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Abstract. Skoruppa and Zagier established a bijective correspondence from the space
of Jacobi forms φ of index m to that of elliptic modular forms f of level m. Gross, Kohnen and
Zagier formulated this correspondence by means of kernel functions. Moreover, they proved
that the squares of Fourier coefficients of φ are essentially equal to the critical values of the
zeta functions L(s, f, χ) of f twisted by a quadratic character χ .

The purpose of this paper is to prove a generalization of such results concerning liftings
and Fourier coefficients of Jacobi forms to the case of Jacobi forms of index N over totally real
number fields F . Using kernel functions associated with the space of quadratic forms, we shall
establish the existence of a lifting from the space of Jacobi forms φ of index N over F to that
of Hilbert modular forms f of level N over F . Moreover, we determine explicitly the Fourier
coefficients of f from those of φ. We prove that an analogue of Waldspurger’s theorem in the
case of Jacobi forms of index N over F holds.

Introduction. In [13], Skoruppa and Zagier succeeded in establishing a bijective cor-
respondence from the space of Jacobi forms φ of index m to that of elliptic modular forms f

of level m, which commutes with the action of Hecke operators. Gross, Kohnen and Zagier
[4] formulated this correspondence by means of kernel functions. Moreover, they proved that
the squares of Fourier coefficients of φ are essentially equal to the critical values of the zeta
function L(s, f, χ) of f twisted by a quadratic character χ . Shimura [10] generalized Wald-
spurger’s theorem [14] on elliptic modular forms of half integral weight to the case of Hilbert
modular forms of half integral weight over totally real number fields.

The purpose of this paper is to prove a generalization of such results concerning liftings
and Fourier coefficients of Jacobi forms in [4] and [13] to the case of Jacobi forms of index
N over totally real number fields F . Using kernel functions associated with the space of
quadratic forms, we shall establish the existence of a lifting ΨD0,r0 from the space of Jacobi
forms φ of index N over F to that of Hilbert modular forms f of level N over F . We prove
that an analogue of Waldspurger’s theorem in the case of Jacobi forms of index N over F

holds. We refer to [15] for a generalization about an arithmetic of Heegner points in [4] to the
case of Shimura curves over totally real number fields. We also refer to [12] for some property
of Jacobi forms over totally real number fields.

2000 Mathematics Subject Classification. Primary 11F50; Secondary 11F30, 11F67.
Key words and phrases. Jacobi forms, Jacobi forms over totally real number fields, lifting of modular forms,

Fourier-Jacobi forms, special values of zeta functions.



362 H. KOJIMA

To prove our results, we need to generalize the methods in [4] to those of the case of
totally real number fields. Our idea of the proof is to apply the reciprocity law for quadratic
residue symbols due to Hecke [5] and Shimura’s results about Gauss sums.

Section 0 is a preliminary section. In Section 1, we shall introduce Jacobi forms and
quadratic forms over totally real number fields F . We discuss the property of genus characters
of quadratic forms over F .

In Section 2, we study a relation between Gauss sums and genus characters of quadratic
forms over F . We represent the genus character as a certain sum of Gauss sums in Proposition
2.1, which is a key lemma for our later arguments. Compared with the case of the rational
number field, the proof of Proposition 2.1 is delicate and difficult because of the complexity
of the computation of Gauss sums at even primes and its sign of Gauss sums. We overcome
those by performing a precise calculation of Gauss sums. Furthermore, we need to determine
the square of a certain Gauss sum ε(a). It is difficult to compute ε(a), but ε(a)2 is determined
by Shimura [9, p. 286]. By those fortunate circumstances, we may derive our results.

In Section 3, we discuss modular forms attached to the space of quadratic forms and
Poincaré series for the Jacobi group. We shall determine explicitly Fourier coefficients of
those. The constant terms of the former modular forms contain Gauss sums associated with
quadratic character. Applying a results given in [11], we can calculate it explicitly.

In Section 4, we introduce a kernel function which is a sum of modular forms mentioned
above. In Theorem 4.1, we shall deduce that this function can be represented as a sum of
Poincaré series. Comparing Fourier coefficients of both sides, this formula may be reduced to
Proposition 2.1. Employing this kernel function, we shall construct a lifting ΨD0,r0 from the
space of Jacobi forms φ of index N over F to that of Hilbert modular forms f of level N . By
virtue of Theorem 4.1, we determine explicitly the Fourier coefficients of f from those of φ.
Moreover, we show that ΨD0,r0 is commutative with the action of Hecke operators.

In Section 5, we discuss a certain period integral of Hilbert modular forms attached to
quadratic forms. As an application of a basic identity of kernel functions in Theorem 4.1, we
shall deduce that the squares of Fourier coefficients of φ are essentially equal to the critical
values of the zeta function D(s, χ, ( ∗

D0
)) of f twisted by a quadratic character ( ∗

D0
) under the

assumption of multiplicity one theorem concerning Hecke operators.
We mention that Shimura [10] formulated an analogue of Waldspurger’s theorem in the

case of Hilbert modular forms of level 2N and our result is a generalization of his result in the
case of Hilbert modular forms of an odd level N . We note that Baruch and Mao [2] proved a
Waldspurger-type formula in the totally real number field.

0. Notation and preliminaries. We denote by Z, Q, R and C the ring of rational
integers, the rational number field, the real number field and the complex number field, re-
spectively. For an associative ring R with identity element we denote by R× the group of
all its invertible element and by Mm,n(R) the set of m × n matrices entries in R. We put
Mn(R) = Mn,n(R). Let GLn(R

′) (resp. SLn(R′)) denote the general linear group (resp. spe-
cial linear group) of degree n over a commutative ring R′. Throughout this paper, we fix a
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totally real algebraic number field F of degree n with class number one and denote by a, h,
o, dF , and d, the set of all archimedean primes, the set of all non archimedean primes, the
maximal order of F , the discriminant of F and the different of F relative to Q, respectively.
We denote by E the unit group of F . Let τ1, . . . , τn be the isomorphisms of F into R. For
each α ∈ F , we put α(ν) = τν(α) (1 ≤ ν ≤ n). We consider an isomorphism L : F → Rn

defined by

L(α) = (α(1), . . . , α(n)) for every α ∈ F .(0.1)

For each α ∈ F , we put N(α) = ∏n
i=1 α(i).

We assume that

[E : E+] = 2n with E+ = {ε ∈ E; ε � 0} ,

where α � 0 means α(i) > 0 (1 ≤ i ≤ n) for α ∈ F . We see that

E+ = E2 = {ε2; ε ∈ E} .

We fix an element δ such that d = (δ) and δ � 0. For an integer c ∈ o, the sum
∑

α(c)

(resp.
∑

α(c)∗) indicates the sum over representatives for all residue classes (primitive residue
classes) modulo c.

1. Jacobi forms and quadratic forms over totally real number fields. Let N be an
element of o satisfying N � 0. We put

Γ0(N) =
{
γ =

(
a b

c d

)
∈ SL2(o) ; N |c

}
,

Γ̃0(N) =
{
γ =

(
a b

c d

)
∈ GL2(o) ; N |c and det γ � 0

}
.

