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The dynamic mixed subgrid-scale model of Zang et al. [Phys. Fluids A 5,3186 (1993)] (DMMl) is 
modified with respect to the incorporation of the similarity model in order to remove a mathematical 
inconsistency. Compared to DMMl, the magnitude of the dynamic model coefficient of the 
modified model (DMM2) is increased considerably, while it is still significantly smaller than as 
occurs in the dynamic subgrid-scale eddy-viscosity model of German0 [J. Fluid Mech. 238, 325 
(1992)] (DSM). Large eddy simulations (LES) for the weakly compressible mixing layer are 
conducted using these three models and results are compared with direct numerical simulation 
(DNS) data. LES based on DMMl gives a significant improvement over LES using DSM, while 
even better agreement is achieved with DMM2. 0 1994 American Institute of Physics. 

The occurrence of small scale structures in turbulent 
flows prevents a direct numerical simulation (DNS) of the 
Navier-Stokes equations, even in simple geometries. There- 
fore, much attention is paid to large eddy simulation (LES), 
in which the large scales are solved explicitly, while the ef- 
fect of the small (subgrid) scales is modeled with a subgrid- 
scale mode1.l The most widely used subgrid-scale model is 
the Smagorinsky eddy-viscosity model.’ In order to over- 
come certain drawbacks of the Smagorinsky model, 
Germano3 proposed a dynamic procedure for the model co- 
efficient. This dynamic subgrid-scale eddy-viscosity model 
(DSM) has been applied successfully to a variety of flows 
(e.g., Refs. 4-6). Recently, Zang et aL7 formulated a dy- 
namic mixed model (DMMl), which employs the dynamic 
procedure on the mixed model of Bardina et aL8 This model 
does not require the assumption that the principal axes of the 
turbulent stress tensor are aligned with those of the strain rate 
tensor. The results obtained with DMMl were observed to be 
more accurate when compared to those obtained with DSM 
for the driven cavity. In this paper an alternative, mathemati- 
cally consistent formulation for the dynamic mixed model 
(DMM2) is proposed. Furthermore, we compare results of 
DMM2 with those of DSM and DMMl, using LES for the 
three-dimensional weakly compressible mixing layer. 

We focus on the modeling of the turbulent stress tensor 
and for sake of transparency we present the incompressible 
formulation. The first step in the LES-approach consists of 
filtering a flow variable, e.g., the velocity component Ui , as 
follows: 

Z2i(X,t)= G(X-Z)Ui(Zpt)dZ, 
I 

(1) 

where (? is a filter function with filter width I\, defining the 
filter on the “G level.” If this filter operation is applied to the 
Navier-Stokes equations, subgrid-terms appear, which are 
expressed in the turbulent stress tensor 

7ij=UiUj-lziUj. (2) 

This tensor has to be modeled in terms of the filtered veloci- 
ties Izi in order to close the equations. Germanp3 introduced 
another filter, the explicit test filter on the “G level” with 

filter yidth A. Furthermore, the consecutive application of 4 
and G to a signal (Ui-t~i) defines the filter function G 
(which is the convolution oi G and 6’) with filter width A. 
The turbulent stress on the G level is defined as 

Tij’z-iiij * 

Moreover, the following algebraic relation between the tur- 
bulent stresses on the two filter-levels was derived: 

Tij- ‘iij=Lij 2 (4) 

where 

Lu=zj-&;j (5) 

is the resolved turbulent stress. This “Germane” identity has 
been used to dynamically obtain model coefficients which 
appear in the formulation of subgrid models. 

The first model which has been substituted into the iden- 
tity is the Smagorinsky eddy-viscosity model, which reads 

Tfj=-2C~li21SISij 3 (6) 

where 
- _ 

jijz$ !g+z ) i 1 i 1 
ISI=(2SijSij)“‘. 03) 

The model coefficient cs is allowed to be a function of space 
and time. Furthermore, in Eq. (6) and in the following the 
supezscript “a” denotes the anisotropic part of the tensor. On 
the G level the model reads 

Tfi=-2c,i2]Sliij 2 (9) 

where dij and 141 are defined by analogy with Eqs. (7) and 
(8). Substituting (6) and (9) into the anisotropic part of iden- 
tity (4) yields 

CsMij”L~j 2 

with 

Mij’-22%21~l~ij+2~21~ij m 

(10) 

(11) 
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To obtain the expression for Mij we have neglected the 
variation of cs on the scale of the test filter width A. Since 
Eq. (10) represents a system of equations for the single un- 
known cs, a least-square approach’ is used to calculate this 
coefficient: 

(12) 

The brackets (.) denote an average over the homogeneous 
directions which is introduced additionally in order to stabi- 
lize actual calculations with DSM. More sophisticated pro- 
cedures for the determination of cs have been proposed (see 
Ref. 10 for a survey). 

