
On the Formu 
M 

a Crystal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ISSS: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfurther dlsseminatlon unllmlted. 

Sandia National Laboratories 



Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its 
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or 
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 

Printed in the United States of America. This report has been reproduced directly from the best available copy. 

Available to DOE and DOE contractors from 
U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 3783 1 

Telephone: (865) 576-8401 
Facsimile: (865) 576-5728 
E-Mail: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreDorts(ii)adonis.osti.goV 
Online ordering: hno://wni~.doe.Pov/bridne 

Available to the public from 
U S .  Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA 22161 

Telephone: (800) 553-6847 
Facsimile: (703) 605-6900 
E-Mail: orders@ntis. fedworld.gov 
O n h e  order: h~~://w~vw.ntis.~ov/tie~~/ordennettiods.as~'?~oc=7-4-0#on~ ine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

http://reDorts(ii)adonis.osti.goV
http://fedworld.gov


SAND2006-4170 
Unlimited Release 

Printed August 2006 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
On the Formulation of a Crystal 

Plasticity Model 

E.B. Marin 

Mechanics of Materials 

Sandia National Laboratories 

Livermore, CA 94551 

Abstract 

This report presents the formulation of a crystal elasto-viscoplastic model and the 

corresponding integration scheme. The model is suitable to represent the isothermal, 

anisotropic, large deformation of polycyrstalline metals. The formulation is an extension of a 

rigid viscoplastic model to account for elasticity effects, and incorporates a number of 

changes with respect to a previous formulation [Marin & Dawson, 19981. This extension is 

formally derived using the well-known multiplicative decomposition of the deformation 

gradient into an elastic and plastic components, where the elastic part is additionally 

decomposed into the elastic stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe and the proper orthogonal R e tensors. The 

constitutive equations are written in the intermediate, stress-free configuration obtained by 

unloading the deformed crystal through the elastic stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVe-'. The model is framed in a 

thermodynamic setting, and developed initially for large elastic strains. The crystal equations 

are then specialized to the case of small elastic strains, an assumption typically valid for 

metals. The developed integration scheme is implicit and proceeds by separating the 

spherical and deviatoric crystal responses. An "approximate" algorithmic material moduli is 

also derived for applications in implicit numerical codes. The model equations and their 

integration procedure have been implemented in both a material point simulator and a 

commercial finite element code. Both implementations are validated by solving a number of 

examples involving aggregates of either face centered cubic (FCC) or hexagonal close-packed 

(HCP) crystals subjected to different loading paths. 

Keywords: crystal plasticity, finite deformation, constitutive integration, texture. 
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1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction 

Crystal plasticity theories [Asaro, 19831, [Kocks, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., 19981 form the basis of grain-level 

(mesoscale) approaches to materials rnodeling using rnulti- scale strategies. A niairi feature of 

these theories is that  they explicitly model discrete grains and slip systems, accounting then 

naturally for the anisotropy of single crystal properties arid texture evolution, main contrib- 

utors to the anisotropic macroscopic response of crystalline solids. Because these theories 

use a large nuriiber of internal state variables to  represent the state of the material, they 

are computationally more expensive than macroscopic plasticity models. This aspect has 

limited their widespread use in the solution of system level engineering problems. However, 

as a mesoscale approach, these theories provide a very predictive and robust theoretical 

framework to  get a better understanding of polycrystal behavior that  can lead to  better 

continuum plasticity models. 

In this work, we present the formulation of a crystal plasticity niodel t o  describe the 

isothermal, quasi-static, large deformation of polycrystalline metals. The model is formulated 

based on the multiplicative decoriipositoii of the deformation gradient into elastic and plastic 

conipoiierits, a description physically motivated by the mechanisnis underlying plastic slip in 

single crystals. The crystal constitutive equations are expressed in a relaxed configuration 

obtained by elastically unloading the deformed crystal without rotation from the current 

configuration to a stress-free state. These equat ions which are thermodynamically framed 

are derived for finite elasticity and then specialized to  the case of small elastic strains. This 

simplification is introduced because metals, our main interest here, typically exhibit elastic 

strains that are orders of magnitude less than plastic strains in well -developed plastic flow. 

It is important to note that a formulation following similar guidelines lias been previously 

used to develop a crystal plasticity model [hlarin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dawson, 19981. However, the current 

development introduces a nuriiber of changes in the definition of some of the kinematic 

quantities, resulting in constitutive eqiiatioris whose riunierical treatment parallels many well- 

known integration procedures used in continuum plasticity [Simo & Hughes, 19981. Such time 

integration of the model, wliich is implicit, is presented in detail along with the derivation 

of the material tangent moduli for use in iriiplicit finite element codes. The performance of 

this integration scheme is evaluated by solving for the deformation of FCC and HCP crystal 

aggregates. Both a material point simulator and the commercial code Abaqus [ABAQUS, 

20041 are used for this purpose. 

The presentation begiris with a description of the kinematics and thermodynamics used 

to  formulate the crystal constitutive equations. The equations, initially derived for large 

9 



1. INTRODUCTION 

elastic strains, are then simplified using the small elastic strain assumption. This is fol- 

lowed by the description of the time integration of the crystal equations and the derivation 

of an approximate material tangent moduli. Applications of the model and its numerical 

implementation are then presented and discussed. 

The work uses direct notation to  express tensor quantities arid their mathematical opera- 

tions, with bold face letters being used to  denote tensors. Consider. for example, two vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, two second-order tensors A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, and the fourth-order tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@. The dyadic 

product of two vectors is indicated as a @ b (a second-order tensor) and the contraction 

of a second-order tensor with a vector as Aa (a vector). Tensor operations between two 

second-order tensors are represented as AB for the inner product (a second-order tensor), 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 B for the dyadic product (a fourth-order tensor), and A:B for the scalar product (a 

scalar). The contraction operation over two indices between a fourth-order tensor and a 

second order tensor is denoted as @:A. Any other particular tensor notation/operation used 

in the development will be either clear from the context or indicated in the text. 

10 



2. Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFormulation 

2.1 Kinematics. 

The elasto-plastic response of single crystals is modeled assuming that crystallographic 

slip is the dominant deformation niechanisiii. Other mechanisms such as twinning, grain 

boundary sliding, and diffusion are not considered in this development. The single crystal 

kinematics can then be described based on the local niultiplicative decomposition of the 

deformation gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF into an elastic, F" and a plastic, FP,  component. In addition, the 

elastic cornponerit F" is decomposed into the symmetric left elastic stretch tensor V" and 

the proper orthogonal (rotation) tensor Re (det Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l) ,  see Fig. 2.1. Thus, the kinematics 

of a single crystal can be expressed as 

where det F* = det FP = 1 and det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF = det V" > 0. Here FP describes the motion of 

dislocations (plastic slip) on crystallographic planes (slip planes) leaving the crystal lattice 

unchanged, while R' and V" model the rotation and the elastic stretching of the lattice, 

respectively. The decomposition (2.1) introduces two intermediate configurations between 

the undeforrned (Bo) arid the current ( B )  configurations, which are denoted here as a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g. These configurations are respectively defined by F P  arid F* and are typically used in the 

constitutive description of single crystals [Kalidindi, et al., 19921, [Cuitino & Ortiz, 19921, 

[Wlarin & Dawsoii, 19981. In this work, we will use the relaxed configuration to write the 

crystal constitutive equations. Hypothetically, this configuration is obtained by elastically 

unloading through Ve-' without rotation from the current configuration to a stress free 

state. 

Using the kinematic decomposition (2.1), we can write the velocity gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 in B as 

-* 
, (2.2) 1 = F F - ~ =  v"Ve-l+ VeL*Ve-l, L = F*F*-I= keReT+ ReLpReT 

where zp = FpFp-l = Et==, +"So @ a" is the plastic velocity gradient as given in a. Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i/" is the plastic shearing rate on the a-slip system, and the unit vectors (S", a") define the 

orientation of the a-slip system in through the dyadic product 2" = Sa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 a", the Schmid 

tensor. The surnrriation is performed over the AT potentially slip systems. Note that  by the 

constitutive assumption introduced for @pFpp' ,  the multiplicative deconiposition given by 

11 



2. ll'lODEL FORhKJLATION 

Figure 2.1: Kinernatics of elasto-plastic deformation of single crystals deforming by crystal- 

lographic slip: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFeFP with F" = V"R'. The intermediate configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is defined 

by elastically unloading the current configuration B through the elastic stretch VeP1. The 

crystal constitutive equations are written with respect to  B. 
- 

Eq.(2.1) is unique. By denoting 6" = ReReT, the spin of the lattice, we can alternatively 

express Eq.(2.2) in configuration 3 as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
II 

n=l 

where S" = Res" and ?E" = Rem".  Clearly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE* describes both the plastic. flow due to  

crystallographic slip and the rotation of the lattice, as referred to  tlie unloaded configuration 

6. Note that for V" = 1, we obtain E* = E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ (configuration 6 and B are identical), and 

the kinematics above will describe the deformation of a rigid-viscoplastic crystal [Mathur 

& Dawson, 19891. Hence, as proposed previously [Marin & Dawson, 19981, tlie current 

formulation can be regarded as an extension of a crystal rigid-viscoplastic model to include 

elasticity effects. 

Using tlie decomposition Z = d + w, where d = sym(Z) arid w = skew(Z) are tlie rate of 

deformation and spin tensors in B,  respectively, we can write tlie syrrirrietric and skew parts 

of Eq.(2.2)1 as 

12 



2. I .  KINEMATICS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- *  - - e - *  -* - - e - *  

where we have dcfiried zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD = syni(C L ), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW = skew(C L ). IVith the help of Eq.(2.2)2, 

D* and W* can be expressed as 

-e--e 
D*= syni(c R + R ~ D ~ R ' ~ ,  

- e - e  
W*= skew(C R ) + ReWPRe7' 

- e - p  - e  - p  
where Dp = syni(C L ), arid W p  = skew(C L ) .  Here C" = VeTVe and C" = FeTFe are 

the elastic right Cauchy-Green tensors in configurations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI3 and E ,  respectively, both of which 

are related by C" = ReCeReT. Note that the rotation tensor Re is uniquely defined by its 

evolution equation which caii be obtained froin Eqs(2.5) arid (2.7). 

