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Abstract. Canonical solutions of domain equations are shown to be final coal-
gebras, not only in a category of non-standard sets (as already known), but also
in categories of metric spaces and partial orders. Coalgebras are simple categori-
cal structures generalizing the notion of post-fixed point. They are also used here
for giving a new comprehensive presentation of the (still) non-standard theory of
non-well-founded sets (as non-standard sets are usually called).

This paper is meant to provide a basis to a more general project aiming at a full ex-
ploitation of the finality of the domains in the semantics of programming languages
— concurrent ones among them. Such a final semantics enjoys uniformity and gen-
erality. For instance, semantic observational equivalences like bisimulation can be
derived as instances of a single ‘coalgebraic’ definition (introduced elsewhere), which
is parametric of the functor appearing in the domain equation. Some properties of
this general form of equivalence are also studied in this paper.
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0 Introduction

This work originates from an attempt to identify the common features of partial or-
ders, metric spaces, and non-standard sets, that make these three different mathemati-
cal settings all suitable for defining semantic domains for concurrent programming lan-
guages. (To be precise, the distinctive feature of the domains under consideration is
non-determinism rather than concurrency, the starting point being languages like CCS
[Mil80] in which concurrency is reduced to sequentiality plus non-determinism.) It has
resulted in a general semantic framework which could be called final semantics, as it is
based on the observation that domains are final objects in a categorical sense.

This paper is a first account on this work, namely on its foundational part. It is
shown that, regardless of the fact one is working with partial orders, metric spaces, or
non-standard sets, domains are final objects in a suitable category of coalgebras. Moreover,
some properties of final coalgebras are investigated in the abstract.

The categorical notion of coalgebra is quite elementary: given a category C (e.g., a
category of complete metric spaces) and a functor ¥ : C — C, a coalgebra of F is a pair
(A,a), with A an object in C and o : A — F(A) an arrow in C. Clearly, a solution
to a domain equation X 2 F(X) can be seen as a coalgebra (D,7), with ¢ being an
isomorphism between D and F(D). The coalgebras of a given functor F over a category
C form a category Cr. Arrows are mappings of C which preserve the coalgebra structure
(see the next section for a formal definition).
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Semantic domains are usually obtained as solutions of recursive domain equations of
the kind given above. There might be more than one such solution, but, for large classes
of functors, a canonical one is taken. One of the starting points for the present work is
a result in [Acz88], showing that, within a category of (classes over) non-standard sets,
the canonical solution of a domain equation is a final coalgebra. (Non-standard sets are
actually called non-well-founded sets in [Acz88], which is one of the standard references
on the subject — but see also [FH83, FH92]. The word ‘non-standard’ has here a different
meaning than in model theory.)

In this paper, it is shown that the canonical solutions of domain equations are final
coalgebras, not only in that category of non-standard sets, but also in a category of
complete metric spaces and in a category of complete partial orders. In other words, for
these three different categories C and for large classes of functors F, the canonical solution
to a domain equation X = F(X) is a final object in the category Cp.

0.1 Final Semantics

The finality of the domains is not only a unifying property. Final objects are the target
of a unique arrow from any other object of the same category. This is a valuable property
from a semantic point of view.

" Recall that semantics can be given to a programming language by first defining a
semantic domain and then associating a meaning to the programs of the language by
mapping them onto elements of the chosen domain. The (by finality!) unique arrow from
another coalgebra (of the same functor) into that domain is then a natural candidate
for such an interpretation mapping. The problem is to give the class of programs of the
language a coalgebra structure of the same functor used for the domain. Loosely speaking,
syntax and semantics should live in the same category of coalgebras of this functor, the
latter expressing the structure to be preserved under semantic mapping.

For instance, consider the language CCS. A semantic mapping should equate those
programs which perform the same computations under a certain — informal — notion
of observation (and keep the other distinct). As will become clear later, the choice of
the functor for the domain amounts to making this notion of observation formal. Thus
the functor defining the domain should be fixed according to the observation one has in
mind. Further, computations are described by means of a transition system (induced
by a set of structural rules) which is essentially a graph having programs as nodes and
transitions as edges. Every program is the root of a tree obtained by unfolding the graph
from that program. Such a tree gives the computations performable by the root program.
Notice that there are many different ways of traversing a tree, each corresponding to a
different notion of observation. The problem is thus, given a functor for a domain, to find
a representation of the transition system as a coalgebra of that functor.

In general, the semantics shall depend on the observation one wants to perform on the
computations or, more abstractly, on the functor one fixes. (Observations as functors!)
For simplicity, it will be convenient that the functor be on some category of sets, possibly
with some additional structure (e.g., metric or order), and leave to further developments
generalizations to less concrete categories. More essentially, the existence of a final coalge-
bra for the functor will be needed, possibly to be shown via some limit construction. Then
if one is able to find a representation of all the observable computations as a coalgebra of
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the same functor, the (final) semantics of the language will immediately follow. (Ideally,
this scheme would include not only concurrent languages, but also applicative ones —
see, e.g., [Abr90]). Alternatively, the observable computations of the class of programs of
the language under study might be directly defined as a coalgebra of the chosen functor.

Of the general methodology sketched above at least one instance is to be found in
the literature: it is the final semantics for CCS given in [Acz88]. There, the seman-
tics is based on a (straightforward) coalgebra representation of transition systems for a
specific functor (see Example 1.4). The existence of other representations (for different
functors and, thus, domains) of transition systems (and, possibly, of observable computa-
tions in general) will be treated in a forthcoming paper (Observations as Functors: final
semantics for programming languages), together with other issues (like compositionality)
involving the languages. Instead here, as already mentioned, the attention is rather fo-
cussed on foundational issues, independent from the languages, like the general properties
of functors ensuring the construction of final coalgebras. Moreover, there is a ‘coalgebraic’
notion which can be studied in the abstract and which is of major interest for seman-
tics: the kind of equivalence induced by a functor and its coalgebras. Some properties of
such an equivalence are useful in clarifying the relationship between final semantics and
‘equivalence-based’ semantics.

Consider again CCS. An alternative approach to its semantics is to formalize the
notion of observation in terms of an (observational) equivalence. The semantic mapping
associates to each program its equivalence class and the domain is then simply defined as
the image of that mapping. A popular example of such an observational equivalence is
(strong) bisimulation as defined in [Par81]. Now, the functor used for the final semantics
in [Acz88] can be shown to induce bisimulation equivalence in the sense that two programs
are mapped (via the final semantics) into the same process if and only if they are bisimilar.

One of the advantage of working with final semantics is that there is a single ‘coalge-
braic’ notion of (possibly observational) equivalence which is parametric of the functor:
it is the definition of F-bisimulation as given in [AM89]. For a particular choice of the
functor F', namely the one used in [Acz88] (but see also [BZ82]), F-bisimulation coincides
with bisimulation in the traditional sense, as was observed above. Also other equivalences,
like for instance trace equivalence, can be obtained by instantiating F-bisimulation to a
certain functor (as will be shown in the above mentioned Observations as Functors). And
even for the existing observational equivalences which do not fall under this scheme, it
might still be useful to understand why they fail to be described in this way.

0.2 Contribution of this Paper

It is now possible to be more precise about the technical results in this paper. First of all
it is shown that final coalgebras are sirongly eztensional in the sense that two elements
of a final F-coalgebra are equal if and only if they are F-bisimilar. Also other abstract
properties concerning F-bisimulations are studied. Then a final coalgebra theorem is given
for each of the three categories under study, stating that the canonical solution of a domain
equation is a final coalgebra.

As already mentioned, the (so-called special) final coalgebra theorem for non-standard
sets is not a new result ([Acz88]). However, the proof given here is somewhat more trans-
parent than the original one because of a different formulation of the definition of unifor-
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mity on maps, which occurs in the conditions of the theorem. An extensive description
of non-standard set theory is included as well, both because this theory (still) is non-
standard indeed, and because the way it is presented here has some interest on its own. A
uniform characterization of standard and non-stendard set theory is introduced, showing
that the latter theory is as natural as the former: the foundation and anti-foundation
axioms are stated in terms of initial algebras and final coalgebras, respectively. The use
of final coalgebras is particularly helpful to have a concise and uniform presentation of
equivalent forms of the anti-foundation axiom, like, e.g., the Solution Lemma used in the
proof of the final coalgebra theorem.

For metric spaces the final coalgebra theorem is a new result. It is shown that locally
contracting functors on the category of complete metric spaces (with non-expansive map-
pings as arrows) have a final coalgebra. The proof is based on a theorem stating that such
functors have fixed points. The latter theorem extends earlier results of [AR89] along the
lines of [SP82], and is proved in full detail.

For partial orders an initial algebra theorem and the so-called limit-colimit coinci-
dence are well-known (see [SP82]), but, apparently, it was never proved in detail that (in
CPQ,) initial algebras and final coalgebras coincide. (Actually, the proof given here of
the ‘order-theoretic’ final coalgebra theorem does not make direct use of the limit-colimit
coincidence.) It is shown that the fixed point of a locally continuous functor on the cate-
gory of complete partial orders (with strict and continuous mappings) is a final coalgebra
in that category.

