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Abstract. The purpose of this paper is to derive a generalization of Kohnen-Zagier’s
results concerning Fourier coefficients of modular forms of half integral weight belonging to
Kohnen’s spaces, and to refine our previous results concerning Fourier coefficients of modular
forms of half integral weight belonging to Kohnen’s spaces. Employing kernel functions, we
construct a correspondenceΨ from modular forms of half integral weightk + 1/2 belong-
ing to Kohnen’s spaces to modular forms of weight 2k. We explicitly determine the Fourier
coefficients ofΨ (f ) in terms of those off . Moreover, under certain assumptions aboutf

concerning the multiplicity one theorem with respect to Hecke operators, we establish an ex-
plicit connection between the square of Fourier coefficients off and the critical value of the
zeta function associated with the imageΨ (f ) of f twisted with quadratic characters, which
gives a further refinement of our results concerning Fourier coefficients of modular forms of
half integral weight belonging to Kohnen’s spaces.

Introduction. In [20], Waldspurger first found the proportionality between Fourier co-
efficients of modular forms of half integral weight and special values of twistedL-series
defined by Shimura correspondences. Kohnen-Zagier [4], [6] and [7] determined explicitly
the constant of proportionality in the case of modular forms of half integral weight belonging
to Kohnen’s spaces of odd level and of trivial character.

In [17], Shimura proved many general formulas of Waldspurger-type in the case of
Hilbert modular formsf of half integral weight. Among these, some explicit and useful
formulas about the proportionality constant were formulated under assumption thatf satis-
fies the multiplicity one theorem of Hecke operators. Manickam-Ramakrishnan-Vasudevan
[13] and [14] also obtained related results in the case of elliptic modular forms of half integral
weight. On the other hand, Kojima [8] and [9] generalized Kohnen-Zagier’s results to the case
of Kohnen’s spaces of arbitrary odd level and of arbitrary character under the assumption of
multiplicity two theorem of Hecke operators. It is to be desired that, under the assumption of
multiplicity one theorem, our results are reformulated in the case of arbitrary odd level and of
arbitrary character in conjunction with the possibility of a further refinement of [8] and [9].
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We refer to [10] and [12] for a generalization of Shimura’s results to the case of Maass wave
forms.

The purpose of this paper is to generalize Kohnen’s results to the case of arbitrary odd
level and of arbitrary character, and to deduce that, under the assumption of multiplicity one
theorem, the square of Fourier coefficients of modular forms of half integral weight, belonging
to Kohnen’s spaces of arbitrary odd level and ofarbitrary character, essentially coincides
with the critical values of zeta functions twisted with quadratic character, which refines our
previous results [8] and [9]. The method of this paper is basically the same as that of [6].

Section 0 is a preliminary section. In Section 1, we shall recall the definition of Kohnen’s
space, which is a subspace of modular forms of half integral weight, and Hecke operators
acting on there. We then introduce Poincaré series of Kohnen’s space and modular forms
of integral weight associated with a space of quadratic forms. Furthermore, we determine
explicit Fourier coefficients of Fourier expansion of those.

In Section 2, by virtue of the computation of Gauss sum, we shall derive that a sum of
Kloosterman sum is expressed as that of genus characters. Using this, we shall deduce that a
certain function which is a series whose terms are modular forms associated with a space of
quadratic forms coincides with a series whose terms are Poincaré series of Kohnen’s space,
which plays an essential role in our later argument.

In Section 3, using the function introduced in Section 2 as a kernel function, we shall
establish a correspondenceΨ from Kohnen’s spaceSk+1/2(N, χ) of modular formsf (z) =∑∞
n=1,(−1)kn≡0,1(4) a(n)e[nz] of half integral weightk+ 1/2 to the spaceS2k(N, χ

2) of mod-
ular forms of integral weight 2k. Using the identity mentioned above, we shall explicitly
determine Fourier coefficients ofF = Ψ (f ) in terms of those off ∈ Sk+1/2(N, χ). More-
over, it is shown thatΨ commutes with the action of Hecke operators. Employing the fact
that our correspondenceΨ has an integral expression and the identity mentioned above, the
Fourier coefficients ofΨ ∗(F ) is expressed by a certain cycle integral ofF with the adjoint
mappingΨ ∗ of Ψ .

