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ABSTRACT

In this work, we show that van der Waals molecules X–RG (where RG is the rare gas atom) may be created through direct three-body
recombination collisions, i.e., X + RG + RG → X–RG + RG. In particular, the three-body recombination rate at temperatures relevant for
buffer gas cell experiments is calculated via a classical trajectory method in hyperspherical coordinates [Pérez-Ríos et al., J. Chem. Phys. 140,
044307 (2014)]. As a result, it is found that the formation of van der Waals molecules in buffer gas cells (1 K ≲ T ≲ 10 K) is dominated by
the long-range tail (distances larger than the LeRoy radius) of the X–RG interaction. For higher temperatures, the short-range region of the
potential becomes more significant. Moreover, we notice that the rate of formation of van der Walls molecules is of the same order of the
magnitude independent of the chemical properties of X. As a consequence, almost any X–RG molecule may be created and observed in a
buffer gas cell under proper conditions.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0039610., s

I. INTRODUCTION

When a three-body process leads to the formation of amolecule
as a product state, A + A + A → A2 + A, it is labeled a three-
body recombination process or a ternary association reaction. These
three-body processes are relevant for a wide variety of systems in
areas ranging from astrophysics to ultracold physics. In particular,
three-body recombination of hydrogen is one of the essential pro-
cesses to explain H2 formation in star-forming regions.1,2 In the
field of ultracold physics, recent developments in laser technologies
and cooling techniques have made it possible to gain a more in-
depth insight into the significant role of three-body recombination
processes in different phenomena, such as atomic loss processes in
ultracold dilute gases3–9 and the formation and trapping of cold and
ultracold molecules.10–14

van der Waals (vdW) molecules consist of two atoms held
together by the long-range dispersion interaction15 presenting bind-
ing energies ≲1 meV. Therefore, vdW molecules show the weakest
gas-phase molecular bond in nature, except for ultra-long-range
Rydberg molecules showing binding energies ∼ 4 neV.65–70 The
binding mechanism in vdW molecules relies on the compensation
between the short-range repulsive interaction (due to the overlap

of closed-shell orbitals) and the attractive −C6/r
6 vdW interaction,

where the dispersion coefficient C6 depends on the polarizability of
the interacting atoms. Interestingly enough, the study of vdW inter-
actions provides crucial information necessary to investigate the for-
mation and stability of gases, liquids, andmaterials such as vdW het-
erostructures and biopolymers,16–19 chemical reactions,18,20–24 and
physical phenomena such as superfluidity of 4He nanodroplets.25,26

In particular, investigating the properties of vdW molecules (as the
simplest form of vdW complexes) containing a rare gas atom leads
to a deeper understanding of the nature of bonding in rare gas crys-
tals and of the dynamics of impurities interacting with dense rare gas
vapors.27–30

Despite the significance of vdW molecules in modern chem-
ical physics, the community has been focused on its charac-
terization rather than on revealing how they emerge in differ-
ent scenarios.17,20,21,30–37 Recently, thanks to the development of
buffer gas sources,38 it has been possible to investigate the for-
mation of vdW molecules through three-body recombination pro-
cesses.30,33–35,37,39,40 However, the field is still lacking a global study
on the formation of vdWmolecules through three-body collisions.

In the present work, we study the formation of vdW molecules
X–RG through direct three-body recombination processes
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X + RG + RG→ X–RG + RG. Here, RG indicates the rare gas atom
and atomXhas been chosen in a way to cover a broad range of chem-
ical characteristics, i.e., from three different groups of the periodic
table: alkali group (Li and Na), transition metals (Ti), and pnictogen
group (As, P, and N). Our approach is based on a classical trajectory
(CT) methodology in hyperspherical coordinates, which has been
already applied to the three-body recombination of helium9,41 and
to ion-neutral–neutral three-body recombination processes.12,13,42

Indeed, a direct three-body approach for the formation of vdW
molecules has never been carried out via the CT method to the best
of our knowledge. Performing these calculations, we notice a clear
distinction between the formation rates at low-energy collisions and
high-energy collisions, established by the dissociation energy of the
X–RG potential. Moreover, our results show that the three-body
recombination rate is of the same order of magnitude independent
of the X atom, and hence, most of the vdWmolecules X–RG should
be observable in buffer gas cells.

