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Abs t rac t .  Canonical solutions of domain equations are shown to be final coal- 

gebras, not only in a category of non-standard sets (as already known), but also 

in categories of metric spaces and partial orders. Coalgebras are simple categori- 

cal structures generalizing the notion of post-fixed point. They are also used here 

for giving a new comprehensive presentation of the (still) non-standard theory of 

non-well-founded sets (as non-standard sets are usually called). 

This paper is meant to provide a basis to a more general project aiming at a full ex- 

ploitation of the finality of the domains in the semantics of programming languages 

- -  concurrent ones among them. Such a final semantics enjoys uniformity and gen- 

erality. For instance, semantic observational equivalences like bisimulation can be 

derived as instances of a single 'coalgebraic' definition (introduced elsewhere), which 

is parametric of the functor appearing in the domain equation. Some properties of 

this general form of equivalence are also studied in this paper. 
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0 I n t r o d u c t i o n  

This work originates from an attempt to identify the common features of partial or- 

ders, metric spaces, and non-standard sets, that make these three different mathemati- 

cal settings all suitable for defining semantic domains for concurrent programming lan- 

guages. (To be precise, the distinctive feature of the domains under consideration is 

non-determinism rather than concurrency, the starting point being languages like CCS 

[MilS0] in which concurrency is reduced to sequentiality plus non-determinism.) It has 

resulted in a general semantic framework which could be called final semantics, as it is 

based on the observation that domains are final objects in a categorical sense. 

This paper is a first account on this work, namely on its foundational part. It is 

shown that, regardless of the fact one is working with partial orders, metric spaces, or 

non-standard sets, domains are final objects in a suitable category of coalgebras. Moreover, 

some properties of final coalgebras are investigated in the abstract. 

The categorical notion of coalgebra is quite elementary: given a category C (e.g., a 

category of complete metric spaces) and a functor F : C --+ C, a coalgebra of F is a pair 

(A,a) ,  with A an object in C and a : A --, F(A) an arrow in C. Clearly, a solution 

to a domain equation X ~- F ( X )  can be seen as a coalgebra (D,i) ,  with i being an 

isomorphism between D and F(D). The coalgebras of a given functor F over a category 

C form a category CF. Arrows are mappings of C which preserve the coalgebra structure 

(see the next section for a formal definition). 
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Semantic domains are usually obtained as solutions of recursive domain equations of 

the kind given above. There might be more than one such solution, but, for large classes 

of functors, a canonical one is taken. One of the starting points for the present work is 

a result in [Acz88], showing that, within a category of (classes over) non-standard sets, 

the canonical solution of a domain equation is a final coalgebra. (Non-standard sets are 

actually called non-well-founded sets in [Acz88], which is one of the standard references 

on the subject - -  but see also [FHS3, FH92]. The word 'non-standard' has here a different 

meaning than in model theory.) 

In this paper, it is shown that the canonical solutions of domain equations are final 

coalgebras, not only in that category of non-standard sets, but also in a category of 

complete metric spaces and in a category of complete partial orders. In other words, for 

these three different categories C and for large classes of functors F, the canonical solution 

to a domain equation X ~- F(X) is a final object in the category CF. 

0.1 F ina l  S e m a n t i c s  

The finality of the domains is not only a unifying property. Final objects are the target 

of a unique arrow from any other object of the same category. This is a valuable property 

from a semantic point of view. 

�9 Recall that semantics can be given to a programming language by first defining a 

semantic domain and then associating a meaning to the programs of the language by 

mapping them onto elements of the chosen domain. The (by finality!) unique arrow from 

another coalgebra (of the same functor) into that domain is then a natural candidate 

for such an interpretation mapping. The problem is to give the class of programs of the 

language a coalgebra structure of the same functor used for the domain. Loosely speaking, 

syntax and semantics should live in the same category of coalgebras of this functor, the 

latter expressing the structure to be preserved under semantic mapping. 

For instance, consider the language CCS. A semantic mapping should equate those 

programs which perform the same computations under a certain - -  informal - -  notion 

of observation (and keep the other distinct). As will become clear later, the choice of 

the funetor for the domain amounts to making this notion of observation formal. Thus 

the functor defining the domain should be fixed according to the observation one has in 

mind. Further, computations are described by means of a transition system (induced 

by a set of structural rules) which is essentially a graph having programs as nodes and 

transitions as edges. Every program is the root of a tree obtained by unfolding the graph 

from that program. Such a tree gives the computations performable by the root program. 

Notice that there are many different ways of traversing a tree, each corresponding to a 

different notion of observation. The problem is thus, given a functor for a domain, to find 

a representation of the transition system as a coalgebra of that funetor. 

In general, the semantics shall depend on the observation one wants to perform on the 

computations or, more abstractly, on the functor one fixes. (Observations as functors!) 

For simplicity, it will be convenient that the functor be on some category of sets, possibly 

with some additional structure (e.g., metric or order), and leave to further developments 

generalizations to less concrete categories. More essentially, the existence of a final coalge- 

bra for the functor will be needed, possibly to be shown via some limit construction. Then 

if one is able to find a representation of all the observable computations as a coalgebra of 
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the same functor, the (final) semantics of the language will immediately follow. (Ideally, 

this scheme would include not only concurrent languages, but also applicative ones - -  

see, e.g., [Abr90]). Alternatively, the observable computations of the class of programs of 

the language under study might be directly defined as a coalgebra of the chosen functor. 

Of the general methodology sketched above at least one instance is to be found in 

the literature: it is the final semantics for CCS given in [Acz88]. There, the seman- 

tics is based on a (straightforward) coalgebra representation of transition systems for a 

specific functor (see Example 1.4). The existence of other representations (for different 

functors and, thus, domains) of transition systems (and, possibly, of observable computa- 

tions in general) will be treated in a forthcoming paper (Observations as Funetors: final 
semantics/or programming languages), together with other issues (like compositionality) 

involving the languages. Instead here, as already mentioned, the attention is rather fo- 

cussed on foundational issues, independent from the languages, like the general properties 

of functors ensuring the construction of final coalgebras. Moreover, there is a 'coalgebraic' 

notion which can be studied in the abstract and which is of major interest for seman- 

tics: the kind of equivalence induced by a functor and its coalgebras. Some properties of 

such an equivalence are useful in clarifying the relationship between final semantics and 

'equivalence-based' semantics. 

Consider again CCS. An alternative approach to its semantics is to formalize the 

notion of observation in terms of an (observational) equivalence. The semantic mapping 

associates to each program its equivalence class and the domain is then simply defined as 

the image of that mapping. A popular example of such an observational equivalence is 

(strong) bisimulation as defined in [Par81]. Now, t!~e functor used for the final semantics 

in [Acz88] can be shown to induce bisimulation equivalence in the sense that two programs 

are mapped (via the final semantics) into the same process if and only if they are bisimilar. 

One of the advantage of working with final semantics is that there is a single 'coalge- 

braic' notion of (possibly observational) equivalence which is parametric of the functor: 

it is the definition of F-bisimulation as given in [AM89]. For a particular choice of the 

functor F, namely the one used in [Acz88] (but see also [BZ82]), F-bisimulation coincides 

with bisimulation in the traditional sense, as was observed above. Also other equivalences, 

like for instance trace equivalence, can be obtained by instantiating F-bisimulation to a 

certain functor (as will be shown in the above mentioned Observations as Functors). And 

even for the existing observational equivalences which do not fall under this scheme, it 

might still be useful to understand why they fail to be described in this way. 

0.2 Contribut ion of this Paper 

It is now possible to be more precise about the technical results in this paper. First of all 

it is shown that final coalgebras are strongly extensional in the sense that two elements 

of a final F-coalgebra are equal if and only if they are F-bisimilar. Also other abstract 

properties concerning F-bisimulations are studied. Then a final coatgebra theorem is given 

for each of the three categories under study, stating that the canonical solution of a domain 

equation is a final coalgebra. 

As already mentioned, the (so-called special) final coalgebra theorem for non-standard 

sets is not a new result ([Acz88]). However, the proof given here is somewhat more trans- 

parent than the original one because of a different formulation of the definition of unifor- 
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mity on maps, which occurs in the conditions of the theorem. An extensive description 

of non-standard set theory is included as well, both because this theory (still) is non- 

standard indeed, and because the way it is presented here has some interest on its own. A 

uniform characterization of standard and non-standard set theory is introduced, showing 

that the latter theory is as natural as the former: the foundation and anti-foundation 

axioms are stated in terms of initial algebras and final coalgebras, respectively. The use 

of final coalgebras is particularly helpful to have a concise and uniform presentation of 

equivalent forms of the anti-foundation axiom, like, e.g., the Solution Lemma used in the 

proof of the final coalgebra theorem. 

For metric spaces the final coalgebra theorem is a new result. It is shown that locally 

contracting functors on the category of complete metric spaces (with non-expansive map- 

pings as arrows) have a final coalgebra. The proof is based on a theorem stating that such 

functors have fixed points. The latter theorem extends earlier results of [AR89] along the 

lines of [SP82], and is proved in full detail. 

For partial orders an initial algebra theorem and the so-called limit-colimit coinci- 

dence are well-known (see [SP82]), but, apparently, it was never proved in detail that (in 

CPO• initial algebras and final coalgebras coincide. (Actually, the proof given here of 

the :order-theoretic' final coalgebra theorem does not make direct use of the limit-colimit 

coincidence.) It is shown that the fixed point of a locally continuous functor on the cate- 

gory of complete partial orders (with strict and continuous mappings) is a final coalgebra 
in that category. 

The main result about the category of cpo's is the study of a new notion, called ordered 

F-bisimulation, which is a generalization of the definition of F-bisimulation. Both the 

notions of partial bisimulation from [Abr91] and that of simulation from [Pit92] (for the 

functorial case) can be seen to be examples of ordered F-bisimulations. Corresponding 

to the notion of ordered F-bisimulation is a generalized notion of strong extensionality. 

A proof is given of the fact that the final coalgebras of locally continuous functors are 

strongly extensional in such a generalized sense. It implies the internal full abstractness 

result from [Abr91], and the extensionality results (for the functorial case) from [Pit92]. 

0.3 Overview of the Paper 

In Section 2 (algebras and) coalgebras of functors are introduced. Examples are given 

showing that the powerset functor can be used for coalgebra representations of graphs 

and (labelled) transition system. A third example consists of a metric variant of the final 

semantics given in [Acz88] (and mentioned above). 

Section 3 is dedicated to the notion of F-bisimulation. It is first shown that for the 

same kind of functor as in Examples 1.4 and 1.8 it corresponds to strong bisimulation. 

Then abstract properties are proved like strong extensionality and preservation of F- 

bisimulation in the category of F-coalgebras. 

In the next three sections, final coalgebras in the categories of non-standard sets, 

complete metric spaces, and complete partial orders are treated. These sections can be 

read independently from each other (but presuppose Sections 2 and 3). 
In the last section, a comparative analysis is made between the three different final 

coalgebra constructions discussed in the paper. Related and future work, including the 
relationship between final coalgebras and coinduction (the dual of induction), are also 
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discussed. 

Although an extensive use of diagrams is made throughout the paper, no previous 

knowledge of category theory is required. Indeed, just a few (elementary) categorical 

notions are used. 

1 Algebras and Coalgebras of Functors 

Let C be a category and F : C ~ g be a functor from C to C. (Such a functor is called an 

endofunctor on C.) 

Def in i t ion  1.1 An F-eoalgebra is a pair (A, a),  consisting of an object A and an arrow 

a : A --* F(A) in C. It is dual to the notion of F-algebra: an F-algebra is a pair (A, a),  

consisting of an object A and an arrow a : F(A) ---* A in C. rn 

For instance, consider a preorder (C,_<). It can be interpreted as a category: the 

objects are the elements of C, and between any two elements c, d E C there is an arrow 

if and only if c _< d. Any monotonic function F : C ---* C is then an endofunctor on C. 

Thus an F-coalgebra is a post-fixed point x E C with x _ F(x),  and an F-algebra is a 

pre-fixed point x e C with F(x)  < x. 

Def in i t ion  1.2 F-coalgebras form a category, denoted by CF, by taking as arrows between 

coalgebras (A, a)  and (A', a ' )  those arrows f : A ~ A' in C such that a' o f = F ( f )  o a; 

that  is, the following diagram commutes: 

f 
A , A' 

F(A) �9 F(A')  

F(/) 

Reversing the arrows one can easily define the category of F-algebras. [] 

Notice that in category theory the name F-(co)algebra is usually reserved for the 

case when F is the functor of a (co)monad (see, e.g, [LanT1]). F-(co)algebras have then 

some extra structure. They form a different category which, however, can be regarded 

as a subcategory of the above category of F-(co)algebras by simply forgetting the extra 

(co)monadic structure both in the objects and in the arrows. 

As the name suggests, there is a relationship between algebras of functors and the more 

traditional Z-algebras (sets with operations). For instance, the natural numbers together 

with the constant 0 and the successor function form a E-algebra (for any ~ consisting of 

a constant and a unary function symbol). Consider the functor 1 + - on the category Set 

of sets, where 1 is a one element set, and + is the disjoint sum. An algebra of this functor 

is a pair (A, a),  with a : 1 + A --* A defined as the sum of the functions 

e :  1 ---* A 

t :  A---*A. 
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Now the natural numbers can be seen to be an algebra of the above functor by defining 

e and t as follows: e maps the only element of 1 to 0, and t is defined as the successor 

function. 

Given this relationship between algebras of functors and algebras in the traditional 

sense, it is natural to look for a notion of coalgebra dual to the one of algebra. In other 

words, what is the dual of operations? An operation on a set A can be regarded as an 

action which, given some objects of A, combines them into a new object of A. Its dual 

is then an action which, given an object, decomposes it into several new components. A 

simple example is the following. 

Example 1.3 Graphs 

A graph is a pair (N, --*) consisting of a set N of nodes and a collection ~ of (directed) arcs 

between nodes: --.C_ N • N. A graph can be regarded as a coalgebra of the (covariant) 

powerset functor P on the category Set of sets as follows. Let child : N -+ P ( N )  be 

defined by, for all n E N, 

child(n) =_ {m In  ~ m}. 

[] 

A similar example is given by non-deterministic computations which can be said to 

be split at every state into a set of possible computations. To describe non-deterministic 

computations labelled transition systems in the style of [PloSlb] are often used: 

Example 1.4 Labelled Transition Systems 

A labelled transition system (LTS) is a triple s = (S, A,---*), consisting of a set S of 

states, a set A of labels, and a transition relation 

~CSxAxS 

Often programs, given as closed terms over some signature, constitute the set S of states. 