In Section 4, under the assumption thatf is an eigenfunction of Hecke operators and
Ψ (f ) is a new form inS2k(N, χ

2), it is verified thatΨ (f ) is equal tocF with a Fourier co-
efficientc of f and the primitive formF attached toΨ (f ). Furthermore, we can show that
Ψ ∗(F ) is an eigenfunction of Hecke operators using the properties thatΨ commutes with
the action of Hecke operators and those of Hecke operators. By the assumption thatf satis-
fies the multiplicity one theorem of Hecke operators, we see that there is a constantc′ such
thatΨ ∗(F ) = c′f , which means thatf can be recovered fromΨ (f ). Using these facts, the
property of the adjoint mappingΨ ∗ of Ψ and results in Section 3, we may derive that the
square of Fourier coefficients off is determined by cycle integrals ofF . From these, it is
deduced that the square of Fourier coefficientsa(|D|) of f with a fundamental discriminant
D is essentially equal to the critical values ofL-series ofF twisted with quadratic charac-
ters. We mention that our results are closely related with those of [17, Theorem 3.6.B], but
there are several differences between Shimura’s results and ours. There he showed that the
critical value of the zeta function attached toF are represented by the Fourier coefficients of
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certain modular forms related withf . We determine explicitlya(|D|) in terms of the critical
values of the zeta function attached toF with a fundamental discriminantD. Recently, using
Ueda’s results, Sakata [15] showed a relation between Fourier coefficients of modular forms
in Sk+1/2(N, χ) and the critical value of the zeta function associated with the modular form
in S2k(N, χ

2) determined by the Shimura correspondence under the condition thatχ2 = 1.
We note that Ueda [19] investigated the problem of the multiplicity of Hecke operators acting
onSk+1/2(N, χ) with χ2 = 1.

Finally, the authors are grateful to the referee who suggested revisions of the original
version of this paper.

0. Notation and preliminaries. We denote byZ, Q, R and C the ring of rational
integers, the rational number field, the real number field and the complex number field, re-
spectively. For az ∈ C, we define

√
z = z1/2 so that−π/2 < argz1/2 � π/2 and put

zk/2 = (
√
z)k for everyk ∈ Z. Further we pute[z] = exp(2πiz) for z ∈ C. For a com-

mutative ringR with identity element, we denote bySL(2, R) the special linear group of all
matrices of degree 2 with coefficients inR andH the complex upper half plane, i.e.,

SL(2, R) =
{(
a b

c d

) ∣∣∣∣ a, b, c, d ∈ R andad − bc = 1

}

and

H = {z = x + iy ∈ C | x, y ∈ R andy > 0} .
For a positive integerm, we put

�0(m) =
{(
a b

c d

)
∈ SL(2,Z)

∣∣∣∣ c ≡ 0 (modm)

}
.

Define an action ofSL(2,R) onH∗ = H ∪ R ∪ {∞} by

z ∈ H∗ �→ γ (z) = az+ b

cz+ d
∈ H∗ for γ =

(
a b

c d

)
∈ SL(2,R)

and forz ∈ H∗. The symbol
(

∗
∗
)

indicates the same as that of [14]. Forc ∈ Z, the notation∑
n(c) (resp.

∑
n(c)× ) means thatn runs over alln ∈ Z/cZ (resp.(Z/cZ)×).

