On the formulation of the dynamic mixed subgrid-scale model
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The dynamic mixed subgrid-scale model of Zang et al. [Phys. Fluids A 5, 3186 (1993)] (DMM1) is
modified with respect to the incorporation of the similarity model in order to remove a mathematical
inconsistency. Compared to DMMI1, the magnitude of the dynamic model coefficient of the
modified model (DMM?2) is increased considerably, while it is still significantly smaller than as
occurs in the dynamic subgrid-scale eddy-viscosity model of Germano [J. Fluid Mech. 238, 325
(1992)] (DSM). Large eddy simulations (LES) for the weakly compressible mixing layer are
conducted using these three models and results are compared with direct numerical simulation
(DNS) data. LES based on DMM1 gives a significant improvement over LES using DSM, while
even better agreement is achieved with DMM2. © 1994 American Institute of Physics.

The occurrence of small scale structures in turbulent
flows prevents a direct numerical simulation (DNS) of the
Navier—Stokes equations, even in simple geometries. There-
fore, much attention is paid to large eddy simulation (LES),
in which the large scales are solved explicitly, while the ef-
fect of the small (subgrid) scales is modeled with a subgrid-
scale model.! The most widely used subgrid-scale model is
the Smagorinsky eddy-viscosity model.? In order to over-
come certain drawbacks of the Smagorinsky model,
Germano® proposed a dynamic procedure for the model co-
efficient. This dynamic subgrid-scale eddy-viscosity model
(DSM) has been applied successfully to a variety of flows
(e.g., Refs. 4—6). Recently, Zang et al.” formulated a dy-
namic mixed model (DMM1), which employs the dynamic
procedure on the mixed model of Bardina et al.® This model
does not require the assumption that the principal axes of the
turbulent stress tensor are aligned with those of the strain rate
tensor. The results obtained with DMM1 were observed to be
more accurate when compared to those obtained with DSM
for the driven cavity. In this paper an alternative, mathemati-
cally consistent formulation for the dynamic mixed model
(DMM?2) is proposed. Furthermore, we compare results of
DMM?2 with those of DSM and DMM]1, using LES for the
three-dimensional weakly compressible mixing layer.

We focus on the modeling of the turbulent stress tensor
and for sake of transparency we present the incompressible
formulation. The first step in the LES-approach consists of
filtering a flow variable, e.g., the velocity component u;, as
follows:

zZi(x,t)=f G(x—2z)u,(z,1)dz, (1)

where G is a filter function with filter width A, defining the
filter on the “G level.” If this filter operation is applied to the
Navier—Stokes equations, subgrid-terms appear, which are
expressed in the turbulent stress tensor

Tij=u,~uj—12,-12j. (2)

This tensor has to be modeled in terms of the filtered veloci-
ties #@; in order to close the equations. Germano introduced
another filter, the explicit test filter on the “G level” with
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filter width A. Furthermore, the consecutive application of G
and G to a signal (u;—u;) defines the filter function G
(which is the convolution of G and G) with filter width A.
The turbulent stress on the G level is defined as

—

Tij=uiuj—ﬁﬁj. (3)

Moreover, the following algebraic relation between the tur-
bulent stresses on the two filter-levels was derived:

Tl] le Lij’ (4)
where
L,j=ﬁ,ﬁj—ti,ﬁj (5)

is the resolved turbulent stress. This “Germano” identity has
been used to dynamically obtain model coefficients which
appear in the formulation of subgrid models.

The first model which has been substituted into the iden-
tity is the Smagorinsky eddy-viscosity model, which reads

ij= _ZCSAZBISU, (6)
where
- 1 [ou; odu; ,
55 5 52 @
|§]=(2.§ij5'ij)1/2. (8)

The model coefficient cg is allowed to be a function of space
and time. Furthermore, in Eq. (6) and in the following the
superscript “a” denotes the anisotropic part of the tensor. On
the G level the model reads

T;zl= “ZCSSZISA'ISA,'], (9)

where S ;j and |§ | are defined by analogy with Egs. (7) and
(8). Substituting (6) and (9) into the anisotropic part of iden-
tity (4) yields

csM;=Lj;, (10)
with
Ml]=_232|§|§1]+252]'§IS‘1}' (11)
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To obtain the expression for M;; we have neglected the
variation of cg on the scale of the test filter width A. Since
Eq. (10) represents a system of equations for the single un-
known cg, a least-square approach’ is used to calculate this
coefficient:

MyL5)

Cs™ <M MU> (12)

The brackets (-) denote an average over the homogeneous
directions which is introduced additionally in order to stabi-
lize actual calculations with DSM. More sophisticated pro-
cedures for the determination of cg have been proposed (see
Ref. 10 for a survey).

Rather than starting from the Smagorinsky model Zang
et al.” have adopted the mixed model as base model:

Tﬁ‘j=(ﬁ,~ﬁu —uu;)” ~2cgA? ISIS (13)
The first term on the right-hand side is the similarity model,
whereas the second part represents the model for the unre-
solved residual stress, adopting the Smagorinsky eddy-
viscosity formulation. Next, identity (4) is used to obtain the
model coefficient cg. Zang et al.” write the turbulent stress
on the G level as

Té= (g~ ;)" 2csA?S]5,, (14)
Substituting (13) and (14) into the Germano identity for the
anisotropic part yields

H +CsM L?», (15)
with M;; and L;; given by (11) and (5), respectively. The
tensor H is defined as

Finally, cg is determined by analogy with Eq. (12),

. :<Mij(Lij“Hij)> (a7
s (MM

which completes the formulation of the dynamic mixed

model (DMM1).