This paper is organized as follows: In Sec. II, we summarize the
main aspects of the classical trajectory method employed to study
direct three-body recombination processes. In Sec. III, we precisely
investigate the dependence of three-body recombination rates on the
collision energy and temperature, utilizing six different systems. In
Sec. IV, we discuss the applicability of the classical treatment at low
temperatures. Finally, in Sec. V, we summarize our chief results and
discuss their possible applications.

II. CLASSICAL TRAJECTORY METHOD
IN HYPERSPHERICAL COORDINATES

Consider a system of three particles with massesmi (i = 1, 2, 3)
at the respective positions r⃗i, interacting with each other via the
potential V(r⃗1, r⃗2, r⃗3). Here, we neglect the three-body term of
the potential, which is a good approximation for van der Waals
molecules and clusters,43 and hence, V can be expressed as a sum-
mation of pair-wise potentials, i.e., V(r⃗1, r⃗2, r⃗3) = U(r12) + U(r23)
+ U(r31), where rij = ∣⃗rj − r⃗i∣. The dynamics of these particles is
governed by the Hamiltonian

H =
p⃗ 2
1

2m1
+

p⃗ 2
2

2m1
+

p⃗ 2
3

2m1
+U(r12) +U(r23) +U(r31), (1)

with p⃗i being the momentum vector of the ith particle.
To solve Hamilton’s equations and find classical trajectories, it

is more convenient to employ Jacobi coordinates.44,45 For a three-
body problem, Jacobi vectors are related to r⃗i vectors as

ρ⃗1 = r⃗2 − r⃗1,

ρ⃗2 = r⃗3 −
m1 r⃗1 +m2 r⃗2

m1 +m2
,

ρ⃗CM =
m1 r⃗1 +m2 r⃗2 +m3 r⃗3

M
,

(2)

where M = m1 + m2 + m3 is the total mass of the system and ρ⃗CM
is the three-body center-of-mass vector. These vectors are illustrated
in Fig. 1.

Due to the conservation of the total linear momentum (i.e., ρ⃗CM
is a cyclic coordinate), the degrees of freedom of the center of mass

FIG. 1. Jacobi coordinates for the three-body problem. Here, R⃗cm12 is the center-
of-mass vector of the two-body system, which consists of m1 and m2.

can be neglected, and thus, the Hamiltonian (1) transforms to

H =
P⃗2
1

2μ12
+

P⃗2
2

2μ3,12
+ V(ρ⃗1, ρ⃗2) . (3)

Here, μ12 = m1m2/(m1 + m2) and μ3,12 = m3(m1 + m2)/M, and
P⃗1 and P⃗2 indicate the conjugated momenta of ρ⃗1 and ρ⃗2, respec-
tively. V(ρ⃗1, ρ⃗2) is the potential expressed in terms of the Jacobi
coordinates.

Noting that Hamilton’s equations of motion are invariant
under the canonical transformation (2), it is possible to predict the
evolution of the trajectories in terms of Jacobi coordinates from
Hamiltonian (3) via

dρ⃗i

dt
=
∂H

∂P⃗i
,

dP⃗i

dt
= −

∂H

∂ρ⃗i
(4)

and transform the solutions back to Cartesian coordinates. As
an example, Fig. 2 shows the classical trajectories calculated for
Li + He + He three-body collisions for different collision ener-
gies and the same impact parameter (b = 0). The panel (a) of this
figure shows an elastic or non-reactive trajectory in which the
three-body collision leads to three free particles flying away form
each other. On the contrary, in panels (b) and (c), the three-body
collision ends up forming a molecule that vibrates rapidly, i.e., a
three-body recombination event Li + He + He→ Li–He + He.