1. Kohnen’s spaces and modular forms. For integersl,M and a Dirichlet character
ψ moduloM, we denote bySl(M,ψ) the space of modular cusp forms of weightl with level
M and characterψ. Further we denote byTl,M,ψ(p) the Hecke operators onSl(M,ψ) for ev-
ery primep. LetN be an odd integer,χ a Dirichlet character moduloN such thatχ(−1) = ε

andk a non negative integer. We denote bySk+1/2(N, χ) the subspace ofSκ(4N, χ̃) consist-
ing of thosef whose Fourier expansion has the form

f (z) =
∑

ε(−1)kn≡0,1(4)

a(n)e[nz] ,(1-1)



128 H. KOJIMA AND Y. TOKUNO

whereχ̃ =
(

4ε
∗

)
χ, κ = 2k + 1 andSκ(4N, χ̃) is the space of cusp forms of half integral

weightk + 1/2 with level 4N and a character̃χ modulo 4N in the sense of Shimura [16]. If
f andg are cusp forms ofSκ(4N, χ̃), we determine the Petersson inner product〈f, g〉 by

〈f, g〉 = 1

i4N

∫
�0(4N)\�

f (z)g(z)yk+1/2−2dxdy ,(1-2)

wherez = x + iy ∈ H andiM = [SL(2,Z) : �0(M)]. We denote by Pr the projection from
Sκ(4N, χ̃) to Sk+1/2(N, χ). For a positive integerm we determine them-th Poincaŕe series
℘k,4N,m,χ̃ by the relation

〈g, ℘k,4N,m,χ̃ 〉 = i−1
4N
�(k − 1/2)

(4πm)k−1/2ag(m)(1-3)

for everyg(z) = ∑∞
m=1 ag(m)e[mz] ∈ Sκ(4N, χ̃). PutPk,N,m,χ = Pr(℘k,4N,m,χ̃ ). Then we

have the following Fourier expansion

Pk,N,m,χ (z) =
∞∑

n=1,ε(−1)kn≡0,1(4)

gk,N,m,χ (n)e[nz] .(1-4)

By the same method as that of [6, pp. 251–257], we have the following proposition.

PROPOSITION 1.1. Let m be a positive integer such that ε(−1)km ≡ 0,1 (mod 4).
Then

gk,N,m,χ (n)
(1-5)

= 2

3

(
δm,n + (−1)[(k+1)/2]√2π(n/m)k/2−1/4

∞∑
c=1,N |c

Hc(n,m, χ)Jk−1/2

(
π

c

√
mn

))

with

HNc′(n,m, χ) = (1 − (−1)ki)

(
1 +

(
4

Nc′

))

× 1

4Nc′
∑

δ(4Nc′)×

(
4Nc′

δ

)(−4

δ

)k+1/2

e4Nc′(nδ +mδ−1)χ̄ (δ)

(
4ε

δ

)
,

where Jk−1/2(t) = (t/2)k−1/2 ∑∞
r=0(−1)r(t/2)2r{r!�(k+r+1/2)}−1, the sum

∑
δ(c)× (resp.∑

δ(c)) is taken over all δ ∈ (Z/cZ)× (resp. δ ∈ Z/cZ), δ−1 means an integer such that

δ · δ−1 ≡ 1 (mod 4Nc′), and el(x) = e[x/l].
We review the definition of Hecke operators given in [5, Section 3]. For a primep

(p � N), we define a Hecke operatorTk+1/2,N,χ (p
2) by
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T k+1/2,N,χ (p
2)f (z)

(1-6)

=
∞∑

n=1,ε(−1)kn≡0,1(4)

{
a(p2n)+ χ(p)

(
ε(−1)kn

p

)
pk−1a(n)+ χ(p2)p2k−1a(n/p2)

}
e[nz]

for everyf (z) = ∑∞
n=1,ε(−1)kn≡0,1(4) a(n)e[nz] ∈ Sk+1/2(N, χ). For a primep (p|N), put

