 0
and its resonances at the boundary point E = 1 of the continuous spectrum 1 are
characterized by the equation

detD0 = 0,

where D0 =W (G0
1, F

0
1 ).

Remark. Let us mentioned that the most rapidly decreasing solution f0
3 is simply

defined by means of the integral equation

f0
3 (y) = eµx

(
0
1

)
−
∫ ∞

x

dy

(
sin k(x−y)

k 0
0 shµ(x−y)

µ

)
σ3V (ϕ0(y))f0

3 (y).

For E in some small vicinity of zero one can use the similar equations to construct
a complete set of solutions. Indeed, consider the equation

w0
1(x) = eikx

(
1
0

)
−
∫ ∞

x

dy

(
sin k(x−y)

k 0
0 shµ(x−y)

µ

)
σ3V (ϕ0(y))w0

1(y). (2.1.6)

The potential V (ϕ0) decreases exponentially :

|V (ϕ0(x))| ≤ ce−4|x|,

so, for E in a sufficiently small vicinity of zero (for ex., for |E| ≤ 2) the integral
operator in (2.1.6) reproduces the behavior of the free term. Thus, omitting stan-
dard details we get the existence of solution w0

1(x, k) of (2.1.1) that is holomorphic

1Generically the equation H0f = ±f does not have solutions bounded at infinity. If, never-
theless such bounded solutions exist the points ±1 are called resonances.
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function of k ∈ Ω0, Ω0 = {k, |k2+1| < 2}, with the following asymptotic behavior
as x→ +∞ :

w0
1 = eikx

[(
1
0

)
+O(e−4x)

]
, (2.1.7)

uniformly with respect to k. This asymptotic formula can be differentiated with
respect to x, k any number of times. The constructed solution satisfies the relation

f0
3 (x, k) = σ1w

0
1(x, iµ).

On the set Ω0 with the cuts along the intervals (−i
√
3,−i

√
2], [i

√
2, i
√
3)

introduce the basis of solutions {w0
j}4j=1,

w0
2(x, k) = w0

1(x,−k), w0
3(x, k) = σ1w

0
1(x, iµ),

w0
4(x, k) = σ1w

0
1(x,−iµ), Reµ > 0.

w0
j satisfy the same set of relations (2.1.4), (2.1.5) as f0

j .
Consider the Wronskian :

D̂0 =W (U0,W0),

whereW0 = (w1, w3), U0(x, k) =W0(−x, k). Clearly, the zeros of det D̂0 coincide
with those of detD0 (in Ω0 ∩ Ω1).

Since H0 is invariant under the change of variable x→ −x, the matrices D0,
D̂0 can be factorized :

D0 = −2D+
0 D

−
0 , D−

0 (k) = (F 0
1 (0, k))

t, D+
0 (k) = F 0

1x(0, k).

D̂0 = −2D̂+
0 D̂

−
0 , D̂−

0 (k) = (W0(0, k))t, D̂+
0 (k) =W0

x(0, k).

2.1.2 Discrete spectrum

Taking into account the special structure of the perturbation V (ϕ0) one can get
a more precise description of the discrete spectrum. The structure of the root
subspace of H0 restricted to the subspace of even functions corresponding to the
eigenvalue E = 0 has already been described in Section 1. Taking into account also
the Galilei invariance of the equation (1.1.1) one can get the complete description :
corresponding to the point E = 0 are two eigenvectors 'η0, 'ξ0 and four associated
functions 'η1, 'ξi, i = 1, 2, 3,

H0'ξ0 = H0'η0 = 0, H'η1 = i'η0, H0'ξi = i'ξi−1, i = 1, 2, 3,

'ξi =
(
ξi
ξ̄i

)
, 'ηi =

(
ηi
η̄i

)
,

ξ0 = iϕ0, ξ1 =
1
4
(1 + 2x∂x)ϕ0, ξ2 = −i1

8
x2ϕ0,



636 G. Perelman Ann. Henri Poincaré

ξ3 =
1
2
ϕ1, η0 = ϕ′

0, η1 = − i

2
xϕ0.

Since 〈
'ξ3, σ3'ξ0

〉
= −

〈
'ξ2, σ3'ξ1

〉
= −i‖xϕ0‖22

8
,

〈'η1, σ3'η0〉 = i
‖ϕ0‖22
2

,

the vectors 'ξi, i = 0, 'ηj , i = 0, . . . , 3, j = 0, 1, span the root subspace correspond-
ing to the point E = 0.

Let us pass to a new basis in the matrix representation of H0 :

L0 =WH0W
−1, W =

1√
2

(
1 1
1 −1

)
.

The operator L0 has the form

L0 =
(

0 L0−
L0+ 0

)
,

where
L0+ = −∂2

x + 1− 5ϕ4
0, L0− = −∂2

x + 1− ϕ4
0.

The operators L0± are self-adjoint in L2, the continuous spectra lie on the half-axe
E ≥ 1. L0− has the only eigenvalue E = 0 with the eigenfunction ϕ0. L0+ has two
eigenvalues E0, 0, E0 < 0, with the eigenfunctions ϕ3

0, ϕ
′
0 respectively. Both L0−

and L0+ have no resonances at the end point of the continuous spectrum.
Remark that

L2
0 =

(
T0 0
0 T ∗

0

)
, T0 = L0−L0+.

The spectra of the operators T0 and T ∗
0 are connected in a canonical way, i.e., are

complex conjugated and the corresponding root subspaces are finite-dimensional
and have the same structure.

Consider T0. Obviously, T0ξ1 = T0η0 = 0. The spectrum of T0 is real, the
minimal eigenvalue being equal to zero (see [BP1], for example). Moreover, one
has the following proposition.

Proposition 2.1.2 Zero is the only eigenvalue of the operator T0 in the interval
(−∞, 1].

Proof. We prove it by a contradiction. Let 1 ≥ E > 0 be an eigenvalue of T0 with
an eigenfunction ψ : T0ψ = Eψ. Then (ψ,ϕ0) = 0, (L−1

0−ψ, ξ1) = (L−1
0−ψ, η0) = 0.

Consider the self-adjoint operator A = PL0+P , P being the projection or-
thogonal to ϕ0. The direct calculations show that

(Au, u)
(u, u)

≤
(L−1

0−Pu, Pu)
(Pu, Pu)

< 1,
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provided u ∈ F, F = L{ψ, η0, ξj , j = 0, 1}. Obviously, dimF = 4, which implies
that the number of the eigenvalues of A in (−∞, 1) counted with their multiplicities
is greater or equal than four. On the other hand the only eigenvalue of A in the
interval (−∞, 1) is the point E = 0, η0, ξj , j = 0, 1, being the corresponding
eigenfunctions. Indeed, let E �= 0 be an eigenvalue of PL0+P , then E > E0
and there exists u, (u, ϕ0) = 0, such that L0+u = Eu + ϕ0. Consequently, u =
(L0+ −E)−1ϕ0, which implies

((L0+ −E)−1ϕ0, ϕ0) = 0. (2.1.8)

Consider the function g(λ) = ((L0+−λ)−1ϕ0, ϕ0), assuming that λ ∈ (E0, 1). The
function g has the following obvious properties :

1) g(λ) is monotonically increasing, because g′(λ) = ‖(L0+ − λ)−1ϕ0‖22;
2) g(0) = −(ξ1, ϕ0) = 0.
Thus, (2.1.8) is impossible for E �= 0.
Proposition 2.1.2. extends immediately to the operators L0 and H0 :

Corollary 2.1.3 E = 0 is the unique point in the discrete spectrum of the operator
H0.

A slight modification of the arguments used in the proof of proposition 2.1.2
allows us to get

Proposition 2.1.4 The operator H0 has no resonances at the end points of the
continuous spectrum.

See appendix 1 for the proof.

2.1.3 Embedded eigenvalues

In this subsubsection we prove the absence of embedded eigenvalues. Consider
equation (2.1.1) with E > 1. After a change of variables

f(x) = v(z), z = th 2x,

(2.1.1) takes the form (
−∂2

z +
2z

1− z2 ∂z +
1

4(1− z2)2

)
v

− 9
4(1− z2)

v − 3
2(1− z2)

σ1v =
E

4(1− z2)2
σ3v. (2.1.9)

The only singular points of this system (considered on the whole plane z ∈ C ) are
z± = ±1 and z∞ =∞. It is easy to check that they are regular. In particular, in
a vicinity of z± one can find a basis of solutions of the form

(z − zj)ik/4ej1(z), (z − zj)−ik/4ej2(z), (z − zj)µ/4ej3(z),
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{
(z − zj)−µ/4ej4, if µ/2 �∈ Z,
ln(z − zj)(z − zj)µ/4ej3(z) + (z − zj)−µ/4ej4, if µ/2 ∈ Z,

where ejl, l = 1, . . . , 4, j = ±, are holomorphic non vanishing functions in some
vicinity of zj , k and µ being the same as in subsubsection 2.1.2. Thus, if E > 1 is
an eigenvalue of H0 there exists a nontrivial solution v of (2.1.9) such that

v(z) = (1− z2)µ/4ṽ(z),

where ṽ is an entire function. Since z∞ is a regular singular point of (2.1.9) ṽ has at
most polynomial growth at infinity, which means that ṽ is polynomial. Moreover,
it is easy to check that the roots of the characteristic equation at infinity are given
by −1

2 ± 2, −1
2 ± 1, which implies

n = 0,

where n is the degree of ṽ. The direct calculation shows that (2.1.9) has no non-
trivial solution of the form (1− z2)µ/4a, where a is a constant vector.

Combining these results with the results of the previous subsection one gets
the proposition.

Proposition 2.1.5
detD0(k) �= 0, k ∈ Ω1, Im k ≥ 0,

provided k �= i.

2.2 Profile ϕ̃

Consider (1.2.1). We are looking for a real even solution of (1.2.1). Write ϕ̃ as the
sum

ϕ̃(x, α, a) = ϕ0(x, α) + χ(x, α, a).

Then χ satisfies the equation

χ = L̃−1
+ χ0 + J (χ), (2.2.1)

where

χ0 =
ax2

4
θ(hx)ϕ0(x, α),

J (χ) = L̃−1
+
[
(ϕ0 + χ)5 − ϕ5

0 − 5ϕ4
0χ
]
,

L̃+ = −∂2
x +

α2

4
− ax2

4
θ(hx)− 5ϕ4

0.