The main result about the category of cpo’s is the study of a new notion, called ordered
F-bisimulation, which is a generalization of the definition of F-bisimulation. Both the
notions of partial bisimulation from [Abr91] and that of simulation from [Pit92] (for the
functorial case) can be seen to be examples of ordered F-bisimulations. Corresponding
to the notion of ordered F-bisimulation is a generalized notion of strong extensionality.
A proof is given of the fact that the final coalgebras of locally continuous functors are
strongly extensional in such a generalized sense. It implies the internal full abstractness
result from [Abr91], and the extensionality results (for the functorial case) from [Pit92].

0.3 Overview of the Paper

In Section 2 (algebras and) coalgebras of functors are introduced. Examples are given
showing that the powerset functor can be used for coalgebra representations of graphs
and (labelled) transition system. A third example consists of a metric variant of the final
serhantics given in [Acz88] (and mentioned above).

Section 3 is dedicated to the notion of F-bisimulation. It is first shown that for the
same kind of functor as in Examples 1.4 and 1.8 it corresponds to strong bisimulation.
Then abstract properties are proved like strong extensionality and preservation of F-
bisimulation in the category of F-coalgebras.

In the next three sections, final coalgebras in the categories of non-standard sets,
complete metric spaces, and complete partial orders are treated. These sections can be
read independently from each other (but presuppose Sections 2 and 3).

In the last section, a comparative analysis is made between the three different final
coalgebra constructions discussed in the paper. Related and future work, including the
relationship between final coalgebras and cosnduction (the dual of induction), are also
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discussed.
Although an extensive use of diagrams is made throughout the paper, no previous

knowledge of category theory is required. Indeed, just a few (elementary) categorical
notions are used.

1 Algebras and Coalgebras of Functors

Let C be a category and F' : C — C be a functor from C to C. (Such a functor is called an
endofunctor on C.)

Definition 1.1 An F-coalgebra is a pair (4, ), consisting of an object A and an arrow
a:A— F(A)in C. It is dual to the notion of F-algebra: an F-algebra is a pair (4, a),
consisting of an object A and an arrow a: F(A) - Ain C. o

For instance, consider a preorder (C,<). It can be interpreted as a category: the
objects are the elements of C, and between any two elements ¢,d € C there is an arrow
if and only if ¢ < d. Any monotonic function F : C — C is then an endofunctor on C.
Thus an F-coalgebra is a post-fixed point z € C with z < F(z), and an F-algebra is a
pre-fixed point z € C with F(z) < z.

Definition 1.2 F-coalgebras form a category, denoted by Cr, by taking as arrows between
coalgebras (A, e) and (4, &) those arrows f: A — A’ in C such that o' o f = F(f) o ¢
that is, the following diagram commutes:

A A

F(A) — F(A")
F(f)

Reversing the arrows one can easily define the category of F-algebras. O

Notice that in category theory the name F-(co)algebra is usually reserved for the
case when F' is the functor of a (co)monad (see, e.g, [Lan71]). F-(co)algebras have then
some extra structure. They form a different category which, however, can be regarded
as a subcategory of the above category of F-(co)algebras by simply forgetting the extra
(co)monadic structure both in the objects and in the arrows.

As the name suggests, there is a relationship between algebras of functors and the more
traditional X-algebras (sets with operations). For instance, the natural numbers together
with the constant 0 and the successor function form a ¥-algebra (for any X consisting of
a constant and a unary function symbol). Consider the functor 1+ - on the category Set
of sets, where 1 is a one element set, and + is the disjoint sum. An algebra of this functor
is a pair (A, ), with @ : 14+ A — A defined as the sum of the functions

e: 1—-A
t: A— A.
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Now the natural numbers can be seen to be an algebra of the above functor by defining
e and ¢ as follows: e maps the only element of 1 to 0, and ¢ is defined as the successor
function.

Given this relationship between algebras of functors and algebras in the traditional
sense, it is natural to look for a notion of coalgebra dual to the one of algebra. In other
words, what is the dual of operations? An operation on a set A can be regarded as an
action which, given some objects of A, combines them into a new object of A. Its dual
is then an action which, given an object, decomposes it into several new components. A
simple example is the following.

Example 1.3 Graphs

A graph is a pair (N, —) consisting of a set NV of nodes and a collection — of (directed) arcs
between nodes: —C N x N. A graph can be regarded as a coalgebra of the (covariant)
powerset functor P on the category Set of sets as follows. Let child : N — P(N) be
defined by, for all n € N,

child(n) = {m | n — m}.
O

A similar example is given by non-deterministic computations which can be said to
be split at every state into a set of possible computations. To describe non-deterministic
computations labelled transition systems in the style of [Plo81b] are often used:

Example 1.4 Labelled Transition Systems
A labelled transition system (LTS) is a triple £ = (S, A, —), consisting of a set S of
states, a set A of labels, and a transition relation

—CSxAxS

Often programs, given as closed terms over some signature, constitute the set .S of states.
Non-determinism is expressed by the fact that from a single state many different transi-
tions are possible. Every LTS can be seen as a labelled graph: the nodes are the elements
of S; there is an arc with label o between two nodes s and &' if and only if (s,a,s') €—
(also written as s—-s'). LTS’s can be represented as coalgebras as follows. Let the
functor

P(Ax-): Set — Set
be defined, for any set X, by
PAxX)={U|UCAx X}

A labelled transition system (S, A, —) can then be represented as a coalgebra (5, a) of
the functor P(Ax-) by defining o : S — P(AxS), for all 5,5’ € 5, a € A4, by

<a,8 >€a(s) <= s
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The above is the coalgebra representation of transition systems from [Acz88] (but see
also [Hes88]) mentioned in the introduction. The LTS associated to a language like CCS
has programs as states and atomic actions as labels. Transitions are given by the inductive
closure of a set of structural rules. In Example 1.8, still along the lines of [Acz88], a final
semantics based on this representation is illustrated. But first the definition of final
objects in a category is needed:

Definition 1.5 An object A in C is called final if for any other object B in C there exists
a unique arrow from B to A. It is the dual notion of initial object (unique arrow from
the object). Final and initial objects are unique up to isomorphism. (]

Consider again a preorder (C, <) (viewed as a category) and a monotonic function
F:C — C. A final F-coalgebra is simply the greatest post-fixed point of F, which by a
standard result is also the greatest fixed point. (Dually, an initial F-algebra is the least
(pre-)fixed point of F.) Below, the notion of fixed point is generalized to functors and
then a standard result is shown: final coalgebras are fixed points.

Definition 1.6 An F-coalgebra (A, a) is a fired point for F (write A = F(A)) if o is an
isomorphism between A and F(A). That is, there exists an arrow a1 : F(A) — A such
that

aoal= idp(4) and aloa=id,.

Proposition 1.7 A final F-coalgebra is a fixed point of F.

Proof. Let (A, «) be a final F-coalgebra. Since (F(A), F(a)) is also an F-coalgebra,
there exists a unique f : F(A) — A such that the following diagram commutes:

F(F(A)) —— F(A)
F(f)

By finality, the only arrow from (A, @) into itself is the identity. Since both squares of
the following diagram commute, f o ¢ is the identity on A:

A—2 L F4) f 4
a * Fla) * a
F(4) F(F(A)) —— F(4)

Fla) F(f)
But then it also follows that a o f is the identity on F(A):
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aof = F(f)oF(Ol) = F(foa) = F(ldA) = idF(A).

Therefore f is the inverse of a. o

Dually, an initial F-algebra is also a fixed point of F. Notice that a fixed point of a
functor F' can be regarded both as an F-coalgebra and as an F-algebra.

Example 1.8 A Final Semantics

Consider the category CMS of complete metric spaces (with non-expansive mappings as
arrows). On this category, the usual constructions of disjoint sum and product are defined.
Moreover, the powerset functor Peomyp(-), yielding all (metrically) compact subsets is well-
defined on CMS. (Details on these constructions are omitted here; they are given in
Section 4.) Similarly to Example 1.4, a LTS (5, A, —) can be represented as a coalgebra
as follows. Let Poomp(A x -) 1 CMS — CMS be defined, for any metric space X, by

Poomp(Ax X) ={U C Ax X | U is compact}.

The above LTS can be seen to be a coalgebra of this functor by supplying S with the
discrete metric (any two different states in S have distance 1), and defining, for all 5,5’ € S
and a € A,

<a,8 >€a(s) = s-5.

(For a(s) to be well defined, the transition relation — should be finitely branching. For
LTS’s not having this property, other choices for the functor can be ‘made.) As will
be shown in Section 5, the functor Pmp(A X -) has a final coalgebra (P, i), which by
Proposition 1.7 is a fixed point:

PP, (AxP).

Let 7 be the inverse of the isomorphism i. A semantic mapping [] from 5 into P can now
be defined as the unique mapping from the coalgebra (S, a) into the final coalgebra (P, ):

9]

S P

P(AXS) P(AxP)

P(Ax11)
Thus [ satisfies the following recursive equation:
[s] =5({< &, [T >| s—s'}).