A. Classical three-body recombination
in hyperspherical coordinates

It is well-known that, classically, n-body collisions in a three-
dimensional (3D) space can be mapped into a problem involving
one particle with a definite momentum moving toward a scattering
center in a d-dimensional space in which d = 3n − 3 is equal to the
independent relative coordinates of the n-body system. Exploiting
this point, we define the initial conditions and impact parameter
associated with a three-body problem as single entities in a six-
dimensional (6D) space. The 6D space is described in hyperspherical
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FIG. 2. Classical trajectories of Li + He + He: (a) elastic collision, (b) recombination
event at Ec = 1 K with b = 0, and (c) recombination event at Ec = 10 K with b = 0.

coordinates, which consist of a hyperradius R and five hyperangles
αj (j = 1, 2, 3, 4, 5), where 0 ≤ α1 < 2π and 0 ≤ αj>1 ≤ π.

46–52

The position and momentum vectors in the hyperspherical
coordinates can be constructed from Jacobi vectors and their con-
jugated momenta as

ρ⃗ = (⃗ρ1
ρ⃗2
) (5)

and

P⃗ =
⎛⎜⎝
√

μ

μ12
P⃗1√

μ

μ3,12
P⃗2

⎞⎟⎠ , (6)

respectively, where μ =
√
m1m2m3/M is the three-body reduced

mass (for further details, see Refs. 41 and 53). Consequently, the
Hamiltonian H in these coordinates reads as

H =
P⃗2

2μ
+ V(ρ⃗) . (7)

In the 3D space, the collision cross section σ is defined as the
area drawn in a plane perpendicular to the initial momentum con-
taining the scattering center that the relative motion of the particles
(known as trajectory) should cross in order for a collision to take
place.18 This concept can be extended to a 6D space by visualiz-
ing it in a five-dimensional hyperplane (embedded in a 6D space)
instead of a plane.41,53 Using the same analogy, we can define the

impact parameter vector b⃗ as the projection of the position vector
in a 5D hyperplane perpendicular to the initial 6D momentum vec-

tor P⃗0 (i.e., b⃗ ⋅ P⃗0 = 0). Therefore, the cross section associated with
the three-body recombination process, after averaging over different
orientations of P⃗0, is obtained as follows:41

σrec(Ec) = ∫ P(Ec, b⃗)b4db dΩb

=
8π2

3 ∫
bmax(Ec)

0
P(Ec, b)b4db , (8)

where dΩb = sin3(αb4) sin2(αb3) sin(αb2)dαb4dαb3dαb2dαb1 is the solid

angle element associated with vector b⃗, and we made use of the rela-

tion P0 =
√
2μEc. The function P is the so-called opacity function,

i.e., the probability that a trajectory with particular initial conditions
leads to a recombination event. Note that the factor Ωb = 8π2/3
is the solid hyperangle associated with b⃗, and P(Ec, b) = 0 for
b > bmax. In other words, bmax represents the largest impact
parameter for which three-body recombination occurs. Finally, the
energy-dependent three-body recombination rate is obtained as

k3(Ec) =
√

2Ec

μ
σrec(Ec) . (9)

B. Computational details

The angular dependence of the opacity function P(b⃗, P⃗0),
which depends on both the direction and magnitude of the impact
parameter and initial momentum vectors, has been averaged out by
means of the Monte Carlo method.41,54 Without loss of generality,
we choose the z axis in 3D space to be parallel to the Jacobi momen-
tum vector P⃗2. The initial hyperangles determining the orientation of

vectors P⃗0 and b⃗ in the 6D space are sampled randomly from proba-
bility distribution functions associated with the appropriate angular
elements in hyperspherical coordinates (see Ref. 41).

In the next step, the opacity function P(Ec, b) for a given colli-
sion energy, Ec = P

2
0/(2μ), and the magnitude of impact parameter,

b, are obtained by dividing the number of classical trajectories that
lead to recombination events, nr , by the total number of trajectories
simulated nt .