L̃+ is a self-adjoint operator in L2. It follows from the corresponding properties
of L+0 that the restriction of L̃+ to the subspace of even functions has a bounded
inverse. Moreover, one has the estimate

|G̃+(x, y)| ≤ ce−
1
h |Sα,a(hx)−Sα,a(hy)|, x ≥ 0, y ≥ 0, (2.2.2)
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Sα,a(ξ) = 1
2

∫ ξ
0 ds

√
α2 − sgn as2θ(s). Here G̃+ is the kernel of L̃−1

+ , if we consider
L̃+ as an operator on the half-line x ≥ 0 with the Neumann boundary condition
at x = 0. This estimate can be obtained as an immediate consequence of the
constructions developed in the next subsection.

It follows from (2.2.2) that∣∣∣(L̃−1
+ χ0

)
(x)
∣∣∣ ≤ c|a| 〈x〉3 e− 1

h S̃α,a(h|x|), (2.2.3)

‖e 1
h S̃α,a(h|x|)L̃−1

+ f‖∞ ≤ c‖e 1
h S̃α,a(h|x|)f‖1. (2.2.4)

Here S̃α,a(ξ) = 1
2

∫ ξ
0 ds

√
α2 − (a)+s2θ(s).

Consider (2.2.1). The basis idea is to view this equation as a mapping of the
space of continuous functions equipped with the norm

|‖χ‖|p = ‖ 〈x〉−p e
1
h S̃α,a(h|x|)χ‖∞,

with some p ≥ 0, to itself and to seek for a fixed point. Using (2.2.4) it is not
difficult to check that the nonlinear operator J maps this space into itself :

|‖J (χ)‖|p ≤ c[|‖χ‖|2p + |‖χ‖|5p]. (2.2.5)

Moreover,

|‖J (χ1)−J (χ2)‖|p ≤ c|‖χ1−χ2‖|p[|‖χ1‖|p+|‖χ2‖|p+(|‖χ1‖|p+|‖χ2‖|p)4]. (2.2.6)

The estimates (2.2.3), (2.2.5), (2.2.6) mean that for a sufficiently small the mapping
χ→ χ0 +J (χ) is a contraction of the ball |‖χ‖|3 ≤ η into itself with some η > 0,
and, consequently, has a unique fixed point which satisfies the estimate

|‖χ‖|3 ≤ c|a|. (2.2.7)

In the same manner one can prove the asymptotic expansion (1.1.5). Write ϕ̃ =
ϕN + χN . The function χN satisfies the equation

−∂2
xχN +

α2

4
χN − ax2

4
θ(hx)χN − (ϕN + χN )5 + (ϕN )5 −RN = 0,

where RN admits the estimate

|RN (x)| ≤ c

[
aN+1 〈x〉3N+2 + (1− θ(hx))

N−1∑
k=0

|a|k+1|x|3k+2

]
e−

α
2 |x|.

We rewrite this equation in the form similar to (2.2.1) :

χN = χN0 + JN (χN ), (2.2.8)
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χN0 = L̃−1
+ RN , JN (χ) = L̃−1

+ FN (χ),
where

FN (χ) = (ϕN + χ)5 − (ϕN )5 − 5ϕ4
0χ.

By (2.2.2), (2.2.4),

‖ < x >−3(N+1) e
1
h S̃α,a(h|x|)χN0 ‖∞ ≤ c|a|N+1,

|‖JN (χ)‖|p ≤ c(|a||‖χ‖|p + |‖χ‖|2p + |‖χ‖|5p),
which together with (2.2.7) implies

‖ < x >−3(N+1) e
1
h S̃α,a(h|x|)χN‖∞ ≤ c|a|N+1,

provided a is sufficiently small.
By (2.2.7), ϕ̃ admits the estimate

‖ 〈x〉−3 e
1
h S̃α,a(h|x|)ϕ̃‖∞ ≤ c. (2.2.9)

Plugging this inequality into right hand side of the representation

ϕ̃ = (−∂2
x +

α2

4
− ax2

4
θ)−1ϕ̃5

and using the corresponding estimate of the free resolvent one gets an improved
version of (2.2.9) :

c2(1 +O(e−
4
hSα,a(h|x|))) ≤ e

1
hSα,a(h|x|)ϕ̃ ≤ c1, x ∈ R, (2.2.10)

with some c1, c2 > 0 independent of α, a, which together with (2.2.7) implies the
positivity of ϕ̃ provided a is sufficiently small. We can now formulate the final
assertion with respect to ϕ̃.

Proposition 2.2.1 For α in some finite vicinity of 2 and for a sufficiently small,
equation (2.2.1) has a unique positive even decreasing solution ϕ̃(z, α, a) which is
close to ϕ0(z, α). Moreover, as a→ 0, ϕ̃(z, α, a) admits the asymptotic expansion
(1.1.5) in the sense

|ϕ̃− ϕN | ≤ c|a|N+1 < x >3(N+1) e−
1
h S̃α,a(h|x|). (2.2.11)

Remark. It is not difficult to check that
(i) the solution ϕ̃ is a smooth function of its arguments and the asymptotic

representation (2.2.11) can be differentiated with respect to x, α and a any number
of times;

(ii) ϕ̃ “almost” satisfies the scaling law

ϕ̃(x, α, a) ∼
(α
2

)1/2
ϕ̃(

α

2
x, 2,

16a
α4 ). (2.2.12)

More precisely,∣∣∣∣ϕ̃(x, α, a)− (α2
)1/2

ϕ̃(
α

2
x, 2,

16a
α4 )

∣∣∣∣ ≤ ce−γ1/he−γ2|x|,

with some γ1, γ2 > 0.
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2.3 Operator H̃(a)

In this subsection we establish the spectral properties of the operator H̃(a) (in the
limit a→ 0) that were announced and used in Section 1.

2.3.1 Standard solutions

Consider the equation
(H̃(a)−E)ψ = 0. (2.3.1)

For E in some small but fixed vicinity of zero we introduce a basis of solutions
ψj , j = 1, . . . , 4, of (2.3.1) with the standard behavior at +∞ by means of the
integral equations

ψj(x,E) = ψ0j(x,E)−
∫ ∞

x

dyK̃(x, y,E)σ3V (ϕ̃(y))ψj(y,E), (2.3.2)

j = 1, . . . , 4, where ψ0j(x,E) = σ1ψ0j+2(x,−E),

ψ01(x,E) = u1(x, λ1)
(
1
0

)
, ψ02(x,E) = u2(x, λ1)

(
1
0

)
, λ1 = E − 1,

K̃(x, y,E) =
(

k̃(x, y, λ1) 0
0 k̃(x, y, λ2)

)
, λ2 = −E − 1,

k̃(x, y, λ) =
1

w(u1, u2)
(u1(x, λ)u2(y, λ)− u1(y, λ)u2(x, λ)),

w(u1, u2) = u′1u2−u′2u1, u2(x, λ) = u1(−x, λ), u1 being a decreasing (as x→ +∞)
solution of the equation

−uxx −
ax2

4
θ(hx)u = λu.

We normalize u1 by the condition

u1 =
1

(−λ− ax2

4 θ(hx))1/4
e−

1
h

∫hx
0 ds

√
−λ−sgn a s

2
4 θ(s), x→ +∞. (2.3.3)

The roots here are defined on the complex plane with the cut along the negative
semi-axis. They are positive for the positive values of the argument.

For λ in some finite vicinity of −1, x ∈ R, the asymptotics of u1 as a→ 0 is
given by the standard WKB formulas

u1(x, λ) = e−
1
h

∫hx
0 ds

√
−λ−sgn a s

2
4 θ(s)

∞∑
j=0

hjuj1(hx, λ), (2.3.4)
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where
u0

1(ξ, λ) =
1

(−λ− sgn a ξ2θ(ξ)
4 )1/4

,

uj1(ξ, λ) = − 1

2(−λ− sgn a ξ2θ(ξ)
4 )1/4

∫ ∞

ξ

ds
uj−1

1ss

(−λ− sgn a s2θ(s)
4 )1/4

.

As a consequence, one gets

w(u1, u2) = −2 +O(h),

|k̃(x, y, λ)| ≤ ce
1
h

∫hy
hx

dsRe
√

−λ−sgn a s
2
4 θ(s), x ≤ y,

uniformly with respect to λ in some finite vicinity of −1. The potential V (ϕ̃)
decreases exponentially :

|V (ϕ̃(x))| ≤ ce−
4
hSa(h|x|),

Sa(ξ) = S2,a(ξ), so for E in some finite vicinity of zero we get the existence of a
solution ψj of (2.3.1) that has the following asymptotic behavior as x→ +∞ :

ψj(x,E) = uj(x,E − 1)
[(

1
0

)
+O(e−

4
hSa(hx))

]
, j = 1, 2, (2.3.5)

ψj(x,E) = uj−2(x,−E − 1)
[(

0
1

)
+O(e−

4
hSa(hx))

]
, j = 3, 4, (2.3.6)

uniformly with respect to a, E. In this formulation and in subsequent ones we omit
phrases of the following type : the solutions ψj and its derivatives with respect
to x are holomorphic functions of E and the asymptotic representations can be
differentiated with respect to x and E any number of times.

Clearly,

ψj+2(x,E) = σ1ψj(x,−E), ψj(x,E) = ψj(x, Ē), (2.3.7)

w(ψ1, ψ2) = w(ψ10, ψ20), w(ψ1, ψ3,4) = 0,
w(ψ3, ψ4) = w(ψ30, ψ40), w(ψ3,4, ψ2) = 0. (2.3.8)

One can use ψj(−x,E), j = 1, . . . , 4 as a basis of solutions with the standard
behavior at −∞.

We shall describe now the behavior of the decreasing solutions ψ1,3 in the
limit a→ 0. By (2.3.7), it is sufficient to consider ψ1. We represent it as the sum

ψ1 = e−ikxu1(x, λ1)w0
1(x, k) + r1, k =

√
E −E0, Im k > 0. (2.3.9)

One can write down the following integral equation for rj

r1(x,E) = −
∫ ∞

x

dyK̃(x, y,E)[R1 + σ3V (ϕ̃(y))r1(y,E)].
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Here
R1 = (V (ϕ̃)− V (ϕ0))e−ikxu1(x, λ1)w0

1(x, k)

−2eikx(e−ikxu1(x, λ1))xσ3(e−ikxw0
1(x, k))x.