Non-determinism is expressed by the fact that from a single state many different transi- 

tions are possible. Every LTS can be seen as a labelled graph: the nodes are the elements 

of S; there is an arc with label a between two nodes s and s' if and only if (s, a, s') E ~  
a ! 

(also written as s---~s ). LTS's can be represented as coalgebras as follows. Let the 

functor 

P ( A x - )  :Set  ---+ Set 

be defined, for any set X, by 

~(A• 

A labelled transition system (S, A,---+) can then be represented as a coalgebra (S, a)  of 

the functor P ( A •  by defining a : S ---+ P ( A x S ) ,  for all s, s ~ E S, a E A, by 

a ! 

< a , s '  >6  a(s) ~ s---+s. 

[] 
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The above is the coalgebra representation of transition systems from [Acz88] (but see 

also [HesS8]) mentioned in the introduction. The LTS associated to a language like CCS 

has programs as states and atomic actions as labels. Transitions are given by the inductive 

closure of a set of structural rules. In Example 1.8, still along the lines of [Acz88], a final 

semantics based on this representation is illustrated. But first the definition of final 

objects in a category is needed: 

Defini t ion 1.5 An object A in g is called final if for any other object B in g there exists 

a unique arrow from B to A. It is the dual notion of initial object (unique arrow from 

the object). Final and initial objects are unique up to isomorphism. [] 

Consider again a preorder (C, <_) (viewed as a category) and a monotonic function 

F : C ~ C. A final F-coalgebra is simply the greatest post-fixed point of F, which by a 

standard result is also the greatest fixed point. (Dually, an initial F-algebra is the least 

(pre-)fixed point of F.) Below, the notion of fixed point is generalized to functors and 

then a standard result is shown: final coalgebras are fixed points. 

Defini t ion 1.6 An F-coalgebra (A, c~) is a fixed point for F (write A ~- F(A)) if a is an 

isomorphism between A and F(A). That is, there exists an arrow a-1 : F(A) --+ A such 

that 

o~ o c~ -1 = idF(A) and a -1 o a = idA. 

[] 

/ 
F(A) �9 A 

. 1 
F(F(A)) . F(A) 

F(f) 

By finality, the only arrow from (A, ~) into itself is the identity. Since both squares of 

the following diagram commute, / o a is the identity on A: 

A 

F(A) 

, F ( A )  

* F ( a )  

. F ( F ( A ) )  

F(~) 

f 

F(I) 

, A  

�9 F ( A )  

But then it also follows that c~ o f is the identity on F(A): 

P ropos i t i on  1.7 A final F-coalgebra is a fixed point of t7. 

Proof .  Let (A,~) be a final F-coalgebra. Since (F(A) ,F(a) )  is also an F-coalgebra, 

there exists a unique f : F(A) ~ A such that the following diagram commutes: 
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a o f  = F ( f )  oF(a)  = F ( f o s )  = F(ida) = idF(/). 

Therefore f is the inverse of a. [] 

Dually, an initial F-algebra is also a fixed point of F. Notice that a fixed point of a 

functor F can be regarded both as an F-coalgebra and as an F-algebra. 

E x a m p l e  1.8 A Final Semantics 

Consider the category CMS of complete metric spaces (with non-expansive mappings as 

arrows). On this category, the usual constructions of disjoint sum and product are defined. 

Moreover, the powerset functor Pco,~p(-), yielding all (metrically) compact subsets is well- 

defined on CMS. (Details on these constructions are omitted here; they are given in 

Section 4.) Similarly to Example 1.4, a LTS (S, A, ---*) can be represented as a coalgebra 

as follows. Let Pco,,p(A x -) : CMS ~ CMS be defined, for any metric space X, by 

"P~o~v(A x X)  =- {U C A x X ] U is compact}. 

The above LTS can be seen to be a coalgebra of this functor by supplying S with the 

discrete metric (any two different states in S have distance 1), and defining, for all s, s' 6 S 

and a 6 A, 
a ! 

< a, s'  >6 a(s) r s-----+s. 

(For c~(s) to be well defined, the transition relation --* should be finitely branching. For 

LTS's not having this property, other choices for the functor can be made.) As will 

be shown in Section 5, the functor P~o,~p(A x -) has a final coalgebra (P, i), which by 

Proposition 1.7 is a fixed point: 

P ~ #~o~p(A x P). 

Let j be the inverse of the isomorphism i. A semantic mapping H from S into P can now 

be defined as the unique mapping from the coalgebra (S, c~) into the final coalgebra (P, i): 

['! 
S ~ P  

P ( A x S )  , P ( A x P )  

Thus [.! satisfies the following recursive equation: 

s - - - , s  }). Is] = j ( { <  a , [ s ' ]  >1 ~ ' 

This semantics mapping is precisely the same given in [BM88, Rut92] as the fixed point 

of a contracting function r : (S ~ P)" ~ (S ---* P), using Banach's fixed-point theorem. 

(There the domain is the same, but its finality is not recognized.) [] 

A final remark. There is a notion which generalizes and combines both algebras and 
coalgebras of functors: An F, G-dialgebra [Hag87] of two functors F and G from a category 
D to a category C is still a pair (A, 5), but with a an arrow in C from F(A) to G(A). It 

is a notion useful in type theory. 
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2 F - B i s i m u l a t i o n  

The final semantics example in the previous section has the property that it maps two 

states into the same process if and only if they are (strongly) bisimilar in the following 

sense: A relation R _C S x S on the set of states S of a LTS (S, A, --*) is called a (strong) 

bisimulation ([Par81]) if for all a E A and s, t E S with sR t, 

and 

s - ~  s ' ~ 3 t ' E S ,  t - ~  t ' a n d s ' R t '  

t - %  { ~ 3 s ' E S ,  s-2-* s ' a n d  J R { .  

Next ~ is defined as the union of all bisimulations and two states s and t are called 

bisimilar when s ~ t. 

In [AM89] it was noticed that coalgebras can be used for a natural generalization of 

the above notion of bisimilarity: For every functor F on the category of classes, a relation 

on F-coalgebras is defined, called F-bisimulation. This definition is here (generalized 

to other categories and) repeated, and some of its properties are analyzed. It is shown 

that final coalgebras are strongly extensional, that is, any two elements of a final F- 

coalgebra are equivalent if and only if they are F-bisimilar. Moreover, arrows between 

F-coalgebras preserve F-bisimulation. Together, these facts imply that (F-)bisimilar 

states are semantically mapped into the same process by the final semantics given in 1.8. 

Also the converse is proved here, under the condition that F weakly preserve kernel pairs. 

For sake of simplicity, the (F-bisimulation) relations considered here are of a set- 

theoretic nature. That is, relations are defined as subsets of a cartesian product. A more 

general categorica~ formulation would, on one hand, allow defining F-bisimulations for all 

categories of coalgebras, but, on the other hand, it would bring unnecessary complica- 

tions, since the categorical product of the three categories under study here amounts to 

a cartesian product. In categorical words, for each of the categories C considered here, 

there exists a faithful forgetful functor U from C into a category of (possibly large) sets 

and, moreover, for every object A in C, U(A • A) = U(A) • U(A). To be more specific, in 

the case of complete partial orders, the product A x A of a cpo A = ([A[, Y'A) with itself 

is given by the cartesian (i.e., set-theoretic) product [A[ • [A I together with the following 

order: for all <Xl, Yl), (x2, Y2> E IA[ x fA[, 

(xl ,yl)  E (x~,y2> - xl __.A Z2 and Yl --A Y2. 

Similarly, if A = (]A[, dA) is a complete metric space, the following metric is to be added 

to the cartesian product [g[ x [A[: for alt <xl,Yl), (x2, y2) E ]A[ x ]A[, 

d((xl, Yl>, (x2, Y2)) - maX{dA(Zl, x2), dg(yl, Y2)}. 

(All this can be more synthetically and generally rephrased as: C is a category for which 

the forgetful functor into Set exists and creates products.) The notation [A[ will be used 

also in the sequel to denote the set in a cpo or metric space A (i.e., [A[ = U(A)). If A is 

a (possibly large) set then [A[ will simply be A itself (U is the identity functor). 
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Defini t ion 2.1 Let C, throughout the rest of this section, be a category of (possibly 

large) sets possibly with an additional metric or order-theoretic structure. For any object 

A in C, a relation R on A is an object R of C such that JR[ C_.[A[ x [AI. If A is either a 

complete metric space or a cpo, then R inherits the metric or the order from A x A. By 

abuse of notation, R C_ A x A will be used in the sequel to denote that R is a relation on 

A. [] 

Defini t ion 2.2 Let F : C ---* C be a functor. Let (A, a) be an F-coalgebra. Let R be 

a relation on A. Then R is called an F-bisimulation on (A, a) if there exists an arrow 

t3 : R ---* F(R) such that the projections ~h, ~r2 : R ~ A are arrows in CF from (R, B) to 

(A, a). That is, both squares of the following diagram should commute: 

7r 1 7r 2 

R , A  R 

F(R) �9 F ( A ) ,  F(R)  

F(r l )  F(Tr2) 

Two elements a and a' in A are called F-bisimilar (notation a s a') if there exists a 

bisimulation relation R on (A, a) with aRa'; thus 

s -- LJ{R _c A x A [ R is an F-bisimulation on (A, a) }. 

[] 

Definition 2.2 indeed generalizes the standard notion of strong bisimulation: 

E x a m p l e  2.3 Bisimulation 

Recall from Example 1.4 that the functor 

P ( A  x -) : Set ---* Set 

is used for representing LTS's. Consider a LTS (S, A, 4 )  and let (S, a) be the correspond- 

ing 7'(A x -)-coalgebra. It is shown that there is a one-to-one correspondence between 

the strong bisimulations and the P(A  x -)-bisimulations on S. 

Let R _C S x S be a strong bisimulation on S. Define ~3 : R ---* P ( A  x R) by, for all 

sR t, 

~((s ,  t)) -- {< a, (8', t') >l ~ - - u  s' ^ t - - ~  t' ^ ~'R t'} 

It is straightforward to check that (R, ~) satisfies the conditions of Definition 2.2. 

Conversely, let R be an P(A x -)-[)isimulation, with corresponding coalgebra (R, ~). 

Consider 8 and t such that 8R t. By symmetry, it suffices to prove that, for all 8' E S, 

a E A ,  

' t '  ~ ' s----~8 => 3t', s'R and t-----~t. 

That is, for all s' E S, a E A, 
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< a,s'  >E a(s) ~ 3t', s 'R t' and < a,t' >e  a(t). 

Suppose < a, # >E ct(s). Since 

~(s )  = ~ ( ~ , ( ( s , t ) ) )  

= ~ ( A  x ,~)  o/3((s,  t)) 

= { <  a ,u  >1 ~ �9 S and ~v ~ S, < a , (u ,~ )  > � 9  9 ( ( s , t ) ) }  

there exists t' �9 S with < a, (s', t') > �9 t)), and hence s'Rt'.  Because 

~(t)  = ~ ( ~ ( ( s , t ) ) )  

= ~'(A • ~ )  o 9( (s ,  t)) 

it follows that < a, t' > � 9  a(t).  [] 

The above definition of F-bisimulation paves the way for a uniform treatment of 

different kinds of observational equivalence. Other observational equivalences can be 

described by choosing a different functor. 

The rest of this section describes some semantically interesting properties of F-bisimu- 

lation, starting from strong extensionality: 

T h e o r e m  2.4 Any final F-coalgebra (A, a) is strongly extensional: for all al, a2 �9 A, 

F 
a l  = a 2  ~ a l  ~ a2  

(Recall that L is the union of all F-bisimulations on (A, c~).) 

Proof.  Let =A be the identity relation on A. The inclusion from left to right follows 

from the fact that =A can be seen to be an F-bisimulation on (A, c~) as follows. Define 

A : A '-*=A by, for all a �9 A, A(a) ~ <  a,a >, and fl : = A  ' ' 4  F(=A) by/3 - F(A)oaoTrl .  

Then (=A,/3) is an F-bisimulation on (A, a): 

7r 1 71- 2 

/3 * a * f l  

F ( ~ l )  F(~2) 

F(=A) �9 " F(A)  ~ F(=A) 

F(A) F(A) 

Conversely, let R c_C_ A x A be an F-bisimulation with (R,/3) as in Definition 2.2. Since 

both ~rl and 7r2 are arrows in CF from (R,/3) to the final F-coalgebra (A, a), it follows 

that Trl = ~r2. Thus R C_=A. [] 

T h e o r e m  2.5 Let (B,/3) be an F-coalgebra and (A,a) a final F-coalgebra. Let H : 

(B,/3) ~ (A, a) be the unique arrow from (B,/3) to (A, a). For all bl, b2 in B, 

b, ~ b2 ~ [bll = [b2~. 
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Proof.  Let (R, 7) be an F-bisimulation on B. Since both l.] o ~rl and [] o ~r2 are arrows 

between the F-coalgebras (R, 7) and (A, a), and since (A, a) is final it follows that i.]orl = 

[.] o r2. [] 

In genera3, in categories of (possibly large) sets one can prove that certain arrows 

between F-coa3gebras preserve F-bisimulation. More precisely, this holds for arrows that 

have a right inverse (also called split epis). (In Set every surjective mapping has, by the 

axiom of choice, a right inverse.) The idea is that one would like to show that, given an 

arrow f between F-coa3gebras (A, a) and (A', a'), and given an F-bisimulation (R,/3) on 

(A, a), the following relation 

R / --- {(f (a) , f (a ' ) )  e ]A' I x ]A'llaRa' } 

is an F-bisimulation on (A', a'). If F is an endofunctor on a category either of complete 

partial orders or of complete metric spaces, one needs first of all to show that R / is a 

complete partial order or a complete metric space, respectively. This can be shown under 

the assumption that f has a right inverse as follows. Let C be, for instance, CPO• (see 

Section 5 for the formal definition of CPO• and assume the existence of a right inverse 

h to f .  Then one can show that R / is a cpo: (-]-A,,2-A,) is the minimal element, since 

f is (an arrow in CPO• and hence) strict, and (.LA, 1A) E R. Further suppose that 

(f(a~), f(a~))~ is an o~-chain in R/. By monotonicity of h, (h o f(a~), h o f(a'~))~ is a 

chain in R. Because R is a cpo this chain has a limit in R, say (a, a'). By continuity of f 

it follows that 

_~. a t ( f  o h o f(an), f o h o f(a~)),~ (f(an), f (  ,~)),~ 

converges to (f(a), f(a')), which is in R f. 