41 Thus,

P(Ec, b) ≈ nr(Ec, b)
nt(Ec, b) ±

√
nr(Ec, b)
nt(Ec, b)

¿ÁÁÀnt(Ec, b) − nr(Ec, b)
nt(Ec, b) , (10)

where the second term in Eq. (10) is the statistical error owing the
inherent stochastic nature of the Monte Carlo technique.

To solve Hamilton’s equations, we made use of the explicit
Runge–Kutta (4,5)method, the Dormand–Prince pair.55 The accept-
able error for each time step has been determined by absolute and
relative tolerances equal to 10−15 and 10−13, respectively. The total
energy is conserved during collisions to at least four significant
digits and the magnitude of the total angular momentum vector,
J = ∣ρ⃗1 × P⃗1 + ρ⃗2 × P⃗2∣, is conserved to at least six significant dig-
its. The initial magnitude of hyperradius, ∣ρ⃗0∣, is generated randomly
from the interval [R0 − 25, R0 + 25] a0 centered around R0 = 550a0
(a0 ≈ 5.29 × 10−11 m is the Bohr radius). This value fulfills the con-
dition for three particles to be initially in an uniform rectilinear state
of motion.

III. RESULTS AND DISCUSSION

Throughout this section, we consider the formation of weakly
bound He-containing vdW molecules in their electronic ground
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FIG. 3. X–He potential curves, U(r), of six different atoms. The potentials are
obtained from parameters in Refs. 28 and 56–59 (see the text and Table I). The
black dotted curve indicates the He–He interaction based on parameters given in
Ref. 60.

state, through the three-body recombination process X + 4He
+ 4He → X–4He + 4He, for six different X atoms from three differ-
ent groups of the periodic table. We consider 7Li and 23Na from the
alkali group, 48Ti from the transition metals, and 75As, 31P, and 14N
from the pnictogen group. All these atoms, with the exception of Ti,
show an S electronic ground state.

Figure 3 displays the two-body potentials U(r) that have been
used in the calculations (Li–He and Na–He from Ref. 56, Ti–He
from Refs. 37 and 61, As–He, P–He, and N–He from Ref. 58, and
He–He from Ref. 60). Note that all the X–He complexes show a
single electronic state correlated with the ground electronic state of
the atom and the rare gas atom, which are described as Lennard-
Jones (LJ) potentials with the form U(r) = C12/r

12
− C6/r

6. How-
ever, since the electronic ground state of Ti presents an F symmetry,
Ti–He shows four different electronic states correlated with the
ground electronic state of Ti and He atoms. In this case, we have
taken the LJ potential fitted to the spherically symmetric component
of the potential given as61–63

U(r) = 1

7
∥UΣ(r) + 2UΠ(r) + 2UΔ(r) + 2UΦ(r)∥ , (11)

where UΣ, UΠ, UΔ, and UΦ are the distinct molecular potentials
correlated with Ti–He in the ground electronic state. Note that the
corresponding well depths range from De ≈ 1.87 K = 1.30 cm−1

(for Na–He) to De ≈ 19.74 K = 13.72 cm−1 (for N–He).
In the following, we present the three-body recombination rates

calculated from the CT method and explore their dependence on
the collision energy and on the particular features of the underlying
two-body potentials.

A. Energy-dependent three-body recombination
rate for X–He–He systems

The energy-dependent three-body recombination rates, k3(Ec),
for the six considered cases are illustrated in Fig. 4. It is quite remark-
able that, despite the drastic differences in the properties of X atoms
and parameters of X–He interaction potentials, the recombination
rates are of the same order of magnitude. Moreover, it is noticed
that the energy-dependent three-body recombination rate shows the
same trend as a function of the collision energy, independent of the X
atom under consideration. In particular, we identify two power-law
behaviors (linear in the log–log scale) connected at the dissociation
energy, De, represented by the black dashed line in each of the pan-
els of Fig. 4. Indeed, De acts as the threshold energy for two distinct
regimes: the low-energy regime, where Ec < De, and the high-energy
regime, where Ec > De.