By (2.1.7), (2.3.4),

|R1| ≤ ch|u1(x, λ1)| 〈x〉3 e−
4
h S̃α,a(hx),

which leads to the following asymptotic estimate for r1 :

r1 = O(hu1(x, λ1)e−
γ
h S̃a(hx)), γ < 4. (2.3.10)

For x not too large the representation (2.3.9), (2.3.10) can be simplified :

ψ1 = d0w
0
1 +O(he−

1−γ
h S̃a(hx)), d0 = (−λ1)−1/4, (2.3.11)

with some γ > 01, uniformly with respect to E in some finite vicinity of zero.
In a similar way one can get a complete asymptotic expansion of ψ1 in powers

of h. Without dwelling on the derivation we describe the result. Let us introduce
a formal solution w,

w(x,E, a) =
∞∑
n=0

anwn(x,E), (2.3.12)

of the equation [
(−∂2

x + 1− ax2

4
)σ3 + V (ϕ(a))

]
ψ = Eψ. (2.3.13)

Equation (2.3.13) is equivalent to the following recurrent system for wn :

(H0 −E)w0 = 0,

(H0 −E)wn − x2

4
σ3w

n−1 +
n∑

k=1

V kwn−k = 0, n ≥ 1,

where V k are the coefficients of the expansion V (ϕ(a)) =
∑

k≥0 a
kV k. It is easy to

check that this system admits a solution with the following asymptotic behavior

wn = eikx
[
Pn(x,E)

(
1
0

)
+O(〈x〉3n e−4x)

]
, x→ +∞,

k =
√
E − 1, Im k > 0, Pn being polynomial of x of the degree 3n. The coefficients

wn can be fixed uniquely by the condition Pn(0, E) = 0 for n > 0, P0 = 1. Then
w0(x,E) = w0

1(x, k), w(x,E, a) = w(x, Ē, a).

1γ can be made arbitrary small by choosing a sufficiently small vicinity of the point E = 0.
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One can show that after a renormalization the solution ψ1 admits the asymp-
totic expansion (2.3.12). More precisely, there exists a formal series d(E, a) =∑

n≥0 h
ndn(E, â), â = a/|a|, (d0 being the same as in (2.3.11)), such that

ψ1 = dw, (2.3.14)

in the sense

|ψ1(x,E, a)−
∑
n≤N

hnψ1n(x,E, â)| ≤ chN+1e−
(1−γ)
h S̃a(hx), x ≥ 0, (2.3.15)

uniformly with respect to E in some finite vicinity of zero. Here ψ1n are the
coefficients of the series dw, γ is the same as in (2.3.11).

It is worth mentioning that d can be found from the formal relation

u1(x, λ1, a) = eikxd(E, a)
∑
n≥0

anPn(x,E).

In particular,

d1 =
1

2(−λ1)1/4

∞∫
0

ds

(
∂

∂s
(−λ1 − â

s2

4
θ(s))−1/4

)2

.

By (2.3.7), an expansion similar to (2.3.14), (2.3.15) is valid for ψ3 :

ψ3(x,E, a) =
∑
n≥0

hnψ3n(x,E, â), (2.3.16)

where ψ3n(x,E, â) = σ1ψ1n(x,−E, â) .

2.3.2 Spectral properties of the operator H̃(a)

The operator H̃(a) has the same continuous spectrum as H0. In addition, H̃(a)
can have only finitely many eigenvalues of finite multiplicity. H̃(a) satisfies the
relations similar to (1.1.8) :

σ3H̃(a)σ3 = H̃∗(a), σ1H̃(a)σ1 = −H̃(a), (2.3.17)

which leads to a clear symmetry in the structure of the spectrum of H̃(a).
The point E = 0 is an eigenvalue : there is an eigenfunction ζ̃0 and an

associated function ζ̃1,

H̃(a)ζ̃0 = 0, H̃(a)ζ̃1 = iζ̃0, (2.3.18)

ζ̃0(a) = iϕ̃(a)
(

1
−1

)
, ζ̃1(a) = ∂αϕ̃(α, a)|α=2

(
1
1

)
,
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〈
ζ̃1(a), σ3ζ̃0(a)

〉
= 4ia(ϕ0, ϕ1) +O(a2) = 4iea+O(a2). (2.3.19)

The eigenvalues of H̃(a) lying in some finite vicinity of zero can be charac-
terized by the equation

detD(E) = 0,

where D =W (Ξ1,Ψ1), Ψ1 = (ψ1, ψ3), Ξ1(x,E) = Ψ1(−x,E), D is a holomorphic
function of E in some finite vicinity of the point E = 0. In the same manner as
D0, the matrix D can be factorized :

D = −2D−D+, D−(E, a) = Ψt
1(0, E, a), D+(E, a) = Ψ′

1x(0, E, a),

the zeros of detD+ ( detD−) (counted with their multiplicity) corresponds to the
eigenvalues of H̃(a) restricted to the subspace of even (odd) functions.

By (2.3.7),

σ1D
±(E)σ1 = D±(−E), D±(Ē) = D±(E). (2.3.20)

It follows from (2.3.18), (2.3.19) that the point E = 0 is a root of detD+ of
the multiplicity two :

detD+ = κ(a)E2 +O(E4). (2.3.21)

As a→ 0, κ admits the asymptotic representation of the form :

κ(a) = d2(0, a)κ̂(a), (2.3.22)

where κ̂(a) is a formal series in powers of a, in particular,

κ̂(a) = κ0a+O(a2), κ0 =
(ϕ4

0(0)− 1)e
ϕ2
∞

> 0. (2.3.23)

where ϕ∞ = ϕ∞(2).
In terms of the matrix solution Ψ1 (2.3.14), (2.3.16) take form

Ψ1 =WΛ, (2.3.24)

where W is the formal matrix solution of (2.3.9)

W(x,E, a) =
∑
n≥0

anWn(x,E), Wn(x,E) = (wn(x,E), σ1wn(x,−E)), (2.3.25)

Λ(E, a) =
(

d(E, a) 0
0 d(−E, a)

)
.

Let us note the obvious relation

W0(x, 0) =
1√
2ϕ∞

('η0,−'ξ0)W. (2.3.26)
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The formulas (2.3.24), (2.3.25) imply the following asymptotic expansion of D± :

D+ = D̂+Λ, D− = ΛD̂−, (2.3.27)

where D̂+ is a formal series in powers of a :

D̂±(E, a) =
∑
n≥0

D̂±
n (E)a

n,

D̂−
n (E) = (Wn(0, E))t, D̂+

n (E) =Wn
x (0, E).

Consider D̂+
0 (E). Taking into account the structure of the root subspace of

H0 corresponding to the zero eigenvalue one can get the following relation :

D̂+
0 (E)W = D̂+

0 (E)
(

1 m1(E)
1 m1(E)

)
+E4γ0

(
0 1
0 −1

)
+O(E5),

D̂+
0 (0)W = γ1

(
1 0
1 0

)
, m1(E) = m10E +m11E

3, (2.3.28)

m1k, k = 0, 1, γk, k = 0, 1, are some constants, all of them can be calculated
explicitly but in what follows we shall need only γk, k = 0, 1

γ1 = −ϕ0xx(0)√
2ϕ∞

, γ0 =
e

4
√
2ϕ0(0)ϕ∞

.

These formulas imply :
det D̂+

0 =
κ0

4
E4 +O(E6). (2.3.29)

In a similar manner one can get

det D̂−
0 = κ1E

2 +O(E4), κ1 =
‖ϕ0‖22

2ϕ∞(1− ϕ4
0)
. (2.3.30)

It follows from (2.3.27) that asymptotically (as a → 0), the eigenvalues of
H̃(a) restricted to the subspace of even (odd) functions are characterized by the
equation Φ+(E, a) = 0 (Φ−(E, a) = 0) where Φ± = det D̂± is a formal series in
powers of a :

Φ±(E, a) =
∑
n≥0

anΦ±
n (E), Φ±

0 = det D̂±
0 . (2.3.31)

By (2.3.20),
Φ±
n (E) = Φ±

n (−E) = Φ±
n (Ē),

and by (2.3.21), as E → 0,
Φ+
n (E) = O(E2).

One can show

Φ−
1 (E) = κ1 +O(E2), Φ+

1 (E) = κ0E
2 +O(E4). (2.3.32)
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The formulas (2.3.30)-(2.3.32) show that for a sufficiently small detD+(E, a)
and detD−(E, a) have two simple roots ±λ(a) and ±µ(a) respectively, λ(a) =
i
√
aλ′(a), µ(a) = i

√
aµ′(a) where λ′(a), µ′(a) are smooth real functions,

λ′(a) = 2 +O(a), µ′(a) = 1 +O(a).

Since for a sufficiently small the number of the roots of detD− (detD+) counted
with their multiplicity in some finite vicinity of the point E = 0 is equal two (four),
there are no roots except for ±µ (zero and ±λ).

Let ζ̃2(a) be an eigenfunction of H̃(a) corresponding to the eigenvalue λ(a).
By (2.3.26), (2.3.28), 'ζ2(a) can be normalized in such a way that〈

ζ̃2, 'ξ0

〉
=
〈
ζ̃0, 'ξ0

〉
− λ2

〈
'ξ2, 'ξ0

〉
. (2.3.33)

Then
ζ̃2 = ζ̃0 +O(h).

A little bit more detailed consideration of the series W, D̂+ allows us to get the
following refinement of the above representation :

ζ̃2 = ζ̃0 − iλζ̃1 − λ2'ξ2 + iλ3'ξ3 +
∑
k≥4

iλkhk

(
1

(−1)k−1

)
, (2.3.34)

where hk are even smooth real exponentially decreasing functions of x,
(h2k, ϕ0) = 0. This asymptotic expansion holds in the sense of the L∞-norm with
the weight e

(1−γ)
h S̃a(h|x|), γ > 0 :

|ζ̃2 − ζ̃0 + iλζ̃1 + λ2'ξ2 − iλ3'ξ3 −
N∑
k≥4

iλkhk| ≤ c|a|N+1e−
(1−γ)
h S̃a(h|x|). (2.3.35)

The results of this subsubsection implies in particular the following proposition.