Now, the above right inverse can also be used to define the following arrow 

/3' - F ( f  x f)  o/3o (h x h). 

This/3' turns R: into an F-bisimulation. Indeed, consider the cube below: 

f x f  
R ,  

/3 A 

O~ 

F(R) 

F(A) 

. R f 

f /3' ~'~~ 
A, 

F(f x f) 
. F(R I) 

F, A') 
r(f) 
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All sides commute but the back and the right one. One has to prove the commutativity 

of the latter. That is, a '  o ~r/= F(Tr/) o/3', for i = 1, 2. Chasing the diagrams, it follows 

a 'o lr /  = a ' o l q ' o ( f  x f)  o ( h x h )  

= a ' o f o ~ r i o ( h x h )  

= F( f )  o a o l r i o ( h x h )  

= F(I )  o F(~r~) o fl o (h • h) 

= F ( T r { ) o F ( f x f ) o / 3 o ( h x h )  

= F( r / )  off'. 

All this proves the following: 

T h e o r e m  2.6 Let f : (A, a) ---* (A', a ')  be an arrow in CF with a right inverse. For all 

a, a' E A, 

a ~ a'=~ f(a) L f(a'). 

For the converse of Theorem 2.5, it is sufficient to prove that for any arrow f between 

any two F-coalgebras (A, a) and (A', a'), the following relation 

R / =  {(a,a') e IAI • IAI I f(a) = f(a')} 

is an F-bisimulation on (A, a). Again, it is not difficult to prove that R / i s  an object of 

the category: E.g., if C is CPO:_ then the fact that Rf is closed (i.e., all w-chains have 

a least upper bound) follows from the continuity of f and the observation that R / i s  the 

inverse image of the diagonal in IA'I x IA'I, which is trivially closed: 

R: = (f-1 • f -1 ) { (x , x  ) e 1s • [A'I}. 

Now for R: to be an F-bisimulation, there should exist an arrow/3 : R: --* F(R:)  making 

both the back and the left side squares of the following cube commute: 

7[2 
R: 

3fl A 

O~ 

F(R:) - -  

F(A) 

, A  

f 
A' 

F(~r2) 
. F(A)  a' 

. F(A')  

F( f )  



491 

Note that the front and right squares are equal and commute, because f is an arrow 

between coalgebras. The top square also commutes; thus, by functoriality, the bottom 

one does as well. Further observe that 

O~ ! 0 f 0 71" 2 

= F(f) oc~oTr~ 

One needs the existence of an arrow 

Rf 

~ .  F(A) ~o~\ s 

F(A) . F(A') 
F(/) 

such that a o ~rl = F(Tq) o/3 and a o ~2 = F(Tr~) o/3. It is sufficient for the existence of 

such an arrow that the inner square of the above diagram is a weak kernel pair for F ( f ) :  

Def in i t ion  2.7 Consider an arrow f : b --* c in a category C. A kernel pair for f is an 

object a and arrows h : a ---* b and k : a ~ b in C such that f o h = f o k, and such that 

for any other such triple (a', h', k') there exists a unique arrow e from a' to a such that 

a I 

h'=hoe 

. i f  and 
k'=koe. 

b *c 
/ 

The object a, with arrows h and k is called a weak kernel pair if in the preceding formu- 

lation the requirement of uniqueness is dropped. [] 

It is not difficult to prove that Rf and its two projections form a kernel pair for f .  

Thus for the existence of an appropriate arrow/3 it is sufficient if the functor F weakly 

preserves kernel pairs. We have proved: 
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Theorem 2.8 Let F be a functor weakly preserving kernel pairs. That is, the image 

under F of a kernel pair for an arrow f is a weak kernel pair for the arrow F(f ) .  For 

every arrow f between any two F-coalgebras (A, a) and (A', a'), the kernel pair Rf of f 
is an F-bisimutation on (A, a). 

The above proof is motivated by [AM89], were it is shown that for functors F that 

preserve weak pullbacks, the notions of F-bisimulation and congruence coincide. Many 

standard functors (built from sum, product etc.) weakly preserve kernel pairs. 

The following corollary generalizes the fact mentioned at the beginning of this section 

that two states are (~O(A x -)-)bisimilar if and only if they are mapped into the same 

process: 

Coro l l a ry  2.9 Let F be a functor weakly preserving kernel pairs. Let (B,/3) be an F- 

coalgebra and (A, a) a final F-coalgebra. Let H : (B,/3) --* (A, a)  be the unique arrow 

from (B,/3) to (A, a). For all bl, b2 in B, 

The Rest  of  this Paper 

In the rest of this paper, the categories Class*, CMS and CPO• will be treated in great 

detail. For each of these, a family of functors having a final coalgebra will be identified. In 

other words, three final coalgebra theorems will be proved for functors satisfying certain 

conditions. The three next sections can be read independently from each other. 

3 Non-Standard Set Theory 

In this section, a first concrete category is presented in which a final coalgebra theorem 

holds. It is the category Class*: objects are classes, possibly containing non-standard (or 

non-well-founded, [Acz88]) sets, and arrows are functions between classes. This (so-called 

special) final coalgebra theorem goes as follow: Consider an endofunctor F over Class* 

which has a greatest fixed point JR = F(JF).  Then, if this functor preserves inclusions 

and is uniform on maps, the fixed point JR, together with its identity mapping, is a final 

F-coalgebra. 

The section is divided in four parts. The first recalls the basic set theory ZFC- of 

which both standard and non-standard set theory are extensions (obtained by adding 

respectively foundation and anti-foundation axioms). For this, no previous knowledge of 

set-theory is required. This part also describes fixed points of class functors (needed in 
the main theorem). 

The second part introduces a new formulation of foundation and anti-foundation ax- 
ioms in terms of initial algebras and final coalgebras (of a powerset functor). A comparison 
with the standard formulations then follows. The anti-foundation axiom as formulated in 
[Acz88] is here called Decoration Lemma. 

The third part recalls the Solution Lemma from [Acz88]. It is yet another formulation 
of the anti-foundation axiom. It is used in the proof of the main theorem. The Solution 

Lemma is stated using coalgebras and this makes its proof trivial. 

In the last part, about the special final coalgebra theorem, a new definition of unifor- 
mity on maps is given and then the special final coalgebra theorem is proved. 



493 

3.1 Basic Set Theory 

The intuitive idea of a set is that of a collection of objects which have a certain property 

~. Moreover, two sets should be equal if and only if they have the same elements. A 

first step towards a formalization of such an idea is to fix a language to express these 

properties. A natural candidate is a first order predicate calculus with equality. The only 

primitive relation needed seems to be that of membership, which is a binary predicate 

usually denoted by "E". For instance the usual notion of subset can be expressed as 

follows: 

z C y  =_ V v ( v E x ~ v E y ) .  

Constant symbols for denoting the elements of a set will turn out not to be necessary, as 

every object of interest can be represented as a set. 

Following this intuition, the only axioms would then be: 

Extensionality : 

x = y  r xC_y A y C x .  

Strong Comprehension: 

V property ~, {x I 79(x)} is a set. 

However, Russel's paradoxical set {x ] x r x} shows that such a strong comprehension 

axiom cannot be stated in its full generality. Strong comprehension is thus to be replaced 

by the following axiom: 

Comprehension: 

V property ~, V set v, {x I 7)(x) A x E v} is a set. 

As comprehension can be applied only to members of already defined sets, it is necessary 

to postulate the existence of some sets, either primitive or derived by applying some basic 

operators: 

Empty Set: 

There exists a set 0 with no elements. 

Paring, Union, Power Set: 

{x, y}, U x, 7:)(x) are all sets. 

(As usual, U x and P(x) stand respectively for the collection of all members of members 

of x and the collection of all subsets of x.) By means of the union operator one can define 

an operator s acting as successor as follows: s(x) = x U {x}. Regarding the empty set 

as 0, the existence of an infinite set can be stated by postulating the existence of a set 

containing the natural numbers. That is: 

Infinity: 
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There exists a set containing 0 and closed under the successor operator s. 

(The axioms above, as well as those given in the sequel, are written for convenience in 

natural language but note that they can also be expressed in the language of set theory 

- see, e.g., [Lev79].) 

Further useful notions can be derived from the above axioms, like, for instance, that 

of ordered pair: 

< x, ~ > ___ {x, {x, y}}. 

A formal definition of function can then be given as a collection f of ordered pairs such 

that for every x there exists a unique y with < x, y >E f.  (This was also the first formal 

definition of function.) Two more axioms about functions are then usually added: 

Replacement: 

The image of a set under a function is a set. 

Choice: 

Every surjective function has a right inverse. 

A right inverse of a function f : a ~ b is a function g : b ~ a such that f o g is the 

identity on b. The above axiom of choice is equivalent to postulate that for every set a 

there exists a choice function, that is, a function f such that, for every x E a, f (x)  E x. 

Even though the collection {x I p(x)} of all sets x having a given property ~ might 

not be a set it can still be of interest for set theory. Such 'specifiable' collections are called 

classes. Clearly, a set is a class, but the converse is not true, in which case one speaks 

of a proper class. For this reason classes are also called large sets. Extensionality can be 

applied also to classes, but the restriction has to be imposed that an element of a class is 

a set. Thus the classes specified by two properties ~ and ~ are equal if and only if p and 

tP hold for the same sets. In the sequel, lower case letters will denote sets while capital 

letters will be used to denote classes. 

An example of a proper class is the so-called universe of sets, namely the collection of 

all sets: 

V - =  { ~ l ~ = x } .  

(V is indeed the collection of all sets as the property x = x trivially holds for all sets!) 

Notice that different properties may specify the same class. For instance, any property 

other than 'z = x' which holds for all sets can be used to specify the universe. 

The theory associated with (i.e., the collection of all sentences derivable from) the 

above axioms (extensionality, comprehension, empty set, pairing, union, power set, in- 

finity, replacement, choice) is usually denoted by ZFC-  in the literature (e.g., [Lev79, 

Lan86]). In the sequel it will be also called basic set theory. 

From the axioms of basic set theory alone it is not possible to draw a canonical picture 

of how the universe looks like, a picture independent of the specific interpretation one 

might give to the theory. This was felt as a problem already in the early developments 

of set theory. The solution was found in the so-called foundation axiom, which was then 

added to basic set theory. This axiom restricts the universe to the 'smallest' of all possible 
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ones. Then the picture arises of a universe in which sets are hereditarily constructed from 

the empty set, by iterative applications of the powerset operator. Every set has a rank, 

namely the stage at which it appears in such a cumulative hierarchy. This intuitive 

structure, together with the fact that all existing mathematics discovered at that time 

could still be carried out inside this restricted universe, made the axiom easily accepted. 

However, recent applications in computer science have raised interest in the dual choice, 

namely in postulating that the universe be the 'largest' possible one (anti-foundation 

axiom). 

In the sequel, this duality between foundation and anti-foundation axiom will be ex- 

pressed formally in terms of the categorical dualities between algebras and coalgebras and 

initiality and finality, the latter providing a formal definition of 'smallest' and 'greatest'. 

This makes the qualitative descriptive improvement in adding a foundational axiom to 

basic set theory quite transparent: the universe is described as a universal object in a 

suitable--that is, rich enough--category. Therefore, the above two extensions of basic 

set theory will be both called categorical set theories. The classical one (basic set theory 

with the foundation axiom) will be called standard set theory, while the other (basic set 

theory with the anti-foundation axiom) will be called non-standard set theory. Notice 

that here the use of the word 'non-standard' differs from the use of the same word in 

model theory: here non-standard is the postulated presence of non-well-founded sets in 

the universe, rather than a model of the universe. 

Before introducing categorical set theories, it is useful to discuss some fixed point 

theory of functions within basic set theory. Notice that it is customary in set theory to 

consider strict equalities rather than isomorphisms as fixed points of functors: 

Defini t ion 3.1 A fixed point of an endofunctor F in a category of sets (or classes) is a 

set (or a class) X satisfying the equality X = F(X). That is, X is a fixed point of F 

w.r.t, set-inclusion. [] 

The definitions and results in the rest of this subsection are from [Acz88]. 

Defini t ion 3.2 Let F be a class function. Then: 

F is set-based if 

Y class AVx E F(A) ~ 3 a set a _C A such that x E F(a). 

F is monotone if 

VA, B: A C_ B ~ F(A) C_ F(B). 

F is set-continuous if it is both monotone and set-based. [] 

T h e o r e m  3.3 If a class function F is set-continuous then: 

1. There exists a class IF which is the least pre-fixed point of F. As usual, it can be 

shown that IF is also the least fixed point of F. 

2. There exists a class JR which is the greatest post-fixed point of F. It can be shown 

that JR is also the greatest fixed point of F. 
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There is a characterization of least and greatest fixed points in terms of iterations. For 

this purpose the class On of all ordinals is needed. An ordinal is a transitive set (a set 

x is transitive if every element y of x is also a subset of x) x which is well-ordered by E, 

that is, E totally orders x and every non-empty subset of x has a least element w.r . t .E.  

If c~ and ~ are two ordinals such that/3 E a, one usually writes fl < a. The first ordinals 

are: 0, s(0), s2(0), etc. The first limit ordinal is a: = U~N s"(0), which, by the infinity 

axiom, is indeed a set. 

C o r o l l a r y  3.4 If a class function F is set-continuous then the following definitions are 

sound: 

F T a  K F(  U F T ~ )  and F ; ~  ~ F ( N  F ; ~ ) .  
~<~ ~<a 

Moreover, 

I F =  U F T a  and J F =  N F ; a .  

~sOn ~eOn 

There is yet another characterization of dF as union of sets (thus not arbitrary classes!) 

which are pre-fixed points of F: 

& = @ { z l x  c_ F(x)}. 

3.2 Categor i ca l  Set  Theory:  S t a n d a r d  v s  N o n - S t a n d a r d  

Classes form the objects of a category, having as arrows class functions, that is, mappings 

assigning to every class a class. Actually, to every set theory a different category of classes 

is associated. 

Def in i t ion  3.5 The category of classes of (sets defined in terms of) basic set theory is 

denoted by Class. [] 

The powerset constructor can be turned into a (covariant) functor from Class to Class 

as follows: for every class A, 

;D(A) -- {x I x is a set A x C_ A}; 

for every function f : A --* B and every set x a_ A, 

;~(f)tz) = {/(y) I y e z}. 