In order to arrive at the alternative formulation (DMM?2),
it is essential to observe the inconsistency resulting from the
use of the G level filtered velocity in the model for T;j in Eq.
(14). The tensor 7; ; is the turbulent stress on the G level and
its model is expressed in the G-filtered velocity (#;) only,
according to Eq. (13). In order to be mathematically consis-
tent, the model for the turbulent stress on the G level, T; Ly s
should entirely be expressed in the G-filtered velocity (u,)
However, in Eq. (14), the similarity part depends on i;
while the eddy-viscosity part depends on ;. Therefore, we
propose to replace Eq. (14) by the following expression, in
which both the 51m11ar1ty and the eddy-viscosity part are ex-
pressed in terms of u;

S
2
u

J)a_2C532I§|§ij. (18)

F-3
ul

Thus we obtain instead of (16) the following H; tensor:

=

T3 I E T ==
HU uu] ulu] (uiu]-—ui ])' (19)
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Wlth this expression and the previously introduced M;; and
Lj.» “the model coefficient cg is obtained using Eq. (17),
which completes the alternative formulation of the dynamic
mixed model (DMM?2),

In the following, we compare results of LES using the
three different dynamic subgrid models described above. As
an example, we consider the temporal, weakly compressible
mixing layer in a cubic domain. The length of the domain is
equal to four times the wavelength of the most unstable
mode provided by linear stability theory. The scenario of this
flow shows the roll-up of the spanwise vorticity, resulting in
four spanwise rollers at the nondimensional time #=20. Sub-
sequently, pairing of these rollers is observed, reducing the
number of rollers to two at t=40. The final pairing is ac-
complished at t=280, at which time the complicated structure
of the flow is highly three dimensional.

Large eddy simulations are conducted up to ¢=100,
solving the compressible Navier—Stokes equations at a low
Mach number of 0.2. It has been verified that compressibility
effects affecting the subgrid-modeling are very small for this
flow at the current Mach number'! and, hence, only a
subgrid-model for the anisotropic part of the turbulent stress
tensor needs to be adopted. The spatial discretization is
fourth-order accurate for the convective and second-order ac-
curate for the viscous terms. The collocated grid contains 323
cells of size h. The box filter is adopted with A=2A, while
the convolution integral is calculated with the trapezoidal
rule. The filter width of the test filter is chosen to be, twice as
large, i.e., A=2A, whereas the filter width on the G level is
obtained using

A2=A2+A2, (20)

This relation is exact for Gaussian filters.> For box filters a
difficulty arises, since the consecutive application of two box
filters is not a box filter, but a ““trapezoid” filter. This trap-
ezoid filter function G is optimally approximated by a box
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FIG. 1. The coefficient cg for LES with DSM (dashed), DMM1 (solid) and
DMM2 (dotted) at two locations: x,=—14.75 (marker “O”) and x,=0
(no marker).
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FIG. 2. The momentum thickness (a) and Reynolds stress profile R;, at
t=70 (b) for LES with DSM (dashed), DMM1 (solid) and DMM2 (dotted)
compared with a coarse-grid DNS (dashed—dotted) and the filtered fine-grid
DNS (marker “O”).

filter (say F) with filter width A. The L, norm of G—F at-
tains the minimum value when relation £20) is satisfied. Ac-
tual integrations over a volume of size A are not performed;
the G filter is applied by the consecutive integrations over
volumes with size A and A, respectively. Relation (20) is
only used for the calculation of the first term in M;; [Eq.
(11)]. In order to perform the filtering numerically, averaging
procedures similar to those described in Appendix A of Ref.
7 are used.

Figure 1 shows the value of c¢g for DSM, DMM1, and
DMM2, respectively, obtained from large eddy simulafions
using these models. The coefficient cg is obtained using for-
mula (12) for DSM and (17) for DMM1 and DMM2. Aver-
aging over the two homogeneous directions renders the co-
efficient cg as a function of time and the normal direction x, .
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For all three models, cg appears to become negative only in
very small parts of the flow. In Fig. 1 the evolution of ¢ is
shown for two values of x,. As expected, DSM is observed
to give higher values for cg than the mixed models, since the
eddy-viscosity part in the latter models takes only the unre-
solved part of the turbulent stress into account, while DSM
has to model the full turbulent stress. Furthermore, DMM1
produces a substantially lower ¢g than DMM2. The reason is
probably that Zf;; in Eq. (16) tends to be larger than H;; in
Eq. (19), since the filtered velocity i; contains more small-
scale structures than 7, .

Figure 2 shows the momentum thickness and a Reynolds
stress profile Ry, for LES with DSM, DMM1, and DMM2.
The value of the momentum thickness also measures the
spread of the mean velocity profile. Moreover, results from a
filtered fine-grid DNS (192° grid) and a coarse-grid DNS
(32° grid) are included. For all three models we observe that
LES produces better resuits than the coarse-grid DNS at the
same grid. Moreover, the dynamic mixed model DMM1
gives better agreement than DSM. The alternative formula-
tion for the dynamic mixed model (DMM2) yields even
more improvement over DSM.

Summarizing, the formulation of the recently introduced
dynamic mixed model (DMM1) has been discussed and a
mathematically consistent modification has been proposed
(DMM2). Actual LES for the mixing layer demonstrates that
this modification gives rise to higher values of the dynamic
model coefficient. Furthermore, the modification improves
the results, whereas both DMM1 and DMM2 are consider-
ably better than the dynamic subgrid-scale model DSM.
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