The data displayed in Fig. 4 show that even though in both
regimes, the dependence of k3 on Ec follows a power law, the energy
dependence for the high-energy domain is much steeper than that
for the low-energy one. In our view, this behavior is related to the
interplay between the role of the long-range tail of the X–He poten-
tial and its short-range region in the formation of vdWmolecules at
different energies. In other words, the formation of vdW molecules
at low energies is mainly a consequence of the X–He interaction
potential’s long-range tail, but this is not the case for high-energy
collisions.

FIG. 4. Three-body recombination rate
of formation of six different X–He vdW
molecules as a function of collision
energy Ec plotted on a log–log scale. The
color code for panels (a)–(f) is same as
that in Fig. 3 where panel (a) shows the
rate for Na + He + He and panel (f) shows
the rate related to N + He + He recombi-
nation. Each black dashed line indicates
the relevant dissociation energy De.
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To check the validity of this statement, we have computed the
energy-dependent three-body recombination rate at different col-
lision energies by varying the short-range part of the interaction
potential while keeping C6 constant, and the results are shown in
Fig. 5. In this figure, we observe that only when Ec > De, the three-
body recombination rate shows a variation from its nearly constant
value at Ec < De. Therefore, the precise details of short-range X–He
interaction (properties of potential well) onlymatter at high collision
energies, where the three-body recombination rate starts to show a
steep behavior.

The power-law behavior at low-energy collisions is expected in
the virtue of the classical nature of the collisions,41,53 as explained in
the following.

1. Low-energy regime

Based on our results for the energy-dependent three-body
recombination rates of X–He formation, we conclude that the energy
dependence of the recombination rate in the low-energy regime
depends chiefly on the dominant long-range 1/r6 interaction. To
study this dependence, we apply a classical capture model following
the pioneering ideas of Langevin for ion–neutral reactions.64 In this
framework, every trajectory with an impact parameter below some

threshold value b̃ leads with unit probability to a reaction event. b̃
is given by the largest partial wave for which the height of the cen-
trifugal barrier is equal to the collision energy. For neutral–neutral
interactions, the effective long-range potential reads as (in atomic
units)

Ueff(r) = −C6

r6
+
ℓ(ℓ + 1)
2μ0r2

. (12)

The second term in Eq. (12) is the centrifugal barrier, with μ0 being
the two-body reduced mass and ℓ being the angular momentum

FIG. 5. Semi-logarithmic plots of energy-dependent three-body recombination
rates for X–RG interaction being a LJ potential with constant C6 = 27.6 a.u. and
different C12 ∈ {1.5, 2, 2.5, 3, 4, 6, 7, 9, 13, 25, 40, 100} × 106 a.u. for different
collision energies Ec ∈ {1, 4, 10, 20} K. The dashed lines indicate collision energies
of the related color. The inset shows He–He potential (black curve) together with
the deepest (red solid curve with De = 40.13 K) and the shallowest (red dashed
curve with De = 0.6 K) LJ potentials.

quantum number or partial wave. The potential Ueff(r) shows a
maximum at

r0 = [ 6μ0C6

ℓ(ℓ + 1)]
1/4

. (13)

Classically, a reaction occurs if and only if Ec ≥Ueff(r0). Now, to find

the critical impact parameter b̃, which is assigned to Ec = Ueff(r0),
we may use the relation between the angular momentum quantum
number ℓ, the collision energy, and the impact parameter,18,53 i.e.,

ℓ(ℓ + 1) = 2μ0b̃2Ec . (14)

Substituting ℓ(ℓ + 1) obtained from Ec = Ueff(r0) into Eq. (14) yields

b̃ =

√
2

3
(2C6

Ec
)1/6 . (15)