(1.1)

We denote by H = {z ∈ C ; �(z) > 0} the complex upper half plane. We define actions of
γ = (

a b
c d

) ∈ SL2(o) on Hn and Hn × Cn by

z → γ (z) =
(

a(1)z1 + b(1)

c(1)z1 + d(1)
, . . . ,

a(n)zn + b(n)

c(n)zn + d(n)

)

(τ, z) → γ (τ, z) =
(

a(1)τ1 + b(1)

c(1)τ1 + d(1)
, . . . ,

a(n)τn + b(n)

c(n)τn + d(n)
; z1

c(1)τ1 + d(1)
, . . . ,

zn

c(n)τn + d(n)

)
(1.2)

for every z = (z1, . . . , zn) ∈ Hn and for every (τ, z) = (τ1, . . . , τn; z1, . . . , zn) ∈ Hn × Cn

respectively. We also define an action of (λ, µ) ∈ o2 on Hn × Cn by

(τ, z) → (λ, µ)(τ, z) = (τ1, . . . , τn; z1 + λ(1)τ1 + µ(1), . . . , zn + λ(n)τn + µ(n))

for every (τ, z) ∈ Hn × Cn. For z = (z1, . . . , zn) ∈ Cn and α ∈ F , we put

α · z = (α(1)z1, . . . , α
(n)zn) and tr z =

n∑
i=1

zi .
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Given z ∈ C, we put e[z] = exp(2πiz). Furthermore, for z ∈ C and (k, p) ∈ Z2 with p > 0,
we define zk/p = ( p

√
z)k with −π/p < arg p

√
z ≤ π/p. Given z = (z1, . . . , zn) ∈ Cn,

k = (k1, . . . , kn) ∈ Qn, l ∈ Q and α ∈ F , we put zk = ∏n
i=1 z

ki

i and αk−l = ∏n
i=1(α

(i))ki−l .
Furthermore, for d ∈ C, I = (1, . . . , 1) ∈ Cn and k = (k1, . . . , kn) ∈ Qn, we write as
d = dI and dk = (d · I)k if there is no fear of confusion. Let N and k = (k1, . . . , kn) be
elements such that N ∈ o, k ∈ Zn and ki(1 ≤ i ≤ n). We consider a holomorphic function
φ(τ, z) on Hn × Cn satisfying the conditions:

(i) φ(γ (τ, z)) = (cτ + z)ke

[
tr

(
N

δ

(
cz2

cτ + d

))]
φ(τ, z) ,

(ii) φ((λ,µ)(τ, z)) = e

[
− tr

(
N

δ
(λ2τ + 2λz)

)]
φ(τ, z) , and

(iii) φ((τ, z)) =
∑

(n,r)∈o2

c(n, r)e

[
tr

(
n

δ
τ + r

δ
z

)](1.3)

for every γ = (
a b
c d

) ∈ SL2(o) and for every (λ, µ) ∈ o2, where

(cτ + z)k =
n∏

i=1

(c(i)τi + d(i))ki , e

[
tr

(
N

δ

(
cz2

cτ + d

))]
= e

[ N∑
i=1

N(i)

δ(i)

(
c(i)z2

i

c(i)τi + d(i)

)]
,

e

[
− tr

(
N

δ
(λ2τ + 2λz)

)]
= e

[
−

n∑
i=1

N(i)

δ(i)

(
(λ(i))2τi + 2λ(i)(zi)

)]
,

e

[
tr

(
n

δ
τ + r

δ
z

)]
= e

[ n∑
i=1

(
n(i)

δ(i)
τi + r(i)

δ(i)
zi

)]
, and 4Nn − r2 = 0 or 4Nn − r2 � 0 .

We denote by Jk,N the set of all such functions φ. We call such φ a Jacobi form of index N

and of weight k. Moreover, we say that φ is a cusp form if the following condition is satisfied.

(iv) c(n, r) = 0 if 4Nn − r2 is not totally positive.

We denoted by J
cusp
k,N the set of all cusp forms φ ∈ Jk,N .

We introduce the Jacobi group Γ (1)J = {(γ, (λ, µ)) ; γ ∈ SL2(o), λ, µ ∈ o} deter-
mined by the group law

(γ, (λ, µ)) · (γ ′, (λ′, µ′)) = (γ γ ′, (λ, µ)γ ′ + (λ′, µ′))(1.4)

for every γ, γ ′ ∈ SL2(o), (λ, µ) and (λ′, µ′) ∈ o2. We define an action of (γ, (λ, µ)) ∈
Γ (1)J on Hn × Cn by

(τ, z) → (γ, (λ, µ))(τ, z) =
(

aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(1.5)
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for every (τ, z) ∈ Hn × Cn. For a function φ on Hn × Cn and (γ, (λ, µ)) ∈ Γ (1)J , we define
a function φ|k,N (γ, (λ, µ)) on Hn × Cn by

φ|k,N(γ, (λ, µ))(τ, z) = (cτ + d)−k

× e

[
tr

(
N

δ

(−c(z + λτ + µ)2

cτ + d
+ λ2τ + 2λz + λµ

))]
φ(γ, (λ,µ))(τ, z)

(1.6)

for every (τ, z) ∈ Hn × Cn. Given two Jacobi forms φ, φ′ in J
cusp
k,N , we introduce their inner

product 〈φ, φ′〉 defined by

〈φ, φ′〉 =
∫

Γ (1)J \Hn×Cn
φ(τ, z)φ′(τ, z)vke−4πNy2/δvv−3dxdydudv(1.7)

with z = x + iy ∈ Cn and τ = u + iv ∈ Hn. We refer to [3] for basic facts on Jacobi forms.
Here we recall the notion of the quadratic residue symbol given by Hecke [5]. For α and

β in o satisfying (2, β) = 1, we define a symbol ( α
β
) by

(
α

β

)
=

s∏
i=1

(
α

pi

)ei

and

(
α

pi

)
= #{x ∈ o/pi ; x2 ≡ α (mod pi )} − 1,

(1.8)

where (β) = ∏s
i=1 p

ei

i with an odd prime ideal pi (1 ≤ i ≤ s). Suppose that ρ ∈ o and ∆ ∈ o

satisfy the following conditions:

∆ � 0 and ∆ ≡ ρ2 (mod 4N) .(1.9)

We consider a set of quadratic forms LN,∆,ρ defined by

LN,∆,ρ =
{
Q = [Na, b, c] =

(
Na b/2
b/2 c

)
;

a, b, c ∈ o, b2 − 4Nac = ∆ and b ≡ ρ (mod 2N)

}
.

(1.10)

The group Γ0(N) acts on LN,∆,ρ by

Q ◦ γ = t γQγ for every γ ∈ Γ0(N) and Q ∈ LN,∆,ρ .

Let us assume that D0 is an element of o such that D0|∆ and ∆/D0 is square modulo 4N .
Moreover, we impose the following condition:

ASSUMPTION 1.11. D0  0, (D0, 4N) = 1, the finite part of the conductor of the
abelian extension F(

√
D0) over F equals (D0) and D0 = π∗

1 · · · π∗
l with distinct primary odd

prime elements π∗
i of F (1 ≤ i ≤ l).

Here an integer π∗
i is said to be primary if it is odd and congruent to the square of an integer

in F modulo 4.
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We define a genus character χD0(Q) by

χD0(Q) =



(
m

D0

)
if (a, b, c,D0) = 1 ,

0 otherwise
(1.12)

for every Q = [Na, b, c] ∈ LN,∆,ρ , where m is an element of o such that (m,D0) = 1
and m = aN1x

2 + bxy + cN2y
2 for some N1, N2, x and y ∈ o with N = N1N2 and

N1 � 0, N2 � 0. By Hecke’s reciprocity law for quadratic residue symbols, we see that(
m

D0

)
=

(
F(

√
D0)/F

(m)

)
(sgn m)(1.13)

for every odd m ∈ o−{0}, where
(

F(
√

D0)/F
(m)

)
means the Artin symbol of the abelian extension

F(
√

D0)/F and sgn m = ∏n
i=1 m(i)/|m(i)|. By some modification of the arguments in [4,

p. 510], we may verify the following lemma.

LEMMA 1.1. The notation being as above, suppose that D0 satisfies Assumption
(1.11). Then the function χD0 is Γ0(N) invariant and has the following properties.

χD0([Na, b, c]) = χD0([Na1, b, ca2])χD0([Na2, b, ca1])
if a = a1a2, (a1, a2) = 1,

(1.14)

χD0([Na, b, c]) = χD0([Nc,−b, a]) ,(1.15)

χD0([Na, b, c]) =
(

N1a

D1

)(
N2c

D2

)
(1.16)

for any splitting D0 = D1D2 of D0 and N = N1N2 such that N1 � 0, N2 � 0, (D1, N1a) =
(D2, N2c) = 1 and χD0([Na, b, c]) = 0 if such splitting does not exist.