Notice that only subsets are taken into consideration. This makes possible that V be a 

fixed point of the powerset functor (which, by cardinality reasons, would not be the case 

if one would consider the collection of all subclasses of a given class): 

P r o p o s i t i o n  3.6 V = 7)(V). 

Proof .  V is the largest class. Thus, since P(V) is itself a class, P(V) C V. For the 

converse it is sufficient to prove that every set x is a subset of V. That is, for every y E x, 

y is also in V. This is immediate from the fact that y is a set. [] 

Since V is the largest class one also has: 
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Corol la ry  3.7 The universe V is the greatest fixed point of the powerset functor. 

Notice that P is set-continuous, thus, by Corollary 3.4, V = Jp.  

Moreover, the identity mapping idv of V can be seen both as a mapping from P(V)  

to V and as mapping from V to P(V): 

Coro l l a ry  3.8 (V, idv) is both a P-algebra and a P-coalgebra. 

Notice that the categories of P-algebras and a P-coalgebras are very rich categories. For 

instance, every class function f : A ~ f (A)  can be seen as an arrow between the P- 

coalgebras (A, singA) and ( f (A) ,  singi(A)), where the function sing maps every set x into 
{x}. 

The notions of 'initial' and 'final' are the categorical abstraction of the notions of 

'smallest' and 'largest'. Therefore, one could categorically express that the universe is the 
smallest or the largest possible one, respectively, as: 

Foundation Ax iom 

(V, idv) is an initial P-algebra. 

Anti-Foundation Ax iom 

(1/I, idv) is a final P-coalgebra. 

A comparison of the above formulation of foundation and anti-foundation axioms with 

the standard one is made below, so that it will become clear that equivalent formulations 

of these axioms are expressible in the language of set theory. But first the answer is given 

to a question which might naturally arises here. Namely, whether initial P-algebras and 

final P-coalgebras exist at all in basic set theory. The following two theorems are from 
[AM89] and [Acz88], respectively: 

T h e o r e m  3.9 Every set-based functor F : Class ~ Class has a final coalgebra. 

Proof .  See [AM89], where the theorem is called Final Coalgebra Theorem. (The proof is 

actually based upon a definition of set-based functor which is even more liberal than the 
one given above.) [] 

From the above theorem one can (although not directly) prove that there exists a 

function a from V to P(V) such that (V,a) is a final P-coalgebra. What cannot be 

proved is that the identity function is one such a which makes V final, which is in fact 
the content of the anti-foundation axiom as formulated above. 

Set theory deals with strict equalities rather than just isomorphisms. If one postulates 

the anti-foundation axiom then one can prove that, under some rather liberal hyi-otheses, 

the greatest fixed point of an endofunctor F, together with the identity mapping, is a 

final F-coalgebra (i.e., the special final coalgebra theorem). The dual theorem, instead, 

can be proved without further assumptions, that is, within basic set theory: 

T h e o r e m  3.10 The least fixed point I f  = F(IF) of a set-continuous functor F : Class --* 

Class which preserves inclusion mappings (see definition below) is an initial F-algebra. 
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Proof.  See [Acz88]. [] 

An inclusion mapping is a function associated with two classes A and B such that A C_ B. 

It has A as domain, B as codomain and maps every element a of A in the same a which, by 

inclusion, is also in B. It is denoted by ~A.8 and the subscript is dropped whenever clear 

from the context. An endofunctor F on Class preserves inclusion mappings when, for all 

classes A and B with A G B, if F(A) C_ F(B) then F(tA,B) = ~F(A),F(B). The powerset 

functor is easily provable to preserve inclusion mappings, as well as being set-continuous: 

Thus its least fixed point is an initial algebra. 

3.2.1 Well -Founded  Sets 

The formulation of the two axioms above is not quite standard. Usually, by foundation 

axiom the following is intended: 

V is the least fixed point of "P. (1) 

Since "P is set-continuous, its least fixed point is, by Corollary 3.4, the so-called cumulative 

hierarchy 

U "PT . 
a~. On 

Thus, assuming V is such a class, a rank can be associated with every set, namely the 

stage a at which the set first appears in the hierarchy. This ranking function allows one 

to prove that (1) is equivalent to the following statement: 

Every set is well-founded w.r.t. E 

which amounts to saying that every non empty set has an C-least element. This can be 

easily expressed in the language of set theory as follows: 

Vx(x # ~ ~ 3v(v E x A-~3y(y E x Ay  E v))). 

In other words, there is no infinitely descending chain of sets w.r.t.E. This explains why 

the universe of basic set theory together with the foundation axiom is called universe of 

well-founded sets. 

T h e o r e m  3.11 (V, idv) is an initial "p-algebra 4==~ V is the least fixed point of "P. 

Proof.  Since "P is set-continuous and preserves inclusion mappings, the implication from 

right to left follows from Theorem 3.10. For the implication from left to right consider an 

arbitrary fixed point X = "P(X). Since: 

1. X C V ,  

2. "P preserves inclusion mappings, 

3. (X, idx) is a "P-algebra, 

4. (17, idv) is initial, 
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the unique arrow f from (V, idv) to (X, idx) is such that 

~x,y o f = idy. 

From this, it easily follows that f itself is the identity on V and thus V _C X. [] 

Basic set theory together with the foundation axiom is the standard set theory. Vir- 

tually all known mathematics can be carried out inside such a theory and therefore for 

many decades only well-founded sets were considered to be sets. It was computer science 

that provided non-well-founded sets with one of the first significant applications: seman- 

tic processes are non-well-founded sets. (But see also [FH83] for a - previous - purely 

mathematical application.) 

3.2.2 Decora t ion  L e m m a  

In [Acz88] the anti-foundation axiom is formulated in terms of graphs and their "deco- 

rations". Corollary 3.8 shows that, already in basic set theory, the universe of sets is a 

P-coalgebra. In Example 1.3 it is shown that graphs are P-coalgebras as well. On the 

other hand every P-coalgebra (A, a) can be seen as a (possibly large) graph, by interpret- 

ing A as a set (or class) of nodes and a as the child function. Therefore, the universe of 

sets can be interpreted as the class of nodes of a (large) graph. The childhood relation in 

such a graph is given by the membership relation between sets. 

At a more local level one can observe that every set x can be "pictured" as a graph: 

nodes are the sets in the transitive closure w.r.t. E of x. The same membership relation 

gives also the childhood relation. For instance, the set 2 -= {0, 1}, with 1 = {0}, can be 

pictured as: 
2 

0 1 

The converse of the notion of picture of a set by a graph is the "decoration" of a graph 

by a set: 

Definit ion 3.12 Given a graph G, let Gp  denote its P-coalgebra representation (see 

Example 1.3). A decoration of a graph G is an arrow from the P-coalgebra representation 

G p  of the graph into the P-coalgebra (V, idv). [] 

For instance the mapping 

a~2 b~0 c~l 

is a decoration of the graph: 

a 

C 
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Moreover, it is the unique such decoration. In general, it can be proved within basic 

set theory that for every graph which contains no infinite path there exists a unique 

decoration. (Mostowski's Collapsing Lemma.) Notice that a graph has no infinite path if 

and only if its childhood relation is well-founded. Thus: 

P r o p o s i t i o n  3.13 For every well-founded graph there exists a unique decoration. 

Clearly, every graph which is picture of a well-founded set is itself well-founded. And the 

(unique) decoration of a well-founded graph is a well-founded set. 

Many graphs of interest, especially in computer science, are not well-founded, like, for 

instance, the cyclic graph with one node and one arc: 

(2) 

One might therefore consider a set theory in which the following generalization of the 

above proposition holds: 

Decorat ion L e m m a  
For every graph there exists a unique decoration. 

In fact, the above statement, expressible in the language of set theory is the formulation 

of the anti-foundation axiom as given in [Acz88]. It turns out to be equivalent to the 

anti-foundation axiom formulated in terms of finality: 

Theorem 3.14 (V, idy) is a final 7)-coalgebra if and only if for every graph there exists 

a unique decoration. 

Proof .  The implication from left to right is immediate: if (V, idy) is final, from any 

P-coalgebra there exists a unique arrow into it; in particular this holds for coalgebras 

representing graphs. The implication from right to left follows by applying the Special 

Final Coalgebra Theorem (see below) to the powerset functor, as that theorem can be 

proved assuming the decoration lemma instead of the anti-foundation axiom in terms of 

finality (see [Acz88]). [] 

The unique decoration of the graph in (2) is thus then the unique arrow from the coalgebra 

({ .} ,  o0, with o~(.) = { .} ,  into (V, idv): 

( . }  - -  v 

~ 
~ ( { . } )  . ~ , (v )  

Chasing the diagram, the (only) node of the graph will be uniquely associated to a (non- 

well-founded) set, say fl, such that fl = {fl}. (This example shows that non-well-founded 

sets can also be finite.) 
Notice that, since the relation E is not any more well-founded, more than extensionality 

is needed in order to establish equality between sets. But a criterion for establishing 
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equality of sets arises from the postulated finality of the universe and from Theorem 2.4, 

stating that final coalgebras are strongly extensional: 

T h e o r e m  3.15 Two sets are equal if and only if they are in a' P-bisimulation relation. 

By applying Definition 2.2 to the powerset functor, one obtains: 

Defini t ion 3.16 A relation R on V is a P-bisimulation if, for every set x and y such 

that xRy, 

Vx' E x, 3y' E y, x 'R y' 

and 

Yy' E y, 3x' E x, x 'R y'. 

[] 

Regarding sets as graphs, and thus edges going from sets into their members, this defini- 

tion is just the standard definition of bisimulation as given in [Par81], abstracting from 

the fact that there graphs are labelled. 

In the rest of this section only non-standard set theory, that is, basic set theory together 

with the anti-foundation axiom, will be considered. In particular: 

Definit ion 3.17 The category denoted by Class* is the category with objects the classes 

of non standard set theory and with arrows the functions between these classes. [] 

3.3 Solut ion L e m m a  

The finality of the universe V can be exploited not only to regard sets as decorations 

of graphs but also as solutions of systems of set-equations. This is the content of the 

solution lemma, illustrated in this subsection, which is yet another formulation of the 

anti-foundation axiom. This lemma is used in the special final coalgebra theorem. 

Let xl and x2 be two 'indeterminates'. Then the following is an example of a system 

of set-equations in {xl, x2}: 

= 

�9 = { o , 2 } .  

In general, a set-equation has an indeterminate in its left hand side and a collection 

in its right hand side. The collection in the rhs is a set, apart from the fact that it might 

contain not only sets but also indeterminates as elements, and as elements of its elements, 

and so on. (It is thus important to keep the symbols used for indeterminates distinct 

from those used for 'pure' sets.) The collection of all these sets which might contain 

indeterminates in their transitive closure forms an 'expanded' universe: 

Defini t ion 3.18 Given a class X, the expanded universe w.r.t. X - -  denoted by Vx - -  

is defined as the greatest fixed point of the (set-continuous) functor "P(X + -). Thus: 
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vx = ~ , (x  + Vx). 

Clearly, the universe V is isomorphic to Vo and can be embedded into any Vx. 

The formal definition of a system of set-equations can now be given: 

Def in i t ion  3.19 Given a class X, a system of set-equations in X is a function 

~, : X --+ Vx. 

That is, a collection of equations of the form 

X = l / z ,  

with x E X and L/~ E Vx. [] 

Consider again the above example of a system of set-equations. A solution to that 

system would simply be a function f : {xl,x2} ~ V such that 

f(x~) = { f (x2) ,{ f (x , ) ,O}} ,  f(x2) = {0,2}. 

In general, a solution to a system {x = ~'~},ex is a function f : X ---* V such that, for all 

x E X ,  

f ( x )  = f ( ~ )  (3) 

where, informally, f(~,) is obtained by replacing every xi in the transitive closure of ~ by 

the corresponding f(xi).  That is, if x0, x l , . . . ,  are the variables appearing in the transitive 

closure of ~,, and denoting ~ by ~/~[x0, xl , . . . ] ,  then 

f(~%) = ~'~[xo/f(xo), x l / f (x l ) , . . . ] .  

This intuitive idea has a formal definition: 

Def in i t ion  3.20 A solution to a system of set-equations ~, : X ~ Vx is a composed 

arrow 7r o l:, where ~r : Vx ~ V is any arrow making the square in the following diagram 

commute: 
/.I 71" 

X ,Vx ,V  

~(vx) , "p(v) 
~,(~) 

where, for every v in Vx, that is, for every v C_ X + Vx (since Vx = P ( X  + Vx)), 

e,,(v) = {~,~ I~ e v n  x }  u {v' I ~' e ~ n vx} .  

If one puts f = ~r o ~: and f = ~r = P(~r) o O., then, for every v in Vx, 

[] 
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/ (v )  = { f (x )  I x e v n x }  v ( / ( r  t v' e v n Yx} (4) 

and, in particular, (3) holds. 

Since solutions are defined in terms of P-coalgebra arrows between (Vx, Or) and the 

universe, the finality of the latter immediately gives the following 

Solut ion  L e m m a  [Acz88] 

For every system of set-equations there exists a unique solution. 

This lemma provides thus sets with another representation, describing them as unique 

solutions of systems of equations; moreover, it is an important tool in proving properties 

of non-standard sets, as the next section will illustrate. Since its proof relies on the finality 

of the universe, the solution lemma holds only in non-standard set theory. In fact, it can 

be proved that the solution lemma is equivalent to the anti-foundation axiom. 
Notice that the use of coalgebras makes the presentation of the solution lemma much 

simpler than in [Acz88]. In particular, its proof becomes here trivial, while the following 

is needed there: 

Subs t i t u t i on  L e m m a  [Acz88] 

For every function f : X ~ V there exists a unique function ] : Vx ---* V such that, for 

every v E Vx, 

](v) = {f(x) I z �9 v n X} u {](v') I v' e v n V• 

Although the above lemma is not needed here for proving the solution lemma, the existence 
of such a unique extension of any function on X to a function on Vx is needed in the 

sequel (in the definition of uniformity on maps). Notice that it simply generalizes (4) to 

any function on X. 

One final remark. Here, the definition of the expanded universe is carried out within 

the language of set theory, but, alternatively, indeterminates could also be added as new 

symbols in the language. For instance, in [BE88] indeterminates are indeed treated as 

primitive elements (Urelemente) of a set theory like the one in [Bar75]. But in order to 

carry out this extension of the language formally, an extension of the axioms of the theory 

is also required. 