This semantics mapping is precisely the same given in [BM88, Rut92] as the fixed point
of a contracting function @ : (S — P} — (S — P), using Banach's fixed-point theorem.
(There the domain is the same, but its finality is not recognized.) O

A fina] remark. There is a notion which generalizes and combines both algebras and
coalgebras of functors: An F, G-dialgebra [Hag87) of two functors F and G from a category
D to a category C is still a pair (A, a), but with @ an arrow in C from F(A) to G(A). It
is a notion useful in type theory.
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2 F-Bisimulation

The final semantics example in the previous section has the property that it maps two
states into the same process if and only if they are (strongly) bisimslar in the following
sense: A relation B C S x S on the set of states S of a LTS (S, A, —) is called a (strong)
bisimulation ([Par81)) if for all € A and s,t € S with sR ,

s— ¢=>IWeS t-2 tand SRt
and
t tV=34¢8 s> sand SR

Next ~ is defined as the union of all bisimulations and two states s and ¢ are called
bisimilar when s ~ t.

In [AMB89] it was noticed that coalgebras can be used for a natural generalization of
the above notion of bisimilarity: For every functor F on the category of classes, a relation
on F-coalgebras is defined, called F-bisimulation. This definition is here (generalized
to other categories and) repeated, and some of its properties are analyzed. It is shown
that final coalgebras are strongly extensional, that is, any two elements of a final F-
coalgebra are equivalent if and only if they are F-bisimilar. Moreover, arrows between
F-coalgebras preserve F-bisimulation. Together, these facts imply that (F-)bisimilar
states are semantically mapped into the same process by the final semantics given in 1.8.
Also the converse is proved here, under the condition that F' weakly preserve kernel pairs.

For sake of simplicity, the (F-bisimulation) relations considered here are of a set-
theoretic nature. That is, relations are defined as subsets of a cartesian product. A more
general categorical formulation would, on one hand, allow defining F-bisimulations for all
categories of coalgebras, but, on the other hand, it would bring unnecessary complica-
tions, since the categorical product of the three categories under study here amounts to
a cartesian product. In categorical words, for each of the categories C considered here,
there exists a faithful forgetful functor U from C into a category of (possibly large) sets
and, moreover, for every object 4 in C, U(A x A) = U(A) x U(A). To be more specific, in
the case of complete partial orders, the product A x A of a cpo A = (4|, E4) with itself
is given by the cartesian (i.e., set-theoretic) product |A| x |A| together with the following
order: for all {z1,11), (z2,¥2) € |A] x |4,

(1,91) C (22,40} = 1 Ea 72 and y1 T4 v

Similarly, if A = (JA|,d4) is a complete metric space, the following metric is to be added
to the cartesian product |A| x |A}: for all {z1,y1), {x2, y2) € |4] x 4],

d((z1,91), (T2, ¥2)) = max{da(z1,Za), da(¥1,¥2)}

(All this can be more synthetically and generally rephrased as: C is a category for which
the forgetful functor into Set exists and creates products.) The notation |A| will be used
also in the sequel to denote the set in a cpo or metric space A (i.e., |[A| = U(A)). A is
a (possibly large) set then |A] will simply be A itself (U is the identity functor).
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Definition 2.1 Let C, throughout the rest of this section, be a category of (possibly
large) sets possibly with an additional metric or order-theoretic structure. For any object
Ain C, a relation R on A is an object R of C such that |R| C JA| x |A]. If A is either a
complete metric space or a cpo, then R inherits the metric or the order from A x A. By

abuse of notation, R C A x A will be used in the sequel to denote that R is a relation on
A. O

Definition 2.2 Let F : C — C be a functor. Let (A4,a) be an F-coalgebra. Let R be
a relation on A. Then R is called an F-bisimulation on (A, ) if there exists an arrow
8 : R — F(R) such that the projections 7,7y : R — A are arrows in Cr from (R, () to
(A, o). That is, both squares of the following diagram should commute:

m )

R A R

8 * o * 8

F(R) F(A) F(R)
F(m) F(m,)

Two elements a and o' in A are called F-bisimilar (notation a < a') if there exists a
bisimulation relation R on (A, a) with aRa’; thus

X =J{RCAxA| Risan F-bisimulation on (4, ) }.

Definition 2.2 indeed generalizes the standard notion of strong bisimulation:

Example 2.3 Bisimulation
Recall from Example 1.4 that the functor

P(A x -): Set — Set

is used for representing LTS’s. Consider a LTS (5, A, —) and let (S, &) be the correspond-
ing P(A x -)-coalgebra. It is shown that there is a one-to-one correspondence between
the strong bisimulations and the P(A x -)-bisimulations on S.

Let R C S x S be a strong bisimulation on S. Define 5 : R — P(A x R) by, for all
sRt,

B((s,t) ={<a,(st)>s= § At>st A SR}

It is straightforward to check that (R, 8) satisfies the conditions of Definition 2.2.
Conversely, let R be an P(A x -)-bisimulation, with corresponding coalgebra (R, 3).

Consider s and ¢ such that sR t. By symmetry, it suffices to prove that, for all &' € S,

a€ A, .

s—=s' = 3, R ¢ and t-"=¢.

That is, for all s’ € §,a € A,
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<a,8 >€a(s)=> I, SRt and <a,t' >€ alt).
Suppose < a,s' >€ a(s). Since
a(s) = o(m((s,1)))

P(Ax )0 B((s,t))
= {<e,u>u€SandIveS <a,(uyv)>€ B((s1))}

I

there exists t' € S with < a,(s’,t') >€ B((s, 1)), and hence s'R¢'. Because
at) = afm((s,1))
= P(Axm)opB((s,t))
it follows that < a,t' >€ a(t). a
The above definition of F-bisimulation paves the way for a uniform treatment of
different kinds of observational equivalence. Other observational equivalences can be
described by choosing a different functor.

The rest of this section describes some semantically interesting properties of F-bisimu-
lation, starting from strong extensionality:

Theorem 2.4 Any final F-coalgebra (A, a) is strongly extensional: for all a1,as € A,
a] =0y < £ ay
(Recall that ~ is the union of all F-bisimulations on (4, a).)

Proof. Let =4 be the identity relation on A. The inclusion from left to right follows
from the fact that =, can be seen to be an F-bisimulation on (A, ) as follows. Define
A:A—-= by foralla €4, Ala) =< a,a>,and f:=,— F(=,4) by 8 = F(A)oaomn.
Then (=4, () is an F-bisimulation on (A, «):

™ o
=4~ A =4
A A
g * o * I}
F(m) F(ms)
F(=4) F(A) F(=4)
F(A) F(A)

Conversely, let R C A x A be an F-bisimulation with (R, ) as in Definition 2.2. Since
both 7; and 7, are arrows in Cp from (R, () to the final F-coalgebra (4,a), it follows
that 71 = m. Thus R C=4. O

Theorem 2.5 Let (B,3) be an F-coalgebra and (4,a) a final F-coalgebra. Let {] :
(B,8) — (A, a) be the unique arrow from (B, 3) to (A, a). For all b;,b; in B,

by X by = [[bl]] = [b2]]
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Proof. Let (R,~) be an F-bisimulation on B. Since both [} o 7 and []o 7, are arrows
between the F-coalgebras (R, ) and (A, @), and since (A, «) is final it follows that fjom; =
[]o ms. 0

In general, in categories of (possibly large) sets one can prove that certain arrows
between F-coalgebras preserve F-bisimulation. More precisely, this holds for arrows that
have a right inverse (also called split epis). (In Set every surjective mapping has, by the
axiom of choice, a right inverse.) The idea is that one would like to show that, given an
arrow f between F-coalgebras (A, a) and (A',a'), and given an F-bisimulation (R, ) on
(A4, a), the following relation

Rf = {(f(a), f(a")) € |4| x |4 | aRa'}

is an F-bisimulation on (A',a’). If F is an endofunctor on a category either of complete
partial orders or of complete metric spaces, one needs first of all to show that R' is a
complete partial order or a complete metric space, respectively. This can be shown under
the assumption that f has a right inverse as follows. Let C be, for instance, CPO (see
Section 5 for the formal definition of CPO ) and assume the existence of a right inverse
h to f. Then one can show that R is a cpo: (L, Lu) is the minimal element, since
f is (an arrow in CPQO, and hence) strict, and (L4, L4) € R. Further suppose that
(f(an), f(a'))s is an w-chain in Rf. By monotonicity of h, {h o f(a),h o fla,)), is a
chain in R. Because R is a cpo this chain has a limit in R, say (e, a’). By continuity of f
it follows that

(fohof(an), foho f(a )= (f(an), flar))n

converges to (f(a), f(a')), which is in R’.
Now, the above right inverse can also be used to define the following arrow

B'=F(fxf)oBo(hxh).

This A turns R into an F-bisimulation. Indeed, consider the cube below:

fxf
R Rf
hxh
5 6’ ﬂ-;
8 A ! A
43
'
F(R) Fuxh | F(R") o
F(m;) F(m)
F(A) F(A"
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All sides commute but the back and the right one. One has to prove the commutativity
of the latter. That is, &' o,/ = F(m;) o #, for i = 1,2. Chasing the diagrams, it follows
dom! = dor/o(fx flo(hxh)

= dofomo(hxh)

= F(floaomo(hxh)

= F(f)oF(r;)oB0o(hxh)

= F(rYoF(f x flofBo(hxh)

= F(r)o g8

All this proves the following:
Theorem 2.6 Let f: (A,a) — (A, ') be an arrow in Cp with a right inverse. For all
a,d € A,

aXa' = fla) % f(a).