PROOF. Straightforward analysis using Assumption 1.11 and the quadratic reciprocity
law proves the lemma and so we only prove (1.16). For simplicity, we may assume that
D1 = ∏k

i=1 π∗
i and D2 = ∏l

i=k+1 π∗
i . We have

χD0([Na, b, c]) =
(

m

D0

)
=

l∏
i=1

(
m

π∗
i

)
.(1.17)

If 1 ≤ i ≤ k, then
(

m
π∗

i

) = (
aN1
π∗

i

)
since m = aN1x

2 + bxy + cN2y
2 implies that 4aN1m =

(2aN1x + by)2 − ∆y2 and that π∗
i divides ∆. Similarly

(
m
π∗

i

) = (
cN2
π∗

i

)
if k + 1 ≤ i ≤ l. This

yields that

χD0([Na, b, c]) =
(

N1a

D1

) (
N2c

D2

)
.(1.18)

We may omit the details of the remainders of the proof. �
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2. A relation between Gauss sums and genus characters and a key proposition.
Suppose that r0, n0, r, n, b ∈ o satisfy the condition:

D0 = r2
0 − 4Nn0 , D = ∆/D0 = r2 − 4Nn and b ≡ r0r (mod 2N).(2.1)

We consider a polyominal F(x, y) determined by

F(x, y) = Nx2 + r0xy + n0y
2 + rx + sy + n with s = (r0r − b)/2N .

Given an integral ideal (a) in F , we define a sum Fa by

Fa = Fa(N, r0, n0, r, s, n) = |N(a)|−1
∑
λ(a)∗

∑
x,y∈(a)

e

[
tr

(
λF(x, y)

aδ

)]
.(2.2)

PROPOSITION 2.1. Let r0, n0, r, n and b ∈ o be elements of o satisfying (2.1). Suppose
that D0 satisfies Assumption 1.11.Then

|N(a)|−1
∑

(d)|a,d�0

(
d

D0

)
Fa/d

=
{

χD0([Na, b, (b2 − ∆)/4Na]) if a|(b2 − ∆)/4N ,

0 otherwise .

(2.3)

PROOF. By the property (1.14) in Lemma 1.1, we may reduce (2.3) to the case where
a = πl with a positive prime element π . First we consider the case where (π, 2) = 1 and
π � |D0. We can assume that a|r0. Therefore

Fa = N(a)−1
∑
λ(a)∗

e[tr(λn/δa)]Ga(λN, λr)Ga(λn0, λs) ,(2.4)

where

Ga(A,B) =
∑
x(a)

e[tr((Ax2 + Bx)/δa)] = √
N(a)ε(a)

(
A

a

)
e[− tr(B2(4A)−1/δa)]

and ε(a) = ∑
x(a) e[tr(x2/δa)]N(a)−1/2 with (4l)−1 an element of o such that (4l)−1. 4l ≡

1 (mod a) for (l, a) = 1.
Therefore we have

Fa = N(a)−1
∑
λ(a)∗

N(a)ε(a)2
(

Nn0

a

)
e

[
− tr

(
λ(r2(4N)−1 + s2(4n0)

−1) − λn

δa

)]
.(2.5)

Put C = Ns2 + r0(−sr) + n0r
2 + nD0. Then

D−1
0 C ≡ −(4n0)

−1s2 − (4N)−1r2 + n (mod a) ,

which yields that

Fa =
∑
λ(a)∗

ε(a)2
(

D0

a

)(−1

a

)
e[tr(λ(D0)

−1C/δa)] .
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By virtue of Shimura [9, Prop. 1.2], we have

ε(a)2 =
(

F(
√−1)/F

(a)

)
=

(−1

a

)
.(2.6)

It implies that

Fa =
∑
λ(a)∗

(
D0

a

)
e[tr(λ(D0)

−1C/δa)] =
(

D0

a

) ∑
λ(a)∗

e[tr(λC/δa)] .

Therefore we obtain that∑
(d)|a,d�0

(
d

D0

)
Fa/d =

∑
(d)|a,d�0

(
d

D0

)(
D0

a/d

) ∑
λ(a)∗,(λ,a)=d

e[tr(λC/δa)].(2.7)

Applying the quadratic reciprocity law, we find that

∑
(d)|a,d�0

(
d

D0

)
Fa/d =

(
a

D0

) ∑
λ(a)

e[tr(λC/δa)] =




(
a

D0

)
N(a) if a|C ,

0 otherwise.
(2.8)

When π |D0, it is easy to prove the required result using a method similar to that of [4] and
the quadratic reciprocity law. So we may omit the details.

Next we treat the case where π |2 and
(F(

√
D0)/F
(π)

) = −1. We put

Ñ(πl) = #{(x, y) ∈ (o/πl)2 ; F(x, y) ≡ 0 (mod πl)} .(2.9)

By the argument in [4, p. 510], the equality (2.3) for a = πl , (l = 1, . . . ) is equivalent to

∞∑
l=0

Ñ(πl)N(πl)−s−1 = 1 + N(π)−s−1

1 − N(π)−s

∑
k

(−1)kN(πk)−s ,(2.10)

where k runs through Z under the condition that k ≥ 0 and πk|(b2 − ∆)/4N . We need to cal-
culate Ñ(πl) explicitly. Since we can reduce the problem to that of π-adic integers, we can as-
sume that N = 1, r0 = 1 and r = 0. Put K = F(

√
D0), oK = {α ∈ K ; α is an integer in K},

ω0 = (−1 + √
D0)/2 and D0 = 1 − 4n0. Let Fπ ,Kπ , oπ and oKπ denote the π-adic com-

pletions of F,K, o and oK , respectively. For x and y in oπ , we can check that

x2 + xy + n0y
2 + sy + n = αα + sy + n

= −D0

((
α√
D0

+ s

D0

)(
α√
D0

+ s

D0

))
+ s2 + nD0

D0
,

(2.11)

where α = x − ω0y, l ∈ Kπ and l̄ is the conjugate of l in Kπ . Observe that any integer l

in Kπ is written as l = α/
√

D0 + s/D0 for some α = x − ω0y with x, y ∈ oπ . Hence it is
sufficient to consider only the case where s = 0. Let us assume that s = 0. Note that

(b2 − ∆)/4N = n(1 − 4n0) .(2.12)
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Let e = ordπ n be the largest number of l such that πl |n. First we discuss the case where
e = 0. By the property of the norm, we may derive that

Ñ(π(l+1)) = N(π)Ñ(πl) .(2.13)

Therefore we need to calculate Ñ(π). We denote by UKπ and UFπ the unit groups of Kπ

and Fπ , respectively. By the local class field theory, there is a surjective mapping NKπ/Fπ :
UKπ −→ UFπ , where NKπ/Fπ (α) = αα with α ∈ Kπ , which yields a surjective mapping
NKπ/Fπ : (oKπ /π)× −→ (oFπ /π)×. Therefore we find that

Ñ(π) = #(Ker NKπ/Fπ ) = N(π) + 1 and Ñ(πl) = (N(π) + 1)N(π)l−1 .(2.14)

Next we assume that e = 2e′ (e′ ≥ 1). Put ξ0 = (πe)−1n/D0. Then

Ñ(πl) = #{α ∈ oKπ /πl ; NKπ/Fπ (α) ≡ π2e′
ξ0 (mod πl)} .(2.15)

Take an element α of oKπ /πl and let k = ordπ α. Then we can represent α as α = πkα′ for
some α′ ∈ UKπ . When 2e′ < l, an easy computation implies that

Ñ(πl) = #{α′ ∈ (oKπ /πl−e′
)× ; NKπ/Fπ (α′) ≡ ξ0 (mod πl−2e′

)}
= #{(x, y) ∈ (oFπ /πl−e′

)2 ; x2 + xy + n0y
2 + π−en ≡ 0 (mod πl−2e′

)} .
(2.16)

Put

x = c0 + c1π + · · · + cl−2e′−1π
l−2e′−1 + · · · + cl−e′−1π

l−e′−1

and

y = c′
0 + c′

1π + · · · + c′
l−2e′−1π

l−2e′−1 + · · · + c′
l−e′−1π

l−e′−1 .