3.4 Special Final Coalgebra Theorem 

The assumption that the universe (greatest fixed point of 9 ~ be a final coalgebra of the 

powerset functor is strong enough to make the greatest fixed points of a large class of 

other functors be final coalgebras of the respective functors too. This is the content of 

the special final coalgebra theorem illustrated in this subsection. 

The finality of the greatest fixed point of (certain) functors is proved here by means of 

the solution lemma. Arrows into such candidate final coalgebras are associated to solutions 
of systems of set equations (having the class in the source coalgebra as indeterminates). 

This is best illustrated by means of the powerset functor: 

For any function f : A ~ V and any {a0, a l , . . .}  in P(A), 
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V(f ) ( {ao,  a l , . . . } )  = { f (ao),  f ( a l )  . . . .  }. 

Regard now A as a class of indeterminates and {a0, al . . . .  } as a set in VA, that is, associate 

to A the obvious embedding function ~a : P(A) ---+ VA. Then: 

If(a0),  f ( a , ) , . . . }  = f o :A({a0, al . . . .  }). 

Loosely speaking, this shows that the powerset functor behaves on maps as it behaves on 

objects (uniform on maps). 

The mapping ~a is described above as an embedding and this is indeed the case for 

most of functors of interest for semantics. In general, other mappings can be considered 

as well, so that what above generalizes to the following: 

Def in i t ion  3.21 An endofunctor F : Class* ---+ Class* is uniform on maps if for every 

class A there exists a VA-translation for F, that is, a mapping ~A : F(A) ~ Va such that, 

for every function f : A ~ V, the square in the following diagram commutes: 

Briefly: 

~A 
A F(A) �9 VA 

v i : ( v )  , v 
b 

VA 3~ ,  : F(A) --+ VA such that Vf : A -~ Y and Va e F(A) 

r ( f ) ( a )  = f o ~A(a). 

[] 

T h e o r e m  3.22 (Special Final Coalgebra Theorem) 

Let F : Class* ~ Class* be a functor uniform on maps and inclusion preserving. If, w.r.t. 

set-inclusion, F has a greatest fixed (as well as postfixed) point JF, then (JR, id) is a final 

F-coalgebra. 

P roof .  For every F-coalgebra (A, a) one needs to find a function f : A --* JF such that, 

for all a in A, 

f (a)  = F(f)(c~(a)) (5) 

and then show that  it is unique. By uniformity on maps, there exists a VA-translation for 

F.  Since a(a) belongs to F(A),  one can rewrite (5) as 

f (a)  = f o qOA(o~(a)). 
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But then the unique solution of the system {a = ~A(a(a))}aeA of set-equations in A is a 

function f : A ~ V for which (5) holds. Now it remains to be proved that the image of 

this function f is contained in JF, that is, f is a function into JF as well. From equation 

(5) one can derive that: 

f(A) = F(f)(a(A)) 

C_ F(f)(F(A)) 

C F(f(A)), 

that is, f(A) is a postfixed point of F. From all this follows that f is an arrow which 

makes the following diagram commute: 

/ 
A �9 f(A) 

F(A) , F(f(A)) 
F(/) 

Since JR is the greatest postfixed point of F w.r.t, set-inclusion, f(A) is included in Jv 

and F(f(A)) is included in F(JF). Moreover, since F is an inclusion preserving functor, 

the inclusion mapping from F(f(A)) into F(JF) is equal to the F image of the inclusion 

mapping from f(A) into Jr .  Therefore, the following diagram commutes: 

f(A) ' JR 

1 " 
,_ F(f(A)) * F(JF) 

Combining the last two diagrams, f can be regarded as an arrow from A into JF which 

makes the following diagram commute: 

/ 
A , J ~  

, II 

F(A) , F(JF) 

F(I) 

This shows the existence of an arrow from (A, ~) into (JR, id). Uniqueness follows from 

the fact that any such an arrow is also a solution of {a = ~A(~(a))}ae~, which by the 

solution lemma is unique. O 

Coro l la ry  3.23 The greatest fixed point of a set-continuous functor which is uniform on 

maps and inclusion preserving is, together with the identity mapping, a final coalgebra. 
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4 Complete Metric Spaces 

Let CMS be the category with complete metric spaces (D, do) as objects and non- 

expansive (non-distance-increasing) functions as arrows. That is, functions f : D --~ E 

such that, for all x, y E D, 

dE(f (x), ( f(y))  < dD(x, y). 

(For basic facts on metric spaces see, e.g., [Dug66].) For any two complete metric spaces 

D and E, the set of arrows between D and E, 

horn(D, E) = {f  : D ~ E I f is non-expansive} 

is itself a complete metric space, with metric, for all f, g E horn(D, E), 

d(f, g) _ sup{dE(f (x), g(x))}. 
reED 

In analogy to the so-called order-enriched (or O-) categories of [SP82], CMS is called a 

metric-enriched category. 

Defini t ion 4.1 A category C is called metric-enriched if every hom-set is a complete 

metric space and composition of arrows is continuous with respect to this metric. [] 

In the sequel, only metric-enriched categories like CMS will be considered, in which 

the objects themselves are metric spaces (from which the hom-sets inherit their metric 

structure). Nevertheless, it will turn out to be convenient to formulate some definitions 

and results about metric-enriched categories in general. 

The fact that hom sets are metric spaces allows the following characterization of 

families of functors in terms of how they act on arrows. 

Defini t ion 4.2 Let F : C ~ C' be a functor on metric-enriched categories. It is called 

locally continuous (non-expansive) if, for any two objects D, E e C, the mapping 

FD,E : horn(D, E) ---* hom(F(D), F(E))  f ~ F ( f )  

is continuous (non-expansive). The functor F is called locally contracting (or horn-con- 

tracting) if there exists e with 0 _< e < 1 such that, for all D, E, the mapping FD,E is a 

contraction with factor e: for all f, g E horn(D, E), 

dhom(FiD),F(E)) ( F( f ) ,  F(g) ) <_ e . dhom(D,E)(f , g). 

[] 

Example  4.3 Let Pcomp : CMS ~ CMS be the metric powerset functor defined on 

objects by, for all (D, dD) e CMS, 

Pcomp(D) =- {X ] X is a compact (w.r.t. dD) subset of D}. 

The metric on Pcomp(D) is the so-called Hausdorff metric dH, given by, for X ,Y  E 

"P~o~p( D ), 
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dH(X, Y) = max{sup{d(x, Y)}, sup{d(y, X)}}, 
zEX yEY 

where d(x ,Z )  = inf ,ez{dD(X,Z)} for every Z C_ M, x e M. (by convention, sup0 = 0 

and inf0 = 1.) One can show that if D is complete then 7)comp(D) is complete as well. 

On arrows f : D ~ E, we have 

P,o,~p(f) : 7)~o,~p(D) --* Pcomp(E), X ~ {f(x) I x E X}. 

It is not difficult to prove that Pcomv is locally non-expansive. [] 

Example  4.4 For every c with 0 < c < 1, the "shrinking" functor id~ : CMS ---* CMS is 

defined as the identity on arrows and, for any (D, dD), 

id~((D, dD)) =-- (D ,e .  dD). 

Clearly id~ is locally contracting. [] 

4 . 1  A 'Metric' Final Coalgebra Theorem 

The final coalgebra theorem below will be based on the following. 

Theorem 4.5 Every fixed point of a locally contracting functor F : CMS ---* CMS is a 

final F-coalgebra. 

Proof .  Suppose that M is a fixed point for F, that is, M ~= F(M) .  Let i : M ---* F ( M )  

and j : F ( M )  --, M be the two components of such an isomorphism. Thus j o i = idM 

and i o j = idF(M).  Let (X, a) be an F-coalgebra. Define q' : horn(X, M) ~ horn(X, M) 

by, for all f ,  

r  - j o F ( f )  o a 

X 

r(x) 

f 
. M  

. F ( M )  

F(f) 
Let F be locally contracting with factor e. Then ~ is a contraction with factor e. That 

is, for all fl, f2 E horn(X, M), 

d(q)(fl), ~( f2))  = sup{dM(q)(f l)(x),  r  
xEX 

= sup{dM(j o F ( f l )  o ~(x), j  o F(f2) o a(x))} 
~EX 

< sup {dM(j o F ( f l ) ( y ) , j  o F(f2)(y))} 
~eF(X) 

_< sup {dF(M)(F(fl)(y) ,  F(f2)(y))} (j is non-expansive) 
yEF(X) 

= d(F( f l ) ,  F( f2))  

< c. d(fl ,  f2) (F  is locally contracting). 

By Banach's theorem F has a unique fixed point ~ : X --* M. Moreover: 
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i o ~ = i o r  = i o j o F ( f )  o c~ = F ( f )  o a ,  

which shows that ~r is the unique arrow from (X, a) into (M, i). [] 

The dual of this theorem can be proved similarly: 

T h e o r e m  4.6 Every fixed point of a locally contracting functor F : C M S  ---* C M S  is an 

initial F-algebra. 

In subsection 4.3, the following theorem will be proved. 

T h e o r e m  4.7 Every locally contracting functor F : C M S  ~ C M S  has a fixed point. 

From Theorem 4.5 and Theorem 4.7, the following final coalgebra theorem for C M S  

is immediate. 

T h e o r e m  4.8 Every locally contracting functor F : C M S  ~ C M S  has a final F-coalge- 

bra. 

Since final coalgebras are unique (up to isomorphism) the following is immediate. 

Coro l l a ry  4.9 Every locally contracting functor F : C M S  ~ C M S  has a unique fixed 

point (which is at the same time a final F-coalgebra and an initial F-algebra). 

4 .2  F - B i s i m u l a t i o n  i n  C M S  

According to the definition of bisimulation (Definition 2.2), F-bisimulations have to be 

objects in the category under consideration. For the category C M S  this implies that they 

have to be complete metric spaces: that is, an F-bisimulation on an F-coalgebra (A, a) 

in C M S  is a closed subset of A • A,  satisfying the conditions of Definition 2.2. 

The following theorem is an instantiation of Theorem 2.4 to the category CMS.  

T h e o r e m  4.10 The unique fixed point (M, i) of a locally contracting functor F : C M S  

C M S  is strongly extensional; that is, for all x, y E M, 

F 
x = y . ~ x ~ y .  

(Recall that ~ = U{R C_ M • M I R is an F-bisimulation on (M,i) }.) [] 

Next the construction of a metric domain for strong bisimulation (as used in Example 

1.8 and IBM88, Rut90]) will be described in detail. 

Let A be an arbitrary set supplied with the discrete metric. The constant functor 

FA : C M S  ~ C M S  assigns to all objects the complete metric space A, and to all arrows 

the identity arrow idA. Let I be the identity functor on CMS.  The product functor 

• : C M S  • C M S  ~ C M S  gives for any two objects D and E in C M S  the Cartesian 

product D • E, with metric, for all x l , x 2  E D and Y~,Y2 E E ,  

dDxE((Xl, Yl), (X2, Y2)) ~ m a x { d o ( x 1 ,  x2), dE(Yl, Y2)} 
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On arrows • is defined as usual. 

Let F1 and F2 be two functor from CMS to CMS. The functor < F1, F2 >: CMS ---* 

CMS x CMS (the tupling of F1 and F~) is defined on objects D by 

< F1, F2 > (D) - <  El(D),  F2(D) > 

and on arrows f : D ~ E by 

< F1, F2 > (f)  ---< F~(f), F2(f) > 

Let the functor F : CMS ---* CMS be defined as a composition of the above functors as 

follows: 

F =- 7Dr o X o < FA, I > . 

It has already been observed that P~o,~p is locally continuous, and the same applies to the 

other constructs. Composition of functors preserves local continuity, hence F is locally 

continuous. Next define, for some e with 0 < e < 1, a functor F~ by 

F~ = id~ o F. 

It. is immediate that F~ is locally contracting since id~ is locally contracting and F is 

locally continuous. Finally we are ready for the following. 

Def ini t ion 4.11 Let the metric domain for bisimulation PM be the unique fixed point 

of the locally contracting functor F~. That is, PM is the unique complete metric space 

satisfying 

P g  ~ Pco,~p(A x PM). 

[] 

By Theorem 4.5 PM is a final coalgebra. Recall that it is used in Example 1.8 for 

representing finitely branching labelled transition systems. 

(For LTS's that are image finite (a weaker notion than finitely branching), one could 

replace in the above definition the functor Pco,,p by another powerset functor: Palos,d, 

which yields all metrically closed subsets. In [Bre92], domains are given suited for LTS's 

that satisfy even more general "branching" properties.) 

4 . 3  F i x e d  P o i n t s  i n  C M S  

In this subsection, it will be shown that every locally contracting functor has a fixed point, 

thus proving Theorem 4.7. In [AR89], a similar theorem is proved: so-called contracting 

functors on a category of complete metric spaces (with double arrows) have a fixed point 

(see also below). Here the results of [AR89] are generalized; in summary, a reconstruction 

of that paper is given along the lines of [SP82] and [Plo81a]. 
A standard way of constructing fixed points of functors on a category of complete 

partial orders, as described in [SP82], can be seen as a category-theoretic generalization 

of the least fixed point construction of monotone functions on complete partial orders. 
In metric-enriched categories, the construction of fixed points of functors can be better 
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compared to Banach's fixed point theorem: any contracting function f from a complete 

metric space to itself has a unique fixed point, which can be obtained as the limit of 

all finite iterations of f starting in an arbitrary element. (See also the remark following 

Theorem 4.23.) 

As in [SP82], fixed points will be constructed in a category with so-called embedding- 

projection pairs as arrows. One of the reasons for this is that certain constructions, like 

the function space construction, are not functorial. However, such constructions can be 

turned into functors on this category with double arrows, which is introduced next. 

Def in i t ion  4.12 Let C be a metric-enriched category. A subcategory C E (of embeddings) 

can be defined by taking as objects the same objects as C. Arrows a : D ---+ E in C E are 

pairs ct = (a e, a p) such that 

a ~ : D ~ E ,  a P : E ~ D  

are arrows in C with 

a p o a e = idD. 

The first component a ~ is called an embedding and the second component c~p a projection. 

Identity arrows in C E on objects D are ( idD, idD} ,  and composition of two arrows a and 

3 is defined by 

~ o a  - (3 ~oa~,apo2p) .  

[] 

Note that for arrows a : D --* E in CMS E the facts that a ~ and a p are non-expansive and 

aP o a ~ = idD imply that a ~ is a distance-preserving embedding. 