It is worthwhile to  note that Eq.(2.4), which implicitly represents an additive decompo- 

sition in I3 of the rate of deformation tensor d into an elastic and a plastic components, can 

alternatively be written in configurations I3 arid E. To write this expression in configuration 

E, we use the definition for in Eq.(2.3), i.e. L = Ve-lZVe, together with D = sym(C L )  

- 

- 
- e -  - 

to  obtain D = VedVe. Also, one can easily show that VeTsym(VeVe- l )Ve = 1/2Ce = Ee 
where Ee = 1/2(Ce - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). Substituting these expressions in Eq.(2.4) arid using Eq.(2.6), one 

caii then write the referred additive decomposition in as 

- e - e  - e - e  
v 

where Ee= + E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR - R E is a Green-hlcInnis-Naghdi rate type of Ee based on the 

lattice (elastic) spin fie. Kote that this corrotatiorial rate arises naturally in the formulation. 

Using fi' = ReReT, one can also write this objective rate as 

where E" = l / 2 (Ce  - 1).  
of deforniatiori tensors in configuration 

Eq.(2.8)2 to  yield 

On the other hand, the additive decomposition of the rate 

can be obtained by substituting Eq.(2.9) into 

where D = 

Remark 1. Consider the definition of the right Cauchy-Green tensor in configuration Bo, 
i.e., c = F?'F. We can then write 

13 

(2.11) 



2. MODEL FORRiIULATION 

where tlie multiplicative decomposition, Eq.(2.1) 1, has been used. By taking the time deriva- 

tive of Eq.(2.11)2 one can obtain after some algebra 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-e-* 1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF*) F*-' = -C + s y m ( C  L ) - F*-T 

2 
(2.12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

* \ / 

L; C" 

where LGC" denotes the Lie time derivative of C" with respect to the deformation gradient 

F*. Comparison of E q ~ ( 2 . 8 ) ~  and (2.12) provides an equivalent definition for D as 

(2.13) 

A similar expression can be obtained for D by replacing F* and C" with FP and C", 
respectively, in Eqs. (2.1 1)2-(2. 13). This yields 

- e  - p  1 1 '" 
-GC" 2 = -C 2 + sym(C L 1, (2.14) 

with LtC" being the plastic Lie time derivative of C". 

2.2 Thermodynamics. 

In this section, we frame the state variable model of crystal plasticity in the context of 

the thermodynamics proposed by [Coleman & Gurtin, 19671. For this purpose, we write the 

mechanical version of the reduced entropy (Clasius-Duhem) inequality per unit volurrie of 

the unloaded intermediate configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 * 

- G , + ~ : z  > O  (2.15) 
- - 

where XP, is the Helmholtz free energy per unit volume in B and r = (det F ) a  = (det F e ) a  
is tlie Kirchhoff stress, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa being the Cauchy stress. Define S = Ve-lrVe-T as the 

*Denote the free energy per unit mass as Qr,, and the free energy per unit volunie V in B as Q,. One can 

relate these quantities by - -  
J, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApQ',dV = J, Q,dV = Jg Q,dV 
- - -  

where Q ,  = J"Q, is the free energy per unit volume V in B. The material time derivative of the last integral 

above can be evaluated as 
- - -  

Jg %,d? = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsg [$> + G,tr(L')] dV = s,- &,dV 

- - e  
since, from Eq.(2.2)2, tr(L*) = tr(S1 ) + tr(z") = 0. In a similar fashion, one can write the stress power Pznt 
as 

- 1 

P znt - - s, u:ldV = s,- J"u: ldV = !,- r:ldV 
- 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ : 1  is the stress power per unit volunie in B. By substituting the above two expressions in tlie first 

and second law of thermodynamics and considering only the mechanical part one obtains Eq.(2.15). 
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2.2. THERMODYn'Ah4ICS. 

2nd Piola-Kirchhoff stress in E. and use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV"zV'-l, Eq.(2.3), to express Eq.(2.15) in 

configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27 as 
- 

Note that the second term of this equation can be expressed as 

- -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- e -  - e -  - e -  - 
c S:L = S:C L = S:syni(C L)  = S:D 

(2.16) 

(2.17) 

where D is given by Eq.(2.8). Then substituting Eqs.(2.17) and (2.8)2 into Eq.(2.16), the 

reduced entropy inequality can be written as 

(2.18) 

- e  
Here, it is assumed that the free energy depends upon the applied elastic strain E , and 

-a . 
a set of strain-like internal state variables for each a-slip system X , i.e., 

,-.. 
- e  -a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5" = GV(E ,x ) (2.19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CY 

Physically, the set is incorporated to represent the state of the evolving internal structure 

of the material generated during plastic slip. In this work, we select a reduced set represented 

by the scalar state variables c y  which are assumed to be related to the lattice strain fields 

around dislocations generated/accurnulated on the a-slip system. These state variables will 

effectively model the isotropic hardening effects induced by the interaction aniorig these 

dislocation internal clastic strain fields, and are connected to the density of (statistically 

stored) dislocations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp: by the relation e: = bm, where b is the Burger's vector. Thus, 

assuming X = { c y } ,  we can compute the material time derivative of Q,, as 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcy - 

Upon substituting Eq.(2.20) into Eq.(2.18) yields 

where IC.:, defined by 

(2.20) 

(2.21) 

(2.22) 

is the stress- like internal state variable (flow strength) corijugate to the kiriematic-like vari- 

able c y .  As such, K$ will represent the internal lattice stress fields generated by the dislocation 

15 



2. AIODEL FORhlULATION 

structures formed during plastic deformation. Following standard argurrients, one can obtain 

from Eq.(2.21) the elastic constitutive law for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, 

(2.23) 

Also, the second term 011 the left side of Eq.(2.21) can be written as 

where we have used C" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReCeReT - arid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2" = ReZffReT = S" @ E", with 2" being the 

Schmid tensor expressed in B. In this equation, rff is the resolve shear stress 011 the a-slip 

system. Note here that due to  the symmetry of S, rff could equivalently be expressed as 

r " = ~ : s y m ( c ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) = S : C Z  = C S : Z  (2.25) 
- e - a  - e - a  - e -  -a  - 

With these definitions, the dissipation inequality, Eq.(2.21), reduces to  

N N 

(2.26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a=l f f = l  

where the first term represent the dissipation from plastic work due to  slip processes (irre- 

versible dislocation motion) and the second term gives the stored work due to  the accurnu- 

lation of dislocations. Kote here that specific constitutive equations for S arid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK: will follow 

from the assumed form for the free energy Gv using Eqs(2.22)-(2.23). 

2.3 The Crystal Plasticity Model. 

The thermodynamic state of the material is assumed to  be described by a quadratic form 

of the Helrnoltz free energy on the elastic strains (Ee,  e:), i.e., 

(2.27) 

where Ce is the fourth order anisotropic crystal elasticity tensor, pE is an effective shear mod- 

ulus, and e, is a material constant. Then, using Eqs.(2.22)-(2.23), we obtain the following 

constitutive equations 

S = @ : E ,  K y  = P E  ChEy (2.28) 

To complement the model equations, one needs to prescribe the evolutions equation for the 

shearing rates y" (kinetic equation or flow rule) and lattice strains e: (hardening law). For 

now, we will denote these evolution equations as 

- e  - P  

(2.29) 



2.4. SPECIALIZATION TO THE CASE OF ShIALL ELASTIC STRAINS. 

Then, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- single crystal constitutive model expressed in the iiiterniediate unloaded con- 

figuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI3 can be forriiulated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-e - e  

Elast ic i ty:  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = C : E  

,v 
- e - e  -e-cy 

Plast ic i ty:  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0" = SyKil(c 0 ) f j / "Syn l (C  z ) (2.30) 
a=l 

1V 
- e - e  - e - N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W" = skew(C 0 ) + -j/"skew(C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ ) 
a=l 

i/" = @ ( T a , K ; )  

F = S: syrn(C z -e- -p - e -  -a  
= c S :  z 

2.4 Specialization to the Case of Small Elastic Strains. 

Because the elastic strains in metals are orders of magnitude less than plastic strains in 

well-developed plastic flow, the above finite deformation crystal plasticity model is specialized 

here to the case of small applied elastic strains. For this purpose, we introduce the small 

elastic strain assumption for V", i.e., 

V" = 1 + € e ,  I /  E e  I /<< 1 (2.31) 

In this case, configurations B and 

Eq.(2.31), we can write 

will differ by an infinitesimal amount. Then, using 

. e  v = &", ve-' = 1 - € e  + O(ll E e  112) (2.32) 

With these approximations, inany of the tensorial expressions given in the constitutive model 

(2.30) can he reduced. Spccifically, the following relations can be derived after neglecting 

higher order ternis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc3( 1 1  1 1 2 )  and terms such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 ) ~ "  and ~ " ( 0 )  in comparison to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(o),  

- N 

D M d, w = w ,  skew(Ve"Ve) M skew(ieC) (2.33) 

- 
C" E 1. E E 4 ,  S E T  (2.34) 
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2. MODEL FORR./IULATION 

together with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFZ 2syn1(€"iie) + :,asyrll(za) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

%* FZ 6' + x q a s k e w ( Z a )  

ff=l 

(2.35) 

(2.36) 

Once these approxiniations are introduced in tlie constitutive equations (2.30), the crystal 

plasticity model for small elastic strains can be formally simplified to 

--e --e c7 v 
Kinematics: d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE" + D p ,  E'= + + €-e0 - 0 E" 

w = -skew(&"€") + fie + wp, fie = 

--e 
Elasticity: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7- = @ . : E e  

Plasticity: 
N 

Dp = R ~ D ~ R ~ ~  = :,~syIli(Za) 
C r = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

(2.37) 

- a  - a  
P = 7-:sym(Z ) = r : 2  

where 7- = det(1 + E ' ) u .  As mentioned before, when = 0 (Le. when V" = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) the above 

constitutive equations will model the response of a rigid -viscoplastic crystal. It is noted here 

that,  from a mathernatical point of view, tlie above model can be seen as a set of coupled first 

order ordinary differential equations for the kinematic variables ( E " ,  Re, E:), or equivalently 

for the set (7, Re, 6;). As such, the corresponding numerical integration will be devised to 

solve for either of these variable sets. 