From (2.14), we find

Ñ(πl) = (N(π) + 1)N(π)l−2e′−1(N(π)l−e′−1−(l−2e′)+1)2

= (N(π) + 1)N(π)l−1 .
(2.17)

When 2e′ = l, we have π2k−lNKπ/Fπ (α′) ≡ ξ0 (1). Therefore, e′ ≤ k ≤ l. If πkα′ ≡
πkα′′ (mod πl) for some α′, α′′ ∈ UKπ , then

α′ ≡ α′′ (mod πl−k) .(2.18)

For α ∈ UKπ , we can represent α as

α = c0 + c1π + · · · + cl−k−1π
l−k−1 + · · · with (c0) ∈ (oKπ /π)×

and (ci) ∈ (oKπ /π) (1 ≤ i), where ci ∈ oKπ (i ≥ 0) and (ci) is the residue class containing
ci . Therefore we have

#{α ∈ (oKπ /πl−k)×} =
{

(N(π2) − 1)N(π2)l−k−1 if e′ ≤ k < l ,

1 if k = l ,
(2.19)

which yields that Ñ(πl) = N(π2)l−l′ . When 2e′ < l, we also obtain

Ñ(πl) = (N(π) + 1)N(π)l−1 .
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In the same fashion, we can determine Ñ(πl) explicitly in the case of odd e. If π |2 and(F(
√

D0)/F
(π)

) = 1, the calculation may be reduced to the case where F(x, y) = xy. Long and
tedious calculation prove our assertions but we omit the details. �

3. Modular forms associated with quadratic forms and Poincaré series for the
Jacobi groups. Let k = (k1, . . . , kn) be an element of Zn with ki > 1 (1 ≤ i ≤ n).
We denote by S2k(Γ0(N)) (resp. S2k(Γ̃0(N))) the space of cusp forms of weight 2k with re-
spect to Γ0(N) (resp. Γ̃0(N)). Since E+ = E2, we easily see that S2k(Γ0(N)) = S2k(Γ̃0(N)).
Given ∆ and D0 satisfying (1.9) and Assumption 1.11, we define a function fk,N,∆,ρ,D0 (z)

on Hn by

fk,N,∆,ρ,D0 (z) =
∑

Q∈LN,∆,ρ

χD0(Q)

Q(z, 1)k
for every z = (z1, . . . , zn) ∈ Hn ,(3.1)

where Q(z, 1)k = ∏n
i=1(N

(i)a(i)z2
i + b(i)zi + c(i))ki with Q = [Na, b, c]. This series con-

verges absolutely and uniformly on compact sets. If D0 �= 1, by Lemma 1.1, we may verify
that fk,N,∆,ρ,D0 (z) belongs to the space

M2k(N)sgn D0 =
{
f ∈ S2k(Γ̃0(N)) ; f

(
− 1

Nz

)
= (−Nz2)k(sgn D0)f (z)

}
(3.2)

with sgn D0 = ∏n
i=1 sgn D

(i)
0 . For a ∈ o and ρ ∈ o/2No, we put

SN,a,ρ,∆ = {b ∈ o/2Nao ; b − ρ ∈ 2No and b2 − ∆ ∈ 4Nao} .

We determine Fourier coefficients of fk,N,∆,ρ,D0 (z) explicitly as follows.

PROPOSITION 3.1. The notation being as above, suppose that ∆ and D0 satisfy (1.9)
and Assumption 1.11. Then the Fourier coefficients of fk,N,∆,ρ,D0 (z) is given by

fk,N,∆,ρ,D0 (z) =
∑

m�0,m∈o

ck,N (m,∆, ρ,D0)e[tr(mz/δ)](3.3)

ck,N(m,∆, ρ,D0) = ik(sgn D0)
−1/2 (2π)k

(k − 1)!(m
2/δ2∆)(k−1)/2

×
[

1√
N(δ)

n∏
i=1

|D(i)
0 |−1/2ε±

N/δ(m,∆, ρ,D0) + ik(sgn D0)
1/2

√
N(δ)

(
√

2π)n(N(m2/δ2∆))1/4

×
∑

a∈o−{0}

n∏
i=1

(N(i)|a(i)|)−1/2(sgn a)kSNa(m,∆, ρ,D0)Jk−1/2

(
πm

√
∆

N |a|δ
)]

,

where

(sgn D0)
−1/2 =

n∏
i=1

(sgn D
(i)
0 )−1/2, (sgn D0)

1/2 =
n∏

i=1

(sgn D
(i)
0 )1/2,

(sgn a)k =
n∏

i=1

(sgn a(i))ki ,
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εN/δ(m,∆, ρ,D0) =




(
m/f

D0

)
if ∆ = D2

0f 2 (f � 0), f |m, D0f ≡ ρ (mod 2N),

0 otherwise ,

ε±
N/δ(m,∆, ρ,D0) =

{
εN/δ(m,∆, ρ,D0) + εN/δ(m,∆,−ρ,D0) if (−1)k sgn D0 = 1 ,
εN/δ(m,∆, ρ,D0) − εN/δ(m,∆,−ρ,D0) otherwise ,

SNa(m,∆, ρ,D0) =
∑

b∈SN,a,ρ,∆

χD0

([
Na, b,

b2 − ∆

4Na

])
e

[
tr

(
mb

2Naδ

)]
, Jk−1/2

(
πm

√
∆

N |a|δ
)

=
n∏

i=1

Jki−1/2

(
πm(i)

√
∆(i)

N(i)|a(i)|δ(i)

)
and Jki−1/2(t) =

∞∑
ν=1

(−1)ν
(t/2)ki+2νi−1/2

ν!Γ (ki + ν + 1/2)
.

PROOF. For each a ∈ o − {0}, we put

f a
k,N (z) =

∑
χD0

([
Na, b,

b2 − ∆

4Na

])(
Naz2 + bz + b2 − ∆

4Na

)−k

=
∑

b∈SN,a,ρ,∆

χD0

([
Na, b,

b2 − ∆

4Na

])

×
∑
n∈o

(
Na(z + n)2 + b(z + n) + b2 − ∆

4Na

)−k

=
∑
m∈o

c′
k,N(m,∆, ρ,D0)e[tr(mz/δ)] ,

(3.4)

where the sum
∑

is taken over all b ∈ o satisfying b ≡ ρ (mod 2N), b2 ≡ ∆ (mod 4Na).
Applying the Poisson summation formula, we have

∑
l∈o

(
Na(z + l)2 + b(z + l) + b2 − ∆

4Na

)−k

=
∑
m∈o

ca,b(m)e[tr(mz/δ)] ,(3.5)

where

ca,b(m) = 1√
N(δ)

∫ ∞+ic1

−∞+ic1

· · ·
∫ ∞+icn

−∞+icn

(
Naz2 + bz + b2 − ∆

4Na

)−k

e

[
− tr

(
mz

δ

)]
dz

with a constant ci (> 0) (1 ≤ i ≤ n). The substitution t = −i(z + b/2Na) produces the
relation

Naz2 + bz + b2 − ∆

4Na
= −(sgn a)

(
N |a|t2 + ∆

4N |a|
)

.(3.6)

Therefore we obtain

ca,b(m) = (− sgn a)keπi tr(bm/δNa)

× 1√
N(δ)

∫ ∞+ic1

−∞+ic1

· · ·
∫ ∞+icn

−∞+icn

e2π tr((m/δ)t)

(
N |a|t2 + ∆

4N |a|
)−k

(in)dt .
(3.7)
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Here we recall the following formula (cf. [1, 29.3.57]):(
1

2πi

)n ∫ ∞+ic1

−∞+ic1

· · ·
∫ ∞+icn

−∞+icn

e2π tr lt

(
N |a|t2 + ∆

4N |a|
)−k

dt

=




πk(2l)k−1/2∏n
i=1(N

(i)|a(i)|)1/2∆k/2−1/4(k − 1)!Jk−1/2

(
π

√
∆l

N |a|
)

if l � 0,

0 otherwise.