It is illustrative to compare the above definition to the standard example of an order- 

enriched category, namely the category C P O ~  of complete partial orders with strict con- 

tinuous mappings. I f D  and E a r e c p o ' s  a n d i :  D ~  E a n d j  : E--* D are arrows in 

C P O •  then (i, j )  is called a projection pair from D to E provided that 

j o i = idD and i o j ---homc~.E~ idE. 

Note that the one half of such projection pairs determines the other. For the metric 

case this does not hold. For instance, in C M S  the trivial one point metric space can be 

embedded in different ways into any other metric space containing more than one element. 

Though the latter condition of projection pairs (i o j  E_hom(r162 ~ idE) does not seem to 

have a direct corresponding metric counterpart, it is possible, due to the fact that horn- 

sets are complete metric spaces, to define a function on projection pairs that technically 

will play a similar role. 

Def in i t ion  4.13 Let a : D --* E be an arrow in C E. Then 

6 ( a )  - d h o m ( E , Z ) ( a  ~ o aP, idE).  

More generally, let 
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<~ OZl,...,ar~ •:• D 1 , . . . , D n  >---*< E l , . . . , E ~  > 

be an arrow in (CE)n. Then 

5 ( <  a l  . . . .  , an  > )  = m a x { ~ ( a l )  . . . . .  ~ ( ~ ) } .  

[] 

The above 5(a) is called the approximation degree of a: it can be understood as a measure 

of the quality with which E is approximated by D. (Note that 5(a) = 0 implies that D and 

E are isomorphic.) The approximation degree can be conveniently used in characterizing 

colimits in the category CMS E. But let us first explain what a colimit is. 

Def in i t ion  4.14 An w-chain A in a category C is a sequence of objects and arrows like 

A = Do ~ o  D1 -~ . . . . .  

Given an object D in g, a cone # : A ---* D from A to D is a sequence of arrows 

# ,  : Dn --* D such that for all n _> 0, 

~ n  = # n + l  O a n ,  

A colimit of A is an initial cone from A, that is, a cone # : A ---* D such that for every 

other cone "7 : A ---* E there exists a unique arrow ~ : D ---* E satisfying, for all n > 0, 

L O # n  .~--- "~n. 

[] 

T h e o r e m  4.15 Let C be a metric-enriched category and let A be an w-chain in C. Let 

# : A ---* D be a cone from A. Then 

# : A ---* D is initial (a colimit) for A ~ lim 5(#~) = 0. 

Proof.  The theorem generalizes the metric version of the 'initiality lemma' given in 

JAR89]. There the theorem is formulated for the category CMS and assumes, more im- 

portantly, A to be a so-called converging w-chain. An inspection of the proof given there 

shows that this condition is superfluous. [] 

Observing that 

lira 5(#~) = 0 ~ lira # ~  o #~P = idD 

shows the correspondence with the order-theoretic version of the initiality lemma, 

# : A ~ D is initial (a colimit) for A ~ ~ #n ~ o #np = idD, 
n 

interpreting A and # over the category CPO E. 

In the sequel, also products of metric-enriched categories will be considered. 
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D e f i n i t i o n  4.16 Let C and C' be two metric-enriched categories. The product category 

C • C' has as objects pairs < D, E > of objects D in C and E in U. Arrows are pairs of 

arrows as usual: For any two pairs < D, E > and < D',  E '  >, 

hom(< D, E >,  < D', E '  >)  = 

{< f , g  >l f : D --* D' in C and g : E ~ E' in C'}. 

Clearly, C x C' is again a metric-enriched category, by putting for arrows < f l ,  gl > and 

< f2,g2 > in the above hom-set, 

d(< f l , g l  >, < f2,g2 >) - max{dhom(D,D')(fl,f2), dhom(E,E')(gl,g2)}. 

[] 

Let C be a metric-enriched category. It is next shown how in general every functor 

F : C '~+~ --* C, which is contravariant in its first m and covariant in its last n arguments 

(with m + n >_ 1) induces a functor 

F ~ : (C~)m+~ --, CE. 

(Note that  the general case includes, e.g., covariant functors of one argument.) A typical 

example of such a functor F is the function space constructor: 

E x a m p l e  4 .17 The function space constructor ~ :  CMS • CMS ~ CMS gives for any 

two objects D and E the set D ---* E of non-expansive mappings from D to E: D --* 

E - horn(D, E). (The metric on D ---* E is as on horn(D, E).) Consider the category 

CMS • CMS with arrows 

< f , g  > : <  D , E  > - * <  D',E'  >, 

where f : D'  --* D and g : E --* E '  are arrows in CMS. Note the different directions: -~ 

is called contravariant in its first argument and covariant in its second. (Formally, ~ is 

a functor (covariant in both arguments) from CMS ~ x CMS to CMS.) The image under 

--* of such an arrow is given by 

f ---+g:(D---*E)---*(D'---*E') ,  h ~ , g o h o f .  

[] 

D e f i n i t i o n  4.18 Let C be a metric-enriched category and let F : C m+~ --* C be con- 

travariant in its first m arguments and covariant in its last n arguments. For convenience 

take m = 1 and n = 1. The functor 

F~  : (r 1 - .  C E 

is defined on objects by, for any < D, E > 6  (CE/+1, 

F E ( <  D , E  >) = F ( <  D , E  >). 

On arrows < c~,~ > : <  D , E  > - + <  D' ,E '  > in (dE) 1+1 (with o~ : D ~ D' and/3 : E ---* E '  

arrows in cE),  F E is defined by 
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FE(< a,/3 >) -- (F (<  aP,~" >), F ( <  ae,/3 p >)). 

Note that F E is covariant in both arguments. If F and G are functors and G o F is defined 

then ( G o F) E = G ~ o F E. [] 

It is easy to show that F E is a functor. In particular, 

F ( <  a~,/3 p >) o F ( <  aP,/3" >) = (F  is contravariant in its first argument) 

F ( <  ~ o ~~ o ~ >) 

= F ( <  idD, idE >) 

= F(id<D,E>) 

-~ idF(<D,E>). 

E x a m p l e  4.17 (con t inued)  According to the above definition, the functor ~ :  CMS x 

CMS --* CMS induces a functor ~ E  defined on objects < D, E > by 

D-- .  E E -  D-.-, E 

and on arrows < a,]3 >:<  D , E  >--*< D',E'  > by 

Starting with a locally continuous functor F will yield an w-continuous functor FE: 

Def in i t ion  4.19 Let C be a metric-enriched category. A (covariant) functor F : C E ..-..4 C E 

is w-continuous if for every w-chain A and every colimit (initial cone) # : A --* D of A 

the cone F(#)  : F (A)  ~ F(D) is again initial. (This definition can be straightforwardly 

generalized to functors from (cE)  n t o  cE , )  [] 

In other words, F preserves colimits of w-chains. 

T h e o r e m  4.20 Let C be a metric-enriched category and let F : (C) "~+n ~ C be con- 

travariant in its first m arguments and covariant in its last n arguments. If F is locally 

continuous then F E is w-continuous. 

Proof .  The proof mimics that of [Plo81a]. For simplicity let m = 1 = n. Consider 

F :  (C) l+l --* C and let tt : A ~ D a n d u : F ~  E be two initial cones. It has to be 

proved that FE(#, u) : FE(A, F) --~ FE(D, E) is again initial. Theorem 4.15 will be used: 

lim >).)e (FE(<  # ,u  >)~)P . _  ( F ~ ( < ~ , u  o 

= ~o~(FE(<lim #~, un >))e o (FE(<  #n, Un >))P 

= lim F ( <  p e > ) o  ~.,  u;~ FE(<  ~ ,  ~ u;~P >) 
~ o O  

= lim F ( < # ~ o # ~ , u ~ o u ~ > )  

= ( F  is locally continuous) 

F ( <  l i m # e o  P " e 

= (Theorem 4.15) 

F ( <  idD, idE >) 

= FE(< idD, idE >) 

= idF~(<D,E> ). 
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Thus, again by Theorem 4.15, FE(#, t~) is initial. [] 

There is also a property of functors on C ~ that corresponds with the notion of local 

contractivity. 

Def in i t ion  4.21 Let C be a metric-enriched category. A (covariant) functor F : cE ~ CE 

is contracting if there exists 0 _< e < 1 such that, for every arrow ~ : D ~ E in C E, 

6(F(~))  <_~. 6(~). 

(Again the definition can be easily generalized to functors from (gE)n to cE.) [] 

The value of 6(~) can be seen as a measure of the quality with which E is approximated, 

and hence contractivity of a functor amounts to the property that it strictly improves 

such approximations. Using the initiality lemma (Theorem 4.15), one can easily show that 

contractivity implies co-continuity. There is also a relation between local contractivity and 

contractivity, as pointed out by Gordon Plotkin (personal communication): 

T h e o r e m  4.22 Let C be a metric-enriched category and let F : (C) '~+~ ~ C be con- 

travariant in its first m arguments and covariant in its last n arguments. If F is locally 

contracting then F ~ is contracting. 

Proof .  Again restrict to the convenient case that m = n = 1. Let F be locally contracting 

with factor e. Consider an arrow < c~,/3> from < D , E  > to < D ' ,E '  > i n C  E x C  E. 

Then 

6(FE(< ce,/3 >)) = (definition F E) 

6((F(< c~',/3 e >), F ( <  a~,/3 ' >)) 

= (definition 6) 

d (F(<  c~ p,/3e >) o F ( <  c~",/3" >), idf(<D,,E,>)) 

= d(F(<  c~ e o c~',/3~ o/3' >), F(id<o,,E,>)) 

< ( F  is locally contracting) 

c. d(< a ~ o aP, /3 ~ o/3P > , id<D,,E,> ) 

= e .d (<o~oc~P, /3~o /3P>,<id l ) , , i dE  , >) 

= e. max{d(a ~ o a p, idD,), d(/3 ~ o/3P, idE,)} 

= ~.  m a x i 6 ( ~ ) , 6 ( Z ) }  

= ~.  6 ( <  ~ , Z  > ) .  

Contracting functors on CMS E are particularly interesting. 

T h e o r e m  4.23 Every contracting functor F : CMS ~ -~ CMS E has a fixed point. 

[] 

Proof .  The proof is given in [AR89]. It consists of a metric variant of the standard 

construction for cpo's. An important difference however is the use of the metric version 

of the 'initiality lemma', as formulated in Theorem 4.15. We give a sketch of the proof. 

Let Do be the trivial one point metric space and let ao : Do ---* F(Do) be an arbitrary 

arrow embedding Do into F(Do).  Define an co-chain A ---- (Dn, a~)n by putting D~+l = 

F(D,  0 and a~+l - F(c~,0, for n > 0. The so-called direct (or projective) limit of A, 
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D - {(x,,),, I Vn _> O[x,~ E D,~ A ~P(Xn+l) = X,n,]} 

can be seen to be a complete metric space with metric dD on D given by, for all (x~)~, (y~)~ 

in D, 

d D ( ( x ~ ) ~ ,  ( S . 0 m )  --- s u p { d D o ( x ~ ,  y ~ ) } .  
n>_0 

(It is assumed that the metrics don have a common upper bound.) Next D can be turned 

into a cone tt : A ~ D with arrows tt~ : Dr ---* D, for all n >__ 0, by defining for all x E D,~, 

and (x,0m �9 D, 

~ : , ( ~ )  = ( ~ _ ~  o . . o  ~ , ,_~ o . .  o . . .  

~_~(x) ,  x, ~,:(x), ~+~ o ~,:(~) . . . .  ), 

So far the fact that F is a contracting functor has not been used. An easy argument 

shows that the contractivity of F implies lim~--.oo ~(#~) = 0, whence D is a colimit for 

A. Contractivity of F also implies that F preserves w-chains and their colimits: F(#) : 

F(A) ---* F ( D )  is again a colimit. Since A and F(A) are equal but for the first element 

and colimits are unique (up to isomorphism), it follows that D ~- F(D) .  [] 

R e m a r k :  Contractivity of F implies lim~o~ 5(#~) = 0. Another way of describing this 

fact is to observe that the w-chain A is Cauchy (in [AR89], it is called converging): 

V e > O 3 N > O V r a > n > _ N ,  8(a,~_l o .. .  o a~) < ~ 

Implicit in the above construction is the following fact: every w-chain that is Cauchy has 

a colimit. (Thus the category CMS E could be called Cauchy-w-eomplete.) The parallel 

with Banach's fixed point theorem is now clear: iterating F from the one point metric 

space yields (by F's  contractivity) an w-chain that is Cauchy. By Cauchy-completeness 

of CMS E, this chain has a colimit, which is a fixed point of F. 

Combining the results of this subsection now yields a proof of Theorem 4.7. 

T h e o r e m  4.7 Every locally contracting functor F : CMS ~ CMS has a fixed point. 

Proof.  Let F : CMS ---* CMS be locally contracting. By Definition 4.18, it can be 

extended to a functor F E : CMS E ~ CMS E, which is by Theorem 4.22 contracting. 

Thus F E has a fixed point, by Theorem 4.23, which is also a fixed point of F, since both 

functors act identically on objects. [] 

Example  4.24 Let + : (CMS) 2 ~ CMS be defined, for D and E, by 

D + E  = {0} x D + { 1 }  x E, 

the disjoint union of D and E (with the disjoint sum of their metrics); on arrows + is 

defined as usual. Let I = {0} be the one-point metric space. Let the functor fl : CMS 

CMS be defined by, for objects D, 

fl(D) -=- I + D 
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Next define f~c, for somee with 0 < e < 1, by f~ = id~o~l .  It is easy to see that + 

is locally continuous and thus f~ is locally contracting. Hence, by Theorem 4.22, ~E 

is a contracting functor. Starting in I and embedding I into fl~(I) by ao, the above 

construction yields a chain 

I _+so I + I __+~1 I + (I + I) -+~ ...  

The n-th element (f~)~(I)  in this chain contains from left to right n -  1 copies of 0, which 

will be called 0, 1, 2 . . . .  , n - 1, respectively. Note that for i, j E (f~E)~(i) their distance 

is given by d(i,j) = e min{i,j}, whenever i ~ j. Let oo denote the colimit as constructed 

above; it looks like 

oo = { o , 1 , 2 , . . . , ~ }  

where, for all n > 0, 

and 

n--= (0, 1 , 2 , . . . , n -  1,n,n,n, . . . )  

~ = (0 ,1 ,2 ,3  . . . .  ) 

From Corollary 4.9 it follows that oo is the unique fixed point of f~. [] 

5 C o m p l e t e  P a r t i a l  O r d e r s  

Let CPOz be the category with complete partial orders (D, _D) as objects and strict and 

continuous functions as arrows. For any two cpo's D and E, the set horn(D, E) of arrows 

between D and E is itself a cpo, with the usual order: for all f, 9 C horn(D, E), 

f E g -= Vx E D, f(x) E~ g(x). 