Remark 2. In many applications of crystal plasticity theories, one needs to relate the re- 

sponse of individual crystals in an aggregate (or polycrystal) to tlie macroscopic behavior 

of the associated continuum (material) point. The relation between both responses can 

be obtained using a particular mean field hypothesis or partitioning rule. Specifically, mi- 

crostructural (crystal) quantities such as (d ,  w, C T )  need be linked to their corresponding 

rriacroscopic counterparts (DAf, Wbf, E,). In this work, where needed, we use an extended 

Taylor hypothesis [Asaro & Needlernan, 19851, i.e., 

D A f  = d ,  Whf = W ,  EM = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) (2.38) 
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2.5. SPECIFIC CONSTITUTIVE EQUATIONS. 

where tlie symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ( 0 ) )  denoted tlie volume average of ( 0 )  over all crystal orientations repre- 

senting the aggregate texture. It is important to note that for crlrstals exhibiting markedly 

anisotropic yield surfaces, such as HCP crystals. equal partitioning of the deforniatiori among 

all crystals in an aggregate, Eys.(2.38) niav lead to physically unrealistic results [Kocks, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
et al.,  19981. In this case, more general partitioning rules should be used. However, since 

Taylor hypothesis is mainly used here to validate the nunierical iniplernentation of the model 

(2.37) arid no predictions of experimental results for HCP riietals are sought, we will still use 

Eqs.(2.38) for computing the average behavior of HCP crystal aggregates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.5 Specific Constitutive Equations. 

2.5.1 Slip System Kinetics (Flow Rule). 

A physically-based description of tlie kinetics of slip relies on the theory of thermally 

activated dislocation motion [Kocks, et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/., 19751 [Meyers, et al., 20021. In this theory, it is 

assunied that the resolved shear stress on the a-slip system can be additively decomposed 

as IraI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7," + r,", where 7," arid r," are the applied shear stresses needed to  overcome tlie 

athernial (long-range) and thermal (sliort-range) barriers to dislocation motion, respectively. 

Siniilarly, the resistaxice to  slip (slip system strength or hardness) is partition as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK: = 

/c& + /c&, where K& arid K , , , ~  represent, respectively, the resistance of the atlierrnal and 

thermal obstacles to dislocations gliding on the a-slip plane. Following [Kothary & Anand, 

19981, we assume that the athermal components are the same, i.e., 7," = K&, while the 

thermal components, 7," and /c:,* with 0 5 7; 5 K&, define the slip system plastic shear 

strain rate as 

(2.39) 

where k is the Boltzmann constant, 8 is temperature, 9 0  is a reference shear strain rate 

typically in the range ( lo6 - 10') spl,  and the parameters p and 4 ,  which control the shape 

of the glide resistance profile (thermal obstacles), adopt values in the ranges 0 5 p 5 1 and 

1 5 q 5 2. In the above equation, AF is tlie activation free energy required to overcome 
tlie obstacles to  slip without the aid of an applied shear stress and usually lies in tlie range 

A F  = (0.05 - 2)pEb3 [Frost & Ashby, 19821. The parameters 5 0  and A F  are taken to be the 

same for all slip systems. Yote here that 7," = - K:, arid hence, 7," can be interpreted 

as an effective shear stress acting on tlie Q slip system. 

For the case of non-zero plastic shearing rates, we can invert Eq.(2.39) to obtain 
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2. MODEL FORMULATION 

At a given strain rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.", the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, sets the limit of applicability of the thermal- 

activation model for slip kinetics. That is, for temperatures above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,, there is enough thermal 
energy for the barriers to be overcome by thermal activation alone, without the aid of an 

applied stress. Note that at 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, we get S = 1 (7," = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK&), and at 0 = 6, we have S = 0 

An alternative description for the kinetics of slip is based on the well-known power law zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r*" = 0) .  

model given by 

(2.42) 

This empirical relationship has been widely used to represent most of the experimental results 
in the thermally activated regime. To establish a connection between the above power-law- 
based kinetics and the physics-based kinetics, Eq.(2.39), one could derive an expression for 

a rate sensitivity parameter m using Eq.(2.40)2 to obtain [Kothary & Anand, 19981 

(2.43) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.6 
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Figure 2.2: Typical variation of the strain-rate sensitivity parameter m with strain rate and 

temperature, computed from Eq.(2.43) with the parameter values: A F  = 2.5 x J ,  
-j, = 1 0 ~ ~ - l ,  p = 314, Q = 413 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k  = 1.3807 x JP). 

Using typical values for the parameters, we plot in Fig. 2.2 the variation of m against 

strain rate a t  fixed representative temperatures. It is observed from this figure that the 
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2.5. SPECIFIC CONSTITUTIVE EQUATIONS. 

power law relation requires the use of a '.variable" (rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ aiid tciiiperature-dependent) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni in 

order to capturc the flow behavior of metals iiiider a wide range of temperatures arid strain 

rates. Because the simulations presented in this docurnerit are limited to  low strain rates and 

isothermal conditions (room temperature) ~ tlie power law approxiriiation with a fixed m will 

still be used as a niodel for the kinetics of slip. Future applications of the niodel framework 

(2.37) to a wider range of loading conditions will corisider the pliysically-based description 

given by Eq. (2.39). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.5.2 Slip System Strength (Hardening Rule). 

To formulate a dislocation-based hardening law, we rely 011 the evolution equation for 

dislocation density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApy proposed by [Cocks & hlecking, 19791. This equation assunies that 

hardening is controlled by tlie competition of storage arid annihilation of (statistically stored) 

dislocations. The (atliernial) storage rate is described by a ineari free path A" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(oc l/m) that  

the dislocations travel before being iriimobilized. while tlie annihilation (dyriarriic recovery) 

follows a first order kinetics, i.e., it is linear in py. Hence, 

(2.44) 

where c1 and c2 are constants, with c2 = t2( ly"j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ) (dynamic recovery is thermally activated). 

The above equation can be transformed to an evolutioii equation in the iritcriial elastic strain 

c: using c: = b f l ,  arid relating tlie constants c1 arid c2 to  rneaningful physical quantities 

as el = 2h;/(c,pEb) and c2 = 2 h $ / ( c , p E ~ : , ~ )  [Acharya & Beaudoin, 20001. Here, hg is 

the initial hardening rate due to dislocation accuniulatioii, arid cs3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs is a saturation internal 

strain which, in general, is a function of strain rate arid temperature. Then Eq.(2.44) can 

be written as 

(2.45) 

In fact, in the open literature tlie above relationship is usually given in terms of the slip 

system strength K:, expression that can be obtained using Ey.(2.45) together with Eq.(2.27). 

To account for the initial strength K : , ~  explicitly, we slightly modified Eq.(2.27) to K: = 

K : , ~  + c , ~ E E ~  [hlecking & Cocks. 19811 and write the evoliitioii cquation for K: as 

(2.46) 

Although extensions of the above equation to  include laterit hardening effects arid more 

complex liardening functioris 11" are possible [Balasubrarriariian & Aiiaiid, 20021, [Kok, et 
al. ,  20021, in this work we just use a simplified version of Eq.(2.46) obtained by assuming 

that all slip sys tem harden at the same rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( K :  + K ~ ,  i.e., only one hardness variable 

rieeded to represent the crystal strength), and herice replace Eq.(2.46) by 

(2.47) 
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2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALlODEL FORMULATION 

where the saturation strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,,S is given by [Follansbee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Cocks, 19881 

K s , s  = ~ s , s ( l ? a l , Q )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&,,SO (2.48) 

with ?SO, and A being material parameters. As mentioned above, the applications 

presented in this work will be limited to isothermal cases (room teniperature), and hence 

the exponent in Eq.(2.48) will be simply replaced by a constant m'. 
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3. Numerical Implementation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In a numerical setting, classical crystal plasticity has been used in combination with the 

finite elenient met hod to providt iiuriierical solutions to boundary value problems irivolvirig 

anisotropic material behavior. In this context. crystal plasticity provides the material prop- 

erties at each computational point in the finite element discretization. In general, two types 

of applications are distinguished here, depending on whether tlie material properties at the 

computational point represents the mechanical response of an aggregate of crystals or just 

that of a siriglt crystal. In the literature, these applications have been termed large arid 

sniall scale applications [Kocks, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., 19981. Typically tlie former has been used to study 

the effect of plastic anisotropy (texture) on tlie material response at the macroscopic level 

during materials processing such as rolling and sheet forming [Beaudoin, et al., 19941, while 

the latter (also called direct numerical simulation-DNS- of polycrystals) has been applied 

to investigate heterogeneous deformation patterns of both single crystals arid aggregate of 

crystals to get a better insight into the plastic response of polycrystals [Sarma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8~ Dawson, 

19961. Detailed features of each type of application have been described in [Kocks, et  al., 
19981. 

In this work, our interest is the use of crystal plasticity rnodels to better understand 

rriaterials with considerable heterogeneity of deformation over the diriierision of an aggregate 

of crystals (sinall scale applications). As mentioned in [Kocks, et al.. 19981, a particular 

feature of this mesoscale approach, which is illustrated in Fig. 3.1, is that finite eleriierits 

discretize the crystals (grains) and balance laws are applied to the level of individual crystals. 

The numerical solution to the field equations then renders the partition of the deformation 

among the crystals (mean field hypothesis such as Taylor model are not needed in this 

approach). With the applied deforniation on each crystal known, the crystal state is evolved 

by riuinerically integrating the crystal constitutive equations. The single crystal state then 

defines directly the anisotropic material behavior at each computational point of the finite 

eleiiierit model. 

In this section we develop ail implicit numerical integration procedure for the proposed 

crystal constitutive model, Eqs.(2.37). We also derive an “approxirnate” algorithmic ma- 

terial moduli for use in iniplicit finite element simulations. The integration scheme and 

corresponding algoritliniic moduli are implemented in both a iiiaterial point sirnulation code 

and a commercial finite element code and validated in the next section by solving a number 

of problems. 
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3. NUMERICAL IhfPLEhlENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&&- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Polyctystal Single Finite sllp 

Ctystal E I ern en t Modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 

Balance Laws Constitutive Model 

Figure 3.1: The combination of crystal plasticity theory and the finite element method 
to study the behavior of crystal aggregates: small scale applications or direct numerical 

simulation-DNS- of polycrystals (after [Kocks, et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., 19981). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1 General Remarks. 