Proposition 2.3.1 For a sufficiently small, the discrete spectrum of the operator
H̃(a) (restricted on the subspace of even functions) in some finite vicinity of the
point E = 0 consists of 0, the corresponding root subspace being described by
(2.3.18), and two simple eigenvalues ±λ(a), λ(a) = i

√
aλ′(a), where λ′(a) is a

smooth real function of a, λ′(a) = 2+O(a). The eigenfunction ζ̃2(a) corresponding
to the eigenvalue λ(a), normalized by the condition (2.3.33) is a smooth function
of
√
a, admitting the asymptotic expansion (2.3.34) as a→ 0 in the sense (2.3.35).

2.4 Operator H(a)

In this subsection we establish the estimates related to the operator H(a), a > 0,
that were announced and used in Section 1.
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2.4.1 Standard solutions

Consider the equation
(H(a)−E)ψ = 0. (2.4.1)

We introduce a basis of solutions fj(x,E), j = 1, . . . 4, of (2.4.1) with the following
asymptotic behavior as x→ +∞ :

f1(x,E) = v(x, λ1)
[(

1
0

)
+OE,a(e−

4
hSa(hx))

]
,

f2(x,E) = v∗(x, λ1)
[(

1
0

)
+OE,a(e−

4
hSa(hx))

]
,

f3(x,E) = v∗(x, λ2)
[(

0
1

)
+OE,a(e−

4
hSa(hx))

]
, (2.4.2)

f4(x,E) = v(x, λ2)
[(

0
1

)
+OE,a(e−

4
hSa(hx))

]
,

where v∗(x, λ) = v(x, λ̄),

v(x, λ) = Cνe
ihx

2
4 Hν

(
e−

iπ
4

(
h

2

)1/2

x

)
, ν = −1

2
+ i

λ

h
, Cν = e

iνπ
4 (2h)−

ν
2 ,

Hν being the Hermite function. The function v is a holomorphic function of λ ∈ C

satisfying the equation

−vxx −
ax2

4
v = λv. (2.4.3)

As x→ +∞,

v = ei
hx2
4 xν

(
1 +Oν(< hx2 >−1)

)
.

The solutions fj can be characterized by the appropriate integral equations.
In particular, one can write for f1 the following one.

f1(x,E) = v(x, λ1)
(
1
0

)
−
∫ ∞

x

dyK(x, y,E)σ3V (ϕ̃(y))f1(x,E),

where

K(x, y,E) =
(

k(x, y, λ1) 0
0 k(x, y, λ2)

)
,

k(x, y, λ) =
1

w(v, v∗)
(v(x, λ)v∗(y, λ)− v(y, λ)v∗(x, λ)).

By standard arguments one gets from this equation the existence of a solution f1
with the asymptotic behavior (2.4.2) as x→∞, f1 being a entire function of E.
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The solutions fj , j = 1, . . . , 4, satisfy the relations :

f2(x,E) = f1(x, Ē), f3(x,E) = σ1f1(x,−Ē), f4(x,E) = σ1f1(x,−E),

w(f1, f2) = ih, w(f1,2, f3,4) = 0, w(f3, f4) = −ih.
Let us introduce the solutions gj(z,E), j = 1, . . . , 4, with standard behavior

at −∞ by
gj(x,E) = fj(−x,E).

Consider the matrix solutions

F1 = (f1, f3), F2 = (f2, f4), G1 = (g1, g3), G2 = (g2, g4).

One can express F1 in terms of Gj , j = 1, 2 :

F1 = G2A+G1B,

A = A(E), B = B(E) are holomorphic functions of E , E ∈ C. One can get the
Wronskian representations for A and B :

A = ih−1σ3W (G1, F1), B = −ih−1σ3W (G2, F1),

A admitting a factorization on the even and odd parts :

A = −2ih−1σ3A
−A+, A− = F t

1(0, E), A
+ = F1x(0, E).

The solutions Fj , Gj satisfy the following orthogonal relations∫
R

dxF t
1(x,E)σ3G1(x,E′) = 2πhσ3A(E)δ(E −E′),

∫
R

dxF t
2(x,E)σ3G1(x,E′) = 0. (2.4.4)

2.4.2 Asymptotics of the standard solutions as a→ 0

In this subsubsection we describe the asymptotic behavior of the solutions fj in
the limit a → 0. We formulate the results and outline the proofs omitting some
technical details of the calculations.

Consider f3 on the set D = {E,ReE ≥ 0, ImE ≥ −δ3h}, where δ3 is a small
positive number. It is not difficult to check that on this set f3 admits the following
asymptotic representation.

Lemma 2.4.1 As x→∞,

f3(x,E) = v∗(x, λ2)
[
eµxf0

3 (x, k) +O(h(1 + |E|)−1/2e−
γ
hSa(hx))

]
,

0 < γ < 4, uniformly with respect to h in some small vicinity of zero, and E ∈ D.
Here µ =

√
E + 1, Reµ > 0, k =

√
E − 1.
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By the way of explanation we remark that the assertions of Lemma 2.4.1 can be
got by combining the standard WKB description of v(x, λ) (see appendix 4) and
the following representation :

f3(x,E) = v∗(x, λ2)eµxf0
3 (x, k) + f1

3 (x,E),

f1
3 (x,E) = −

∫ ∞

x

dyK(x, y,E)σ3[R+ V (ϕ̃(y))f1
3 (x,E)],

where

R = (V (ϕ̃)− V (ϕ0))v∗(x, λ2)eµxf0
3 − 2(v∗(x, λ2)eµx)xσ3(f0

3x + µf0
3 ),

|R| ≤ ch < x >3 e−4/hSa(hx)|v∗(x, λ2)|,
uniformly with respect to E ∈ D, x ∈ R+, and h sufficiently small.

To describe the behavior of f1 we must single out three subsets on the set
D :

D = D0,R ∪ D1,R ∪ D2,R,

D0,R = {E, |E − 1| ≥ Rh, arg (1−E) ∈ (−δ4, δ4)} ∩ D,
D1,R = {E, |E − 1| ≤ Rh} ∩ D, D2,R = D \ (D0,R ∪ D1,R),

where δ4 is a small fixed number, R > 0. Proceeding in the same manner as in
lemma 2.4.1 one can get the following result.

Lemma 2.4.2 The solution f1 admits the following estimates :
(i) if E ∈ D0,R then

f1(x,E) = v(x, λ1)
[
eikxw0

1(x, k) +O(
h

|k|e
− γ
hSa(hx))

]
,

where k =
√
E − 1, Im k > 0, provided R is sufficiently large, h is sufficiently

small;
(ii) if E ∈ D1,R then

f1(x,E) = v(x, λ1)
[
w0

1(x, 0) +OR(h1/2e−
γ
hSa(hx))

]
.

Here γ is the same as in lemma 2.4.1.

To describe the behavior of f1 on the set D2,R we use the standard substitu-
tion reducing the order of the system (2.4.1) :

f1 = z0f3 + z1

(
1
0

)
. (2.4.5)

Setting z2 = z′0f32 where f3 =
(
f31
f32

)
we get

−z′′1 − (E − 1)z1 −
ax2

4
z1 + V11z1 + V12z2 = 0, (2.4.6)
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−z′2 − z2
v∗′(x, λ2)
v∗(x, λ2)

+ V21z1 + V22z2 = 0.

Here
V11 = V1(ϕ̃)− V2(ϕ̃)

χ1

χ2
, V12 =

2
χ2

2
(χ′

2χ1 − χ′
1χ2),

V21 = V2(ϕ̃), V22 = −χ′
2

χ2
,

χj = f3j
v∗(x,λ2)

, j = 1, 2, V1 and V2 being the components of the potential V :
V = V1σ3 + iV2σ2.

By lemma 2.4.1, this system has smooth coefficients for x ≥M (M sufficiently
large) which are holomorphic functions of E ∈ D.

Let 'z0 =
(z0

1
z0
2

)
be the most rapidly decreasing solution of the unperturbed

system
−z′′1 − k2z1 + V 0

11z1 + V 0
12z2 = 0,

−z′2 + µz2 + V 0
21z1 + V 0

22z2 = 0,

where

V 0
11 = V1(ϕ0)− V2(ϕ0)

χ0
1

χ0
2
, V 0

12 =
2

(χ0
2)2

(χ0′
2 χ

0
1 − χ0′

1 χ
0
2),

V 0
21 = V2(ϕ0), V 0

22 = −χ0′
2

χ0
2
,

χ0 =
(χ0

1
χ0

2

)
being defined by χ0 = eµxf0

3 (x, k). The solution 'z0 can be characterized
by the following integral equation

'z0 = eikx
(
1
0

)
−
∫ ∞

x

dy

( sin k(x−y)
k 0
0 e−µ(y−x)

)
V0'z

0(y),

where V0 =
(

V 0
11 V 0

12
V 0

21 V 0
22

)
. If k ∈ Ω1 then for sufficiently large x ≥M a solution

'z0 is defined that depends smoothly on x, holomorphically on k and admits the
asymptotic representation

'z0 = eikx
[(

1
0

)
+O((1 + |k|)−1e−4x)

]
.

It is worth mentioning that the function z0
0f

0
3 +z0

1
(1
0

)
where z0

0 =
∫ x
M
dy

z0
2

f0
32
satisfies

(2.1.1) and in fact coincides with the solution f0
1 .

Let us return to the complete system (2.4.6). Write 'z as the sum

'z = v(x, λ1)e−ikx'z0(x, k) + 'z1,
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where k =
√
E − 1, the square root being defined on the complex plane with the

cut along negative semi- axes, Re k > 0. Then for 'z1 one can write down the
following equation

'z1 = −
∫ ∞

x

dy

(
k(x, y, λ1) 0

0 t(x, y, λ2)

)[
R′ + V'z1(y)

]
,

where t(x, y, λ) = v∗(y,λ)
v∗(x,λ) , V =

(
V11 V12
V21 V22

)
,

R′ = (V− V0)e−ikxv(x, λ1)'z0(x, k)−
(

2eikx(v(x, λ1)e−ikx)x(e−ikxz0
1)x

v(x, λ1)e−ikxz0
2(

vx(x,λ1)
v(x,λ1)

− ik + v∗
x(x,λ2)
v∗(x,λ2)

− µ)

)
.

By lemma 2.4.1, R′ admits the estimate

|R′| ≤ ch|k|−1(1 + |k|)e−
γ
hSa(hx)|v|,

provided x ≥M , γ < 4.
Using the standard arguments one checks that a solution 'z1 is defined, de-

pends smoothly on x, x ≥ M , depends holomorphically on E ∈ D2,R and admits
the estimate

|'z1| ≤ ch|k|−1e−
γ1
h Sa(hx)|v|.