Moreover composition of arrows is continuous with respect to this ordering. Therefore 

the category CPO• is called an order-enriched (or O-) category ([SP82]). 

As in the previous section, the structure on horn sets can be used to characterize a 

class of functors. 

Defini t ion 5.1 A functor F : CPO• ---* CPOI is called locally continuous if, for any two 

objects D, E E CPO• the mapping 

FD,E : horn(D, E) ---, hom(F(D), F(E)) f ~ F(f)  

is continuous. [] 

Next the subcategory CPO E of CPO• is introduced. If D and E are cpo's and #r : D ~ E 

and #P : E ---* D are arrows in CPO• then (#~, #v/is called an embedding-projection pair 

from D to E provided that 

~P o #e = idD and p~ o #P --hom(E,E) • 
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Note that the one half of such projection pairs determines the other. Let CPO E denote 

the subcategory of CPO• that has cpo's as objects and embedding-projection pairs as 

arrows. Note that also CPO ~ is an order-enriched category. The following theorem is 

standard. 

Theorem 5.2 Every F : CPO• ~ CPO• that is locally continuous can be extended to 
a functor F E : CPO E ---.+ CPO E that is w-continuous. A fixed point of F is obtained by 

constructing an initial FE-algebra D in CPO E. 

The proof can be found in [SP82] and is similar to that for the metric case (since the 

latter mimics the original proof). Some parts of the proof are repeated next since they 

are needed later. 

Let Do = {.1_} be the trivial one point cpo and let ao : Do ~ F(Do) be the unique 

arrow embedding Do into F(Do). Define an w-chain A -= (D~, a,~)~ by putting D~+I --= 

F(D,~) and a,~+l =- F(a,~), for n > 0. The direct (or projective) limit of A, 

D - {(x~)~ [Yn _> 0[x~ e On A a~(X~+l) = xn]} 

can be seen to be a cpo with order ED on D given by, for all (x~)~, (y,~)~ �9 D, 

(z~),~ _ 0  (ym).~ - Vn > 0, z~ ED~ y~. 

Now D can be turned into a cone # : A --* D with arrows #~ : D~ ~ D, for all n _> 0, as 

usual. The fact that F is locally continuous implies kJ,~ #~ o #~ = idD. By the initiality 

lemma for cpo's (which is similar to the one for metric spaces--see the previous section), D 

is a colimit for A. It follows that D -~ F(D),  say with i : D ---* F(D) as the isomorphism. 

It satisfies the following fact (which will be used below): for all n > 0, 

r ( , ~ )  o i = ,~+1 .  

It is not difficult to prove that (D, i-1) is an initial FE-algebra in CPO E. 

5.1 A n  ~Order-Theoretic' Final  Coalgebra Theorem 

The fixed point D constructed above is an initial F-algebra (D, i -1) in the category CPO E. 

Moreover, it can also be seen to be initial in CPO• the fact that D is a colimit (of its 

defining chain) in CPO E implies, by a small exercise, that it is a colimit in CPO• as well; 

then the 'Basic Lemma',  from [SP82], immediately yields the result. For completeness, a 

direct proof is given below. 
By the so-called "limit-colimit coincidence" for O-categories, which is extensively dis- 

cussed in [SP82], the dual of these facts also holds. Thus (D, i) is a final F-coaigebra in 

CPO P, which is defined as the opposite category of cPOE:  CPO P --- (CPOE)  ~ (Thus 

arrows in CPO p are projections #P for which there exists a (unique) #~ such that (#~, #P) 

is an embedding-projection pair.) Again, (D, i) is a final coalgebra in CPO• as well, which 

can be shown by dualizing the little argument above. For completeness, and because we 
have never seen this fact stated explicitly in the literature, a direct proof is given next. A 

minor variation will also prove that (D, i -1) is an initial F-algebra in the category CPO• 

(A direct proof of the latter can be found in [Plo81a].) 
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T h e o r e m  5.3 Let F : CPO• ---* CPOI be a locally continuous functor and let (D,i  -1) 
be the (in CPO E) initial F-algebra as described above. Then (D, i) is a final F-coalgebra 

in CPO• and (D,i  -1) is an initial F-algebra in CPO• 

Proof .  First it is shown that (D,i) is a final F-coalgebra in CPOL. Let (A, a) be any F- 

coalgebra. The existence of an arrow in (CPO• from (A, a)  to (D, i) can be established 

similarly to the metric case (Theorem 4.5): Define a function r : horn(A, D) ~ horn(A, D) 

by, for all f 6 horn(A, D), 

( ~ ( f )  -~  i - 1  0 F( f )  o a .  

Since F is locally continuous, it follows that r is a continuous function. The existence of 

a least fixed point for ~ provides an arrow from (A, a)  to (D, i). 

The uniqueness of such an arrow has still to be demonstrated. (Recall that in the 

metric case--for locally contracting functors--existence and uniqueness are established 

simultaneously.) Consider two arrows fl  and f2 from (A, a) to (D, i): 

fl 
A - -  ~D 

F(/1) 

F(A) : F(D) 

F ( 5 )  

The equality of fl and f~_ is proved next. Let (/~ : D~ ~ D)~ be the cone used in the 

construction of D. It will be sufficient to prove, for all n > 0, 

~ o A = ~ o A 

because each of the following formulas implies the next one: 

/z~ o fl =/z~ o f2 

n 

f~--- f2 

(The latter implication follows from the initiality ]emma and the continuity of o.) Use 

induction on n. The case n = 0 is trivial because #~ is the constant function ,kd. _1_. 
Suppose next that #~ o fl  =/z~ o f2. Then 

P #~+1 o fl  = (by the fact stated at the end of Theorem 5.2) 

F ( ~ )  o i o f~ 

= F ( ~ )  o F(I1)  o a 

= F ( ~ o f l )  oc~ 
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= (by the induction hypothesis) 

F(#~ o A) o o~ 

= F ( # [ )  o F( f~)  o c~ 

= F ( # [ ) o i o f 2  

= :.,+I~ 

By a similar proof, (D, i -I) can be shown to be an initial F-algebra in CPO• Existence 

of an arrow from (D,i -I) to an arbitrary (A, c~) is established by taking the least fixed 

point of a function �9 : horn(D, A) ~ horn(D, A) defined by, for all f E horn(D, A), 

@(f) =_- c~ o F ( f )  o i. 

Uniqueness of such an arrow is proved as above, now using the fact that for all n, #~+1 = 

i -1 o F(#~). 

5.2 Ordered F-Bis imulat ion 

The order on horn sets makes the following generalization of the definition of F-bisimu- 

lation (Definition 2.2) possible. 

Definit ion 5.4 Consider a functor F : CPO• ~ CPO• and let (A, 5) be an F-coalgebra. 

A relation R C_ A • A is called an ordered F-bisimulation on (A, a) if there exist arrows 

t31 : R ~ F(R) and ~2 : R --* F(R) such that/?t E ~32, and the projections ~h, 7r~ : R ~ A 

make both squares of the following diagram commute: 

7rl 7c 2 

R , A ~  R 

F(R) - F ( A ) ,  F(R) 

S(']rl) F(~2) 

~1E ~2 

Note that the relation R should be an object in CP01. Thus it should be an w-complete 

subset of A x A (that is, R should be closed under taking the least upper bound of 

w-chains). The ordered F-bisimilarity relation is defined by 

~F--  U{R C A x A I R is an ordered F-bisimulation on (A, a) }. 

D 

Example  5.5 Divergence and partial bisimulation 

In [Abr91] transition systems with divergence are considered (see also [Mil80]). A labelled 

transition system with divergence is a four tuple < S, A, --% T> consisting of a set S of 

states, a set A of actions (or action labels), a transition relation --._C S x A x S, and a 

divergence set Tc_ S. The interpretation of s ET (notation: s 1") is that in the state s 

there is the possibility of divergence. Similarly s J. is used to indicate that s converges, 

that is, s g~T- 
Also labelled transition systems with divergence can be represented in terms of coal- 

gebras: let P~ x -) : CPO• ~ CPO• be defined by, for all < D, ED>E CPO• 
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P~ x D) =- {0} U {X C (A x D).L ] X is both Lawson and convex closed } 

(where the ordering on A x D is determined by taking the discrete ordering on A, and the 

ordering on D.) Though formulated slightly differently--using the lifted version of the 

Cartesian product rather than sum--this  is Abramsky's version of the standard Plotkin 

powerdomain, to which the empty set has been added. The ordering is such that the empty 

set is greater than the bottom element {J_}, and incomparable to all other elements; non- 

empty sets are ordered as usual by, for all sets X , Y  6 "P~ x D), 

x E Y  = x  = {_L} v X E_~,, y, 

where E_~u is the Egli-Milner order. Now any labelled transition system with divergence 

< S, A, ---% 1"> can be represented as a coalgebra of the above functor by supplying S with 

the discrete order (define S• = S U {j 's}) and defining 

: Si  ~ P~ x S i )  

by a(j-s) =- {j '} and, for all s E S, 

~(s) = {< a,s' >1 ~ - ~  s'} u {j,I ~ 1`}. 

Following [Abr91], a relation R _C S x S is called a partial bisimulation if, for all states 

s, t 6 S with sRt, and actions a 6 A, 

s - - ~  s'::~ 3t', t - - ~  t' A s'R# 

and 

s $  ~ t $  A ( t - - ~  t ' : *  38', s - ~  s' A s'Rt'). 

Similar to Example 2.3, it is shown next that these partial bisimuIations correspond 

precisely to the ordered bisimulations of Definition 5.4 for the functor P~ x -). 

Let R C_ S x S be a partial bisimulation. It can be seen to be an ordered P~ x -)- 

bisimulation as follows. Define T C_ S• x Sx by 

T - R u ({• • Sl) .  

Next define, for i = 1, 2, ~i : T ---* P~ x T) as follows. For t E S, define 

~ l ( ( j . s ,  t ) )  - {j,}, 

~2((j ,~, t))  - {< a, ( j ,8 , t ' )  >l< a,t' >e  ~(t)} u {j,Jj,e ~(t)}. 

For (s, t) E R, put 

~l((S,t)) 

U 

~2((~,t)) - 

U 

U 

{ < a , ( s ' , t ' ) > l < a , s ' > E a ( s ) A  < a,t' >E a(t)  A s'Rt'}  

{j ' lXe ~(~)}, 

{< a, (j-s, t') > l •  ~(s) A < a, t' >e  ~(t)} 

{ •  ~(t)} 
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It is readily checked that/31 and ~2 are (monotonic and thus) continuous and satisfy the 

conditions of Definition 5.4. In particular, c~ o 7r2 = P~ x 7r2) o ~2 because for all pairs 

(s, t) �9 R with -k�9 c~(s), the set ~2((s, t)) contains elements < a, (-ks, t') >, for every 

< a, t' > � 9  c~(t). This will ensure the presence of < a, t' > in P~ x 7r2) o ~ ( ( s ,  t)), even 
if there exist no s' �9 S with < a, s' >E c~(s). (Similarly for ( I s ,  t) �9 T.) 

Conversely, every ordered "P~ x-)-bisimulation can be seen to correspond to a partial 

bisimulation: Let R C_ S• x 5'1 be an ordered P~ x -)-bisimulation. Define 

T = R n ( S x S )  

and let (s, t) �9 T. Suppose s --% s'. Then there exists t' �9 S such that < a, (s', t') > �9  

~l((s, t)). Since ~1 __. N,  also < a, (s', t') > � 9  ~2((s, t)). Thus t --% t' and s'Tt'. 

Next suppose s ~. It follows from ~ __ ~2 that t 1. Suppose moreover that t _2., t'. 

Then there exists s' �9 S such that < a, (s', t') > � 9  B2((s, t)). It follows from s $ and 

/31 U/32 that < a, (s', t') >�9 t)). Thus s --% s' and s'rt ' .  [] 

E x a m p l e  5.6 Simulation 

The above definition of ordered F-bisimulation was motivated by [Pit92]. Ordered F- 

bisimulations can be equivalently defined as follows: Let  F : CPOL --* CPO• be a 

functor and let (A, a) be an F-coalgebra. Consider a relation R C A x A with projections 

7ri and ~r2 as usual. A relation R f C_ F(A) x F(A) is defined by 

R F - {< F(lh)(xl),F(rc2)(x2) >l xl ,x2 �9 F(R) h xl EF(n)x2}. 

Then R is an ordered F-bisimulation on (A, or) if and only if, for all (a, a') �9 A x A, 

aRa' ::~ c~(a)RFc~(a'). 

Now, in this shape, ordered F-bisimulations can be easily seen to generalize the simula- 

tions (for the functorial case) of [Pit92]. rq 

5.3 Strong Extensionality in C P O •  

Because the definition of F-bisimulation has been generalized to that of ordered F- 

bisimulation, the fact that final F-coaigebras are strongly extensional is not immediate 

from Theorem 2.4. In fact, a somewhat stronger property can be proved (again referred 

to as strong extensionality): 

T h e o r e m  5.7 The initial fixed point (D, i) of a locally continuous functor F : CPO• 

CPO• is strongly extensional; that is, for all d, e E D, 

d U_D e C~ d Uf  e 

(where EF----- I.J{R _C D x D I R is an ordered F-bisimulation on (D,i) }). 

P roo f .  The inclusion from left to right follows from the observation that --D is an ordered 

F-bisimulation on D: First observe that --D, with the inherited order from D x D, is a 
cpo. Next define A : D ---*ED by , for all d E D, 

A(d) _=< d,d > 
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and ~l, ~ :ED ~ F(ED) by 

fll - F ( A )  o i o ~i 

f~= --- F ( A )  o i o ~r.. 

Then ED is an ordered F-bisimulation on D with f~ and f~2: 

71" 1 7( 2 

ED " D ' * ~ D  

~i * i * % 

F(A) F(A) 
F ( K n )  " �9 F ( D )  �9 " F(a__n) 

F(~l )  F(~r2) 

Conversely, let R C_ D x D be an ordered F-bisimulation with f~l _ f12. As usual, let ~h 

and Ir2 be the projections from R on D. We want to show ~rl _ 7r2 (from which R C E D  

follows). The proof is very similar to that of Theorem 5.3. Let (/~, : D~ -~ D)~ be the 

cone used in the construction of D. It will be sufficient to prove, for all n > 0, 

~ o 7ri E / ~  o 7r~ 

because (as in Theorem 5.3) each of the following formulas implies the next one: 

#~ o ~rl ___ #~ o 7r2 

~ :  o ~ o ~ __ ~:. o ~ o ~-~ 

U < o ~ o ~1 __ U < o ~ o ~ 
n n 

71"1 ~ 71"2 

(The latter implication follows from the initiality lemma and the continuity of o.) 