U(p2)f (z) =
∞∑

n=1,ε(−1)kn≡0,1(4)

a(p2n)e[nz](1-7)

for every f (z) = ∑
n=1,ε(−1)kn≡0,1(4) a(n)e[nz] ∈ Sk+1/2(N, χ). LetN, k be positive inte-

gers andχ a Dirichlet character moduloN whose conductor isN1. Denote byχ1 the primitive
character associated withχ . PutN2 = N/N1. We consider integersk, t,D,D′ such that

k � 2, (N1, t) = 1,D,D′ ≡ 0,1(4), (N,D) = 1, ε(−1)kD > 0 andDD′ > 0 .(1-8)

Define a functionfk,N2
1 ,t
(z;D,D′, χ1) onH by

fk,N2
1 ,t
(z;D,D′, χ1) =

∑
(a,b,c)

ωD(a, b, c)(az
2 + bz+ c)−kχ1(c) ,(1-9)

where(a, b, c) runs over all integers inZ3 such thatb2 − 4ac = N2
1DD

′ andN2
1 t|a, andωD

means the symbol given in [6, p. 238]. Then we can easily check the following properties

fk,N2
1 ,t
(g(z);D,D′, χ1) = χ̄2

1(δ)(γ z+ δ)2kfk,N2
1 ,t
(z;D,D′, χ1)(1-10)

for everyg =
(
α β

γ δ

)
∈ �0(N1t) and

fk,N2
1 ,t
(−z̄;D,D′, χ1) = fk,N2

1 ,t
(z;D,D′, χ̄1) .

Next we shall determine explicit Fourier coefficients offk,N2
1 ,t
(z;D, ε(−1)km, χ1). This

function can be decomposed into

fk,N2
1 ,t
(z;D, ε(−1)km, χ1) = f 0

k,N2
1 ,t
(z)+ 2

∞∑
a=1,N2

1 t |a
f a
k,N2

1 ,t
(z)(1-11)

with
f 0
k,N2

1 ,t
(z) = 2

∑
b,c∈Z,b>0,b2=|D|m

ωD(0, b, c)(bz+ c)−kχ1(c)

and

f a
k,N2

1 ,t
(z) =

∑
b∈Z,b2≡N2

1 |D|m(4a)
ωD

(
a, b,

b2 −N2
1 |D|m

4a

)

×
(
az2 + bz+ b2 −N2

1 |D|m
4a

)−k
χ1

(
b2 −N2

1 |D|m
4a

)
.
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We have

f
N2

1 ta
′

k,N2
1 ,t
(z) =

∑
b′(2N1ta

′),(b′)2≡|D|m(4ta′)
ωD

(
N2

1 ta
′, N1b

′, (b
′)2 − |D|m

4a′t

)(1-12)

× χ1

(
(b′)2 − |D|m

4a′t

) ∑
n∈Z

(
N2

1 ta
′(z+ n)2 + N1b

′(z+ n)+ (N1b
′)2 −N2

1 |D|m
4N2

1 ta
′

)−k
.

Here we need a formula forc > 0∫ ∞+iC

−∞+iC

(
az2 + bz+ b2 −N2

1 |D|m
4a

)−k
e−2πinzdz

= (−1)k2k+1/2πk+1nk−1/2

(N2
1 |D|m)k/2−1/4

√
a(k − 1)!Jk−1/2

(πn√N2
1 |D|m
a

)
eπinb/a

(1-13)

(cf. [1, 29.3.57]). Hence we may derive the following.

f
N2

1 ta
′

k,N2
1 ,t
(z) = (−1)k2k+1/2πk+1

N
k+1/2
1

√
t(|D|m)k/2−1/4

√
a′(k − 1)!

×
∞∑
n=1

nk−1/2SN1ta
′,D,ε(−1)km,χ1

(|D|m,n)Jk−1/2

(
πn

√|D|m
N1ta′

)
e2πinz

(1-14)

with

SN1a,D,ε(−1)km,χ1
(|D|m,n)

=
∑

b(2N1a),b
2≡|D|m(4a)

ωD

(
N2

1a,N1b,
b2 − |D|m

4a

)
χ1

(
b2 − |D|m

4a

)
e2Na(nb) .