This implies that

c′
k,N(m,∆, ρ,D0) =




(−1)k(sgn a)k2k+1/2πk+1(m/δ)k−1/2

|∆k/2−1/4|
√∏n

i=1 N(i)|a(i)|(k − 1)!√N(δ)

×SNa(m,∆, ρ,D0)Jk−1/2

(
πm

√
∆

N |a|δ
)

if m � 0

0 otherwise.

(3.8)

We put ∆ = D2
0f 2 (f � 0) and

f 0
k,N (z) =

∑
b,c

χD0([0, b, c])(bz + c)−k ,(3.9)

where b and c run through o under the condition that b2 = ∆ and b ≡ ρ (mod 2N). Observe
that b = ±D0f . Let us consider the case where

(−1)k(sgn D0) = −1,D0f �≡ ρ (mod 2N) and − D0f ≡ ρ (mod 2N) .

We easily check that

f 0
k,N (z) =

∑
c∈o

(
c

D0

)
(D0f z + c)−k .(3.10)

By the quadratic reciprocity law, we have(−c

D0

)
=

(
c

D0

)(−1

D0

)
=

(
c

D0

)
(sgn D0) .

Therefore we obtain

f 0
k,N (z) = −|D−k

0 |
∑

r(D0)
∗

∑
n∈o

(
r

D0

)(
f z + r

|D0| + n

)−k

.(3.11)

Applying the Poisson summation formula, we confirm that

f 0
k,N (z) = −|D−k

0 | (2π)kik√
N(δ)(k − 1)!

×
∑
µ∈o+

(µ/δ)k−1
( ∑

r(D0)
∗

(
r

D0

)
e

[
tr

(
µr

δ|D0|
)])

e[tr(µf z/δ)] .

(3.12)
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For each r coprime to D0, we may find an element r ′ ∈ o such that

r ≡ r ′ (mod D0) and (2, r ′) = 1 .

Hence by (1.13), we have∑
r(D0)

∗

(
r

D0

)
e

[
tr

(
µr

δ|D0|
)]

=
∑

r(D0)
∗

(
F(

√
D0)/F

(r)

)
(sgn r)e

[
tr

(
µr

δ|D0|
)]

.

By Shimura [11, A 6.3,4], we obtain that

∑
r(D0)

∗

(
r

D0

)
e

[
tr

(
µr

δ|D0|
)]

=
(

µ

D0

)
in

n∏
i=1

|D(i)
0 |1/2 .(3.13)

Therefore,

f 0
k,N (z) =

∑
m�0,m∈o

(sgn D0)
−1/2ik

(2π)k

(k − 1)!

× (m2/δ2∆)(k−1)/2 1√
N(δ)

|D0|−1/2ε±
N/δ(m,∆, ρ,D0)e[tr(mz/δ)] ,

(3.14)

where |D0|−1/2 = ∏n
i=1 |D(i)

0 |−1/2. We can prove the following formula similarly for the
remaining cases.

f 0
k,N (z) =

∑
m�0,m∈o

(sgn D0)
−1/2ik

(2π)k

(k − 1)!

× (m2/δ2∆)(k−1)/2 1√
N(δ)

|D0|−1/2ε±
N/δ(m,∆, ρ,D0)e[tr(mz/δ)] .

(3.15)

Therefore this proves the proposition. �

Next we introduce a Poincaré series for the Jacobi group. We define

Γ J∞(1) =
{((

1 n

0 1

)
, (0, µ)

)
∈ Γ J (1) ; n,µ ∈ o

}
and

en,r |k,N (τ, z) = e[tr((n/δ)τ + (n/δ)z)] .

Given a (n, r) ∈ o2 satisfying r2−4Nn  0, we define a function Pk,N,(n,r)(τ, z) on Hn×Cn

by

Pk,N,(n,r)(τ, z) =
∑

γ∈Γ J∞(1)\Γ J (1)

en,r |k,Nγ (τ, z) .(3.16)

It is easy to verify that Pk,N,(n,r)(τ, z) ∈ J
cusp
k,N for every r2 − 4Nn  0. The function

Pk,N,(n,r)(τ, z) is characterized by the property:

〈φ, Pk,N,(n,r)〉
= p(n, r)N(δ)(δN)k−3/22−n(N(N/δ))−1/2 Γ (k − 3/2)

πk−3/2|(4Nn − r2)k−3/2|
(3.17)
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for every φ(τ, z) = ∑
(n′,r ′)∈C(N) p(n′, r ′)e[tr((n′/δ)τ + (r ′/δ)z)] ∈ J

cusp
k,N , where C(N) =

{(n, r) ∈ o2 ; 4Nn − r2 � 0} and Γ (k − 3/2) = ∏n
i=1 Γ (ki − 3/2).

PROPOSITION 3.2. Let k = (k1, . . . , kn) be an element of Zn such that ki > 1 (1 ≤
i ≤ n) and put

Pk,N,(n,r)(τ, z) =
∑

(n′,r ′)∈C(N)

ck,N,(n,r)(n
′, r ′)e

[
tr

(
n′

δ
τ + r ′

δ
z

)]
.

Then the Fourier coefficient ck,N,(n,r)(n
′, r ′) is determined by

ck,N,(n,r)(n
′, r ′) = δ±

N/δ(n, r, n′, r ′) + ik(
√

2π)n(N(N/δ))−1/2

× N(δ)−1(D′/D)k/2−3/4
∑

c∈o−{0}
(sgn c)kHN,c(n, r, n′, r ′)Jk−3/2

(
π

√
D′D

N |c|δ
)

,
(3.18)

where D′ = (r ′)2 − 4Nn′, D = r2 − 4Nn,

δN/δ(n, r, n′, r ′) =
{

1 if D′ = D, r ′ ≡ r (mod 2N),

0 otherwise,

δ±
N/δ(n, r, n′, r ′) =

{
δN/δ(n, r, n′, r ′) + δN/δ(n, r, n′,−r ′) if (−1)k = 1,

δN/δ(n, r, n′, r ′) − δN/δ(n, r, n′,−r ′) otherwise,

HN,c(n, r, n′, r ′) =
n∏

i=1

|c(i)|−3/2

×
∑

ρ(c)∗,λ(c)

e

[
tr

(
1

c

((
N

δ
λ2 + r

δ
λ + n

δ

)
ρ−1 + n′

δ
ρ + r ′

δ
λ

))]
e

[
tr

(
rr ′

2Nδc

)]
.

PROOF. We see that

Pk,N,(n,r)(τ, z) =
∑
c,d,λ

(cτ + d)−ke

[
tr

(
N

δ

( −cz2

cτ + d
+ λ2 aτ + b

cτ + d
+ 2λz

cτ + d

))]

× e

[
tr

(
n

δ

(
aτ + b

cτ + d

))]
e

[
tr

(
r

δ

(
z

cτ + d
+ λ

aτ + b

cτ + d

))](3.19)

with
(

a b
c d

) ∈ SL2(o), where c, d and λ run through elements of o with (c, d) = 1 and λ ∈ o.
Let us consider the contribution of the summation (3.18) from c = 0. Put

∑
ε∈E,λ∈o

ε−ke

[
tr

(
N

δ
(λ2ε2τ + 2λεz)

)]
e

[
tr

(
n

δ
ε2τ

)]
e

[
tr

(
r

δ
(εz + λε2τ )

)]

=
∑
n′,r ′

c̃(n′, r ′)e
[

tr

(
n′

δ
τ + r

δ
z

)](3.20)
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with n′ = ε2(Nλ2 + n + rλ) and r ′ = ε(2λN + r). Then (r ′)2 − 4Nn′ = ε2(r2 − 4Nn),
which yields that

ε = ±
√

(r ′)2 − 4Nn′
r2 − 4Nn

.

Since the Fourier coefficient c(n, r) of a Jacobi form equals c(ε2n, εr) for every ε ∈ E, it is
sufficient to consider only the case where (r ′)2 −4Nn′ = r2 −4Nn. We assume that ε = ±1.
Therefore, we can calculate c̃(n′, r ′) explicitly.

Next we discuss the following summation.