For the converse of Theorem 2.5, it is sufficient to prove that for any arrow f between
any two F-coalgebras (4, a) and (A, '), the following relation

R; ={(a,a') € A x |A] | f(a) = f(a))}

is an F-bisimulation on (A, ). Again, it is not difficult to prove that Ry is an object of
the category: E.g., if C is CPO, then the fact that Ry is closed (i.e., all w-chains have
a least upper bound) follows from the continuity of f and the observation that Ry is the
inverse image of the diagonal in |A'| x |A’|, which is trivially closed:

Ry =(f7 x f7){(z,2) € |4 x |41}

Now for Ry to be an F-bisimulation, there should exist an arrow § : Ry — F(Ry) making
both the back and the left side squares of the following cube commute:

R; ™ A
T a f
=l A / A
[0
F(R)) ) ray o
F(my) F(f)
F(A) F(A")
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Note that the front and right squares are equal and commute, because f is an arrow
between coalgebras. The top square also commutes; thus, by functoriality, the bottom
one does as well. Further observe that

F(floaom = dofom
= dofom
= F(f)oaom
One needs the existence of an arrow §
Ry
g QoM
o F(R F(A)
aom 7) F(ra)
F(m) F(f)
F(A) F(A)
F(f)

such that o oy = F(m ) o 8 and a o7y = F(mp) 0 8. It is sufficient for the existence of
such an arrow that the inner square of the above diagram is a weak kernel pair for F(f):

Definition 2.7 Consider an arrow f : b — c in a category C. A kernel pair for f is an
object a and arrows h:a — b and k: a — bin C such that fo h = f ok, and such that
for any other such triple {a’, b, k') there exists a unique arrow e from @' to a such that

W ="hoe
and
K=koe.

The object a, with arrows h and k is called a weak kernel pair if in the precedlng formu-
lation the requirement of uniqueness is dropped. ]

It is not difficult to prove that Ry and its two projections form a kernel pair for f.
Thus for the existence of an appropriate arrow (3 it is sufficient if the functor F' weakly
preserves kernel pairs. We have proved:
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Theorem 2.8 Let F' be a functor weakly preserving kernel pairs. That is, the image
under F' of a kernel pair for an arrow f is a weak kernel pair for the arrow F(f). For
every arrow f between any two F-coalgebras (4, @) and (A', '), the kernel pair Ry of f
is an F-bisimulation on (A4, a).

The above proof is motivated by [AM89], were it is shown that for functors F that
preserve weak pullbacks, the notions of F-bisimulation and congruence coincide. Many
standard functors (built from sum, product etc.) weakly preserve kernel pairs.

The following corollary generalizes the fact mentioned at the beginning of this section
that two states are (P(A x -)-)bisimilar if and only if they are mapped into the same
process:

Corollary 2.9 Let F' be a functor weakly preserving kernel pairs. Let (B, () be an F-
coalgebra and (4, a) a final F-coalgebra. Let []: (B,8) — (4, a) be the unique arrow
from (B, 8) to (A, «). For all b;,b, in B,

[ L by <= |Ib1]] = ‘[bz]]

The Rest of this Paper

In the rest of this paper, the categories Class*, CMS and CPO; will be treated in great
detail. For each of these, a family of functors having a final coalgebra will be identified. In
other words, three final coalgebra theorems will be proved for functors satisfying certain
conditions. The three next sections can be read independently from each other.

3 Non-Standard Set Theory

In this section, a first concrete category is presented in which a final coalgebra theorem
holds. It is the category Class*: objects are classes, possibly containing non-standard (or
non-well-founded, [Acz88]) sets, and arrows are functions between classes. This (so-called
special) final coalgebra theorem goes as follow: Consider an endofunctor F' over Class*
which has a greatest fixed point Jr = F(Jp). Then, if this functor preserves inclusions
and is uniform on maps, the fixed point Jr, together with its identity mapping, is a final
F-coalgebra.

The section is divided in four parts. The first recalls the basic set theory ZFC™ of
which both standard and non-standard set theory are extensions (obtained by adding
respectively foundation and anti-foundation axioms). For this, no previous knowledge of
set-theory is required. This part also describes fixed points of class functors (needed in
the main theorem).

The second part introduces a new formulation of foundation and anti-foundation ax-
loms in terms of initial algebras and final coalgebras (of a powerset functor). A comparison
with the standard formulations then follows. The anti-foundation axiom as formulated in
[Acz88] is here called Decoration Lemma.

The third part recalls the Solution Lemma from [Acz88]. It is yet another formulation
of the anti-foundation axiom. It is used in the proof of the main theorem. The Solution
Lemma is stated using coalgebras and this makes its proof trivial.

In the last part, about the special final coalgebra theorem, a new definition of unifor-
mity on maps is given and then the special final coalgebra theorem is proved.
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3.1 Basic Set Theory

The intuitive idea of a set is that of a collection of objects which have a certain property
©. Moreover, two sets should be equal if and only if they have the same elements. A
first step towards a formalization of such an idea is to fix a langnage to express these
properties. A natural candidate is a first order predicate calculus with equality. The only
primitive relation needed seems to be that of membership, which is a binary predicate
usually denoted by “€”. For instance the usual notion of subset can be expressed as
follows:

zrCy=VYWwwez=>vey).

Constant symbols for denoting the elements of a set will turn out not to be necessary, as
every object of interest can be represented as a set.
Following this intuition, the only axioms would then be:

FEztensionality:
z=y & zCyANyCaz
Strong Comprehension:

V property @, {z | ¢(z)} is a set.

However, Russel’s paradoxical set {z | z ¢ z} shows that such a strong comprehension
axiom cannot be stated in its full generality. Strong comprehension is thus to be replaced
by the following axiom:

Comprehension:
V property ¢, V set v, {z | w(z) Az € v} is a set.

As comprehension can be applied only to members of already defined sets, it is necessary
to postulate the existence of some sets, either primitive or derived by applying some basic
operators:

FEmpty Set:

There exists a set @ with no elements.
Paring, Union, Power Set:

{z,9}, U=, P(z) are all sets.

(As usual, Uz and P(z) stand respectively for the collection of all members of members
of z and the collection of all subsets of z.) By means of the union operator one can define
an operator s acting as successor as follows: s(z) = z U {z}. Regarding the empty set
as 0, the existence of an infinite set can be stated by postulating the existence of a set
containing the natural numbers. That is:

Infinity:
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There exists a set containing 0 and closed under the successor operator s.

(The axioms above, as well as those given in the sequel, are written for convenience in
natural language but note that they can also be expressed in the language of set theory
- see, e.g., (Lev79].)

Further useful notions can be derived from the above axioms, like, for instance, that
of ordered pair:

<z,y>= {z,{z,y}}

A formal definition of function can then be given as a collection f of ordered pairs such
that for every z there exists a unique y with < z,y >€ f. (This was also the first formal
definition of function.) Two more axioms about functions are then usually added:

Replacement:

The image of a set under a function is a set.
Choice:

Every surjective function has a right inverse.

A right inverse of a function f : a — b is a function g : b — a such that f o g is the
identity on b. The above axiom of choice is equivalent to postulate that for every set a
there exists a choice function, that is, a function f such that, for every z € a, f(z) € z.

Even though the collection {z | p(z)} of all sets z having a given property ¢ might
not be a set it can still be of interest for set theory. Such ‘specifiable’ collections are called
classes. Clearly, a set is a class, but the converse is not true, in which case one speaks
of a proper class. For this reason classes are also called large sets. Extensionality can be
applied also to classes, but the restriction has to be imposed that an element of a class is
a set. Thus the classes specified by two properties ¢ and 7 are equal if and only if ¢ and
v hold for the same sets. In the sequel, lower case letters will denote sets while capital
letters will be used to denote classes.

An example of a proper class is the so-called universe of sets, namely the collection of
all sets:

V = {z|z=1=z}

(V is indeed the collection of all sets as the property z = z trivially holds for all sets!)
Notice that different properties may specify the same class. For instance, any property
other than ‘z = z’ which holds for all sets can be used to specify the universe.

The theory associated with (i.e., the collection of all sentences derivable from) the
above axioms (extensionality, comprehension, empty set, pairing, union, power set, in-
finity, replacement, choice) is usually denoted by ZFC~ in the literature (e.g., [Lev79,
Lan86]). In the sequel it will be also called basic set theory.

From the axioms of basic set theory alone it is not possible to draw a canonical picture
of how the universe looks like, a picture independent of the specific interpretation one
might give to the theory. This was felt as a problem already in the early developments
of set theory. The solution was found in the so-called foundation aziom, which was then
added to basic set theory. This axiom restricts the universe to the ‘smallest’ of all possible
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ones. Then the picture arises of a universe in which sets are hereditarily constructed from
the empty set, by iterative applications of the powerset operator. Every set has a rank,
namely the stage at which it appears in such a cumulative hierarchy. This intuitive
structure, together with the fact that all existing mathematics discovered at that time
could still be carried out inside this restricted universe, made the axiom easily accepted.
However, recent applications in computer science have raised interest in the dual choice,
namely in postulating that the universe be the ‘largest’ possible one (anti-foundation
aziom).