Here R is supposed again to be sufficiently large.
Thus, f1 admits a representation of the form (2.4.5), where

z0 = −
∫ ∞

x

dy
z2
f32

, (2.4.7)

(
z1
z2

)
= e−ikxv

[(
z0
1

z0
2

)
+O(

h

|k|e
− γ
hSa(hx))

]
,

provided x ≥M .
As a direct consequence of lemmas 2.4.1, 2.4.2 and (2.4.5), (2.4.7) one gets

the following asymptotic representations of the matrices A±.
For E ∈ D0,R :

A−(E) = a(E)
(
D̂−

0 (k) +O( h
|k|)
)
,

A+(E) =
(
D̂+

0 (k) +O( h
|k| )
)
a(E), Im k > 0,

(2.4.8)

where a(E) =
(

a(λ1) 0
0 a∗(λ2)

)
, a(λ) = v(0, λ). Here R is the same as in the

first part of lemma 2.4.2.
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For a(λ) one can write down an explicit expression :

a(λ) =
(
2
h

)ν/2

e
iπν
4

√
π

Γ
( 1−ν

2

) .
Thus, a(λ) has no zeros except for the points λ = −ih(3

2 + 2n), n = 0,−1, . . . .
For E ∈ D1,R :

A−(E) = a(E)
(
D̂−

0 (0) +OR(h1/2)
)
,

A+(E) =
(
D̂+

0 (0) +OR(h1/2)
)
a(E).

(2.4.9)

Here we made use of the obvious estimate

|vx(0, λ1)
v(0, λ1)

| ≤ ch1/2,

provided E ∈ D1,R, δ3 < 3/2.
It follows from lemma 2.4.1, (2.1.2), (2.4.5), (2.4.7) that
(i) as |E| → ∞, E ∈ D2,R

A−(E) = at1(E)
(
I +O(|E|−1/2)

)
,

A+(E) =
(
I +O(|E|−1/2)

)
(ikp− µq)a1(E),

(2.4.10)

p =
(1 0
0 0

)
, and q =

(0 0
0 1

)
, uniformly with respect to h sufficiently small;

(ii)
A−(E) = at2(E)

(
D−

0 (k) +O( h
|k|)
)
,

A+(E) =
(
D+

0 (k) +O( h
|k|)
)
a2(E)

(2.4.11)

uniformly with respect to E in any compact subset of D2,R.
Here Re k > 0,

aj =
(

a(λ1) 0
aj(E) a∗(λ2)

)
, j = 1, 2,

aj being holomorphic functions of E ∈ D2,R.

2.4.3 The point spectrum of H(a)

Since H satisfies (2.3.14) the spectrum is invariant under transformations E →
−E, E → Ē. It follows from (2.4.2) that the eigenvalues of H lie outside the con-
tinuous spectrum. In the upper half plane they are characterized by the equation

detA = 0,

zeros of detA+ (detA−) corresponding to the eigenvalues of H restricted on the
subspace of even (odd) functions.
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The zeros of detA in the closed lower half plane {ImE ≤ 0} are called
resonances.

It follows directly from (2.4.8)-(2.4.11) and proposition 2.1.5 that for h suffi-
ciently small the number of zeros of detA in the half plane ImE ≥ −δ3h is finite
and if there are any, they belongs to a small vicinity of the point E = 0. Moreover,
one has the following proposition.

Proposition 2.4.3 For a > 0 sufficiently small, in the half plane ImE > −δ3h
(δ3 > 0 sufficiently small)

(i) detA+ has only three zeros : iE1,2(a), iER(a). They are simple purely
imaginary, E1,2 > 0, ER < 0, and admit the following asymptotic estimates as
a→ 0 :

|iE2(a)− λ(a)| = O(e−(2−ε)S0/h), E1, ER = O(e−(1−ε)S0/h),

ER +E1 = O(a−3/2e−2S0/h).

(ii) detA− has only one zero which is simple purely imaginary and belongs
to a O(e−(2−ε)S0/h) vicinity of µ(a).

Here λ(a) (µ(a)) is the corresponding eigenvalue of H̃(a) restricted to the
subspace of even (odd) functions :

λ(a) = i
√
a(2 +O(a)), µ(a) = i

√
a(1 +O(a)),

√
a > 0.

Before starting the proof we mention the following obvious consequence of
the above proposition :

(i) the discrete spectrum of H(a) restricted to the subspace of even functions
consists of four simple purely imaginary eigenvalues ±iE1,2(a);

(ii) in the strip {E : −δ3h < ImE ≤ 0} the operator H(a) has only one
simple resonance iER(a).

Proof of proposition 2.4.3. For E in some small vicinity of zero and for h|x| ≤
2− δ0 the solution F1 of (2.4.1) can be expressed in terms of the solutions Ψ1, Ψ2,
Ψ2 = (ψ2, ψ4) of (2.3.1)

F1 = Ψ1T1 +Ψ2T2, (2.4.12)

W (Ψ2, F1) =W (Ψ2,Ψ1)T1, W (Ψ1, F1) = −W (Ψ2,Ψ1)T2.

It follows directly from lemmas 2.4.1, 2.4.2 that for E ∈ Υ = {|E| ≤ δ4, ImE >
−hδ3}, δ4 > 0 sufficiently small,

T1(E) = t1(E) +O(e−
4−ε−O(E)

h S0)a(E),
T2(E) = t2(E) +O(e−

6−ε−O(E)
h S0)a(E),

(2.4.13)

where

ti(E)
(

ti(E) 0
0 ti(−Ē)

)
,
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t1(E) =
w(u2(λ1), v(λ1))
w(u2(λ1), u1(λ1))

= (−λ1)1/4a(λ1)(1 +O(h)),

t2(E) = − w(u1(λ1), v(λ1))
w(u2(λ1), u1(λ1))

=
a

4w(u2(λ1), u1(λ1)

∫ ∞

0
dxx2(1− θ)v(λ1)u1(λ1)

= O(e−
2−ε−O(E)

h S0)a(λ1). (2.4.14)

Here we used the WKB representation (2.3.4) of u1 and a similar one of v (see
appendix 4).

The above representation imply the equivalence between the equations

detA+ = 0

and
Φ(E) = det[D+(E) + Ψ2x(0, E)T0(E)] = 0, T0 = T2T

−1
1 .

By (2.4.13), (2.4.14),

T0 = t0 +O(e−
6−ε−O(E)

h S0), t0(E) =
(

t0(E) 0
0 t0(−Ē)

)
, (2.4.15)

where t0(E) = t2(E)t−1
1 (E). The zeros of detA− are characterized by a similar

equation, D+ being replaced by D− and Ψ2x by Ψt
2.

The asymptotic estimates (2.4.13)-(2.4.15) together with the analytic prop-
erties of D± implies directly that in Υ

(i) detA+(E) has only three zeros (counted with their multiplicity) : one (E2)
is in a O(e−

2−ε
h S0) vicinity of λ(a), two others belong to a O(e−

1−ε
h S0) vicinity of

the point E = 0;
(ii) detA−(E) has only one zero E3 which belongs to a O(e−

2−ε
h S0) vicinity

of µ(a).
Since

A±(E) = σ1A±(−Ē)σ1, (2.4.16)

E2,3 are purely imaginary.
Clearly, the zeros of detA+ that are exponentially close to the point E = 0

can be characterized (asymptotically) by the equation :

det[D+(E) + Ψ2x(0, 0)t0(0)] = 0.

Taking into account the structure of the root subspace of H̃(a) corresponding
to the zero eigenvalue one can rewrite (again asymptotically) the above equation
as follows :

κE2 + 2γ2γ3Re t0(0) = 0, (2.4.17)
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where κ have been introduced in subsubsection 2.3.2 and γ2,3 are defined by the
relations :

γ2

(
1
1

)
=

1√
2
Ψ1x(0, 0)

(
1
1

)
, γ3

(
1
−1

)
=

1√
2
Ψ2x(0, 0)

(
1
−1

)
.

It follows from (2.4.13), (2.4.14) and the WKB representations of ui, i = 1, 2,
and v that

Re t(0) ≥ c

∞∫
0

dy(1− θ(hy))e−
1
hS(hy), (2.4.18)

with some positive constant c. Here

S(ξ) =
∫ ξ

0
ds(
√
1− s2θ(s)/4 +

√
(1− s2/4)+).

By (2.3.7), (2.3.21), (2.3.23), (2.3.25),

γ2 = d(0, a)(γ1 +O(a)), γ3 =
√
2d0(0)ϕ∞
ϕ0(0)

+O(h). (2.4.19)

The formulas (2.4.15), (2.4.17)-(2.4.19) imply the existence of two simple zeros
iE1, iER of detA+,

E1, ER = ±
√
2Re t0γ2γ3

κ
+O(e(2−ε)S0/h) = ±

√
2Re t0
ea

ϕ∞(1 +O(h)). (2.4.20)

By (2.4.16), they are purely imaginary.
The expression E1 +ER can be calculated as follows.

E1 +ER = i
Φ′(0)
Φ′′(0)

+O(e(3−ε)S0/h).

By (2.3.18), (2.4.13)-(2.4.15),

Φ′′(0) = 2κ(a) +O(e(2−ε)S0/h). (2.4.21)

For Φ′(0) the direct calculations give

Φ′(0) = −iS0γ2γ3

2h
e−2S0/h(1 +O(h)). (2.4.22)

Combining (2.3.19), (2.3.20) and (2.4.19), (2.4.21), (2.4.22) one gets

E1 +ER =
κ2

h3 e
−2S0/h(1 +O(h)),

κ2 =
S0ϕ

2
∞

4e
.
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Let ζ1(x, a) and ζ2(x, a) be eigenfunctions corresponding to the eigenvalues
iE1 and iE2 respectively. Let ζR(z, a) be a resonant function associated to the
resonance iER :

HζR = iERζR,

ζR ∼ e
ihx2

4 σ3 |x|− 1
2−

ER+iσ3
h 'c,

as |x| → ∞. Here 'c is a constant vector. Clearly ζj , j = 1, 2, R, can be normalized
by the conditions : 〈

ζj , ζ̃0

〉
=
〈
ζ̃0, ζ̃0

〉
, j = 1, 2, R.