Consider the orthogonal basis {ez}z=1,3 and {ei}a=1,3, aligned with the fixed (sample) 
frame and crystal lattice. respectively. These basis can be related by the rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC-e i .  
where C E SO(3). In terms of the Euler angles ( ~ p 1 ~ ~ , p 2 )  (Cocks convention [Kocks, et al., 
1998]), the rotation tensor C will have the matrix representation 

with 0 5 y 1 5  27r, 0 5 4 5 7r, 0 I pz 5 27r. In a numerical setting,-this rotation mz rix is 
used to transform to the sample coordinate system in configuration E ,  the time-independent 
orthonormal slip system vectors ( s t ,  mf)  and the fourth order tensor of elastic moduli Cg 
both of which referred to the lattice axis, 

where (C@C),.as - = C 2 ~ C j ~ .  The initial orientation CO (VI,,, $0, p20) is prescribed as part, 
of the crystal initial state, and it, is numerically updat'ed during a given deformation history 
using C = ReCo; where Re is the rotation tensor from the polar decomposition of F": as 
represented in the kinematics Eq.(2.1) and whose evolution equation is given by Eq.(2.37)2. 
Note here t,hat the orthonormal slip system vect'ors (Sa! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm") in referred t'o the sample 
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3.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGENERAL REhIARKS. 

reference frame, are relatcd to  tlie vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(sg. mg) by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Cos:, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACorn;. Hence, 

Z" = C ~ Z ~ C :  arid Z" = C Z ~ C ' .  wliere Z:  = s: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR mi. 
The orthonormal slip system vectors ( s t .  mg) will have values according to the type of 

crystalline lattice (e.g., cubic, hexagonal). For cubic crystals, only the 12{ 111}(110) slip 

systems are considered for FCC metals, whereas for BCC metals, the 12{110}(111) arid the 

12{112}(111) may be includcd. In the case of HCP crystals, slip is typically assumed on 

the 3(0001)(1120) basal, the 3{10T0}(1120) prismatic arid the 12{10T1}(11%) pyramidal 

slip systems. On the other hand, the nuriiber of constants needed to  specify tlie anisotropic 

elasticity tensor, e:, will also depend on the crystal structure. In this respect, consider 

Voight (vector) notation for tlie stress and strain tensors, i.e., 

'T + {T} = (711 7 2 2  7 3 3  7 1 2  713 7 2 3 } T  (3.4) 

€" f {&"} = & E j 3  2 E &  2 E Y 3  2&}T (3.5) 

Using this notation, one can write the elasticity law in matrix form as 

-e 
7=e::Ee + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{r} = [e"]{Fe} (3.6) 

where [e'"] is the elasticity matrix in the sample coordinate systeni. With respect to  tlie 

crystal axis (subscript 0), this matrix is fully specified by 

[C"]0= 

e11 c12 c12 

e12 e11 c12 

c12 c12 c11 

(344 

c 3 4  

c 4 3  . 

for the case of cubic crystals (3 material constants), and by 

[C"Io= 

(3.7) 

with = i(C1l - C12), for tlie case of HCP crystals (5 material constants). 
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3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANUhfERICAL IMPLEMENTATION 

3.2 Anisotropic Crystal Elasticity. 

For computational convenience, the elastic law given by Eq.(2.37)3 is written as 

-e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--e 
devr  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Cd: dewe  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH E &  (3.9) 

-eT 
p ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH :devEe + (3.10) 

where r = devr  + p , l ,  with d e v r  and p ,  being the deviatoric and spherical (hydrostatic) 

parts of r ,  respectively. In Eqs.(3.9)-(3.10) we have defined 

-e - --e - -e 1- -e - - 1-  - e -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cd = Pd:C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:Pd, H = -Pd:C :1, M e  = -1:C :1 (3.11) 

where is the fourth order deviatoric elasticity tensor, H is the second order deviatoric- 

- isochoric elastic coupling tensor, and M e  is the elastic volumetric coefficient. Besides, p d  = 

1 - $1 @ 1 is the fourth order deviatoric projection tensor, with and 1 being the fourth 

order and second order unit tensors. Note here that 

3 9 

--e 

- 

N 

= ( C W )  - :e&: (C@C)T, - we = CHEC', Me = Ad: (3.12) 

with C&,, H:? and M i  being referred to the crystal axis. For the vector representation 

[h'larin & Dawson, 19981 

devr  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt {r'} = { -(rll 1 ,  - r;,) g r i 3  f i r ; ,  f i r ; ,  Jz (3.13) 

1 
devEe t {ee ' }  = { -(e:l' - E;;) f i e & '  &e;; &E&' & E ; ~ ' } ~ ?  (3.14) a 

Eqs.(3.9)-(3.10) can be written in matrix notation as 

(7') = [Q1:]{ee'} + {E"}E& (3.15) 

p ,  = { f i e }T {  eel} + S f Z k  (3.16) 

where, with respect to  the crystal axis, the quantities [Ci]o, {He}o  and M i  can be expressed 

as 

[ q o  = (3.17) 
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3.3. CONSTITUTIVE INTEGRATION SCHEME. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{He} ( )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (0 0 0 0 O}' 

Af,. = ,(C11 + 2C12) 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

for cubic crystals, while they can be written as 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

for HCP crystals. Note that the inatrix [@:lo is diagonal, a coriveriierit form for numerical 

operat ions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remark 3. Effective elastic properties can be defined for cubic and hexagonal crystals in 

terms of the elastic constants appearing in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[@'I0. Denote KE arid p E  as the effective elastic 

bulk and shear modulus, respectively. For cubic crystals they can be defined as 

1 1 

3 5 
KE = M; = - (Cii +2C12), P E  = - (Cii- Ci:! +3C13), (3.23) 

while for hexagonal crystals they are determined as 

In this last case, if C11 + C12 = C13 + C33, then 

1 

3 
KE = -(2C13 + (73, )  1 Afi 

3.3 Const it ut ive Integration Scheme. 

(3.25) 

The crystal constitutive model, Eqs.(2.37), can be considered as a set of coupled first 

order ordinary differential equations for the variables (ce3  Re, E : ) ,  or equivalently for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7, Re, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K: ) .  The time integration of these evolutionary equations is carried out in the sample axis 
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3. NUMERICAL IMP L EhZ E N TAT1 0 N 

and proceeds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby discretizirig tlie deformation history in time and iiunierically integrating 

the equations over each time step. For this purpose, we consider the configurations of the 

body at time t,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrL+l with tTL+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t,, + At. Accordingly, variables evaluated at  t,, and 

trL+l will be denoted with the subscripts n arid n + 1 respectively. This integration scheme is 

developed assuming (i) that  the crystal deformation represented by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ n + l  (or d,,+l arid w,,+1) 

is given, (ii) that  the variables ( E : ,  RE, E & )  or ( T , ~ ,  Ri, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK&) are kiiowri, and (iii) that  the 

time-independent slip system vectors (sg,  mi), the elasticity tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC:, the initial crystal 

orientation Co (texture), and the plasticity material parameters (flow rule and hardening 

law) are input. The integration of the model will then give the updated values RE++,, 

This numerical integration proceeds as follows. The kirieniatics given by Eq. (2.37) 1 and 
e,,+l) or h + 1 ,  RE+,, K&l+l) .  

written as 

is integrated using a backward Euler scheme, resulting in 

or 

(3.26) 

(3.27) 

(3.28) 

n R  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ReT 

where AR" is the iricreriierital elastic rotation tensor. From Eq.(2.37)4, the plastic strain 

rate Dn+l can he expressed as 
- P  

off 
where, from Eys.(2.37)5-6, ' a  = y ( T , ~ + ~ , K ~ + ~ ) .  In these equations, SE+l = Cn+lsg arid 

= Cn+lmg are the slip system vectors in configuration B,+1. As mentioned before, 

tlie rotation matrix Cntl = R",,,Co updates the crystal orientation (Euler angles) arid it is 

used to  transform the tensors CC: and H:  to configuration gn+l, 

- 
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3.3. CONSTITUTIVE INTEGRATION SCHEME. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- a  - a  

Denoting P,+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= syrii(Z,,+,) arid using Eq.(3.29). we can write the elastic strains at tn+l 
given by Ey.(3.28) as 

(3.31) 

Here = A R e ~ ; A R e T  (rotated elastic strains at and are the elastic predictor 

strains. Froni this equation, the deviatoric arid isochoric parts of can be expressed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

(3.32) 

with 

deveF+, = ARedeve;,AReT + Atdevd,+l. fK, n+l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEZk, 7)  + At d k k .  n+l  (3.33) 

where dkk , rL+ l  = tr(drL+l). Note here that while the deviatoric part of depends on 

AR', a quantity deterrriiried during the constitutive iterations at each time step At, the 

corresponding volumetric coniponerit is readily computed and known at the beginning of the 

time iricrerrieiit since d,+l is given. Equations (3.32)-(3.33) can be used in the elasticity 

relationships, Eqs.(3.9)-(3.10), written at trL+l as 

to obtain 

a=l 

(3.37) 

On the other hand, the evolution equations for the rotation tensor Re, Eq.(2.37)2, arid 

the slip system hardness K:, Eq.(2.37)8 (or better, Ey.(2.47)), are integrated using the ex- 

ponential niap [Siino & Hughes, 19981 arid a backward Euler scheme, respectively, 

e, 7L+l  = KCU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 ,  71 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, (%+I, K;, n+l)  (3.39) 

-a  - 
where Qn+l = skew(Z,,+,) and the term skew(CE+le:+l) in Eq.(3.38) has been left out since 

it is typically small [Marin & Dawson, 19981. 
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3. NUMERICAL IMPLEhIENTATION 

Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.36)-( 3.39) represent a set of couple nonlinear algtbraic equations for the 

unknowns (dev.r,,+l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr L + l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR:L+l, .E+,), with Eq.(3.37) giving the volumetric response, 

while the other three equations representing the deviatoric behavior. Note that although 

both behaviors are coupled through the tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWn+l,  the volumetric response could be 

determined once the deviatoric response is computed (the elastic strain EZ,,,+~ is known). 