In the sequel, this duality between foundation and anti-foundation axiom will be ex-
pressed formally in terms of the categorical dualities between algebras and coalgebras and
initiality and finality, the latter providing a formal definition of ‘smallest’ and ‘greatest’.
This makes the qualitative descriptive improvement in adding a foundational axiom to
basic set theory quite transparent: the universe is described as a universal object in a
suitable—that is, rich enough—category. Therefore, the above two extensions of basic
set theory will be both called categorical set theories. The classical one (basic set theory
with the foundation axiom) will be called standard set theory, while the other (basic set
theory with the anti-foundation axiom) will be called non-standard set theory. Notice
that here the use of the word ‘non-standard’ differs from the use of the same word in
model theory: here non-standard is the postulated presence of non-well-founded sets in
the universe, rather than a model of the universe.

Before introducing categorical set theories, it is useful to discuss some fixed point
theory of functions within basic set theory. Notice that it is customary in set theory to
consider strict equalities rather than isomorphisms as fixed points of functors:

Definition 3.1 A fized point of an endofunctor F' in a category of sets (or classes) is a

set (or a class) X satisfying the equality X = F(X). That is, X is a fixed point of F'
w.r.t. set-inclusion. O

The definitions and results in the rest of this subsection are from [Acz88].

Definition 3.2 Let F' be a class function. Then:
F is set-based if

Vclass AVr € F(A) = 3 aset a C Asuch that z € F(a).
F is monotone if

VA, B: ACB = F(A)C F(B).
F is set-continuous if it is both monotone and set-based. O
Theorem 3.3 If a class function F' is set-continuous then:

1. There exists a class /7 which is the least pre-fized point of F. As usual, it can be
shown that /g is also the least fized point of F.

2. There exists a class Jr which is the greatest post-fized point of F. It can be shown
that Jr is also the greatest fizred point of F.
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There is a characterization of least and greatest fixed points in terms of iterations. For
this purpose the class On of all ordinals is needed. An ordinal is a transitive set (a set
z is transitive if every element y of z is also a subset of z) z which is well-ordered by €,
that is, € totally orders z and every non-empty subset of = has a least element w.r.t. €.
If & and § are two ordinals such that 3 € «, one usually writes § < a. The first ordinals
are: 0, s(@), s%(9), etc. The first limit ordinal is w = Upnen $*(8), which, by the infinity
axiom, is indeed a set.

Corollary 3.4 If a class function F is set-continuous then the following definitions are
sound:

Flea=F(|JF13) ad Fla= F([)FLA).
A< fA<a
Moreover,
Ir=|J) Fla and Jp= () Fla
acOn acOn

There is yet another characterization of Jr as union of sets (thus not arbitrary classes!)
which are pre-fixed points of £

Jr=J{z |z C F(z)}.

3.2 Categorical Set Theory: Standard vs Non-Standard

Classes form the objects of a category, having as arrows class functions, that is, mappings

assigning to every class a class. Actually, to every set theory a different category of classes
is associated.

Definition 3.5 The category of classes of (sets defined in terms of) basic set theory is
denoted by Class. o

The powerset constructor can be turned into a (covariant) functor from Class to Class
as follows: for every class A,

P(A) = {z|zisaset A zC A}
for every function f: A — B and every set z C A,
P(f)(z) = {f(y) |y ez}

Notice that only subsets are taken into consideration. This makes possible that V be a
fixed point of the powerset functor (which, by cardinality reasons, would not be the case
if one would consider the collection of all subclasses of a given class):

Proposition 3.6 vV =PV).

Proof. V is the largest class. Thus, since P(V) is itself a class, P(V) € V. For the
converse it is sufficient to prove that every set z is a subset of V. That is, for every y € z,
y is also in V. This is immediate from the fact that y is a set. a

Since V is the largest class one also has:
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Corollary 3.7 The universe V is the greatest fixed point of the powerset functor.

Notice that P is set-continuous, thus, by Corollary 3.4, V = Jp.
Moreover, the identity mapping idy of V can be seen both as a mapping from P(V)
to V and as mapping from V to P(V):

Corollary 3.8 (V,idy) is both a P-algebra and a P-coalgebra.

Notice that the categories of P-algebras and a P-coalgebras are very rich categories. For
instance, every class function f : A — f(A) can be seen as an arrow between the P-
coalgebras (4, sing 4) and (f(A), sing;4)), where the function sing maps every set  into

The notions of ‘initial’ and ‘final’ are the categorical abstraction of the notions of
‘smallest’ and ‘largest’. Therefore, one could categorically express that the universe is the
smallest or the largest possible one, respectively, as:

Foundation Axiom
(V,idy) is an initial P-algebra.

Anti-Foundation Axiom
(V,idv) is a final P-coalgebra.

A comparison of the above formulation of foundation and anti-foundation axioms with
the standard one is made below, so that it will become clear that equivalent formulations
of these axioms are expressible in the language of set theory. But first the answer is given
to a question which might naturally arises here. Namely, whether initial P-algebras and
final P-coalgebras exist at all in basic set theory. The following two theorems are from
[AM89] and [Acz88], respectively:

Theorem 3.9 Every set-based functor F : Class — Class has a final coalgebra.

Proof. See [AMB89], where the theorem is called Final Coalgebra Theorem. (The proof is
actually based upon a definition of set-based functor which is even more liberal than the
one given above.) O

From the above theorem one can (although not directly) prove that there exists a
function o from V' to P(V) such that (V,a) is a final P-coalgebra. What cannot be
proved is that the identity function is one such o which makes V final, which is in fact
the content of the anti-foundation axiom as formulated above.

Set theory deals with strict equalities rather than just isomorphisms. If one postulates
the anti-foundation axiom then one can prove that, under some rather liberal hyrotheses,
the greatest fixed point of an endofunctor F, together with the identity mapping, is a
final F-coalgebra (i.e., the special final coalgebra theorem). The dual theorem, instead,
can be proved without further assumptions, that is, within basic set theory:

Theorem 3.10 The least fixed point Ip = F(Ir) of a set-continuous functor F : Class —
Class which preserves inclusion mappings (see definition below) is an initial F-algebra.
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Proof. See [Acz88]. |

An inclusion mapping is a function associated with two classes A and B such that A C B.
It has A as domain, B as codomain and maps every element a of A in the same a which, by
inclusion, is also in B. It is denoted by ¢4 5 and the subscript is dropped whenever clear
from the context. An endofunctor F on Class preserves inclusion mappings when, for all
classes A and B with A C B, if F(A) C F(B) then F(ta,5) = trca),F(p)- The powerset
functor is easily provable to preserve inclusion mappings, as well as being set-continuous:
Thus its least fixed point is an initial algebra.

3.2.1 Well-Founded Sets

The formulation of the two axioms above is not quite standard. Usually, by foundation
aziom the following is intended:

V is the least fixed point of P. (1)

Since P is set-continuous, its least fixed point is, by Corollary 3.4, the so-called cumulative
hierarchy

U PTa

=13 On

Thus, assuming V is such a class, a rank can be associated with every set, namely the
stage o at which the set first appears in the hierarchy. This ranking function allows one
to prove that (1) is equivalent to the following statement:

Every set is well-founded w.r.t. €

which amounts to saying that every non empty set has an €-least element. This can be
easily expressed in the language of set theory as follows:

Ve(z#0=>FvwezA-TylyezAyev))).

In other words, there is no infinitely descending chain of sets w.r.t. €. This explains why
the universe of basic set theory together with the foundation axiom is called universe of
well-founded sets.

Theorem 3.11 (V,idy) is an initial P-algebra <= V is the least fixed point of P.

Proof. Since P is set-continuous and preserves inclusion mappings, the implication from
right to left follows from Theorem 3.10. For the implication from left to right consider an
arbitrary fixed point X = P{X). Since:

1. XCV,
2. P preserves inclusion mappings,
3. (X,idx) is a P-algebra,

4. (V,idy) is initial,
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the unique arrow f from (V,idy) to (X,idx) is such that
lx,y © f = ldv

From this, it easily follows that f itself is the identity on V and thus V C X. O

Basic set theory together with the foundation axiom is the standard set theory. Vir-
tually all known mathematics can be carried out inside such a theory and therefore for
many decades only well-founded sets were considered to be sets. It was computer science
that provided non-well-founded sets with one of the first significant applications: seman-
tic processes are non-well-founded sets. (But see also [FH83] for a — previous — purely
mathematical application.)

3.2.2 Decoration Lemma

In [Acz88] the anti-foundation axiom is formulated in terms of graphs and their “deco-
rations”. Corollary 3.8 shows that, already in basic set theory, the universe of sets is a
P-coalgebra. In Example 1.3 it is shown that graphs are P-coalgebras as well. On the
other hand every P-coalgebra (4, a) can be seen as a (possibly large) graph, by interpret-
ing A as a set (or class) of nodes and « as the child function. Therefore, the universe of
sets can be interpreted as the class of nodes of a (large) graph. The childhood relation in
such a graph is given by the membership relation between sets.

At a more local level one can observe that every set z can be “pictured” as a graph:
nodes are the sets in the transitive closure w.r.t. € of z. The same membership relation
gives also the childhood relation. For instance, the set 2 = {0, 1}, with 1 = {0}, can be

pictured as:
2

) 1

The converse of the notion of picture of a set by a graph is the “decoration” of a graph
by a set:

Definition 3.12 Given a graph G, let Gp denote its P-coalgebra representation (see
Example 1.3). A decoration of a graph G is an arrow from the P-coalgebra representation
Gp of the graph into the P-coalgebra (V,idy). O

For instance the mapping
a2 b— @ cr 1

is a decoration of the graph:
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Moreover, it is the unique such decoration. In general, it can be proved within basic
set theory that for every graph which contains no infinite path there exists a unique
decoration. (Mostowski’s Collapsing Lemma.) Notice that a graph has no infinite path if
and only if its childhood relation is well-founded. Thus:

Proposition 3.13 For every well-founded graph there exists a unique decoration.