The following lemma is an immediate consequence of (2.4.12)-(2.4.14), lemmas
2.4.1, 2.4.2 and (2.3.23)-(2.3.25).

Lemma 2.4.4 ζj , j = 1, 2, R, admit the estimates

|ζj − ζ̃0 −Ej ζ̃1| ≤ ce−(2−ε)S0/he
1
h

∫h|x|
0 ds

√
(1−s2/4)+ < x >− 1

2−
Ej
h , j = 1, R,

|ζ2 − ζ̃2| ≤ ce−(2−ε)S0/he
1
h

∫h|x|
0 ds

√
(1−s2/4)+ < x >− 1

2−
E2
h ,

where ζ̃2 = ζ̃2(a) is the eigenfunction of H̃(a) corresponding to the eigenvalue
λ(a), normalized by the condition〈

ζ̃2, ζ̃0

〉
=
〈
ζ̃0, ζ̃0

〉
.

Let us mention that ζ̃2(a) introduced here differs a little bit from that of subsection
2.3.

As a consequence of lemmas 2.4.1, 2.4.2, 2.4.4 and the representations
(2.4.12), (2.4.13) one can get the estimates of the operators P (a), Q(a) announced
in proposition 1.2.6.

2.4.4 The resolvent of H(a)

The resolvent R(E) = (H −E · I)−1, ImE > 0, of H is an integral operator with
2× 2 matrix kernel

G(x, y,E) =
{

F1(x,E)D−1Gt
1(y,E)σ3, y ≤ x,

G1(x,E)Dt−1
F t

1(y,E)σ3, x ≤ y,

where D = W (G1, F1) = −ihσ3A, the resolvent kernel in the lower half plane
ImE < 0 being given by G(x, y, Ē).

The kernel G is a meromorphic function of E on the complex plane and its
poles in the upper (lower) half plane coincide with the zeros of detA, i.e., with
the eigenvalues (resonances) of H. It follows from the estimates (2.4.2) for the
solutions F1 and G1 that for ImE > 0 and away from the zeros of A the kernel G
determines a bounded operator in L2.
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The formula for the resolvent makes it easy to construct on the continuous
spectrum a complete system of generalized eigenfunctions. Let F , G be solutions
of the scattering problem :

F = F1A
−1, G = G1A

−1,

F(x,E) ∼ e
ihx2

4 σ3x−
1
2+ i

h (E−σ3)A−1, x→ +∞,

F(x,E) ∼ e−
ihx2

4 σ3 |x|− 1
2−

i
h (E−σ3) + e

ihx2
4 σ3 |x|− 1

2+ i
h (E−σ3)BA−1, x→ −∞.

By proposition 2.4.3, F , G are meromorphic functions in the strip −hδ3 < ImE <
hδ3 with the only poles at iER, iE2 which are simple.

The relations (2.4.4) imply the orthonormality of the scattering problem so-
lutions :

1
2πh

∫
R

dxF∗(x,E)σ3F(x,E′) = δ(E −E′)σ3,

1
2πh

∫
R

dxG∗(x,E)σ3G(x,E′) = δ(E −E′)σ3, (2.4.23)

1
2πh

∫
R

dxF∗(x,E)σ3G(x,E′) = 0.

It is easy to express the jump of the resolvent on the continuous spectrum in
terms of the solutions F , G :

1
2πi

(G(x, y,E + i0)−G(x, y,E − i0)) =

1
2πh

[F(x,E)σ3F∗(y,E) + G(x,E)σ3G∗(y,E)]σ3. (2.4.24)

Introduce the operators F, G : L2(R → C2)→ L2(R → C2) :

(F'Φ)(x) =
1√
2πh

∫
R

dEF(x,E)Φ(E),

(G'Φ)(x) =
1√
2πh

∫
R

dEG(x,E)Φ(E).

The action of the adjoint operators F∗, G∗ is given by

(F∗ψ)(E) =
1√
2πh

∫
R

dxF∗(x,E)ψ(x),

(G∗ψ)(E) =
1√
2πh

∫
R

dxG∗(x,E)ψ(x).
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Proposition 2.4.5 F is a bounded operator. Moreover,
(i) for e−ihx

2
4 σ3f ∈ H1, (F∗f)(E) is a meromorphic function of E in the

strip −b0h < ImE ≤ 0 with the only pole in −iE2 and satisfies the estimate

‖F∗f‖L2(R−ibh) ≤ ch−K1‖e−ihx
2

4 σ3f‖H1 , hL ≤ b < b0,

(ii) let us introduce the operators Fb :

(FbΦ)(x) =
1√
2πh

∫
R

dEF(x,E − ibh)Φ(E).

For hL ≤ b < b0, they satisfy the inequality

‖ 〈x〉−ν2 FbΦ‖2 ≤ ch−K2‖Φ‖2, ν2 > 1/2,

provided b0 is sufficiently small. Here Kj , j = 1, 2, depend on L but do not depend
on a.

The same is true for the operator G.

Proof. This proposition is a direct consequence of the similar estimates related to
the unperturbed operator H0(a), H0(a) = (−∂2

x + 1 − ax2

4 )σ3, lemmas 2.4.1 and
2.4.2, the representation (2.4.5), (2.4.7) and proposition 2.4.3. To illustrate the
arguments used we prove here the estimates for F, the part (i) can be obtained
in a similar manner. We start by remarking that in the free case (V = 0) the
above proposition is an immediate consequence of the explicit factorization of the
corresponding operators F0, F∗

0 in terms of the Fourier transform :

F0(x,E, a) =
1√
π

(
h

2

) 1
4+i

E−σ3
2h

ei
hx2
4 σ3+iπ4 σ3

∫ ∞

0
dρeiρ

2σ3+i
√

2hxρσ3ρ−
1
2−i

E−σ3
h .

(2.4.25)
Here F0 is the solution of the scattering problem associated to the operator H0(a).
This representation implies, in particular, the unitary property of F0 and the
estimates

‖ 〈x〉−ν2 F0bΦ‖2 ≤ chb/2‖Φ‖2, (2.4.26)

‖F∗
0f‖L2(R−ibh) ≤ ch−b/2‖e−ihx

2
4 σ3f‖H1 ,

provided 0 ≤ b < 1
2 .

To take into account the perturbation V we use the representation

F = F0 + F1, F1 = −(H0 −E)−1
+ V F .

Here (H0−E)−1
+ stands for the meromorphic continuation of the resolvent (H0−

E)−1 from the upper half-plane into the lower half-plane.
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Using lemmas 2.4.1 and 2.4.2, the representation (2.4.5), (2.4.7) and propo-
sition 2.4.3 it is not difficult to prove the estimate

e−γ|x||F(x,E, a)|, e−γ|x||FE(x,E, a)| ≤ ch−Ke−γ1|x|(1 + |E|)− 1
4+ ImE

2h , (2.4.27)

hL ≤ |ImE| ≤ hδ3,

e−γ|x||F(x,E, a)| ≤ c(h)e−γ1|x|(1 + |E|)−1/4, E ∈ R. (2.4.28)

Here γ > γ1 > 0, K is a positive constant depending only on L.
Combining (2.4.27) with the obvious estimates of the free operator :

‖(H0 −E)−1
+ f‖∞ ≤ ch−1/2(1 + |E|)−1/2‖ 〈x〉M f‖∞, |ImE| ≤ h

2
, (2.4.29)

where M is a positive constant independent of h and λ, one gets

‖
∫

R

dEF1(x,E − ibh)Φ(E)‖∞ ≤ ch−K−1/2‖Φ‖2, (2.4.30)

hL−1 ≤ b ≤ min(1/2, δ3),

‖
∫

R

dEF1(x,E)Φ(E)‖∞ ≤ c(h)‖Φ‖2, (2.4.31)

The inequalities (2.4.26), (2.4.30) lead to the desired estimate for Fb.
To estimate L2-norm of the integral

∫
R
dEF1(x,E)Φ(E) the following refine-

ment of (2.3.29) is needed :

‖(l(a)− λ− i0)−1f‖∞ ≤ c|λ|−1‖ 〈x〉M f‖∞, λ ≤ −1, (2.4.32)∣∣∣∣(l(a)− λ− i0)−1f(x) +
v(x, λ)

2v(0, λ)vx(0, λ)

∫
R

dyv(−y, λ)f(y)
∣∣∣∣

≤ ch−1/2 〈λ〉−1/2 〈x〉−α ‖ 〈y〉M f‖∞, (2.4.33)

l(a) = −∂2
x− ax2

4 . In the second estimate hx ≥ 2(−λ)1/2+ , λ ∈ R, α is arbitrary,M
depends on α. By the way of the explanation we remark that these estimates as
well as (2.4.29) can be got easily by combining the explicit representation of the
resolvent (l(a)−λ− i0)−1 in terms of v(x, λ) with the corresponding properties of
the Weber functions, see [B] and appendix 4.

Since F(x,E) = σ1F(x,−E)σ1, E ∈ R, it is sufficient to consider the integral

I =
∫ ∞

0
dEF1(x,E)Φ(E).

By (2.4.31), ∫
h|x|≤4

dx|I|2 ≤ c(h)‖Φ‖22. (2.4.34)
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To estimate I in the region h|x| ≥ 4 we break it into two terms :

I = I1 + I2, I1 = pI, I2 = qI.

Consider I1. Using (2.4.28), (2.4.33), the boundedness of F0 and the obvious
estimate (see appendix 4, (A4.1), (A4.4))

|v(0, λ)vx(0, λ)| ≤ c(h), λ ≥ −1,

one gets immediately ∫
hx≥4

dx|I1|2 ≤ c(h)‖Φ‖22.

The same estimate is valid in the region hx ≤ −4. Thus,∫
h|x|≥4

dx|I1|2 ≤ c(h)‖Φ‖22. (2.4.35)

Consider I2. We represent it as the sum I2 = I21 + I22, I21 =
∫ h2x2

16 −1
0 dE,

I22 =
∫∞
h2x2
16 −1 dE.