Applying this model to both X–RG and RG–RG interactions
and keeping in mind that the 6D impact parameter b is a combina-
tion of the 3D impact parameters associated with the Jacobi coordi-
nates ρ⃗1 and ρ⃗2, we expect the same power law for bmax (introduced
in Sec. II A), i.e.,

bmax ∝ E
−1/6
c . (16)

Therefore, in virtue of Eq. (16) and the Langevin assumption that
P(Ec, b > bmax) = 0 and P(Ec, b ≤ bmax) = 1, from Eq. (8), we
obtain the low-energy power law for the three-body recombina-

tion cross section as σrec(Ec) ∝ E
−5/6
c and, hence, the three-body

recombination rate as

k3(Ec)∝ E
−1/3
c , (17)

which, as expected, is consistent with the classical threshold law that
has been found for low-energy collisions in Ref. 41.

Let us now examine our findings via an example, namely,
As + He + He interaction. Figure 6 shows the opacity function
P(Ec, b) for the formation of As–He due to a three-body recombina-
tion in terms of collision energy Ec and 6D impact parameter b. The
white dashed line represents the collision energy equal to the disso-

ciation energy, Ec = De, and the white curve indicates the b ∝ E
−1/6
c .

As expected, the opacity function has its maximum at b = 0 and
Ec = 10−3 K (the lowest illustrated energy). By increasing the impact
parameter, the opacity function along each line at constant collision
energy gradually decreases and eventually vanishes at b = bmax.

The white curve (b ∝ E
−1/6
c ) in Fig. 6 reasonably resembles

the loci of bmax in the low-energy regime. However, in higher ener-
gies, this loci deviates from the white curve, and for Ec ≳ De (top
left corner) does not obey the same power law any more. Conse-
quently, based on Eq. (17), we can now explain the observed trend
of the recombination rates displayed in panel (d) of Fig. 4. While
the energy dependence of k3 on the collision energies below 10−2

K can be conveniently explained by the adopted classical capture
model, this model cannot provide the correct power law for the high
energies above the dissociation energy De ≈ 16 K, where bmax varies

much faster than E
−1/6
c . In the intermediate regime connecting these

two limits, the dependence of k3 on the collision energies gradually
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FIG. 6. Opacity function P(Ec, b) of the formation of As–He vdW molecules in As
+ He + He collisions projected onto the Ec − b plane with the semi-logarithmic

scale. The white curve shows b∝ E
−1/6
c , and the white dashed line indicates De.

deviates from the initial relation given by Eq. (17) and is closer to

k3(Ec)∝ E
−1/2
c .

In addition, it is worth mentioning that including the three-
body interaction term of the X–He–He potential energy surface will
lead to a deviation from the derived power-law behavior for bmax and
k3(Ec).

2. High-energy regime

To explore the effect of short-range details of potential on the
formation of vdW molecules at higher collision energies, without
loss of generality, we focus on the energy-dependent three-body
recombination rate for Ti + He + He. The CT calculations are per-
formed by means of three different potentials for the Ti–He interac-
tion, namely, ab initio potential from Refs. 37, 61, and 62, Bucking-
ham potential27 with the form U(r) = C1 exp(−C2r) − C6/r

6, and the
LJ potential used in previous calculations. The results are displayed
in Fig. 7. The C6 dispersion coefficient in the LJ and Buckingham
potentials is derived from ab initio calculations.37,61

As expected from our previous discussion, despite the non-
negligible differences in the shape of the short-range interaction
potential [compare red (LJ), blue (ab initio), and green (Bucking-
ham) curves in the inset of Fig. 7], the three-body recombina-
tion rates k3(Ec) at collision energies below the dissociation energy
(Ec < De) are the same, which confirms our observation that low-
energy collisions are dominated by the long-range tail of the X–He
potential.