Hence, we focus our attention on the procedure to solve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqs.(3.36),(3.38)-(3.39). For this 

purpose, using these equations we can formally write the residuals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h -e-1 

R1 = R1 (.rn+1, q , + 1  , K;, , L + 1 )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, n+1: dev.rns-1 - dev€FL;, 
N 

cy= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

R3=R3(Tn+1, Ri+1, KT,n+l) = Ky,n+l - K y , r ~  - 6 ~ ( ? E + l ,  K:,rb+l) = (3.42) 

A full Newton-Raphson (N-R) method would typically be used to solve Eqs.(3.40)-(3.42). 

However, in this work we use a two-level iterative scheme (staggering scheme), as presented 

by others [Kalidindi, et al., 1992],[Marin & Dawson, 19981. In the first level, the residual 

Ey.(3.40) is solved for dev.r,+l using N-R method by keeping (R:L+l, K : + ~ )  at their best 

available estimate. The linearization of this residual with respect to d e w  leads to the 

following system of five equations to be solved iteratively at each time step for the components 

of A(dev-rn+l) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

- c y  

-deve:+, + devez,, - At E $z+lPn+l (3.43) 
a=l 

-e-1 -e 
where we have used deve“,,, = CZd,n+l:(dev.rn+l - H7L+1~g,n+l) obtained from Eqs.(3.34) 

and (3.32)2. In matrix notation, Eq.(3.43) can be written as 

-e-1 

with { f F / ) n + l  = [e, ln+1({7/ln+l - {~“)nc l tK, ,+1) .  

Once a N-R solution for the stresses has been obtained, the second level of 

from Eq.(3.42) the iterative procedure involves (i) a N-R solution for the hardness 
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3.4. CONSISTEST ELASTOPLASTIC TANGENT MODULI. 

keeping (dev-r7,+l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARFL+l) fixed, and (ii) a simple update for the lattice rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR:L+l using 

Eq.(3.41), or equivalently, Eq.(3.38). Details of this second-level iterative update can be 

found elsewhere [Marin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dawson, 19981. The initial guess for the iterative scheme is based 

on the viscoplastic solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E" = 0) for dev-r. an explicit estimate (forward Euler scheme) 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK:,  arid tlie exponential map scheme for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe with 6' in Eq.(3.38) evaluated at tTL. The 

convergence criterion used for this two-level iterative scheme is based on the changes of the 

norm of dev-r arid K:. In the present calculations, iterations are carried out until changes 

in the norm of both dev-r and K: are less than 10-4~so ,  where is the initial slip system 

hardness. 

With the crystal variables (dev-r,+l ,R",,, . K : + ~ )  known, the pressure at tn+l is obtained 

using Eq.(3.37), which in matrix notation is written as 

- N 

P T , ~ L + ~  = {~"):+i {ce ' }n+ l  + n ~ + l c ~ , T , + ,  (3.45) 

Finally, the crystal Cauchy stress is computed as 

where 

- 
-rn+s = dev-rn+l + P7,n+11, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€:+I = devG,, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&?I+l 1 (3.47) 

1 - 

The suniniary of tlie integration scheme to  update the stress and state variables is given in 

Box 1. 

3.4 Consistent Elastoplastic Tangent Moduli. 

The (material) tangent moduli plays an important role in implicit finite element pro- 

cedures, where its use is essential to  preserve the quadratic rate of convergence that char- 

acterizes Newton's method during the equilibrium iterations. In this section, we derive an 

approximate closed form solution of the tangent moduli by a conszstent linearization of the 

integrated constitutive equations. The word "approximate" reflects the fact that  the deriva- 

tion will not consider the linearization of the rotation tensor RFL+,, the elastic Jacobian 

Jz+l = det(1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE;~+~) ,  and the hardness K : . ~ + ~ .  

In this work, the tangeiit moduli can be defined as 

To derive the expression for ~:f),+~, we decompose the Kirchhoff stress at tn+l, -r,+1, into its 

deviatoric and isochoric components, 

-rll.+l = dev-rTL+l + PT? T J + l l  (3.49) 
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~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. NUhlERICAL IhIPLEhIENTATION 

where, from Eqs.( 3.9)-( 3.10) (or Eqs. (3.34)-( 3.35)), 

with 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC z k , 7 L + 1  - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtik,n. The liriearization of ~ ~ ~ + 1 ,  Eq.(3.49), gives 

- 
d r n + ~  = d dev-rn+l + dPr,n+l l  (3.52) 

To linearize dev-r,+l and ~ , , ~ + l ,  Eqs.(3.50), we will held constant the quantities @d,7b+1,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Elnt1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Pn+l since we are assuming a constant RFt+l. Then, consider first the 
linearization of 

-e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-ff - -e 

E~l . (3 .50 )~ .  This linearized equation can be written as 

(3.53) 

(3.54) 

(3.55) 

Using these two last equations, Eq.(3.53) can be written as 

or 

-e-1 -e-1 -e 
(3.57) 

v 

-ep  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@d , r t+  1 

- eP 
where (Cd,n+l is the approximate deviatoric algorithmic nioduli. Consider next the lineariza- 

tion of the volunietric part of -r,+1, Eq.(3.50)2. We can write 

Using the expressions for d devc-",,, and d&,+,, Eqs.(3.54)-(3.55), in Eq.(3.58) one obtains 

-eT - - 
dp,,,+, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,+l: (AtIPd:ddTt+, - dev-rnil) + AtM;+,l:dd,+l (3.59) 
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3.4. C 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN S IS TE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS T E LA S T O  P L AS T I C TANG EN T L'lOD U LI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

--ep zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H", n+l 

-ep 
where Hv, n+l is the approximate volumetric algorithmic moduli. Substituting Eqs.(3.57) 

and (3.60) into Eq.(3.52), one obtains 

Therefore, the approximate material tangent moduli is given by 

Note that when no coupling between the deviatoric and volumetric response exists, i.e., when 

Wntl = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (cubic crystals), Cn+l reduces to 
--e - eP 
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3. NUMERICAL IhlPLE;1IEITTATIOIT 

Box zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Integration Procedure for Crystal Plasticity Model 

1. Given quantities: 

d n + l ,  wn+1, (deve:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&,7L‘ RFI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% n ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(@&I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH &  M a ,  CO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz;=@W 

2. Initial estimate for (dev-r,+l, RFL+,. K ~ , ~ + I ) :  

viscoplastic solution + dew,+, 

forward Euler approx. + K~,,+I 

exponential map with 0, + RZ+, 

n+l: 

‘$k.7~+1 = € % , n + l  - & c , ~ L  + At tr(d7L+1) 

-e 

3. Compute elastic volumetric strain 

- 

4. Start two-level iterative scheme to compute (dev-r,+l, RE+, , K ~ ,  

(a) Compute C71.+I, ARE+,: 

c71+1 = R:+,Co, ARE+, = R;+& 

(b) Rotate ( G o ,  %, 2;) to (@;,7L+1, X+l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz+,,: 
--e 
c d ,  n+l = (cn+lBcn+l) : c& : ( C 7 1 f l ~ C 7 1 + ~ ) T  

-a  - 
HE+, = ~n+lH;C:+l, Z n + l  = C n + l ~ V ~ + 1  

(e) Compute deviatoric elastic strains dew:+, , deveFL+,: 

dever+, = A R ~ + , d e v e ~ A R ~ ~ ,  + At devd,+l 
-e-1 -e 

d e e t + ,  = @d,,+1:(deVcL+l - H , + l f z k , n + l )  

(d) 1st level ~ Compute new estimate for dev-r,,+l: 

N-R method to solve Eq.(3.43) + dew,+, 

(e) 2nd level - Compute new estimates for ~ ~ , , + 1  and RFL+l: 

N-R method to solve Eq.(3.39) + &,,%+I 

exponential map, Eq.(3.38) + R;+l 

( f )  Check convergence of two-level iterative scheme: 

Are the changes in dev-r,+l and K : , ~ + ,  less than TOL? 

NO, return to step (a). 

YES, continue to step (5). 

5. Update nieaii stress (pressure) pT, n+l : 
N N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--rT 

PT,  n+l = HTl+l : deveE+, + AJ:+tleik, 7 L + 1 >  Af;+, = 

6. Update Cauchy stress using Eqs.(3.46)-(3.47). 

EXIT 
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4. Validation of the Numerical 

Implementation 

Tlie crystal constitutive equations, Eqs.(2.37), and tlie corresponding integration scheme, 

Box 1, have been implemented in both a material point simulator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(mnps) arid a user material 

routine in the finite element code Abaqus [ABAQUS, 20041. These two implementations are 

validated here by solving a riurnber of problenis involving (i) the response of an aggregate of 

crystals to different deformation histories (mps) ,  (ii) the behavior of a single finite element 

under plane strain compression (Abaqus), and (iii) the deformation behavior of polycrystals 

and single crystals where each crystal is represented by one or more finite elements (Abaqus). 
Most of the examples are mainly focused on testing tlie performance of tlie model arid its 

numerical implementation, with some remarks added regarding the behavior of polycyrstals. 

The last example (uniaxial compression of a single crystal) compares simulation results and 

experimental data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1 Material Point Simulations. 

Tlie material point simulator evaluates the response of material points subjected to ho- 

mogeneous deformation histories. Here, a material point is assumed to be comprised by a 

collection of crystals whose individual mechanical responses are linked to that of the material 

point using the extended Taylor hypothesis (see Remark 2) .  In this section. we validate the 

integration scheme arid the corresponding computer code (mps) by calculating the response 

of the crystal aggregate to a riuniber of loading histories, as prescribed by the nonzero com- 

porients of the velocity gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  Hence, the examples presented are deformation driven, 

with the prescribed deformation path being mainly deviatoric (no information about the 

volumetric response is obtained). 