∑
c,d,λ∈o,c �=0,(c,d)=1

(cτ + d)−ke

[
tr

(
N

δ

( −cz2

cτ + d
+ λ2 aτ + b

cτ + d
+ 2λz

cτ + d

))]

× e

[
tr

(
n

δ

(
aτ + b

cτ + d

))]
e

[
tr

(
N

δ

(
z

cτ + d
+ λ

aτ + b

cτ + d

))]
.

(3.21)

Note that

aτ + b

cτ + d
= a

c
− 1

c(cτ + d)
,

z

cτ + d
+ λ

aτ + b

cτ + d
= z − λ/c

cτ + d
+ λ

a

c
,

λ2 aτ + b

cτ + d
+ 2λ

z

cτ + d
− cz2

cτ + d
= −c(z − λ/c)2

cτ + d
+ λ2 a

c
.

Therefore (3.21) becomes

∑
c∈o−{0}

c−k
∑

d(c)∗,λ(c)

e

[
tr

(
1

c

(
N

δ
λ2 + rλ

δ
+ n

δ

)
d−1

)]
Fk,N,c,(n,r)

(
τ + d

c
, z − λ

c

)
(3.22)

with

Fk,N,c,(n,r)(τ, z) =
∑

α,β∈o

(τ + α)−ke

[
tr

(
N

δ

(
− (z − β)2

τ + α

))]

× e

[
tr

(
n

δ

( −1

c2(cτ + d)

))]
e

[
tr

(
r

δ

(
z − β

c(τ + α)

))]

=
∑

n′,r ′∈o

r(n′, r ′)e
[

tr

(
n′

δ
τ + r ′

δ
z

)]
.

Applying the Poisson summation formula, we obtain

r(n′, r ′) = (N(δ)−1/2)2
∫ c

(1)
1 +i∞

c
(1)
1 −i∞

· · ·
∫ c

(n)
1 +i∞

c
(n)
1 −i∞

τ−ke

[
tr

(
− n′

δ
τ

)]

×
∫ c

(1)
2 +i∞

c
(1)
2 −i∞

· · ·
∫ c

(n)
2 +i∞

c
(n)
2 −i∞

e

[
tr

(
− Nz2

δτ
+ rz

δcτ
− n

δc2τ
− r ′z

δ

)]
dzdτ

(3.23)
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with constants c
(i)
1 > 0 and c

(i)
2 > 0 (1 ≤ i ≤ n). We can check the following equality.

− N

δτ
z2 + rz

δcτ
− n

δc2τ
− r ′

δ
z

= − N

δτ

(
z − 1

2N

( r

c
− τr ′))2

+
(

D

4Nc2δτ
+ D′τ

4Nδ

)
+ n′τ

δ
− rr ′

2Ncδ
.

(3.24)

Therefore we find that

r(n′, r ′) = (N(2N/δ))−1/2e

[
tr

(−rr ′

2Nc

)]

×
∫ c

(1)
1 +i∞

c
(1)
1 −i∞

· · ·
∫ c

(n)
1 +i∞

c
(n)
1 −i∞

(
τ

i

)1/2

τ−ke

[
tr

(
D′τ
4Nδ

+ Dτ−1

4Nδc2

)]
dτ .

(3.25)

If D′ is not totally negative, we see that the integral (3.25) vanishes. If D′  0, we confirm
that

r(n′, r ′) = (2π)n(N(2N/δ))−1/2N(δ)−1

× e

[
tr

( −rr ′

2Nδc

)]
i−k|ck−3/2|(D′/D)k/2−3/4

× 1

(2πi)n

∫ c
(1)
1 +i∞

c
(1)
1 −i∞

· · ·
∫ c

(n)
1 +i∞

c
(n)
1 −i∞

s−k+1/2e(2π/4Nδ|c|)(D′D)(s−s−1)/2
ds .

(3.26)

Observe that the integral in (3.26) is equal to

(2πi)nJk−1/2

(
π(D′D)1/2

N |c|δ
)

(cf. [1, 29.3.80]) .

This completes our proof. �

4. A basic identity between Gauss sums and Kloosterman sums. In this section,
using a kernel function, we construct a lifting from the space of Jacobi forms of index N to
that of modular forms of level N . Define a function Ωk,N,D0,r0(w; τ, z) on Hn × (Hn × Cn)

by

Ωk,N,D0,r0(w; τ, z) = ck,N,D0

×
∑
(n,r)

(4Nn − r2)k−1/2fk,N,D0(r2−4Nn),r0r,D0
(w)e

[
tr

(
n

δ
τ + r

δ
z

)]
(4.1)

with ck,N,D0 = (−2i)k−12n−1N(δ)−3/2N1−kπ−k |Dk−1/2
0 |, where (n, r) runs over c(N). We

first prove the following theorem concerning the property of the above function
Ωk,N,D0,r0(w; τ, z).
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THEOREM 4.1 (A basic identity). Suppose that D0 = r2
0 −4Nn0 satisfies Assumption

1.11. Then

Ωk,N,D0,r0(w; τ, z) = ck,N,D0(2π)kik−1(k − 1)!−1δ−k+1/2

×
∑
m

mk−1
( ∑

dd ′=m,d∈o+/E+

(
d

D0

)
(d ′)kPk+1,N,(n0(d

′)2,r0d
′)(τ, z)

)
e

[
tr

(
mw

δ

)]
,

(4.2)

where m runs through all positive integers in o.

PROOF. Comparing Fourier coefficients of the both sides of (4.2), it is enough to prove
the relations

(D/D0)
k/2εN/δ(m,DD0, rr0,D0)

=
∑

(d)|m,d�0

(
d

D0

)
(m/d)kδN/δ

(
m2

d2 n0,
m

d
r0, n, r

)
(4.3)

and

SNa(m,DD0, rr0,D0)

=
∑

(d)|(m,a),d�0

(
d

D0

)
|N(a/d)|1/2HN,a/d

(
m2

d2 n0,
m

d
r0, n, r

)
(4.4)

with D = r2 − 4Nn  0. The proof of (4.3) is easy. So we may omit the details. The proof
of (4.4) may be reduced to the following equality.

∑
b∈SN,a,rr0 ,DD0

χD0

([
Na, b,

b2 − D0D

4Na

])
e

[
tr

(
(b − r0r)m

2Naδ

)]

= |N(a)|−1
∑

(d)|(a,m),d�0

(
d

D0

)
|N(d)|

×
∑

ρ∈(a/d)∗,λ∈(a/d)

e

[
tr

(
1

(a/d)δ

((
Nλ2 + m

d
r0λ +

(m

d

)2
n0

)
ρ−1 + nρ + rλ

))]

(4.5)

for every a ∈ o − {0}. Since both sides are periodic with period a as functions of m ∈ o, we
apply the Fourier transform to the above functions on o/ao. Consequently we need to verify
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that

|N(a)|−1
∑

b∈SN,a,rr0 ,DD0

∑
m(a)

χD0

([
Na, b,

b2 − DD0

4Na

])

× e

[
tr

(
((b − rr0)/2N − h′)m

aδ

)]

= N(a)−2
∑
m(a)

∑
(d)|(a,m),d�0

(
d

D0

)
N(d)−1

∑
ρ(a/d)∗,λ(a/d)

× e

[
tr

(
(Nλ2 + (m/d)r0λ + (m/d)2n0)ρ

−1 + nρ + rλ − h′(m/d)

(a/d)δ

)]
.

(4.6)

Put h = 2Nh′ + r0r . Then the left-hand side of (4.6) is equal to{
χD0([Na, h, (h2 − D0D)/4Na]) if h2 ≡ D0D (mod 4Na) ,

0 otherwise
(4.7)

and the right-hand side of (4.6) becomes

|N(a)|−1
∑

(d)|a,d�0

(
d

D0

)
|N(a/d)|−1

×
∑

ρ(a/d)∗,λ,m(a/d)

e

[
tr

(
ρ(Nλ2 + r0mλ + n0m

2 + rλ − h′m + n)

(a/d)δ

)]
.