Next we shall computef 0
k,N2

1 ,t
(z). If f = √

m/|D| ∈ Z, then we may check

f 0
k,N2

1 ,t
(z) = 2

∑
c∈Z

(
D

c

)
(N1|D|f z + c)−kχ1(c)

= 2
∑
r(DN1)

(
D

r

)
χ1(r)(N1|D|)−k

∑
n∈Z

(
f z+ r

|D|N1
+ n

)−k
.

(1-15)

Using Lipschitz’s formula

∑
n∈Z

(τ + n)−s = (2π)se−πis/2

�(s)

∞∑
n=1

ns−1e2πinτ (τ ∈ H,�(s) > 1) ,(1-16)
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we may verify that

f 0
k,N2

1 ,t
(z) = 2(N1|D|)−k(−i)k(2π)k

(k − 1)!
(
D

N1

)
χ1(|D|)W(χ1)

×
(
D

−1

)1/2

|D|1/2



∑∞
n=1 χ̄1(n)

(
D

n

)
nk−1e2πinf z if f = √

m/|D| ∈ Z ,

0 otherwise ,

(1-17)

whereW(χ1) is the Gauss sum ofχ1. We may deduce the following

PROPOSITION 1.2. Put

fk,N2
1 ,t
(z;D, ε(−1)km, χ1) =

∞∑
n=1

ck,N2
1 ,t
(n;D, ε(−1)km)e[nz] .

Then

ck,N2
1 ,t
(n;D, ε(−1)km)

(1-18)

= 2
(−1)k2k+1/2πk+1

N
k+1/2
1 (|D|m)k/2−1/4(k − 1)!

∞∑
a′=1

nk−1/2
√
ta′−1

SN1ta
′,D,ε(−1)km,χ1

(|D|m,n)

× Jk−1/2

(
πn

√|D|m
N1ta′

)
+ 2

(N1|D|)−k(−i)k(2π)k
(k − 1)!

(
D

N1

)
χ1(|D|)W(χ1)

(
D

−1

)1/2

× |D|1/2

 χ̄1(n/f )

(
D

n/f

)
(n/f )k−1 if f = √

m/|D| ∈ Z and n/f ∈ Z ,

0 otherwise .

2. Gauss sum, Kloosterman sum and a basic identity. LetN be an odd integer, and
χ a Dirichlet character moduloN whose conductor isN1. Putε = χ(−1) andN2 = N/N1.

We denote byχ1 the primitive character associated withχ . For c ∈ Z (> 0)(N1|c), n and
h ∈ Z, put

F4c,χ1(Q(n)) = 1

4c

(
1 +

(
4

c

)) ∑
n(2c),δ(4c)

(
4c

δ

)
χ1(δ)

(
1 −

(−4

δ

)
i

)
e4c(δQ(n)) ,(2-1)

whereQ(n) = Dn2 − 2hn + ε(−1)km andD,m are the integers given in (1-8). Further put
c = c′0c0, wherec0 is odd andc′0 is a power of 2. Then the quadratic reciprocity law implies
that

F4c,χ1(Q(n)) = χ1(4c′0)F4c′0(Q(n))Fc0,χ1(Q(n))(2-2)

with

F4c′0(Q(n)) = 1

4c′0

(
1 +

(
4

c′0

)) ∑
n(2c′0),δ(4c′0)

(
4c′0
δ

)(
1 −

(−4

δ

)
i

)
e4c′0(δQ(n))
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and

Fc0,χ1(Q(n)) = 1

c0

(−4

c0

)−1/2 ∑
n,δ(c0)

(
δ

c0

)
χ1(δ)ec0(δQ(n)) .