Clearly, every graph which is picture of a well-founded set is itself well-founded. And the
(unique) decoration of a well-founded graph is a well-founded set.

Many graphs of interest, especially in computer science, are not well-founded, like, for
instance, the cyclic graph with one node and one arc:

O )

One might therefore consider a set theory in which the following generalization of the
above proposition holds:

Decoration Lemma
For every graph there exists a unique decoration.

In fact, the above statement, expressible in the language of set theory is the formulation
of the anti-foundation axiom as given in [Acz88]. It turns out to be equivalent to the
anti-foundation axiom formulated in terms of finality:

Theorem 3.14 (V,idy) is a final P-coalgebra if and only if for every graph there exists
a unique decoration.

Proof. The implication from left to right is immediate: if (V,idy) is final, from any
‘P-coalgebra there exists a unique arrow into it; in particular this holds for coalgebras
representing graphs. The implication from right to left follows by applying the Special
Final Coalgebra Theorem (see below) to the powerset functor, as that theorem can be
proved assuming the decoration lemma instead of the anti-foundation axiom in terms of
finality (see [Acz88]). |

The unique decoration of the graph in (2) is thus then the unique arrow from the coalgebra
({#}, ), with a(e) = {}, into (V,idy):

{e} 4

P({e}) —P(V)

Chasing the diagram, the (only) node of the graph will be uniquely associated to a (non-
well-founded) set, say ©, such that © = {Q}. (This example shows that non-well-founded
sets can also be finite.)

Notice that, since the relation € is not any more well-founded, more than extensionality
is needed in order to establish equality between sets. But a criterion for establishing
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equality of sets arises from the postulated finality of the universe and from Theorem 2.4,
stating that final coalgebras are strongly extensional:

Theorem 3.15 Two sets are equal if and only if they are in a P-bisimulation relation.
By applying Definition 2.2 to the powerset functor, one obtains:

Definition 3.16 A relation R on V is a P-bisimulation if, for every set z and y such
that zRy,

Vi'ex, W ey, Ry
and
Yy €y, Ir' €z, I’RY.

0O

Regarding sets as graphs, and thus edges going from sets into their members, this defini-
tion is just the standard definition of bisimulation as given in [Par81], abstracting from
the fact that there graphs are labelled.

In the rest of this section only non-standard set theory, that is, basic set theory together
with the anti-foundation axiom, will be considered. In particular:

Definition 3.17 The category denoted by Class* is the category with objects the classes
of non standard set theory and with arrows the functions between these classes. O

3.3 Solution Lemma

The finality of the universe V can be exploited not only to regard sets as decorations
of graphs but also as solutions of systems of set-equations. This is the content of the
solution lemma, illustrated in this subsection, which is yet another formulation of the
anti-foundation axiom. This lemma is used in the special final coalgebra theorem.

Let z; and z, be two ‘indeterminates’. Then the following is an example of a system
of set-equations in {z1, 22}

z1 = {xq,{z1,0}},
T {0,2}

In general, a set-equation has an indeterminate in its left hand side and a collection
in its right hand side. The collection in the rhs is a set, apart from the fact that it might
contain not only sets but also indeterminates as elements, and as elements of its elements,
and so on. (It is thus important to keep the symbols used for indeterminates distinct
from those used for ‘pure’ sets.) The collection of all these sets which might contain
indeterminates in their transitive closure forms an ‘expanded’ universe:

Il

Definition 3.18 Given a class X, the ezpanded universe w.r.t. X — denoted by Vx —
is defined as the greatest fixed point of the (set-continuous) functor P(X + -). Thus:
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Vx = P(X + Vx).
O
Clearly, the universe V' is isomorphic to V3 and can be embedded into any Vy.
The formal definition of a system of set-equations can now be given:

Definition 3.19 Given a class X, a system of set-equations in X is a function

v:X — Vyg.
That is, a collection of equations of the form

T = v,
with z € X and v, € V. a

Consider again the above example of a system of set-equations. A solution to that
system would simply be a function f : {z;,z:} — V such that

fler) = {f(22),{f(21),0}}, f(z2) = {0,2}.

In general, a solution to a system {z = v;}sex is a function f: X — V such that, for all
z € X,

flz) = f(vs) 3)
where, informally, f (v, ) is obtained by replacing every z; in the transitive closure of v, by
the corresponding f(x;). That is, if g, z1, ..., are the variables appearing in the transitive

closure of v,, and denoting v, by vz, z1,.. ., then

Fve) = valzo/ f(z0), 21/ f(21), - ]
This intuitive idea has a formal definition:

Definition 3.20 A solution to a system of set-equations v : X — Vx is a composed
arrow 7 o v, where m: Vx — V is any arrow making the square in the following diagram
commute:

x—2 vy, T .y

0, *

P(Vx) ——=P(V)
P(7)
where, for every v in Vy, that is, for every v C X + Vy (since Vx = P(X + Vx)),

O,(w)s={wlzevnX}Uu{v|v evnVx}

If one puts f = 1o v and f =7 = P(r) 0 ©,, then, for every v in Vy,
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fw) = {f@) |z evnX}U{f(v) | €vnVx} (4)

and, in particular, (3) holds. _
Since solutions are defined in terms of P-coalgebra arrows between (Vy, ©,) and the
universe, the finality of the latter immediately gives the following

Solution Lemma [Acz88]
For every system of set-equations there exists a unique solution.

This lemma provides thus sets with another representation, describing them as unique
solutions of systems of equations; moreover, it is an important tool in proving properties
of non-standard sets, as the next section will illustrate. Since its proof relies on the finality
of the universe, the solution lemma holds only in non-standard set theory. In fact, it can
be proved that the solution lemma is equivalent to the anti-foundation axiom.

Notice that the use of coalgebras makes the presentation of the solution lemma much
simpler than in [Acz88]. In particular, its proof becomes here trivial, while the following
is needed there:

Substitution Lemimna [Acz88]

For every function f: X — V there exists a unique function f : Vx — V such that, for
every v € Vy,

f@)={f@) |zevnX}U{f(v)|v' €vnVx}.

Although the above lemma is not needed here for proving the solution lemma, the existence
of such a unique extension of any function on X to a function on Vyx is needed in the
sequel (in the definition of uniformity on maps). Notice that it simply generalizes (4) to
any function on X.

One final remark. Here, the definition of the expanded universe is carried out within
the language of set theory, but, alternatively, indeterminates could also be added as new
symbols in the language. For instance, in [BE88] indeterminates are indeed treated as
primitive elements (Urelemente) of a set theory like the one in [Bar75]. But in order to
carry out this extension of the language formally, an extension of the axioms of the theory
is also required.

3.4 Special Final Coalgebra Theorem

The assumption that the universe (greatest fixed point of P) be a final coalgebra of the
powerset functor is strong enough to make the greatest fixed points of a large class of
other functors be final coalgebras of the respective functors too. This is the content of
the special final coalgebra theorem illustrated in this subsection.

The finality of the greatest fixed point of (certain) functors is proved here by means of
the solution lemma. Arrows into such candidate final coalgebras are associated to solutions
of systems of set equations (having the class in the source coalgebra as indeterminates).
This is best illustrated by means of the powerset functor:

For any function f : A — V and any {ag,as,...} in P(A),
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P(f)({a0, a1, ...}) = {f(a0), f(a1),...}-

Regard now A as a class of indeterminates and {ay, a1, ...} as a set in Vj, that is, associate
to A the obvious embedding function ¢, : P(4) — V. Then:

{f(aﬂ)a f(a'l)’ < } = fo l.DA({CL(),(Ll, . })

Loosely speaking, this shows that the powerset functor behaves on maps as it behaves on
objects (uniform on maps).

The mapping ¢, is described above as an embedding and this is indeed the case for
most of functors of interest for semantics. In general, other mappings can be considered
as well, so that what above generalizes to the following:

Definition 3.21 An endofunctor F : Class* — Class® is uniform on maps if for every
class A there exists a V,-translation for F, that is, a mapping @, : F(A) — V, such that,
for every function f: A — V, the square in the following diagram commutes:

A FA) A Ly,
f F(f) * f
v F(V) v

Briefly:

VA3p,: F(A) — V4 suchthat Vf: A — V and Vo € F(A)

F(f)(a) = fopalo).

Theorem 3.22 (Special Final Coalgebra Theorem)

Let F : Class® — Class* be a functor uniform on maps and inclusion preserving. If, w.r.t.
set-inclusion, F" has a greatest fixed (as well as postfixed) point Jg, then (Jr,id) is a final
F-coalgebra.