Specifically, we solve for the response of aggregates of face center cubic (FCC) and hexag- 

onal closed packed (HCP) crystals under specified deformation paths. A particular aggregate 

consists of 256 initially randomly oriented crystals chosen from a uniform orientation dis- 

tribution, Fig. 4.1. The crystals in the aggregate deform by crystallographic slip on well 

defined slip systems: for FCC crystals on the twelve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ 11 I} (1 11) slip systems while for HCP 

crystals on the three (0001) (1120) basal, t h e e  { lOTO}( 1120) prismatic arid six { 1011}( 1123) 

pyraniidal slip systems. Because for HCP crystals, pyramidal slip typically exhibits higher 
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4. VALIDATION OF THE NUMERICAL IMPLEMENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

random zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtexture 

Figure 4.1: (111) pole figure for an initially random distribution of 256 crystal orientations. 

Table 4.1: Material Parameters for A17050 

Elasticity Parameters 

9 1  c12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACU 
108.2GPa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 61.3GPa I 28.5GPa 

Viscoplasticity Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m I ?o I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAho k , O  b, so I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm' I ?so 

0.02 I 1.0s-I I 240.0MPa I 205.0MPa I 290.0MPa I 0.0 I 5 x 101os-' 

Table 4.2: Material Parameters for Titanium 

Elasticity Parameters 

159.58GPa 191.06GPa 1 181.17GPa 146.7GPa 169.47GPa 
c11 4 2 c 3 3  CU c13 

I Viscoplasticity Parameters 

m I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 0  ho 6 5 ,  0 &a> so I m' I +so 
0.05 I 1.0s-1 I 400.0MPa I 200.0MPa I 1000.0MPa I 0.005 I 5 x 10'os-l 



-2.1. hlATERIAL POINT SIAIULATIONS. 

critical resolved shear stress than required for basal and prismatic slip, we assume that the 

strength of pyramidal slip is five times the strength of either basal or prisniatic slip (both of 

which are taken to  have equal strength). This relative strength ratio is maintained during 

deformation. Also, we specify an axial ratio of 1.63 (ideal value). Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe and a are thc 

lattice parameters of the HCP cell. 

In the examples to  be solved, we will track tlie stress response and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ or texture evolution 

of the aggregate. Most of the stress-strain curves are presented in ternis of niacroscopic 

effective quantities oe/~ , ,o  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, 0 is the initial slip system strength, and 

with 1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 )  I I =  d m .  Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADbf and CAI are the macroscopic deformation rate and the 

macroscopic Cauchy stress, respectively. The deformation textures are shown in (111) pole 

figures for FCC and (0001) pole figures for HCP, with tlie global coordinate systeni indicated 

as (1 ,2 ,3)  or (x,y,z). The material constants used for anisotropic elasticity, Eqs.(3.7) -(3.8), 
the power-law kinetics, Eq.(2.42), and the hardening law, Eq.(2.47), correspond to those 

of polycrystal aluriiiriurri for FCC and polycyrystal titanium for HCP, and are presented in 

Tables 4.1 and 4.2, respectively. 

The first two examples validate the integration scheme, Box 1, by comparing the stress 

response and texture predictions with those obtained from the viscoplastic version of the 

model [hlathur & Dawson, 19891. In tlie first case, the aggregate of FCC crystals is deformed 

under plane strain compression ( I l 1  = -Is3 = 1 . 0 ~ ~ ' ;  others I,, = O ) ,  while in the second 

case the same aggregate is subjected to  simple shear loading ( I l j  = 2 . 0 ~ ' ;  others I,, = 

0). The computations are carried out using 150 increments with a constant time step of 
At = 0.00866.s, to give a total effective strain of E ,  = 1.5 in plane strain compression and 

a total shear effective strain of ye = 2.60 (7, = in simple shear. The computed 

stress response and texture evolution at three strain levels are presented in Fig. 4.2 for plane 

strain compression and Fig. 4.3 for simple shear. In general. the stress response shown in 

these figures differ little between the elasto-viscoplastic and viscoplastic computations. The 

effect of elasticity is most noticeable in the initial portions of the curves, where the crystal 

elasticity is predoniinarit. However, at large strains, where all the crystals deform plastically, 

the stress level is mainly controlled by the strength or flow stress of the material, and hence 

the effect of elasticity is very small. Further, the textures predicted using both models are 

for a11 practical purposes the same. This means that elasticity has virtually no effect on 

texture evolution [Slaniatty, et al., 19921 , [hlarin & Dawson, 19961. 

The effect of the time step on the accuracy of the predictions using the proposed nu- 

merical integration scheme is examined by computing the stress-strain response and texture 

development of the aggregate of HCP crystals when subje d to plane strain compression 

with 111 = -I33 = 1.0s-l; others zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,, = 0. The aggregate response is obtained using effective 

strain iiicreiiieiits of AE, = 0.1, 0.01,0.001 (time steps of At = 0.086 s ,  0.0086 s,  0.00086 s ) ,  
to  a total effective strain of E,  = 1.5. The computed stress-strain response arid tlie predicted 

textures a t  an effcctive strain of E, = 1.5 are given in Fig. 4.4. We observe that the stress 
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4. VALIDATION OF THE NUMERICAL IhlPLEnlENTATION 

response converges to a unique curve as the time step is reduced. Also, the integration 

scheme is stable for the full range of time steps used, a behavior expected since he integra- 

tion scheme is implicit, and hence the time step is limited by considerations of accuracy and 

convergence. On tlie other hand, the predicted texture is consistent with that expected for 

an HCP polycrystal undergoing plane strain compression [Cocks, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., 19981, arid it is clear 

that tlie time step has little effect on the resulting texture. 

As mentioned before, the proposed crystal plasticity model is a consistent extension of a 

rigid-viscoplastic model to include the effect of sinall elastic strains. Although the previous 

examples has validated the numerical iniplenientation of the model, the influence of elasticity 

on the stress response was not pronounce because monotonic loading conditions were applied 

to the aggregate. In the next two examples, the aggregate of HCP crystals is deforrned using 

deformation histories involving load path changes, and hence elastic effects will be more 

apparent. Specifically, a reverse loading test arid a relaxation test are analyzed. 

The reverse loading test is carried out by subjecting the aggregate to the uniaxial cyclic 

loading tension-compression-tension with a constant macroscopic strain rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 .O s-l. 

The prescribed velocity gradients are 2lI1 = 2122 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- / 3 3  = -1.0 s-l, others I,, = 0 for tension, 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2111 = 2122 = - / 3 3  = 1.0s-', others l,, = 0 for compression. The direction of the load 

is reverse from tension to compression at a strain of € 3 3  = 0.3, and then from compression 

to tension at a strain of ~ 3 3  = -0.1. The response is determined using a constant time step 

of At = 0.0086s. The computed stress-strain curve for the 3-axis components is plotted in 

Fig. 4.5. One can clearly observe that, when the direction of loading is reversed, the material 

response is elastic until yielding occurs again on reloading. The increased hardening behavior 

observed after each reloading is due to the high rate of hardening of the material (see Fig. 4.5) 

as well as texture effects. 

Finally, for the relaxation test, tlie aggregate is deformed under uniaxial compression 

with 2111 = 2Z22 = -133 = l.Ospl, others zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,, = 0, to an effective strain of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, = 0.7 (time 

t = 0.7s). At this point the applied load is reduced to zero ( l z J  = 0.0) while keeping the 

effective strain at E, = 0.7. This case is analyzed with isotropic elasticity, using two different 

values of the elastic modulus: E and 5 x E, where E = 9pEKE/(pE + 3KE) with pE and KE 
being the effective shear and bulk moduli computed using Eq.(3.24) and the elastic material 

properties given in Table 4.2. The stress response during the loading and relaxation phases 

is computed with a constant time step of At = 0.01 s to a total time of t = 1.5 s. The 

normalized effective stress versus time response is presented in Fig. 4.6. 

Because of the viscous nature of the material model, the inelastic strains during relaxation 

increase with time at the expense of the reduction of tlie elastic strains. This is necessary to 

maintain the constant applied deformation. Hence, the stress level decays with time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the 

elastic strains relax, as shown in Fig. 4.6. This figure also shows that the magnitude of the 

elastic modulus affects the rate a t  which the stress reduces during relaxation. This is a direct 

consequence of the dependence of the relaxation time on ratio of the effective viscocity of 

the plastic behavior to the elastic rriodulus. Note that tlie magnitude of the elastic modulus 

also affects the initial portion of the stress response during the loading phase. 

38 



4.1. MATERIAL POINT SIMULATIONS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

plane strain compression 

fcc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2ld3 S-' 

elasto-viscoplastic 
rigid-viscoplatic 

o o " " " " ' " " ' " ' '  0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.8 1.2 
strain, E 

1 1 1 

E, = 0.5 E,=1.0 ~,=1.5 

rigid-viscoplastic model 
1 1 1 

E, = 0.5 E, = 1.5 

Figure 4.2: Macroscopic stress response and (111) pole figures at different strains for an 
aggregate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA256 FCC crystals subjected to plane strain compression computed using both 

the elasto-viscoplastic and rigid-viscoplastic models. 
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4. \'.ALID.ATIOS OF THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANUAIERICAL IAIPLEhlENT.\TIOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

2 1  

simple shear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C elasto-viscoplastic 

.- - 
1 fcc, += 2.0 s- i i: 

rigid-viscoplastic 

00 ' ' ' 014 ' 0:s' ' ' 'I12 ' ' '1:s' ' ' ' ; ' ' ' 214 ' ' 2.9 
shear strain, y 

elasto-viscoplastic model 
1 1 1 

y= 0.87 y =  1.73 y=2.60 

rigid-viscoplastic model 
1 1 1 

y =  0.87 y =  1.73 y = 2.60 

Figure 4.3: Macroscopic stress response and (111) pole figures at different strains for an 

aggregate of 256 FCC crystals subjected to simple shear computed using both the elasto- 
viscoplastic and rigid-viscoplastic models. 
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4.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMATERIAL POINT SIMULATIONS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

time step effect 

plane strain compression, hcp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAId3 s” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 AEe=o.l 
C AEe = 0.01 

00 0.4 0.8 1.2 

AEe = 0.001 

strain, E 

hcp, cOOO1> pole figure, E, = 1.5 
2 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa i, i= 1 

1 E .  .. * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AE* = 0.001 

Figure 4.4: Macroscopic stress response and (0001) pole figure for plane strain compression of 
an aggregate of 256 HCP crystals computed using the elasto-viscoplastic model with constant 
time steps of At = 0.086 s, 0.0086 s, 0.00086 s. 