(4.8)

By virtue of Proposition 2.1, (4.7) is equal to (4.8). This proves our assertion. �

Let φ ∈ J
cusp
k+1,N . Define a function ΨD0,r0(φ) on Hn by

ΨD0,r0(φ)(w) = 〈φ,Ωk,N,D0,r0(−w; ∗)〉 .(4.9)

Then, by virtue of Theorem 4.1, we have

ΨD0,r0(φ)(w)

=
∑

m∈o,m�0

( ∑
(d)|m,d�0

(
d

D0

)
dk−1c((m/d)2n0, (m/d)r0)

)
e

[
tr

(
mw

δ

)]
(4.10)

with φ(τ, z) = ∑
(n,r)∈C(N) c(n, r)e[tr((n/δ)τ + (r/δ)z)]. By our definition and the relation

(3.2), we can see that ΨD0,r0(φ) belongs to M2k(N)sgn D0 .
We recall the definition of Hecke operators on the space J

cusp
k+1,N (cf. [3]). Let A = (l)

denote an odd ideal satisfying (A, 2D0N) = 1 and l � 0. Given φ ∈ J
cusp
k,N , we define a

function Tk,N(A)φ by

Tk,N(A)φ(τ, z) = lk−4
∑
M

∑
x∈o2/ lo2

φ|k,N (M, x)(τ, z) ,(4.11)

where M = (
a b
c d

)
runs through SL2(o)\M2(o) under the conditions that det(M) = l2 and

the ideal g. c. d(a, b, c, d) is square. We see that Tk,N(A)φ belongs to J
cusp
k,N and its Fourier
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coefficients are determined by the relation

(Tk,N(A)φ)(τ, z) =
∑

(n,r)∈C(N)

c∗(n, r)e

[
tr

(
n

δ
τ + r

δ
z

)]
(4.12)

with

c∗(n, r) =
∑

(a),(n′,r ′)∈C(N)

ak−2εr2−4Nn(a)c(n′, r ′) ,

where the summation is over all ideals (a) and (n′, r ′) ∈ C(N) such that

a|l2, a2|l2(r2 − 4Nn) , a−2l2(r2 − 4Nn) ≡ square (mod 4) ,

a−2l2(r2 − 4Nn) = (r ′)2 − 4Nn′ , ar ′ ≡ lr (mod 2N) , and

εr2−4Nn(a) =




|N(f )|
(

(r2 − 4Nn)/f 2

a/f 2

)
if there exists f such that

(r2 − 4Nn)/f 2 ≡ square (mod 4), f 2|a
and (a/f 2, (r2 − 4Nn)/f 2) = 1 ,

0 otherwise.

THEOREM 4.2. Suppose that ki > 1 (1 ≤ i ≤ n) and φ belongs to J
cusp
k+1,N . Then

ΨD0,r0(φ)(w) belongs to M2k(N)sgn D0 and the following diagram is commutative:

J
cusp
k+1,N

ΨD0,r0−−−→ M2k(N)sgn D0

Tk+1,N (p)

� �T2k,N (p)

J
cusp
k+1,N −−−→

ΨD0,r0

M2k(N)sgn D0

,(4.13)

where p is an odd prime satisfying (p, 2D0N) = 1 and T2k,N(p) is the Hecke operator on
M2k(N)sgn D0 .

PROOF. We prove that the diagram is commutative. We put p = (l). Let φ(τ, z) =∑
(n,r)∈C(N) c(n, r)e[tr((n/δ)τ + (r/δ)z)] be an elelemt of J

cusp
k+1,N . Then

Tk+1,N(p)φ(τ, z) =
∑

(n,r)∈C(N)

c∗(n, r)e

[
tr

(
n

δ
τ + r

δ
z

)]

and

c∗(n, r) =
∑

(a),(n′,r ′)∈C(N)

ak−1εr2−4Nn(a)c(n′, r ′) .

We have
ΨD0,r0(Tk+1,N(p)φ)(w)

=
∑

m∈o,m�0

( ∑
(d)|m,d�0

(
d

D0

)
dk−1c∗

((
m

d

)2

n0,
m

d
r0

))
e

[
tr

(
mw

δ

)]
.

(4.14)
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We see that

c∗
((m

d

)2
n0,

m

d
r0

)
=

∑
(a),(n′,r ′)∈C(N)

ak−1ε(m/d)2(r2
0−4Nn0)(a)c(n′, r ′) ,(4.15)

where a|l2, a2|l2(m/d)2(r2
0 − 4Nn0), (l/a)2(m/d)2(r2

0 − 4Nn0) = (r ′)2 − 4Nn′.
If a = l2, then

l

∣∣∣∣md ,

(
m

ld

)2

(r2
0 − 4Nn0) = (r ′)2 − 4Nn′ and ε(m/d)2(r2

0−4Nn0)(a) = N(l) .(4.16)

If a = l, then(
m

d

)2

(r2
0 − 4Nn0) = (r ′)2 − 4Nn′ and ε(m/d)2(r2

0−4Nn0)(a) =
(

l

D0

)
.(4.17)

(See [5, Th. 167].) If a = 1, then

l2
(

m

d

)2

(r2
0 − 4Nn0) = (r ′)2 − 4Nn′ and ε(m/d)2(r2

0−4Nn0)(a) = 1 .(4.18)

We see that

ΨD0,r0(Tk+1,N(p)φ)(w)

=
∑

m∈o,m�0

( ∑
(d)|m,d�0

(
d

D0

)
dk−1c∗

((
m

d

)2

n0,
m

d
r0

)
e

[
tr

(
mw

δ

)]
.

We put

c(m) =
∑

(d)|m,d�0

(
d

D0

)
dk−1c

((
m

d

)2

n0,
m

d
r0

)

and

T2k,N(p)ΨD0,r0(φ)(w) =
∑

m′∈o,m′�0

c̃(m′)e
[

tr

(
m′w
δ

)]
.

By definition, we have

c̃(m′) =
{
c(lm′) if l � |m′ ,
c(lm′) + l2k−1c(m′/l) if l | m′ .

When, l � |m′, we have

c̄(lm′) =
∑

(d)|lm′

(
d

D0

)
dk−1c

((
lm′

d

)2

n0,
lm′

d
r0

)

=
(

l

D0

) ∑
(d ′)|m′

lk−1
(

d ′

D0

)
(d ′)k−1c

((
m′

d ′

)2

n0,
m′

d ′ r0

)
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+
∑

(d)|m′

(
d

D0

)
dk−1c

(
l2

(
m′

d

)2

n0,
lm′

d
r0

)
.

By (4.14), (4.15), (4.17) and (4.18), we have

c̃(m′) =
∑

(d)|m′

(
d

D0

)
dk−1c∗

((
m′

d

)2

n0,
m′

d
r0

)
.

When l|m′, we have

c̄(lm′) + l2k−1c

(
m′

l

)

=
∑

(d)|m′

(
d

D0

)
dk−1c

((
lm′

d

)2

n0,
lm′

d
r0

)
+ l2k−1

∑
(d)|(m′/ l)

(
d

D0

)
dk−1c

((
m′

dl

)2

n0,
m′

dl
r0

)

=
∑

(d ′)|m′

(
d ′

D0

)(
l

D0

)
lk−1(d ′)k−1c

((
m′

d ′

)2

n0,
m′

d ′ r0

)

+
∑

(d)|m′

(
d

D0

)
dk−1c

((
lm′

d

)2

n0,
lm′

d
r0

)

+ l2k−1
∑

(d)|(m′/ l)

(
d

D0

)
dk−1c

((
m′

dl

)2

n0,
m′

dl
r0

)
.

By (4.14), (4.15), (4.16), (4.17) and (4.18), we have

c̃(m′) = c(lm′) + l2k−1c

(
m′

l

)

=
∑

(d)|m′

(
d

D0

)
dk−1c∗

((
m′

d

)2

n0,
m′

d
r0

)
.

This completes our proof. �

5. Fourier coefficients of Jacobi forms and the critical values of the zeta function
associated with Hilbert modular forms. In this section, using a basic identity of kernel
functions, we shall derive a relation between Fourier coefficients of Jacobi forms and the crit-
ical values of zeta functions attached to Hilbert modular forms. Define a function Ψ ∗

D0,r0
(f )

on Hn × Cn by

Ψ ∗
D0,r0

(f )(τ, z) = 〈f,Ωk,N,D0,r0(∗; −τ,−z)〉(5.1)

for every f ∈ M2k(N)sgn D0 . Then

Ψ ∗
D0,r0

(f )(τ, z) = ck,N,D0

×
∑

(n,r)∈C(N)

(4Nn − r2)k−1/2〈f, fk,N,D0 (r2−4Nn),r0r,D0
〉e

[
tr

(
n

δ
τ + r

δ
z

)]
.