Proof. For every F-coalgebra (A, a) one needs to find a function f: A — Jp such that,
for all a in A,

f(a) = F(f)(a(a) (%)

and then show that it is unique. By uniformity on maps, there exists a V-translation for
F. Since a(a) belongs to F(A), one can rewrite (5) as

fla) = f o palola)).
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But then the unique solution of the system {a = @ 4(a(e))}qea of set-equations in A is a
function f: A — V for which (5) holds. Now it remains to be proved that the image of
this function f is contained in Jp, that is, f is a function into Jr as well. From equation
(5) one can derive that:

f(4) = F(f){a(4)
c F(H(F(A)
c F(f(A)),

that is, f(A) is a postfixed point of F. From all this follows that f is an arrow which
makes the following diagram commute:

F(A) ——F(f(4))
F(f) _
Since Jr is the greatest postfixed point of F w.r.t. set-inclusion, f(A) is included in Jgp
and F(f(A)) is included in F(Jp). Moreover, since F is an inclusion preserving functor,
the inclusion mapping from F(f(A)) into F(JF) is equal to the F image of the inclusion
mapping from f(A) into Jp. Therefore, the following diagram commutes:

fla) —=

Jr

I

|

¢ F(f(A) —— F(Jr)
F(e)

Combining the last two diagrams, f can be regarded as an arrow from A into Jg which
makes the following diagram commute:

f

A Jr

|
ii
F(A) ——F(JF)
F(f)
This shows the existence of an arrow from (A, a) into (Jr,id). Uniqueness follows from

the fact that any such an arrow is also a solution of {a = @a(a(a))}sca, which by the
solution lemma is unique. |

Corollary 3.23 The greatest fixed point of a set-continuous functor which is uniform on
maps and inclusion preserving is, together with the identity mapping, a final coalgebra.
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4 Complete Metric Spaces

Let CMS be the category with complete metric spaces (D,dp) as objects and non-
expansive (non-distance-increasing) functions as arrows. That is, functions f : D — E
such that, for all z,y € D,

de(f(z), (f(y)) < dp(z,y).

(For basic facts on metric spaces see, e.g., [Dug66].) For any two complete metric spaces
D and E, the set of arrows between D and E,

hom(D,E)={f: D — E| f is non-expansive}
is itself a complete metric space, with metric, for all f, g € hom(D, E),

d(f,9) = :gg{dza(f(m), g(z))}-

In analogy to the so-called order-enriched (or O-) categories of [SP82], CMS is called a
metric-enriched category. ’

Definition 4.1 A category C is called metric-enriched if every hom-set is a complete
metric space and composition of arrows is continuous with respect to this metric. a

In the sequel, only metric-enriched categories like CMS will be considered, in which
the objects themselves are metric spaces (from which the hom-sets inherit their metric
structure). Nevertheless, it will turn out to be convenient to formulate some definitions
and results about metric-enriched categories in general.

The fact that hom sets are metric spaces allows the following characterization of
families of functors in terms of how they act on arrows.

Definition 4.2 Let F : C — ' be a functor on metric-enriched categories. It is called
locally continuous (non-ezpansive) if, for any two objects D, E € C, the mapping

Fp 5 : hom(D, E) — hom(F(D), F(E)) e F(f)

is continuous (non-expansive). The functor F is called locally contracting (or hom-con-
tracting) if there exists € with 0 < e < 1 such that, for all D, E, the mapping Fp g is a
contraction with factor e: for all f,g € hom(D, E),

dhomrpy,peyE() F(9)) < € dyomp g (f:9)-
O

Example 4.3 Let Pomp : CMS — CMS be the metric powerset functor defined on
objects by, for all (D,dp) € CMS,

Peomp(D) = {X | X is a compact (w.r.t. dp) subset of D}.

The metric on Peomp(D) is the so-called Hausdorff metric dy, given by, for XY €
Pcomp(D)a
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dH(X= Y) = ma‘x{ilel)l‘z{d(mv Y)}a 3‘615{(1(% X)}},

where d(z, Z) = inf,ez{dp(z,2)} for every Z C M, z € M. (by convention, sup® = 0
and inf@® = 1.) One can show that if D is complete then Pomy(D) is complete as well.
On arrows f: D — E, we have

Pcomp(f) : Pcomp(D) — Pcomp(E)y X = {f(Z) I T € X}
1t is not difficult to prove that Peomp is locally non-expansive. 0

Example 4.4 For every ¢ with 0 < € < 1, the “shrinking” functor id, : CMS — CMS is
defined as the identity on arrows and, for any (D, dp),

de((D7 dD)) = (D, € dD)
Clearly id. is locally contracting. o

4.1 A ‘Metric’ Final Coalgebra Theorem

The final coalgebra theorem below will be based on the following.

Theorem 4.5 Every fixed point of a locally contracting functor F : CMS — CMSis a
final F-coalgebra.

Proof. Suppose that M is a fixed point for F, that is, M = F(M). Leti: M — F(M)
and j : F(M) — M be the two components of such an isomorphism. Thus joi = idy
and io0j = idpan. Let (X,a) be an F-coalgebra. Define & : hom(X, M) — hom(X, M)
by, for all f,

®(fi=joF(floa @ i 17

F(X) —— F(M)
F(f)

Let F be locally contracting with factor e. Then ® is a contraction with factor e. That
is, for all f, fo € hom(X, M),

Il

d(®(f1), (f2)) :lelg{dM(@(fl)(z),Q(fz)(w))}

igg{du(j o F(f1) o a(z), j o F(f2) o a(z))}

sup {dm(j o F(fi)(y). 7o F(f2)(y))}
yeF(X)

sup {drar)(F(f1)(¥), F(f2)(y))} (j is non-expansive)
yeF(X)

d(F(f1), F(f2)
€ d(f1, f2) (F is locally contracting).

il

IA

IA

IN

By Banach’s theorem F has a unique fixed point 7 : X — M. Moreover:
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ior=iod(r) =iojoF(f)oa=F(f)oa,
which shows that = is the unique arrow from (X, &) into (M, 1). o

The dual of this theorem can be proved similarly:

Theorem 4.6 Every fixed point of a locally contracting functor F : CMS — CMS is an
initial F-algebra.

In subsection 4.3, the following theorem will be proved.
Theorem 4.7 Every locally contracting functor F': CMS — CMS has a fixed point.

From Theorem 4.5 and Theorem 4.7, the following final coalgebra theorem for CMS
is immediate.

Theorem 4.8 Every locally contracting functor £ : CMS — CMS has a final F-coalge-
bra.

Since final coalgebras are unique (up to isomorphism) the following is immediate.

Corollary 4.9 Every locally contracting functor F' : CMS — CMS has a unique fixed
point (which is at the same time a final F-coalgebra and an initial F-algebra).

4.2 F-Bisimulation in CMS

According to the definition of bisimulation (Definition 2.2), F-bisimulations have to be
objects in the category under consideration. For the category CMS this implies that they
have to be complete metric spaces: that is, an F-bisimulation on an F-coalgebra (A, a)
in CMS is a closed subset of A x A, satisfying the conditions of Definition 2.2.

The following theorem is an instantiation of Theorem 2.4 to the category CMS.

Theorem 4.10 The unique fixed point (M, :) of a locally contracting functor F : CMS —
CMS is strongly extensional; that is, for all z,y € M,

z=y©zr€y.

(Recall that ~ =U{RC M x M| Ris an F-bisimulation on (M,1) }.) o

Next the construction of a metric domain for strong bisimulation (as used in Example
1.8 and [BM88, Rut90]) will be described in detail.

Let A be an arbitrary set supplied with the discrete metric. The constant functor
F, : CMS — CMS assigns to all objects the complete metric space A4, and to all arrows
the identity arrow id4. Let I be the identity functor on CMS. The product functor
x : CMS x CMS — CMS gives for any two objects D and F in CMS the Cartesian
product D x E, with metric, for all 21,2, € D and y,y2 € E,

dpxe({Z1, 1), (T2, y2)) = max{dp(z1, 22), de(y1, %)}
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On arrows X is defined as usual.
Let F} and F, be two functor from CMS to CMS. The functor < Fy, F; >: CMS —
CMS x CMS (the tupling of F; and F3) is defined on objects D by

< Fl,F2 > (D) =< Fl(D),Fz(D) >
and on arrows f: D — E by
< FL, B> (f) =< A(f) B(f) >

Let the functor F' : CMS — CMS be defined as a composition of the above functors as
follows:

F=Pympo xo < Fy, I >

It has already been observed that .o, is locally continuous, and the same applies to the
other constructs. Composition of functors preserves local continuity, hence F is locally
continuous. Next define, for some ¢ with 0 < € < 1, a functor F, by

F,.=id.o F.

It.is immediate that F, is locally contracting since id, is locally contracting and F' is
locally continuous. Finally we are ready for the following.

Definition 4.11 Let the metric domain for bisimulation Py be the unique fixed point
of the locally contracting functor F.. That is, Py is the unique complete metric space
satisfying

PM & pcomp(A X PM)

u

By Theorem 4.5 Py is a final coalgebra. Recall that it is used in Example 1.8 for
representing finitely branching labelled transition systems.

(For LTS’s that are image finite (a weaker notion than finitely branching), one could
replace in the above definition the functor Peom, by another powerset functor: Peosed,
which yields all metrically closed subsets. In [Bre92], domains are given suited for LTS’s
that satisfy even more general “branching” properties.)

4.3 Fixed Points in CMS

In this subsection, it will be shown that every locally contracting functor has a fixed point,
thus proving Theorem 4.7. In [AR8Y], a similar theorem is proved: so-called contracting
functors on a category of complete metric spaces (with double arrows) have a fixed point
(see also below). Here the results of [AR89)] are generalized; in summary, a reconstruction
of that paper is given along the lines of [SP82] and [Plo81a].