4. VALIDATION OF THE NUMERICAL IMPLEMENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. .  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.5: Macroscopic stress-strain response for a reverse (cyclic) loading test during uni- 

axial deformation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan aggregate of 256 HCP crystals. The load is reversed at  ~ 3 3  = 0.3 
(tension-compression) and ~ 3 3  = -0.1 (compression-tension) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

relaxation test, hcp 

+I s" + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,=O s" at k0.75 s 

E = 392 GPa 
E = 78.4 GPa 

o o ' " ' ' r  0.4 " ~ ' " " ' " "  0.8 1.2 

time (s) 

Figure 4.6: Macroscopic stress-strain response for a stress relaxation test during uniaxial 
compression of an aggregate of 256 HCP crystals. Two values of the elasticity modulus are 

used. The imposed macroscopic deformation is reduced to zero instantaneously. 



4.2. ABAQUS SIMULATIONS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 ABAQUS Simulations. 

The above computer program zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(mps) has been incorporated in tlie finite element code 

Abayus as a rriaterial routine (urnat) by creating the adequate interface to  transforni the 

vector representation of terisorial variables used in the mps, Eqs(3.13) (3.14), to  the corre- 

sponding notation liaridled by Abaqus. This finite element implenientation is being tested in 

this section by solving for the response of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) a single element under plane strain conipression 

where each coriiputatiorial point is associated with an aggregatc of crystals, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21)  a polycrystal 

finite element model* under different loading paths where each element represents an individ- 

ual crystal, and (zzz) a single crystal under uniaxial coiiipressioii, with the crystal represented 

with thousands of elements. Although the iniplementatiori has been carried out in both the 

implicit and explicit versions of Abaqus, liere we mainly test the integration scheme in an 

implicit environment where the derived algorit hniic niaterial moduli, Eq. (3.62), will play a 

role in the convergence of the equilibrium iterations. All problems are three-dimensional 

In the first two examples, we validate tlie Abaqus implementation by comparing the 

response of a single finite elenient under plane strain conipression with the corresponding 

results froni the material point simulator. The rnps runs are takeii liere as reference to 

validate tlie finite element implementation. The comparison inetrics are the stress-tiriie 

curves and texture evolution. The element used is an 8-noded brick element with reduced 

integration (Abaqus element type C3D8R). The computational point is assumed to  consist 

of an ensemble of 256 crystals type FCC for the first case and type HCP for the second case. 

The corresponding material properties for each type of crystal are given in Tables 4.1 and 4.2. 

The initial crystal orientations ( E ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) in the aggregate are randomly distributed, and the 

aggregate response is computed using the extended Taylor hypothesis. For the mps runs, the 

aggregate is subjected to  a velocity gradient with components L l 1  = -I33 = 1 . 0 ~ ~ ' ;  others 

I,, = 0 ( E ,  = 2 / 8 s - ' ) .  For the Abaqus simulations, the cube faces -y, +y, -x and -z are 

constrained to move along their normal directions, while a displacement boundary condition 

is applied along the +z face such as to  obtain a constant macroscopic z-deformation rate of 

-1 s-' (this results in a deformation state with i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 2/&s-') .  In both the mps and the 

Abaqus runs the applied load is imposed during a time interval of 1.5s, and tlie solution is 

obtained in 150 increments (At = 0.01 s-'). 

The computed results are displayed in Figs. 4.7 and 4.8 for both FCC and HCP crystal 

aggregates, respectively. One can observe that the stress response obtained from both mps 
arid Abaqus, for each type of aggregate, is almost tlie same. Note that these curves show 

increasing small differences as the deforniat ion progrcsses, in particular for the HCP aggre- 

gate which has a higher hardening rate and a more anisotropic behavior. These differences 

(3-D) . 

*The use of this idealized polycrystal with "bricks" representing the grain shape (microstructure) is mainly 

iriterided liere to test the performance of the Abaqus numerical implementation. However, more realistic 

nunierical microstructures should be employed when using crystal plasticity theory as a mesoscale approach 

to investigate actual material behavior a t  the grain-scale. These microstructures can be constructed using 

either Voronoi tessellation procedures or digitizing real niicrostruct ures. and meshed using adequate mesh 

genrratiori software. 
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could be due to the specific details of the imposed loading: the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmps simulations are fully 

kinematically driven, while the Abaqus runs use mixed boundary conditions (the +x face of 

the cube is stress-free). On the other hand, the predicted texture shown in both figures for 

the Abaqus and the mps runs at a strain of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.73 are, for all practical concerns, the same. 

In the following examples, we will use the direct numerical simulation to study the be- 

havior of crystal aggregates and single crystals. As mentioned before, this approach does 

not need any mean field hypothesis to  partition the applied macroscopic deformation among 

the crystals of the aggregate, as such partition happens naturally as part of the finite ele- 

ment solution of the field equations. This specific feature generally introduces non-uniform 

deformation modes across elements or crystals that reproduces more realistic behaviors of 

polycrystalline aggregates. Specifically, here we study the deformation behavior and texture 

development of a polycrystalline aggregate under different loading paths and the response 

of a single crystal to  uniaxial compression. 

The polycyrstal aggregate contains 343 single crystals arranged in a cube of side l o  con- 

sisting of 7 x 7 x 7 8-noded brick finite elements, see Fig. 4.9. The element type is the 

fully-integrated Abaqus-C3D8H t (8 integration points) which uses a hybrid (displacement- 

pressure) formulation to  properly account for tlie incompressibility constraint emanating 

from the volume-preserving nature of plastic flow. Here, each element represents a crystal 

whose orientation is obtained from a uniform orientation distribution, as shown in the poles 

figures depicted in Fig. 4.9. As before, we will solve this problem for both FCC and HCP 

crystals and for three deformation histories: plane strain compression, uniaxial compression 

arid simple shear. The material properties used for the crystal constitutive equations are the 

same as those used in the previous examples (Tables 4.1 and 4.2). 

In these simulations, the plane strain compression loading is induced by constraining 

the motion of the -y, +y and -z cube faces along their normal directions (one point at  

the - z  face needs to  be fully constrained to eliminate rigid body motion). In addition, a 

variable displacement boundary condition is enforced on the +z face to obtain a constant 

z-axis macroscopic strain rate of 1 s-’. For the uniaxial compression test, the -x, -y and -z 

cube faces are constrained to move along their normal directions, and a variable displacement 

boundary condition is applied on the +z face to give also a constant strain rate of -1 sP1 along 

the z-axis. Both of these cases induce macroscopic equivalent strain rates k,  of approximately 

2/& s-l for plane strain compression and 1 s-l for uniaxial compression. The load duration 

for both cases is t = 1.5s. On the other hand, for the simple shear test, the -z face is fixed, 

and a total displacement of j e t  lo is applied on tlie +z face along the +x direction. Here 

= 2s-’ is the prescribed shearing rate arid t = & / a s  is the duration of the load. 

The initial time step prescribed for these three cases are 0.01 s ,  0.01 s. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3/@ x lop2,  

respectively. However, during the solution procedure, Abaqus adjusted this time step for most 

of the runs based on convergence considerations. The average number of iterations at any 

increment for all the runs was between 3 and 4, meaning that the “approximate” algorithmic 

+Typically, the less-expensive reduced integration elements, such as Abaqus-C3D8R, are used for sirnu- 

latioris of large 3-D problems. The use of the Abaqus-CSD8H element in this relatively sinal1 3-D example 

is just to test this element performance for crystal plasticity simulations. 
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iriaterial moduli derived in this work performs well during the equilibrium iterations. We 

note here that,  although all siiiiulations run to  completion, in most of the cases the finite 

elenient meshes were highly distorted past a certain aniouiit of strain. Hence, simulation 

results are niainly presented at strain levels where they are considered to still be “valid”. 

The results from the polycrystal siinulatioiis are presented in Figs. 4.10-4.11 for the 

FCC and HCP crystal aggregates, respectively. Each figure shows the deformed niesh and 

the aggregate texture for plane strain compression at E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.2, for uniaxial compression 

a t  E, = 1.0, arid for simple shear at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, = 1.73. The severely distorted meshes displayed 

in these figures clearly show the inhomogeneous deformation field that existed over the 

polycrystal during defoination. Such inhomogeneity in straining from crystal to  crystal is 

rtiairily due to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  the crystal anisotropic properties (elastic and plastic) arid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 2 )  the difference 

in crystal orientation between neighboring crystals or elements (misorientation field). These 

two aspects introduce sharp variations in the constitutive response across elements (crystal 

interactions) that  are reflected in the mesh deformation patterns shown by the deformed 

polycrystal. On othe other hand, the developed textures for each type of aggregate are 

consistent with those expected for each loading path. We note here that ,  although riot 

pursue in this example, a coinparison with the textures predicted by the extended Taylor 

model will show that the textures shown in Figs. 4.10-4.11 are typically more diffuse. This 

feature results froin the heterogenous straining of the polycrystalline aggregate induced by 

the finite element discretization [Kocks, et al., 19981. 

As a last example, we predict the response of a single crystal under uniaxial compression. 

For this problem, we use part of the experimental data produced in a recent project [Hughes, 

et al., 20001 to  further validate both the numerical irnplenientation and the crystal plasticity 

model. Specific rnetrics to use are the deformed shape of the sample, the stress-strain 

response, and the change in crystal orientation. In these experiments [Hughes, et al., 20001, 

a cylindrical single crystal of 99.99% aluminum (FCC material) with dimensions 7.3 mm x 
11.0 rnni (diameter and height) was compressed with the [421] crystal direction initially 

parallel to  the compression axis, see Fig. 4.12. The test was conducted at room temperature, 

at  a strain rate of s-l to  a strain level of 0.6. The deformed shape of the crystal is also 

shown in Fig. 4.12, while the stress response arid orientation changes plotted in an inverse 

pole figure are shown in Fig. 4.14, where the computed results described below are also 

given. As observed froni the experiniental results, the originally cylindrical single crystal 

ovalls during compression. a pattern consistent with single glide on average. This deformed 

shape reveals some degree of honiogeneous deformation, and hence, the stress-strain curve 

is representative of the single crystal response and could be used to fit niaterial parameters 

of the model (instead of the force-displacement curve). The inverse pole figure, on the other 

hand, depicts the breakup of the originally single crystal orientation. This breakup of the 

crystal into regions of different orientations reflects the formation of dislocation substructures 

(grain subdivision) [Haiisen, e1 al., 20011 and it is niaiiily driven by the deformation constraint 

imposed by the applied boundary conditions (compression platens). 