By (2.4.28), (2.4.32),

|qF1(x,E)| ≤ c(h) 〈E〉−5/4
, E ≥ 0, x ∈ R,

which allows us to get for I22∫
h|x|≥4

dx|I22|2 ≤ c(h)‖Φ‖22. (2.4.36)

To estimate I21 in the region hx ≥ 4 we combine (2.4.33) with the following
estimate of v (see appendix 4, (A4.1))

|v(x, λ)− ei
hx2
4 x−1/2+iλ/h| ≤ c|λ|2h−3x−5/2,

λ ≤ −1, hx ≥ |λ|1/2(2 + δ), δ > 0. As a result, one gets the representation

qF1(x,E) = e−ihx
2

4 x−1/2+i(E+1)/hµ(E) +R2,

where

µ(E) =
∫

dy
v(−y, λ2)

2v(0, λ2)vx(0, λ2)
qV F(y,E),

R2 admits the estimate

|R2| ≤ c(h)x−5/2[(E + 1)−3/4 + (E + 1)2|µ(E)|], (2.4.37)

provided hx ≥ 4(E + 1)1/2, E ≥ 0.
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The function µ can be estimated as follows.

|µ(E)| ≤ c(h)e−γ (E+1)1/2

h , (2.4.38)

with some γ > 0. Here we have used (2.4.28) and the following estimate of v

e−γ|x|
∣∣∣∣ v(x, λ)
v(0, λ)vx(0, λ)

∣∣∣∣ ≤ ce−γ′ |λ|1/2
h , (2.4.39)

−λ ≥ δ > 0, γ′ is a positive constant depending only on δ and γ. (2.4.39) is an
immediate consequence of the WKB representations of v, see appendix 4, (A4.2)-
(A4.4).

It follows from (2.4.35), (2.4.36) that for hx ≥ 4,

I21 = e−ihx
2

4 x−1/2+i/h

∫ ∞

0
dExiE/hµ(E)Φ(E) +Oh(‖Φ‖2x−5/2).

As a consequence, ∫
hx≥4

dx|I21|2 ≤ c(h)‖Φ‖22. (2.4.40)

In a similar way one can obtain∫
hx≤−4

dx|I21|2 ≤ c(h)‖Φ‖22. (2.4.41)

Combining (2.4.34)- (2.4.36), (2.4.40), (2.4.41) one gets finally :

‖I‖2 ≤ c(h)‖Φ‖2,

which implies the boundedness of the operator F.
Since

F̂(z,E, a) = F(h−1/2z, hE, a)h−
1
4−

i
2 (E−Ê0σ3), (2.4.42)

proposition 2.4.4 implies immediately the corresponding inequalities of proposition
1.2.7.

In order to prove the estimates for the derivative F̂a one can use the following
representation

(F̂∗
a'g)(E) = −Ê0a

d

dE
(F̂∗σ3'g)(E) +

1√
2π

∫
R

dyF∗
2 (y,E)'g(y),

where

F2(E) = −(Ĥ −E)−1
[
Ê0a[σ3, Ŵ ]F̂E(E) + ŴaF̂(E)

]
, ImE > 0.
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The desired inequalities follows then directly from proposition 2.4.4, the estimate
(2.4.27) and (2.4.42).

Introduce the operator E : L2(R → C2)× L2(R → C2)→ L2(R → C2) :

E'Φ = FΦ1 + GΦ2, 'Φ = (Φ1,Φ2).

In terms of E the orthonormality conditions (2.4.23) mean

E∗σ3Eσ̂3 = I.

The formula for the jump in the resolvent leads to a relation meaning that the
scattering problem solutions form a complete system of eigenfunctions of the con-
tinuous spectrum of H :

Eσ̂3E∗σ3 = P c,

where σ̂3 =
(

σ3 0
0 σ3

)
, P c being the spectral projection onto the subspace of

the continuous spectrum.
The operator E realizes a linear equivalence between the restriction of H to

the continuous spectrum and the multiplication by E :

HP c = EEσ̂3E∗σ3.

Moreover, for any bounded continuous function ϕ we have

ϕ(H)P c = Eϕ(E)σ̂3E∗σ3.

Appendix 1

Here we prove proposition 2.1.2. By (1.1.8) it suffices to consider the point E = 1.
Let the equation (L0 − 1)ψ = 0 have a bounded solution ψ, ψ �∈ L2. Then the
same is true for the operator T0 : there exists ψ0 such that

T0ψ0 = ψ0, ψ0 = C±(1 +O(e∓γx)), x→ ±∞, (A1.1)

where γ > 0, |C−| + |C+| > 0. Obviously, (ψ0, ϕ0) = 0. One can consider ψ0 be
real and either odd or even. We normalize ψ0 in such a way that C+ = 1.

Introduce a truncated resonant function ψε
0 :

ψε
0(x) = Θ(εx)ψ0 + µ(ε)ϕ0, µ(ε) = − (Θψ0, ϕ0)

‖ϕ0‖22
,

where ε > 0 is small, Θ is even, Θ ∈ C∞
0 , Θ(ξ) = 1 in some vicinity of zero. Clearly,

(ψε
0, ϕ0) = 0, |µ(ε)| ≤ ce−γ/ε, γ > 0.
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The direct calculations show

‖ψε
0‖22 = ε−1M0 +M1 +O(e−γ/ε), M0 = ‖Θ‖22, M1 =

∫
R

dx(|ψ0|2 − 1),

(L0+ψ
ε
0, ψ

ε
0) = ε−1M0 +M1 +M2 +O(ε), M2 = ((L+ − 1)ψ0, ψ0). (A1.2)

As in the proof of proposition 2.1.2 we consider the quotient (Au,u)
(u,u) , A = PL0+P ,

u ∈ F , F = L{ψε
0, η0, ξj , j = 0, 1}. It is clear that dimF = 4.

It follows from (A1.2) that

(Au, u)
(u, u)

≤ (1 + ε
M2

M0
+O(ε2))max

x∈C3

|x1|2
< (I +B)x, x >C3

,

where

B =


 0 b1 b2

b1 0 0
b2 0 0


 , bj =

(ψε
0, ej)

‖ψε
0‖2

, ej =
{ η0

‖η0‖2
, j = 1

ξ1
‖ξ1‖2

, j = 2
,

bj = ε1/2(M−1/2
0 (ψ0, ej) +O(ε)), j = 1, 2.

It is easy to check that

max
x∈C3

|x1|2
< (I +B)x, x >C3

=
1

1− b2j
, j =

{
1 if ψ0 is odd,
2 if ψ0 is even .

Thus,

(Au, u)
(u, u)

≤ (1 + ε
κj
M0

+O(ε2)), κj =M2 + (ψ0, ej)2.

Consider κj . Clearly,

κj = (f, ψ0) + (f, ej)2 ≤ (f, ψ0 + f),

where f = (PL0+ − 1)ψ0, f is a real smooth function decreasing exponentially as
|x| → ∞, (f, ϕ0) = 0. By (A1.1),

(f, ψ0 + f) = −((L0− − 1)−1f, f).

Since L0− has no resonances at the end point E = 1 of the continuous spectrum
the expression ((L0− − 1)−1f, f) is well defined and positive since (f, ϕ0) = 0.
Thus,

κj < 0, j = 1, 2.

This means that for ε sufficiently small

(Au, u)
(u, u)

< 1,

provided u ∈ F , which contradicts to the fact that the number of the eigenvalues
of A counted with their multiplicity is equal three.
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Appendix 2

Here we prove proposition 1.2.6. Using the obvious estimate

|(l(a) + 1− i0)−1(x, y)| ≤ ch−1/3e−
1
h |S(hx)−S(hy)|,

and the inequality (ii) of proposition 1.2.1. one gets immediately

‖f0(a)‖∞ ≤ ce−(1−ε)S0
h , ‖ϕ̃(a)f0(a)‖∞ ≤ ce−(2−ε)S0

h .

By (1.2.9), the expression G0(a) can be estimated as follows.

‖G0(a)‖ ≤ c
∑

j=0,...,3

a

∫
dxx2(1− θ(hx))|'ej |(ϕ̃+ |f0(a)|) ≤ ce−(2−ε)S0

h .

Here we also made use of propositions 1.2.1, 1.2.2.
Consider G3

0 :

G3
0 =

1
2(ϕ̃a, ϕ̃)

〈
az2

4
(θ − 1)'f0, ϕ̃

(
1
−1

)〉
=

1
(ϕ̃a, ϕ̃)

Im (
az2

4
(θ − 1)f0, ϕ̃) = − 1

(ϕ̃a, ϕ̃)
lim

R→+∞
Im
∫ R

R

dyf0 · l(a)f0 =

2
(ϕ̃a, ϕ̃)

lim
R→+∞

Im
(
f̄0′(R)f0(R)

)
= − h

(ϕ̃a, ϕ̃)
|κ|2, (A2.1)

where κ can be characterized by the asymptotic representation

f0 = e
ihz2

4 |z|−1/2−i/h(κ+ o(1)), z →∞.

It is not difficult to check that

κ =
1

w(ψ−, ψ+)

∫
R

dyψ−(y)
ay2

4
(1− θ(hy))ϕ̃(y) =

1
w(ψ−, ψ+)

∫
R

dyψ−(y)ϕ̃5(y).

Here ψ± is a solution of the equation (l(a)+1)ψ = 0, characterized by the following
behavior at ±∞ :

ψ± = e
ihz2

4 |z|−1/2−i/h(1 + o(1)), z → ±∞.

Using the standard WKB descriptions of ψ±, see appendix 4, and proposition 1.2.1
one can easily check that as a → 0, Γ−1h|κ|2 admits an asymptotic expansion in
powers of a :

|κ|2 = h−1e−
2S0
h

∑
n≥0

kna
n, k0 =

1
2

(∫
dyeyϕ5

0(y)
)2

= 2ϕ2
∞. (A2.2)
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Combining (A2.1) and (A2.2) one gets the following asymptotic (as a → +0)
representation of G3

0 :

G3
0 = e−

2S0
h

∑
n≥0

G3
0ka

k, G3
00 = − k0

(ϕ0, ϕ1)
= −2ϕ2

∞
e

< 0.

This asymptotic expansion can be differentiated any numbers of time with respect
to a.

To estimate the Fourier transform ˆ̃f0 of f̃0 = e−
ihz2

4 f0 we use the represen-
tation :

ˆ̃f0(p) = − i

h

∞∫
|p|

dse
i

2h (p2−s2)
∣∣∣p
s

∣∣∣i/h ˆ̃F0(s)
|p|1/2|s|1/2 , (A2.3)

where
ˆ̃F0 =

̂
e−

ihz2
4 F0.