In contrast, proceeding to the high-energy regime, we spot two
distinct behaviors. First, the three-body recombination rate related
to the shallower X–RG potential (smallerDe) shows a slightly steeper
energy dependence, and accordingly, the power law is different [see
panel (a) in Fig. 7]. Second, the energy dependence of the three-body
recombination rate does not depend on the equilibrium distance of
the X–Hemolecule as long as the dissociation energy is the same [see
panel (b) in Fig. 7]. In other words, the dissociation energy seems to

FIG. 7. Comparison of the three-body recombination rate leading to the formation
of Ti–He vdW molecules as a function of collision energy Ec (log–log plot) between
ab initio potential and (a) LJ and (b) Buckingham (Buck.) potentials shown in the
inset. The blue, red, and green dashed lines indicate dissociation energies related
to ab initio, LJ, and Buckingham potentials, respectively.

be the most relevant short-range parameter of the two-body poten-
tial affecting the recombination rate. Therefore, the inclusion of
non-additive interactions on the X–RG–RG potential energy surface
may lead to a slightly different trend.

It is important to note that the long-range tail of the ab initio
potential contains higher order terms proportional to 1/r8, 1/r10,
. . . coming from the spherical multipole moment expansion of the
involved electronic clouds. However, the three-body recombination
rates obtained for both LJ and ab initio potentials are identical in
the whole energy regime as well as for Buckingham and ab initio
potentials in the low-energy regime. Therefore, our results strongly
suggest that the effect of long-range interaction on the formation of
vdW complexes is mainly through the 1/r6 term of the dispersion
potential.

B. Temperature-dependent three-body
recombination rate for X–He–He systems

In the final part of our discussion, we focus on the produc-
tion of vdW molecules in buffer gas cells. In particular, we inves-
tigate the thermal averaged three-body recombination rate as a
mechanism for the formation of X–He vdW molecules at temper-
atures 4 K ≤ T ≤ 20 K. The thermal average of the three-body
recombination rate is obtained via integrating the energy-dependent
three-body recombination rate Eq. (9) over the appropriate
three-body Maxwell–Boltzmann distribution of collision energies,
yielding

k3(T) = 1

2(kBT)3 ∫
∞

0
k3(Ec)E2

c e
−Ec/(kBT)dEc , (18)

where kB is the Boltzmann constant. The results obtained by per-
forming the thermal average (18) for six different X + He + He
reactive collisions for 4 K ≤ T ≤ 20 K are shown in Fig. 8. Com-
paring the data in panels (d)–(f) of Fig. 8, it is noticed that the trend
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FIG. 8. Three-body recombination rate of formation of six different X–He vdW
molecules as a function of temperatures T ∈ {4, 8, 12, 16, 20} K (semi-log plots).
The color code for panels (a)–(f) is same as that in Fig. 3 where panel (a) shows
the rate for Na + He + He and panel (f) shows the rate related to N + He + He
recombination.

and the magnitude of the three-body recombination rate is very sim-
ilar for all three considered pnictogens, As, P, and N. Similarly, the
temperature-dependent three-body recombination rate displays the
same tendency for alkali metals Li and Na [panels (a) and (b)].

Finally, we notice that the three-body recombination rate k3(T)
for all the X atoms considered shows nearly the same order of mag-
nitude, except for Na. This is due to the rapid decrease in the Na–He
recombination rate k3(Ec) at relatively low collision energies in com-
parison to the rest of X–He complexes [compare panel (a) with other
panels of Fig. 4]. However, it is still fascinating that vdW molecules
containing X atoms from totally different groups of periodic table
show a similar three-body recombination rate within the range of
typical temperatures in buffer gas cells. Indeed, in virtue of the obser-
vation of Li–He,35 Ag–He,33 and Ti–He,37 it should be possible to
observe any X–He molecule in a buffer gas cell under the proper
conditions.

IV. RELIABILITY OF CLASSICAL TRAJECTORY
CALCULATIONS AT LOW TEMPERATURES

The reliability of classical trajectory calculations for scattering
observables depends on the collision energy at which the system
is studied. In particular, the lower the collision energies, the more
the quantum mechanical effects become prominent. In general, the
importance of quantum mechanical effects on a system is related to
the number of partial waves contributing to the scattering observ-
ables. Classically, the largest number of the allowed partial wave is
calculated by setting the centrifugal barrier equal to the collision
energy Ec.