(5.2)
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We assume that ∆ = D2
0 and ρ = r2

0 . We easily see that

LN,D2
0 ,r2

0
/Γ0(N) = {Q = [0,D0, µ] ; µ (mod D0)}

and

Γ0(N)Q = {
γ ∈ Γ0(N) ; Q ◦ γ = Q

} =
{(

ε
µ(ε2−1)

D0ε

0 ε−1

)
; ε ∈ E, ε2 ≡ 1 (mod D0)

}

for every Q = [0,D0, µ] and µ such that (µ,D0) = 1. Putting θ = arg(z−β) and r = |z−β|
with β = −(µ/D0), we obtain

Q(z, 1)−ky2k−2dxdy = D−k
0 (z − β)k−1 sin2k−2 θdzdθ .

Employing the arguments in Kohnen [6, p.265–p.266] and Shimura [8], we have∫
Γ0(N)Q\Hn

f (z)Q(z, 1)−ky2k−2dxdy

= D−k
0

n∏
i=1

( ∫ π

0
sin2ki−2 θidθi

)∫
(R+)n/E0

f (ri + β)ikrk−1dr

(5.3)

with E0 = {ε2 ; ε ∈ E and ε2 ≡ 1 (mod D0)}. We consider the integral.

〈f, fk,N,D2
0 ,r2

0 ,D0
〉(s) =

∑
µ(D0)∗

(
µ

D0

)
D−k

0

n∏
i=1

( ∫ π

0
sin2ki−2 θidθi

)

×
∫

(R+)n/E0

f (ri + β)(ir)k−1inrsdr (s ∈ C) .

Then

〈f, fk,N,D2
0 ,r2

0 ,D0
〉(s) = ik

( n∏
i=1

∫ π

0
sin2ki−2 θidθi

)
D−k

0

×
∑
α∈o+

∑
µ(D0)

∗

(
µ

D0

)
e

[
tr

(
αµ

δ|D0|
)]

a(α)

∫
(R+)n/E0

e−2π tr(αt/δ)ts+k−1dt ,

(5.4)

where f (z) = ∑
α∈o+ a(α)e[tr(α/δ)z]. Observe that

∫ π

0
sin2ki−2 θidθi = π

(2ki − 3)!!
(2ki − 2)!! ,

∑
µ(D0)∗

(
µ

D0

)
e

[
tr

(
αµ

δ|D0|
)]

=
(

µ

D0

)
in

n∏
i=1

|D(i)
0 |1/2

and a(µε) = εka(µ) for every ε ∈ E+, where (2ki − 3)!! = 1 × 3 × · · · × (2ki − 3) and
(2ki − 2)!! = 2 × 4 × · · · × (2ki − 2). Decomposing

(R+)n/E0 =
⋃

ε′∈E+/E0

ε′((R+)n/E+) ,
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we get

〈f, fk,N,D2
0 ,r2

0 ,D0
〉(s) = ik+1 πn

Dk
0

(2k − 3)!!
(2k − 2)!!(E

+ : E0)(2π)−kδkΓ (k)

×
n∏

i=1

|D(i)
0 |1/2

( ∑
µ∈o+/E+

a(µ)

(
µ

D0

)
µ−k−s

)
.

(5.5)

We take the modular form f attached to f given in [7, Section 2]. For an integral ideal A =
(µ) (µ � 0), put c(A, f) = a(µ)µ−k. Then c(A, f) is independent of the choice of µ.
Putting C(A, f) = N(A)k0c(A, f) with k0 = max{k1, . . . , kn}, we consider the Dirichlet
series determined by

D

(
s, f,

( ∗
D0

))
=

∑
A=(µ),µ�0

C(A, f)

(
µ

D0

)
N(A)−s .(5.6)

Then

〈f, fk,N,D2
0 ,r2

0 ,D0
〉 = ik+1 πk

Dk
0

(2k − 3)!!
(2k − 2)!!

×
n∏

i=1

|D(i)
0 |1/2(E+ : E0)(2π)−kδkΓ (k)D

(
k0, f,

( ∗
D0

))
.

(5.7)

Here we assume that f is a normalized Hecke eigenform satisfying

f|T̃2k,N(A) = χ(A)f , C(A, f) = χ(A)C(o, f) and C(o, f) = 1,(5.8)

where f|T̃2k,N(A) is the action of the Hecke operators given in [7, Section 2]. Consider the
Dirichlet series D(s, χ, ( ∗

D0
)) defined by

D

(
s, χ,

( ∗
D0

))

=
∏

p

(
1 − χ(p)

(
π

D0

)
N(p)−s + 1N(p)

(
π

D0

)2

N(p)2k0−1−2s

)−1

,

(5.9)

where 1N(p) =
{

1 if p � |N
0 otherwise.

Then

D
(
s, χ,

( ∗
D0

))
=

∏
p|2,p=(π),π�0

(
1 − χ(p)

( π

D0

)
N(p)−s + 1N(p)

( π

D0

)2
N(p)2k0−1−2s

)−1

×
∏
p � |2

(
1 − χ(p)

(F(
√

D0)/F

p

)
N(p)−s

+ 1N(p)
(F(

√
D0)/F

p

)2
N(p)2k0−1−2s

)−1
.

(5.10)
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Let φ(τ, z) = ∑
(n,r)∈C(N) c(n, r)e[tr((n/δ)τ +(r/δ)z)] be an element of J

cusp
k+1,N . We impose

the following assumptions:

ASSUMPTION 5.11.
1. φ|Tk+1,N(l) = χ(l)φ for every odd prime l satisfying (l, 2D0N) = 1.
2. ΨD0,r0(φ) is a new form of M2k(N)sgn D0 and f is the primitive form associated with

it.
3. If φ′ is a nonzero element of J

cusp
k+1,N such that φ′|Tk+1,N(l) = χ(l)φ′ for every prime

l ((l, 2D0N) = 1), then there is a constant c such that φ′ = cφ.

From the above assumption, we have

ΨD0,r0(φ) = c(n0, r0)f .(5.12)

Since Tk+1,N(l) ((l, 2D0N) = 1) is Hermitian and ΨD0,r0 commutes with the action of
Tk+1,N (l) ((l, 2D0N) = 1), we conclude that

Tk+1,N(l)(Ψ ∗
D0,r0

(f )) = χ(l)Ψ ∗
D0,r0

(f )(5.13)

for every odd prime l ((l, 2D0N) = 1). Assumption 5.11 implies that Ψ ∗
D0,r0

(f ) = αφ for
some constant α. Therefore we obtain

αc(n, r) = ck,N,D0(4Nn − r2)k−1/2〈f, fk,N,D0 (r2−4Nn),r0r,D0
〉 ,(5.14)

which yields that

αc(n, r)〈φ, φ〉 = c(n, r)〈Ψ ∗
D0,r0

(f ), φ〉
= c(n, r)〈f,ΨD0,r0(φ)〉 = c(n, r)c(n0, r0)〈f, f 〉 .

(5.15)

This implies that

ck,N,D0(4Nn − r2)k−1/2〈f, fk,N,D0(r2−4Nn),r0r,D0
〉〈φ, φ〉 = c(n0, r0)c(n, r)〈f, f 〉 .(5.16)

Therefore, we deduce our main theorem.

THEOREM 5.1. Let D0 be an element satisfying Assumption 1.11. Suppose that φ

satisfies Assumption 5.11. Then

〈f, f 〉〈φ, φ〉−1|c(n0, r0)|2 = (k − 1)!δ
k−3/2|Dk−1/2

0 |
22k−1Nk−1πk

(E+ : E0)D

(
k0, χ,

( ∗
D0

))
.(5.17)
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