Use induction on n. The case n = 0 is trivial because #~ is the constant function 

Ad. _L. Suppose next that #~ o ~rl [- /~  o Tr2. Then/~+1 o ~l K P - -- #,+1 o ~r2 is proved as 

follows: 

implies 

F(~) o F(~l) E F(~) o F(~) 

because F is a locally (continuous and thus) monotonic functor. Since fil _E t32 this implies 

F ( # [ )  o F(Th) o fll E F(#~) o F(Tr2) o/~2 

Using the commutativity properties of fll and/32, it follows that  

F( t t [ )  o i o ~1 _ F ( # [ )  o i o 7r~. 
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Finally the fact stated at the end of Theorem 5.2 yields 

P P 
# n + l  O 71-1 __F" # n + l  O 71" 2. 

R 

F(R) 

,'K1 
, D ,  

. F (D) .  
F(Trl) F(~2) 

R 

Y(,~) 

F(R) 

D. 

Dn+l 

F1 

Coro l la ry  5.8 Let us call an ordered F-bisimulation R on (D, i) symmetric if ~1 = ~2. 

Define L = I.J{R C_ D x D I R is a symmetric F-bisimulation on (D , i ) ) .  For all 

d, e E D, 

d L e t=~ d = e. 

E x a m p l e  5.5 (cont inued)  The fact that the initial fixed point of the functor P~ x -) : 

CPO• ---* CPOj_ is "internally fully abstract ' - 'Proposit ion 3.10 of [Abr91]--follows from 

Theorem 5.7 and the observation that this functor is locally continuous. 

E x a m p l e  5.6 (cont inued)  The extensionality results of [Pit92] (for the functorial case) 

can all be obtained as instantiations of Theorem 5.7. 

6 C o n c l u s i o n  

The final coalgebra theorems discussed in this paper show that standard domain con- 

structions are in fact final coalgebra constructions. A more categorical approach could be 

taken in the sense that only categorical properties, like the existence of colimits, would 

be taken into account in the construction of final coalgebras. 

Recall that algebras and coalgebras can be regarded as abstractions of the notions of 

pre- and post-fixed points, respectively. It would then be natural to look for a general- 

ization of the following standard fixed point theorems from lattice theory: 

Let s = (L, <) be a complete lattice, with 2 and T as bottom and top elements, and 

Ii and I] as join and meet operators. Let f : s ~ / :  be a monotone function and consider 

the following chains: 

2 <_ f(_L) = fT1 _< f2(-l-) = fT2 _<"" _< H fTn = fTw _ fTw + 1 _<... (6) 
rt<~o 
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T > f ( T )  - f$1 _> f2(T) - f~2 >_... _> IX f , L n -  fJ, w >_ fJ, w + 1 > . - .  (7) 

Then the least and the greatest fixed point (w.r.t. _<) of f are 

I_I fTa and 11 f ~ "  
~e On ~e On 

The generalization of the above theorem from least fixed points to initial algebras has 

already been worked out in [AK79]. Lattices (as pre-orders) generalize to categories, bot- 

tom elements to initial objects, monotone functions to endofunctors, least upper bounds 

to colimits. One has then the following diagram: 

I 

0 - -~  F(0) ~ F2(0) F~('--~ ) - ~  Colim~<~F~(0) F ~ ' . . . .  - ~  F(F~) )  - - ~ . . .  (8) 

Here the fact is used that a unique arrow (denoted by '!') exists from the initial object to 

any other object of the category, and from a eolimit of a diagram to any other cone over 

that diagram. In [AK79] conditions are given for the existence of an ordinal at which this 

construction stops and then shown that it yields an initial F-algebra. 

A dual result would then be phrased in terms of final objects and limits, generalizing 

top elements and greatest lower bounds: 

1 *--:- F(1) ~ F2(1) F'(,._._) , Lim~<~Fn(1 ) F~ , . . . .  ,.z_ F ( F  ~) ~ .__. . .  (9) 

This has not been fully investigated so far, although a 'schematological' approach to 

domain equations as in (9) is sketched in [Abr88]. 

A more abstract approach is taken in [Bar91] when dealing with the existence of final 

coalgebras in the category Set of sets (it is not immediately clear whether standard set 

theory or just basic set theory is assumed there). The existence of final coalgebras in such 

category is proved for a certain class of functors F (so-called accessible) by showing that 

the evident forgetful functor from the category of F-coalgebras Ser f  to the category Set 

has a right adjoint. Moreover, if the functor F preserves limits of countable chains (i.e., 

it is w-continuous) then this final coalgebra is the limit of the chain 

T 

1 ~ - -  F(1) ~ F2(1) F2(') Fn(]) Fn(1) Fn+~'~l(!) ~--- �9 - �9 ~ sn+l( t )  . . . . .  (10) 

where 1 is an arbitrary one element set (indeed final object in Set). In the same paper it 

is shown that, under the further assumption that F(0) # 0, the final F-eoalgebra is the 

Cauchy completion of the initial F-algebra. 

As already mentioned in the section about non-standard set theory, the existence of 

final coalgebras in the category Class of classes over basic set theory has been proved 
in [AM89]. Also there the construction is of a categorical nature, but of a different 

character. It amounts to a "quotient construction": given a notion of F-congruence (of 
which F-bisimulation is a special case) the final F-coalgebra is obtained by taking the 
quotient under the (existing) maximal F-congruence of the (disjoint) union of all small 
F-coalgebras. A quotient construction is also carried out in [Bar91]. 
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6.1 A Comparative Analysis 

To come back to the constructions discussed in this paper, they can be regarded as 

instances of (9) and (10) (and even (8)). The construction in CP01 is the one which 

better fits into those schemata. By instantiating (10) in CPO• where the final object is 

{_l_}, and taking F to be a locally continuous endofunctor, one obtains a diagram which 

is both in CPO• and in CPO P, the subcategory having projections as arrows. The latter 

category can be considered as a cpo itself and this structure can be used in order to 

find that the limit of that diagram is a final F-coalgebra in CPO P. As indicated at the 

beginning of Section 4.1 a 'lifting lemma' can be proved which ensures that limits of ~v- 

chains in CPO e are limits in CPO• as well. By applying the dual of the Basic Lemma 

from [SP82] it follows that this limit is a final F-coalgebra in CPO• 

Notice that the final object in CPO• is a final object in CPO P as well. Moreover it is 

an initial object in both CPOi and CPO E, the category of embeddings which is dual to 

CPO e. This duality arises from an adjunction between the embedding and the projection 

in an embedding-projection pair. It implies that the dual of the diagram in CPO P is a 

diagram in CPO E with reversed arrows, which has as colimit the limit of the original 

diagram in CPO P. A lifting lemma can be applied also to CPO E so that initial and final 

coaigebras of a locally continuous endofunctor coincide. (See Theorem 5.3.) 

�9 For CMS there is a similar passage from the original category to a subcategory of 

embedding-projection pairs. However, the adjunction property between embeddings and 

projections which holds in CPO• is not available here. Therefore, the limit-colimit coin- 

cidence does not hold in this setting. The category CMS p of projections can be defined as 

the subcategory of CMS with as arrows those non-expansive mappings which have a right 

inverse. This right inverse is an embedding (not unique!) making f part of an embedding- 

projection pair. Notice that singleton sets are final objects both in CMS and in CMS p. 

Instantiating diagram (10) to CMS yields, for every locally contracting endofunctor F, 

a diagram in CMS p whose limit is a limit in CMS as well. Although initial and final 

objects in CMS do not coincide and, more in general, the limit-colimit coincidence does 

not apply, in CMS final coalgebras are initial algebras as well. 

For Class* the situation is rather different. The limit is still taken in a subcategory, 

but this is not a category of embedding-projection pairs. It is rather the subcategory, 

say Class I, having inclusion mappings as arrows (and therefore with the extra structure 

of a lattice). The final object (top element) is the universe V, which is clearly not 

final in Class*, while the initial object is the empty set, which is also initial in Class*. 

Set-continuous functors have both a final coalgebra (greatest fixed point) and an initial 

algebra (least fixed point) in ClasJ. These will in general be distinct (in contrast to what 

happens in CPO• and CM~. Set-continuous functors are not w-continuous, hence these 

constructions cannot be seen as instances of (10) and its dual, but rather of (9) and (8) 

(as well as of (7) and (6)). Now, for functors which preserve inclusions, the initial algebra 

in ClasJ is also an initial algebra in Class*. For final coalgebras an extra requirement is 

needed, namely that the functor be uniform on maps as well. This asymmetry has to be 

better understood. 
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6.2 Final Semantics (continued) 

As suggested by the title and mentioned in the introduction, this paper is meant to provide 

a basis to a final coalgebra semantics. Two distinctive features of such semantics are the 

definition of semantic mappings as final arrows (which implies that the domain itself is 

final) and the use of coalgebras in order to express the structure to be preserved under 

(not necessarily semantic) transformations. 

Semantic mappings as arrows into a final object are not an exclusive feature of final 

coalgebra semantics, apart from the fact that, as already mentioned, several semantics 

in the style of [BZ82] can be seen as final coalgebra semantics. For instance, in [Abr91] 

there is a 'Final algebra theorem' which says that the given semantic mapping associated 

to a specific domain for bisimulation is the unique morphism (in which category?) from a 

transition system into the domain, the latter regarded as a transition system itself. Here, 

'algebra' presumably stands for the Lindenbaum algebra which is associated with a certain 

domain logic introduced in that paper. The definition of that semantic mapping makes 

use of the fact that that domain is the Stone dual of the finitary fragment of such logic. 

(By the way, the fact that the same (final) semantic construction in [Abr91] for CCS-like 

languages has been carried out in [Abr90] for the lazy lambda-calculus makes it plausible 

that final coalgebra semantics might be given to applicative languages as well.) 

However, in the above as well as in other examples the recognized finality of the do- 

main is not systematically exploited, except for the final coalgebra semantics for CCS 

given in [Acz88]. As mentioned in the introduction, in the forthcoming paper Observa- 

tions as Functors other instances of final coalgebra semantics will be given, starting from 

the idea that observations can be formalized as functors. Other equivalences than bisimu- 

lation will be treated, like, for instance, trace equivalence. The coalgebraic approach will 

give a particular insight into the problem of full abstraction and other issues related to 

compositionality (see also below). 

Notice that the specific domain defined in [Abr91] as an initial algebra not only is 

recognized there to be a final transition system, but also indicated to be a final coalgebra 

as a consequence of the limit-colimit duality. The latter has been used also in [Stay92] 

to prove that, for so-called information categories (general order-theoretic frameworks for 

solving domain equations) and suitable endofunctors over them, initial algebras and final 

coalgebras coincide. Finally, it should be mentioned that an early reference to finality as 

a definition method for semantic mappings can be found in [O1e82]. 

Consider now the other distinctive characteristic of final coalgebra semantics men- 

tioned above. An extra coatgebraic structure is added to programs (as a function from 

programs to their observable computations) and arrows from the coalgebra associated 

with a program are transformations which preserve this extra structure - -  together with 

the information contained in it. Part of this information is, for instance, F-bisimilarity, 

which is indeed preserved by (certain) arrows between F-coalgebras. This addition of a 

categorical structure, together with its preservation under transformation, again is not 

exclusive of final coalgebra semantics. Another example of such an approach is the clas- 

sical initial E-algebra semantics. The extra algebraic structure is used there in order to 

preserve the operators (of the signature Z of the language) under transformation. The 

semantic mapping is again a unique arrow, only it is initial, instead of final: it is the 

unique arrow from the programs regarded as the (free and thus) initial Z-algebra into the 
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chosen domain. Since operators are preserved by transformations, the semantic will be 

by definition compositional. The problem there is to define suitable semantic operators, 

that is, to turn the domain into a suitable Z-algebra. 

The issue of defining semantic operators within the context of final coalgebra seman- 

tics has already been treated in [Acz88]. There, the finality of the domain is exploited 

for defining semantic operators for CCS, but by means of a rather ad hoc construc- 

tion. Instead, in the forthcoming paper Observations as functors, a systematic method 

for deriving semantic operators from transition system specifications given in [Rut92] is 

rephrased in terms of final coalgebra semantics. This amounts to deriving a Z-algebra for 

the domain by means of finality properties. It can be then proved that the original final 

semantics is compositional if and only if it coincides with the initial Z-algebra semantics 

associated to that construction, which is also unique, but now w.r.t, a different category. 

As already mentioned, the categories of F-coalgebras considered in this paper are 

not the standard ones in category theory. Usually, the endofunctor F is to be part of a 

comonad and the arrows between F-coalgebras have to preserve also this extra comonadic 

structure. Semantics by means of comonads has been investigated in [BG91]. (But see 

also [Mog89] for semantics in terms of the dual notion - -  monads.) It would be interesting 

to understand whether some connections can be established with that work. 

6.3 Coinduction 

For F-algebras the following induction principle can be easily proved: let (A, a) be an 

initial F-algebra and let (B,/7) be any F-algebra. If ~ : (A,c~) ~ (B, fl) is a mapping 

between F-algebras and 7r is monic (the category-theoretical generalization of injective), 

then ~r is an isomorphism. An immediate consequence is, for instance, the induction 

principle for natural numbers (viewed as initial algebra of a suitably chosen functor). 

(E.g., see [PloSla] and [LS81].) The dualization of the induction principle yields what 

could be called a coinduction principle for final F-coalgebras: let (A, ~) be a final F- 

coalgebra and let (B,/7) be any F-coalgebra. If 7r : (B,/3) ~ (A, a)  is a mapping between 

F-algebras and lr is epic (the generalization of surjective), then r is an isomorphism. (See 

also [Smy92].) In [MT91], this principle is used in the basic case where the category under 

consideration is a lattice and the functor F a monotonic operation. 

At the same time, the fact that an F-coalgebra (A, ~) is final implies the principle 

of strong extensionality (stating that on (A, ~) equality and F-bisimulation coincide--- 

Theorem 2.4). (See also the remark about [Pit92] in Example 5.6.) And for many functors 

it is possible to deduce from the principle of strong extensionality the coinduction principle 

mentioned above. In a forthcoming paper, these different formulations of coinduction will 

be compared. 
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