Rather than starting from the Smagorinsky model Zang 
et al7 have adopted the mixed model as base model: 

7aj= (G- &;j)“- 24@, . (13) 

The first term on the right-hand side is the similarity model, 
whereas the second part represents the model for the unre- 
solved residual stress, adopting the Smagorinsky eddy- 
viscosity formulation. Next, identity (4) is used to obtain the 
model cpefficient cs , Zang et aL7 write the turbulent stress 
on the G level as 

(14) 

Substituting (13) and (14) into the German0 identity for the 
anisotropic part yields 

(15) 
with Mij and Lij given by (11) and (5), respectively. The 
tensor Hij is defined as 

Finally, cs is determined by analogy with Eq. (12), 

which completes the formulation of the dynamic mixed 
model (DMMl). 

In order to arrive at the alternative formulation (DMM2), 
it is essential to observe the inconsistency resulting from the 
use of the G level liltered velocity in the model for Tij in Eq. 
(14). The tensor rij is the turbulent stress on the G level and 
its model is expressed in the G-filtered velocity (lzi) only, 
according to Fq. (13). In order to be mathematizally consis- 
tent, the model for the turbulent strezs on the G level, <ii, 
should entirely be expressed in the G-filtered velocity (Ui). 
However, in Eq. (14), the similarity part depends on Ui, 
while the eddy-viscosity part depends on pi. Therefore, we 
propose to replace Eq. (14) by the following expression, in 
which both the similarity and the eddy-viscosity part are ex- 
pressed in terms of pi : 

Thus we obtain instead of (16) the following HiI tensor: 

With this expression and the previously introduced Mij and 
L, ,:the model coefficient cs is obtained using Eq. (17), 
which completes the alternative formulation of the dynamic 
mixed model (DMM2). 

In the following, we compare results of LES using the 
three different dynamic subgrid models described above. As 
an example, we consider the temporal, weakly compressible 
mixing layer in a cubic domain. The length of the domain is 
equal to four times the wavelength of the most unstable 
mode provided by linear stability theoryThe scenario of this 
flow shows the roll-up of the spanwise vorticity, resulting in 
four spanwise rollers at the nondimensional time t = 20. Sub- 
sequently, pairing of these rollers is observed, reducing the 
number of rollers to two at t = 40. The final pairing is ac- 
complished at t = 8 0, at which time the complicated structure 
of the flow is highly three dimensional. 

Large eddy simulations are conducted up to t = 100, 
solving the compressible Navier-Stokes equations at a low 
Mach number of 0.2. It has been verified that compressibility 
effects affecting the subgrid-modeling are very small for this 
flow at the current Mach number” and, hence, only a 
subgrid-model for the anisotropic part of the turbulent stress 
tensor needs to be adopted. The spatial discretization is 
fourth-order accurate for the convective and second-order ac- 
curate for the viscous terms. The collocated grid contains 323 
cells of size h. The box filter is adopted with A=2h, while 
the convolution integral is calculated with the trapezoidal 
rule. The fiiter width of the test filter is chosen to be, twice as 
large, i.e., A=2& whereas the filter width on the G level is 
obtained using 

~2=&2+~2. IW 

This relation is exact for Gaussian filters.3 For box filters a 
difficulty arises, since the consecutive application of two box 
filters is not a box filler, but a “trapezoid” filter. This trap- 
ezoid filter function G is optimally approximated by a box 

time 

FIG. 1. The coefficient cs for LFS with DSM (dashed), DMMl (solid) and 
DMMZ (dotted) at hvo locations: x2= - 14.75 (marker “0”) and x,=0 
(no marker). 
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FIG. 2. T h e  m o m e n t u m  th ickness (a)  a n d  Reyno lds  stress prof i le  RIz at 
t= 7 0  (b)  for L E S  with D S M  (dashed) ,  D M M l  (so l id)  a n d  D M M 2  (dot ted)  
c o m p a r e d  wi th a  coarse-gr id  D N S  (dashed-dot ted)  a n d  the f i l tered f ine-gr id  
D N S  (marke r  “0 ”). 