53 For the systems under consideration in this work, the
two-body X–RG long-range interaction (i.e., −C6/r6X-RG) dominates
the potential interaction. Thus, we have

ℓmax =

√
6μ0C

1
6

6 (Ec2 )
1
3

, (19)

with μ0 being the two-body reduced mass.
As an example, ℓmax values for the X–He pairs are listed in

Table I. Note that in the case of three-body collisions, the total

TABLE I. The largest classically allowed partial wave ℓmax [see Eq. (19)] contributing
to the scattering observables for collision energy Ec .

Ec (K)

X–RG 100 10 1

Li–Hea 15 7 3

–Neb 24 11 5
–Arc 32 15 7
–Krc 36 16 7
–Xec 39 18 8
Na–Hea 17 8 3

–Neb 35 16 7
–Arc 51 24 11
–Krc 61 28 13
–Xec 68 31 14

N–Hed 13 6 2
–Are 33 15 7
–Kre 39 18 8

P–Hed 16 7 3

As–Hed 17 8 3

Ti–Hef 18 8 4

avdW coefficient C6 is taken from Ref. 56.
bvdW coefficient C6 is taken from Ref. 57.
cvdW coefficient C6 is taken from Ref. 28.
dvdW coefficient C6 is taken from Ref. 58.
evdW coefficient C6 is taken from Ref. 59.
fvdW coefficient C6 is taken from Refs. 37 and 61.

angular momentum will be affected by the He–He interaction, and
the expected number of partial waves may increase compared with
the one obtained from the X–RG long-range interaction potential.
Moreover, based on Eq. (19), at a given collision energy, heavier RG
atoms show larger ℓmax. This can be understood, considering that
the heavier the system is, the closer to the classical realm it is. In this
case, it is also related to the fact that heavier RG atoms show a larger
static polarizability and hence a larger C6 (in general).

Therefore, due to the relatively large number of partial waves,
we believe that the CT calculation presented in Sec. II is a reasonable
approach to study the formation of vdW molecules even at energies
near 4 K. For a more detailed comparison between the quantum and
classical results obtained by the hyperspherical CT method in three-
body collisions, see Ref. 41.

V. CONCLUSIONS AND PROSPECTS

In summary, we have shown, via a classical trajectory method
introduced in Ref. 41, that van der Waals molecules can be formed
through direct three-body recombination. In particular, we have
investigated the energy dependence and temperature dependence
of the three-body recombination rates for six vdW complexes con-
taining atoms with totally different chemical properties. As a result,
we found that the X–RG molecule’s dissociation energy is the deter-
minant parameter to differentiate between the low and high-energy
regimes. At low energies, the formation rate of vdW molecules is
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relatively insensitive to the short-range interaction and is dominated
by the long-range tail of the potential, i.e., −1/r6. This regime is fur-
ther explored by a classical capturemodel, à la Langevin. Conversely,
at higher collision energies, the short-range part of the potential
plays an important role.

However, the most exciting result is that the three-body recom-
bination rate for the formation of vdW molecules is of the same
order of magnitude, independent of the chemical properties of the
atom colliding with the remaining two rare gas atoms. In other
words, the formation rate of X–RG vdW molecules is almost inde-
pendent of the chemical properties of the X atom. Indeed, we have
shown that CT calculations are reliable for relevant temperatures in
buffer gas cells (1 K ≲ T ≲ 10 K) based on the number of contributing
partial waves to different scattering observables. Therefore, it should
be possible to create and study X–RG vdW molecules in buffer gas
cells, where some of them have been already observed and studied.
Nevertheless, it is necessary to correctly identify the molecular dis-
sociation processes to understand vdWmolecules under equilibrium
conditions, which can be considered as an extension of this work in
the near future. Last but not least, in our view, a complete under-
standing of the formation process of vdW molecules will become a
cornerstone of the physics of aggregation of vdW complexes.
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