A standard way of constructing fixed points of functors on a category of complete
partial orders, as described in [SP82], can be seen as a category-theoretic generalization
of the least fixed point construction of monotone functions on complete partial orders.
In metric-enriched categories, the construction of fixed points of functors can be better
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compared to Banach's fixed point theorem: any contracting function f from a complete
metric space to itself has a unique fixed point, which can be obtained as the limit of
all finite iterations of f starting in an arbitrary element. (See also the remark following
Theorem 4.23.)

As in [SP82], fixed points will be constructed in a category with so-called embedding-
projection pairs as arrows. One of the reasons for this is that certain constructions, like
the function space construction, are not functorial. However, such constructions can be
turned into functors on this category with double arrows, which is introduced next.

Definition 4.12 Let C be a metric-enriched category. A subcategory CZ (of embeddings)
can be defined by taking as objects the same objects as C. Arrows a: D — E in C® are
pairs @ = {a®, o®) such that

a°:D—E, o . E—D
are arrows in C with
aP oo =1idp.

The first component o is called an embedding and the second component o? a projection.

Identity arrows in CE on objects D are (idp,idp), and composition of two arrows & and
3 is defined by

Boa=(30ac,aP o 7).
O

Note that for arrows a : D — E in CMSE the facts that a® and o® are non-expansive and
af o a® = idp imply that o is a distance-preserving embedding.

It is illustrative to compare the above definition to the standard example of an order-
enriched category, namely the category CPO | of complete partial orders with strict con-
tinuous mappings. If D and F are cpo’s and ¢ : D — FE and j : £ — D are arrows in
CPO | then (i, j) is called a projection pair from D to E provided that

joi=1ddpandicj Shom(k.k) idg.

Note that the one half of such projection pairs determines the other. For the metric
case this does not hold. For instance, in CMS the trivial one point metric space can be
embedded in different ways into any other metric space containing more than one element.

Though the latter condition of projection pairs (70 j Ehom(E.E) idg) does not seem to
have a direct corresponding metric counterpart, it is possible, due to the fact that hom-
sets are complete metric spaces, to define a function on projection pairs that technically

will play a similar role.
Definition 4.13 Let o : D — E be an arrow in CZ. Then
§la) = dhom(E,E)(ae oa® idg).

More generally, let
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< UpyeeeyQp 2>:< Dy,...,D, >>< El,...,En >
be an arrow in (CE)*. Then
§(< o, ...,y >) = max{8(a),...,0{as)}.
O

The above §(a) is called the approzimation degree of o it can be understood as a measure
of the quality with which E is approximated by D. (Note that §(«) = 0 implies that D and
E are isomorphic.) The approximation degree can be conveniently used in characterizing
colimits in the category CMSP. But let us first explain what a colimit is.

Definition 4.14 An w-chain A in a category C is a sequence of objects and arrows like
A:DO — 0 D1 — L

Given an object D in C, a cone u : A — D from A to D is a sequence of arrows
tn : D — D such that for all n > 0,

Hn = Lnt1 O Gn.

A colimit of A is an instial cone from A, that is, a cone u : A — D such that for every
other cone v : A — E there exists a unique arrow ¢ : D — E satisfying, for all n > 0,

LO fln = Tn.
o

Theorem 4.15 Let C be a metric-enriched category and let A be an w-chain in C. Let
i : A — D be a cone from A. Then

i A — D is initial (a colimit) for A & Jergo &(pn) = 0.

Proof. The theorem generalizes the metric version of the ‘initiality lemma’ given in
[AR89]. There the theorem is formulated for the category CMS and assumes, more im-
portantly, A to be a so-called converging w-chain. An inspection of the proof given there
shows that this condition is superfluous. ]

Observing that
Him, 6(ue) =0 & lim a0 i = idp
shows the correspondence with the order-theoretic version of the initiality lemma,
: A — D is initial (a colimit) for A & | |un® o pn® = idp,
n

interpreting A and u over the category CPOE.
In the sequel, also products of metric-enriched categories will be considered.
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Definition 4.16 Let C and C’' be two metric-enriched categories. The product category
C x C' has as objects pairs < D, E > of objects D in C and E in C'. Arrows are pairs of
arrows as usual: For any two pairs < D, E > and < D', E' >,

hom(< D,E >,< D' E' >) =
{<fig>f:D—=DinCandg: E— E'in('}.

Clearly, C x C' is again a metric-enriched category, by putting for arrows < fi,¢; > and
< fa,92 > in the above hom-set,

A< fi,01>,< fo, 0 >) = max{dhom(D,D')(fhfz), dhom(E,E')(g1,g2)}-
0
Let C be a metric-enriched category. It is next shown how in general every functor

F :C™™ — C, which is contravariant in its first m and covariant in its last n arguments
(with m + n > 1) induces a functor

FE: (CFy™ - CF.

(Note that the general case includes, e.g., covariant functors of one argument.) A typical
example of such a functor F is the function space constructor:

Example 4.17 The function space constructor —: CMS x CMS — CMS gives for any
two objects D and E the set D — FE of non-expansive mappings from D to E: D —
E = hom(D, E). {The metric on D — E is as on hom(D, F).) Consider the category
CMS x CMS with arrows

< f,g> <D E>—<D E >,

where f: D' — D and g: F — E' are arrows in CMS. Note the different directions: —
is called contravariant in its first argument and covariant in its second. (Formally, — is
a functor (covariant in both arguments) from CMS? x CMS to CMS.) The image under
— of such an arrow is given by

f=g:(D—>E)—>(D'=FE), hrgohof.
w

Definition 4.18 Let C be a metric-enriched category and let F : C™" — C be con-
travariant in its first m arguments and covariant in its last n arguments. For convenience
take m = 1 and n = 1. The functor

FE . (CE)H—I s CE
is defined on objects by, for any < D, E >€ (CF)1+!,
FE(< D,E >)= F(< D,E >).

On arrows < @,3 >:< D,E >—< D', E' > in (CE)'*! (witha: D - D'and §: E — F'
arrows in CE), FF is defined by
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FE(< 0,8 >) = (F(< o®, 3¢ >), F(< af, B >)).

Note that F'Z is covariant in both arguments. If F and G are functors and Go F is defined
then (Go F)f = GF o FE, O

It is easy to show that F¥ is a functor. In particular,
F(< o, 37 >)o F(< a® (3 >)

il

(F is contravariant in its first argument)
F(<ofoa® fPof° >)

= F(<idp,idg >)

= F (id<D,E>)

= idF(<D,E>)-

Example 4.17 (continued) According to the above definition, the functor —: CMS x
CMS — OMS induces a functor —% defined on objects < D, E > by

D—-FE=D-E
and on arrows < o, 3 >:< D, E >—< D’,E’ > by
a—F g =(of - 5° o — BF).
a

Starting with a locally continuous functor F will yield an w-continuous functor FZ:

Definition 4.19 Let C be a metric-enriched category. A (covariant) functor F : C¥ — CF
is w-continuous if for every w-chain A and every colimit (initial cone) u: A — D of A
the cone F(u) : F(A) — F(D) is again initial. (This definition can be straightforwardly
generalized to functors from (C¥)" to C.) o

In other words, F preserves colimits of w-chains.

Theorem 4.20 Let C be a metric-enriched category and let F : (C)™" — C be con-
travariant in its first m arguments and covariant in its last n arguments. If F is locally
continuous then FF is w-continuous.

Proof. The proof mimics that of [Plo8la). For simplicity let m = 1 = n. Consider
F: ()" —»Candlet p: A — Dandv:T — E be two initial cones. It has to be
proved that FZ(u,v): FE(A,T) — FE(D, E) is again initial. Theorem 4.15 will be used:
Jim (FE(< v >)) 0 (FB(< v >)a)?
= B (FF(< v ) 0 (FE(< im0 >)P
= lim F(< 2,05 >) 0 FE(< 6,18 >)
= Jim F(< oot >)
= (F is locally continuous)
F(< lim p7 o pf, im 7 ovp >)
= (Theorem 4.15)
F(< idp, idg >)
= FE(<idp,idg >)

idpE(<D B>)-
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Thus, again by Theorem 4.15, FZ(u,v) is initial. m

There is also a property of functors on CZ that corresponds with the notion of local
contractivity.

Definition 4.21 Let C be a metric-enriched category. A (covariant) functor F : C¥ — CF

is contracting if there exists 0 < e < 1 such that, for every arrow a : D — E in CZ,
6(F()) < ¢ - 6(a).

(Again the definition can be easily generalized to functors from (C¥)" to C%.) o

The value of §(a) can be seen as a measure of the quality with which F is approximated,
and hence contractivity of a functor amounts to the property that it strictly improves
such approximations. Using the initiality lemma (Theorem 4.15), one can easily show that
contractivity implies w-continuity. There is also a relation between local contractivity and
contractivity, as pointed out by Gordon Plotkin (personal communication):

Theorem 4.22 Let C be a metric-enriched category and let F : (C)™™ — C be con-
travariant in its first m arguments and covariant in its last n arguments. If F is locally
contracting then FZ is contracting.

Proof. Again restrict to the convenient case that m = n = 1. Let F be locally contracting
with factor e. Consider an arrow < a,3