This representation gives immediately

‖ ˆ̃f0‖1 ≤ ch−1‖ ˆ̃F0‖1 ≤ ch−1‖e− ihz2
4 F0‖H1 ≤ ce−(1−ε)S0

h .

Consider (z∂z+ 1
2 )f̃

0. Using the representation ̂(z∂z + 1
2 )f̃

0 = − i
h [(p

2+1) ˆ̃f0+
ˆ̃F0], and taking into account (A2.3) one gets

‖
̂

(z∂z +
1
2
)f̃0‖1 ≤ ch−2‖ 〈p〉2 ˆ̃F0‖1

≤ ch−2‖e− ihz2
4 F0‖H3 ≤ ce−(1−ε)S0

h .

At last, the expression ̂∂hf̃0 can be estimated as follows.

‖̂∂hf̃0‖1 ≤ ch−1
[
‖∂h ˆ̃F0‖1 + ‖(p∂p +

1
2
) ˆ̃f0‖1

]
≤ ce−(1−ε)S0

h .

Appendix 3

Here we prove the inequalities (1.3.3). We start by estimating s0. Write h as the
sum h = h0 + h1. Then h1 admits the representation

h1(τ) =
∫ τ

0
dse

∫ τ
s
duΛ0(h0(u))Λ1(s),

where
Λ0(h) =

1
2
d

dh
h−1G3

0(h),
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Λ1 =
1
2h

G3
0(h)−

1
2h0

G3
0(h0)− Λ0h1 +

1
2h

G3
R.

Taking into account proposition 1.2.4 one can estimate Λj as follows.

Λ0(τ) ≤ −ch′0(τ)h−2
0 , c > 0,

|Λ1(τ)| ≤W (M, s)[Ψ1(M)h−1
0 (τ)(e−

3κ3
2

∫ τ
0 dsh0(s) + e−

3r4
2

S0
h0(τ) )

+s2h−1
0 (τ)e−2S0/h0(τ)],

which implies the inequality

|h1| ≤W (M, s)
[
Ψ1(M)(I1 + I2) + s2I3

]
.

Here
I1 =

∫ τ

0
dsec(h

−1
0 (s)−h−1

0 (τ))h−1
0 (s)e−

3κ3
2

∫ s
0 duh0(u) ≤ ch2

0(τ)β
−4
0 ,

I2 =
∫ τ

0
dsec(h

−1
0 (s)−h−1

0 (τ))h−1
0 (s)e−

3r4
2

S0
h0(s) ≤ ch2

0(τ)e
−γ/β0 ,

with some γ > 0,

I3 =
∫ τ

0
dsec(h

−1
0 (s)−h−1

0 (τ))h−1
0 (s)e−2 S0

h0(s) ≤ ch2
0(τ).

Combining these inequalities one gets

s0 ≤W (M, s)
(
s20 + β−4

0 Ψ1(M)
)
.

Consider s1. Set β2 = h−β. For β2 one can write down the following equation

β2 =
∫ τ

0
dse−2

∫ τ
s
duh(u)Λ3(s),

Λ3 = β2
2 + 2βη1 − η2 +

1
2h

η3.

Taking into account (1.3.1) one can estimate Λ3 as follows

|Λ3| ≤W (M, s)
[
s21h

4
0p(τ ;κ1, r1) + e−(2−ε)S0

h0 + h−1
0 Ψ0(M)p(τ ; 2κ3, 2r3)

]
.

As a consequence, one obtains the following estimate of β2 :

|β2(τ)| ≤W (M, s)
(
β0s

2
1 + e−

γ
β0 + β−4

0 Ψ0(M)
)
h2

0(τ)p(τ ;κ1, r1).

Here we made use of the obvious estimates∫ τ

0
dse−

∫ τ
s
duh0(u)hM0 (s)e−γ/h0(s) ≤ chM−1

0 (τ)e−γ/h0(τ),
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∫ τ

0
dse−

∫ τ
s
duh0(u)hM0 (s)e−α

∫ s
0 duh0(u) ≤ chM−1

0 (τ)e−α
∫ τ
0 duh0(u),

provided α < 1.
Consider β3 = β − r−2. It satisfies the equation

β3τ = 2ββ3 +Λ4,

Λ4 = 2β2
3 − 2β3η1 + η2 + a− β2.

By (1.3.1),

|Λ4| ≤W (M, s)[s22h
4
0p(τ, κ2, r2) + e−(2−ε)S0

h0

+Ψ0(M)p(τ, 2κ3, 2r3) + s1h
3
0p(τ, κ1, r1)].

Since

|β3| ≤
∫ τ1

τ

dse
3
τ∫
s

duh0(u)
|Λ4(s)|,

one finally gets

s2 ≤W (M̂, ŝ)
(
ŝ1 + β0s

2
2 + e−

γ
β0 + β−3

0 Ψ0(M̂)
)
.

Appendix 4

In this appendix we collect some results related to the behavior of the function
v(x, λ) in the limit h

|λ| → 0, which corresponds to the semi-classical regime for the
equation (2.4.3). The necessary results can be obtained by the WKB method (see,
e.g., [F]). Since the subject is so well-known we just formulate them.

For argλ ∈ [0, π − δ], where δ is a small positive number, the asymptotics of
v as ε ≡ h

|λ| → 0 is given by the standard WKB formula (uniformly with respect
to x ∈ R) :

v(x, λ) = C0(λ, h)e
i
εΩ0(y,ω)(ω + y2/4)−1/4[1 +O(

ε

1 + (y)2+
)
]
, (A4.1)

Here ω = λ
|λ| , y =

hx
|λ|1/2 , C0(λ, h) = 1√

2

(
h

|λ|1/2

)−ν

,

Ω0(y, ω) = y2/4 + ω ln y −
∫ ∞

y

ds
(√

ω + s2/4− s/2− ω/s
)
.

The roots are defined on the complex plane with the cut along the negative semi-
axis. They are positive for the positive values of the argument. A similar represen-
tation (with the appropriate change of the signs in the phases) is valid for v∗ on
the semi-bounded intervals y ≥ const provided Imλ

h is sufficiently small.
Consider the case arg λ ∈ (π − δ, π]. For y ≥ Re y1 + δ′, y1 = 2

√
−ω, δ′ > 0

fixed, (A4.1) is still valid. To describe the behavior of the solutions on a finite
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vicinity of the turning point y1 one can use so called Olver type asymptotic rep-
resentations, see [F]. Let b be an interval of the form b = (−Re y1 + δ′,+∞). For
y ∈ b the function v has the following asymptotic behavior as ε→ 0

v(x, λ) = C1(λ, h)
[
ε−1/6A(y, ε)w1(−ε−2/3ζ(y)) + ε1/6B(y, ε)w′

1(−ε−2/3ζ(y))
]
,

(A4.2)
Here C1(λ, h) = C0(λ, h)ei

λ
2h (ln(−ω)+S1), S1 =

∫∞
2 ds

(√
s2 − 4 − s + 2/s

)
− 2 +

2 ln 2, w1(z) is the solution of the Airy equation w′′
1 − zw1 = 0 with the following

asymptotic behavior as z → −∞

w1(z) = ei2/3(−z)3/2(−z)−1/4[1 +O((−z)−3/2)].

As z → +∞,

w1(z) = e2/3z
3/2−iπ/4z−1/4[1 +O((z)−3/2)].

The new slow variable ζ(y) is given by

ζ(y) =


3
2

y∫
y1

√
ω + s2/4ds




2/3

.

ζ(y) is a holomorphic function of y in some finite vicinity of y1 and it is real for
real ω and y. As y → y1, ζ(y) ∼ (−ω)1/3(y − y1). Note that ζ(y) is a solution of
the equation

(ζ ′)2ζ = ω +
y2

4
.

At last,

A = (ζy)−1/2(1 +O(ε)), B = O(ε 〈y〉−5/6), (A4.3)

uniformly with respect to y ∈ b.
The solution v∗ admits a similar representation (with w1 replaced by w2 =

w∗
1).

In the limit ε−2/3(y − Re y1)→ +∞ the representation (A4.2), (A4.3) takes
the simpler form (A4.1). When ε−2/3(y − Re y1) → −∞ (A4.2), (A4.3) can be
again simplified and one gets the standard WKB formula (now with a real phase
for λ ∈ R) :

v(x, λ) = C2(λ, h)e−
1
εΩ1(y,ω)(−ω − y2/4)−1/4[1 +O(ε)

]
, (A4.4)

uniformly with respect to y, |y| ≤ Re y1 − δ′. Here C2 = C1e
−iπ4 −λ

hS0 , Ω1(y, ω) =∫ y
0 dy

√
−ω − s2/4. The solution v∗ admits a similar description.
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Appendix 5

Here we outline the proof of the estimate (1.3.11) for 'f0,

'f0 = −a1/2(I − P̃ (a))e−iz2�r−2σ3T ∗(ra1/4)h̃0,

where
h̃0 = (H(a)− i0)−1(I − P (a))T (a1/4)N0.

Clearly,
‖ρδ 'f0‖2 ≤W (M̂, ŝ)‖ρ2δh̃0‖2. (A5.1)

To estimate h̃0, we rewrite it in the form

h̃0 =
1
2πi

∮
|E|=a

dE

E
(I − P )(H −E)−1

+ T (a1/4)N0. (A5.2)

Using lemmas 2.4.1, 2.4.2, proposition 2.4.3 and the WKB representations of the
solutions of (2.4.3) one can prove the following estimate for the kernel of (H−E)−1

+

|G(x, y,E)| ≤ ca−Ke−
1
h |S(hx)−S(hy)|, |E| = a,

with some K > 0. As a consequence, one gets the inequality

‖ρ2δ(H −E)−1
+ T (a1/4)N0‖2 ≤W (M̂, ŝ)e−(2−ε)S0

h0 . (A5.3)

Here we have also used proposition 2.2.1.
Consider the expression

∮
|E|=a

dE
E P (H − E)−1

+ T (a1/4)N0. Using propositions

1.2.6, 2.3.1 and lemma 2.4.4 it is not difficult to show that it admits an estimate
similar to (A5.3) :

‖ρ2δ

∮
|E|=a

dE

E
P (H −E)−1

+ T (a1/4)N0‖2 ≤W (M̂, ŝ)e−(2−ε)S0
h0 . (A5.4)

Combining (A5.1)-(A5.4) one gets the desired result :

‖ρδ 'f0‖2 ≤W (M̂, ŝ)e−(2−ε)S0
h0 .
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