The single crystal is rtiodeled with 14976 brick finite elements, type Abaqus-C3D8R, see 

Fig. 4.13A. The sample reference frame, i.e., the axes 1-2-3 (or x-y-z), is oriented along 
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4. VALIDATION OF THE NUMERICAL IhIPLEMENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c1 1 

108.2 GPa 

tlie crystal directions [2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo]. [T20], [4 2 I], which gives the Euler angles of cpl = 180", q!j = 

77.4",p2 = 26.6" (Kocks convention). Each finite element in the model is initialized with 

these Euler angles. The single crystal material properties used are given in Table 4.3. The 

plasticity parameters shown have been estimated from the experimental stress-strain curve 

using a coarse discretization of the crystal (48 elements). The computed results with the 

full finite element model should confirm this estimate. The yuasi-static uniaxial conipression 

loading is imposed by applying a variable negative displacement at the top of the cylinder 

along the z-axis ([421] crystal direction) to obtain a constant applied strain rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-'. 
The bottom of the cylinder has a zero z--displacement, with two points on this surface 

completely fixed to avoid rigid body motions. The prescribed time interval and initial time 

step are t = 600 s and At = 0.04 s, respectively. During tlie solution, Abaqus adjusted this 

time step in the range At = 0.04s - 4.0s. The solution was obtained in 294 increments, 

with an average number of equilibrium iterations per increment of 3. 

c1 2 c44 

61.3 GPa 28.5 GPa 

Table 4.3: Material Parameters for Single Crystal Alumiriuni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
171 

0.01 

Elasticitv Parameters 

7 0  /LO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKS, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK S ,  so m' ?SO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lop3 s-' 28.4 MPa 3.7 MPa 37.8 MPa 5.0 x 5 x 10" s- l  

The numerical results are presented in Figs.(4.13)-(4.14). The deformed mesh, given in 

Fig 4.13B, clearly show that the crystal cross section ovals during deformation, as displayed 

by the experimental results. The long axis of this oval is parallel to the projection of the 

primary slip direction onto the compression plane. Also, the predicted stress-strain response 

presented in Fig. 4.14A agrees well with the experimentally determined curve. Here the stress 

has been computed as the volume average of the stresses in all the elements. As pointed out 

before, this prediction validates the estimated values of the plasticity material parameters 

given in Table 4.3 which were determined from a coarse mesh run. Note that the elastic 

portion of the curve is riot well-captured, which may mean that the crystal elastic response 

determined from experiments is more compliant than the one predicted with the published 

values of the elastic parameters. Finally, from the inverse pole figure, one can see that the 

model predicts, as the experimental values show, the rotation direction of the compression 

axis towards the ideal stable orientation [011] [Courtney, 19901. Although the relative spread 

(breakup) of these orientations is predicted qualitatively, the corresponding magnitude may 

not be yet compared quantitatively due to  the small number of experimental points collected 

in the figure. Further studies are underway to complement the experimental data, and then, 

to assess "quantitatively" the predictive capability of the proposed crystal plasticity model. 

These studies include data generated from bicrystal samples as well [Hughes, et al., 20001. 
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4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAABAQUS SIMULATIONS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 
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Figure 4.7: Macroscopic stress response and (111) pole figure for plane strain compression 

of an aggregate of 256 FCC crystals computed using the elasto-viscoplatic model with both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abaqus (one element) and mps. 
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4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVALIDATION OF THE NUMERICAL IMPLEMENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 4.8: Macroscopic stress response and (111) pole figure for plane strain compression 

of an aggregate of 256 HCP crystals computed using the elasto-viscoplatic model with both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abaqus (one element) and mps. 



4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAABAQUS SIMULATIONS. 

Figure 4.9: Finite element mesh of polycrystal model formed by 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 7 x 7 C3D8H finite 
elements. Each finite element is a crystal with an orientation assigned from a random 

disdtribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas shown by the (111) (FCC) and (0001) (HCP) pole figures. 
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4. VALIDATION OF THE NUMERICAL IMPLEMENTATION 

plane strain compression uniaxial compression simple shear 

Figure 4.10: Deformed finite element meshes and (111) pole figures of FCC polycrystal de- 
formed under plane strain compression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.2), uniaxial compression (E  = 1.0) and simple 

shear = 1.73). 



4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAABAQUS SIMULATIONS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 2 

plane strain compression uniaxial compression simple shear 

Figure 4.11: Deformed finite element meshes and (0001) pole figures of HCP polycrystal 
deformed under plane strain compression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E  = 1.2)! uniaxial compression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E  = 1.0) and 
simple shear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(?e = 1.73). 
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4. VALIDATION OF THE NUMERICAL IMPLEMENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 

Figure 4.12: (A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[421] single crystal used in the uniaxial compression experiments, and (B) 
compressed single crystal at a strain of 0.6 showing the ovaling of the cross section (after 
[Hughes, el al., 2000l). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4.2. ABAQUS SIMULATIONS. 

Figure 4.13: (A) Undeformed finite element mesh for single crystal aluminum. The mesh 

consists of 14976 brick finite elements, type AbaqusC3D8R. The initial Euler angles assigned 

to each element are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'p1 = 18Oo,q5 = 77.4",92 = 26.6" (Koch convention). (B) Deformed 
crystal under uniaxial compression at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE= = 0.6. 
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4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVALIDATION OF THE NUMERICAL IMPLEMENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 4.14: Comparison of experimental data and computed results: (A) Stress-strain re- 
sponse of single crystal under uniaxial compression, and (B) inverse pole figure plotted in a 
(001) stereographic projection, showing the crystal orientation of the compression axes (CA) 

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, = 0.6 (note the breakup of the initial orientation indicated by the black triangle). For 
clarity purposes, the computed and experimental orientations have been plotted in equivai 

lent stereographic triangles. In the standard triangle, the [421] CA tends to rotate, in an 
average, towards [110], an stable orientation with respect to the deformation. 



5 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUMMARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The forniulation of a crystal plasticity model for sniall elastic strains and the correspond- 

ing integration procedure liavc been presented. As formulated, the model is suitable to  

represent the isothermal, anisotropic, and large deformation of polycrystalline aggregates 

(metals), and can be used as a mesoscale approach for grain level materials modeling. A 

main feature of the formulation is that  the crystal equations, which were developed in a 

thermodynamic framework, were written in the relaxed configuration defined by elasti- 

cally unloading the deformed crystal without rotation froni the current configuration t o  a 

stress-free state. The time integration schenie was implicit and used a staggered procedure 

to solve for the main variables of the model (dev-r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK:, Re). The numerical iniplernenta- 

tion in both a material point simulator and the finite element code Abaqus was validated by 

solving for the quasi-static deformation of FCC and HCP crystal aggregates under different 

isothermal loading conditions. The main inetrics used for the validation of the model were 

crystal orientation evolution (texture), stress-strain response and deformed shape, although 

not all of them were used in each problem. The last example exanlined the predictive capa- 

bility of the model by comparing computed results with experimental data froni the uniaxial 

compression of a FCC single crystal. 

As many other plasticity models presented in the literature [Peirce, et el., 19831, [Ka- 

lidindi, et al., 19921, [Cuitifio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ortiz, 19921, [Steinmann & Stein, 19961, the proposed 

formulation used the multiplicative decomposition of the deformation gradient into elastic 

arid plastic components. However, what distinguished the presented development from oth- 

ers is ( 2 )  the introduction of the polar deconiposition of the elastic deformation gradient into 

the left stretch V" and the rotation Re tensors, and ( 2 2 )  the use of the intermediate unloaded 

configuration defined by V'+' to  express the crystal constitutive equations. As mentioned 

before, this formulation followed the developnient presented by [ILIarin & Dawson, 19981 

with a number of variations, in particular, modifications in the description of the crystal 

kinematics and changes in the nuiiierical treatment of the resulting constitutive equations 

(time integration of the elastic strains). 

Because the formulation is mainly intended for the direct numerical simulation of poly- 

crystalline metals (small scale applications [Kocks, et al., 1998]), not niuch emphasis was 

placed on describing mean field hypothesis or partitioning rules to relate the crystal-level 

response to  the rriacroscopic behavior. Only the extended Taylor hypothesis was briefly 

mentioned since it was used to demonstrate the performance of the model and the integra- 

tion procedure during the material point simulations. Also, as seen in the developrnerit, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUMMARY 

the kinetics of plastic flow was described with the well- known power law function, and the 

evolution of the slip system strength was based on Voce’s hardening rule. Current efforts are 

underway to improve such models to  (i) explicitly account for thermally activated dislocation 

motion on slip kinetics and (ii) use better hardening rules with slip system interaction effects 

(latent hardening). Together with the inclusion of temperature effects, the improved model 

would allow us to  capture rate- arid temperature dependent features of the deformation of 

polycrystalline aggregates. 

One additional field of application of the proposed model is the prediction of the dynamic 

deformation of polycrystalline metals in the high-strain rate arid shock loading regime. This 

application requires the introduction of physics -based irnprovenients of the model to  cap- 

ture two of the most relevant aspects of high-strain-rate induced deformation: pressure 

dependence of elastic-plastic deformation and phonon drag effects on slip kinetics. Such en- 

hancements are currently being added to  the model in the context of a new project [LDRD, 
20061 aimed at using crystal plasticity as a grain-scale approach to  capture the interplay be- 

tween these high-strain-rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ shock wave phenomena and the heterogeneous microstructure 

of metals. 
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