fi lter (say F)  wi th filter w id th  A . T h e  L, n o r m  of 6 -F  at- 
ta ins the m i n i m u m  va lue  w h e n  re la t ion 0 2 0 )  is satisf ied. Ac-  
tual  p tegrat ions over  a  vo lume  of s ize A  a re  not  per fo rmed;  
the G  filter is app l i ed  by  the consecut ive in tegrat ions over  
vo lumes  with s ize &  a n d  A , respect ively.  Re la t ion  (20)  is 
on ly  u s e d  for the calcu lat ion of the first te rm in  Mi j  [E q . 
(ll)]. In o rde r  to per fo rm the f i l ter ing numer ica l ly ,  ave rag ing  
p rocedures  s imi lar  to those descr ibed  in  A p p e n d i x  A  of Ref. 
7  a re  used.  

F igure  1  shows  the va lue  of cs for D S M , DMMl ,  a n d  
D M M 2 , respect ively,  ob ta ined  f rom la rge  e d d y  s imu laAons  
us ing  these mode ls .  T h e  coeff ic ient cs is ob ta ined  us ing  for- 
m u l a  (12)  for D S M  a n d  (17)  for D M M l  a n d  D M M 2 . Aver -  
ag i ng  over  the two h o m o g e n e o u s  d i rect ions renders  the co-  
eff icient cs as  a  funct ion of tim e  a n d  the no rma l  d i rect ion x2. 

For  al l  th ree  mode ls ,  cs appea rs  to b e c o m e  negat ive  on ly  in  
very smal l  par ts  of the f low. In Fig. 1  the evo lu t ion of cs is 
s h o w n  for two va lues  of x2. A s  expected,  D S M  is obse rved  
to g ive  h ighe r  va lues  for cs than  the m ixed  mode ls ,  s ince the 
eddy-viscosi ty par t  in  the latter mode l s  takes on ly  the un re -  
so lved par t  of the turbu lent  stress into account ,  wh i le  D S M  
has  to m o d e l  the full turbu lent  stress. Fur thermore ,  D M M l  
p roduces  a  substant ia l ly  lower  cs than  D M M 2 . T h e  reason  is 
p robab ly  that Hi j  in  E q . (16)  tends to b e  la rger  than  Hi j  in  
E q . (19) ,  s ince the f i l tered velocity tZi conta ins m o r e  smal l -  
sca le  structures than  Upi .  

F igure  2  shows  the m o m e n tum th ickness a n d  a  Reyno lds  
stress prof i le RI2 for L E S  with D S M , DMMl ,  a n d  D M M 2 . 
T h e  va lue  of the m o m e n tum th ickness a lso  measu res  the 
sp read  of the m e a n  velocity prof i le.  Moreover ,  resul ts f rom a  
f i l tered f ine-gr id  D N S  ( 1 9 2 3  gr id)  a n d  a  coarse-gr id  D N S  
( 3 2 3  gr id)  a re  inc luded.  For  al l  th ree  mode l s  w e  observe  that 
L E S  p roduces  bet ter  resul ts than  the coarse-gr id  D N S  at the 
s a m e  gr id.  Moreover ,  the dynamic  m ixed  m o d e l  D M M l  
g ives bet ter  ag reemen t  than  D S M . T h e  al ternat ive fo rmula-  
t ion for the dynamic  m ixed  m o d e l  (DMM.2)  y ie lds e v e n  
m o r e  improvemen t  over  D S M . 

Summar iz ing ,  the formulat ion of the recent ly  in t roduced 
dynamic  m ixed  m o d e l  (DMMl )  has  b e e n  d iscussed a n d  a  
m a themat ical ly  consistent  modi f icat ion has  b e e n  p r o p o s e d  
(DMM2) .  Actua l  L E S  for the mix ing  layer  demonst ra tes  that 
this modi f icat ion g ives r ise to h ighe r  va lues  of the dynamic  
m o d e l  coeff icient. Fur thermore ,  the modi f icat ion improves  
the results, whe reas  bo th  D M M l  a n d  D M M 2  a re  cons ider -  
ab ly  bet ter  than  the dynamic  subgr id -sca le  m o d e l  D S M . 
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