Put

N1 =
l∏
i=1

p
νi
i , c0 =

l∏
i=1

p
λi+νi
i

s∏
i=l+1

p
λi
i , c′0 = 2λ ,

wherepi (1 � i � s) are prime andpi = pj (i = j). According as the natural isomorphism
of group(Z/N1Z)× ∼= ∏l

i=1(Z/p
νi
i Z)×, we can decomposeχ1 into

∏l
i=1 χ1,i . Using this,

we may derive

F4c,χ1(Q(n)) = χ1

(
2λ+2

s∏
i=l+1

p
λi
i

)

×
l∏
i=1

χ1,i

(∏l
j=1p

λj+νj
j

p
λi+νi
i

)
F2λ+2(Q(n))

l∏
i=1

F
p
λi+νi
i ,χ1,i

(Q(n))

s∏
i=l+1

F
p
λi
i

(Q(n)) .

(2-3)

For positive integersa, h andm, defineCD,m(N1a, h, χ1) by

CD,m(N1a, h, χ1) = (4N1a)
−1

∑
n(2N1a)

e2N1a(−hn)

×
∑

d |(N1a,n)

(
D

d

)
(4N1a/d)

1/2χ̄1(d)HN1a/d(m, n
2|D|d2, χ1) .

(2-4)

Puta = 2e
∏s
i=1p

αi
i = 2eã1ã2, where (ã1, ã2) = 1, (N1, ã2) = 1. Then, by (2.3), we may

deduce that

CD,m(N1a, h, χ1)

=
(
ε

−1

)1/2

(4N1a)
−1

∑
d |N1a

(
D

d

)
(4N1a/d)

1/2χ̄1(d)F4N1a/d,χ̄1(Q(n))

=
(
ε

−1

)1/2( 1

2e+2

∑
d |2e

(
D

d

)
(2e+2/d)1/2χ̄1(d)χ̄1(2e+2/d)F2e+2/d(Q(n))

)

×
l∏
i=1

(
(p
νi+αi
i )−1/2χ̄1,i

(∏l
j=1p

αj+νj
j

p
αi+νi
i

)
F
p
αi+νi
i ,χ̄1,i

(Q(n))

)

×
s∏

i=l+1

(
1

p
αi
i

∑
d |pαii

(
D

d

)
(p
αi
i /d)

1/2χ̄1(d)χ̄1(p
αi
i /d)Fpαii /d

(Q(n))

)
.

(2-5)
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For i (1 � i � l), we now calculateF
p
αi+νi
i ,χ̄1,i

(Q(n)).

F
p
αi+νi
i ,χ̄1,i

(Q(n)) = 1

p
αi+νi
i

( −4

p
αi+νi
i

)−1/2

×
∑

δ(p
αi+νi
i )×

(
δ

p
αi+νi
i

) ∑
n(p

αi+νi
i )

χ̄1,i(δ)ep
αi+νi
i

(δQ(n)) .

(2-6)

We can putδ = α + βp
νi
i with α ∈ (Z/pαi+νii Z)× andβ ∈ Z/pαii Z. Assume thatpi � D.

DetermineD−1 ∈ Z such thatQ(n) ≡ D−1((Dn − h)2 − ∆) (modpαi+νii ), where∆ =
h2 − ε(−1)kDm. Then we have

∑
n(p

αi+νi
i )

e
p
αi+νi
i

(δQ(n)) = e
p
αi+νi
i

(−δD−1∆)

(
δD

p
αi+νi
i

)( −4

p
αi+νi
i

)1/2

p
(αi+νi)/2
i .(2-7)

Therefore we may confirm

F
p
αi+νi
i ,χ̄1,i

(Q(n)) = 1

p
(αi+νi)/2
i

(
D

p
αi+νi
i

)

×
∑

α(p
νi
i )

×

∑
β(p

αi
i )

χ̄1,i(α)ep
αi+νi
i

(−αD−1∆)e
p
αi
i
(−βD−1∆) ,

(2-8)

which is zero unlesspαii |D−1∆. Under this condition, we may check

∑
α(p

νi
i )

×
χ̄1,i(α)ep

αi+νi
i

(−αD−1∆) = W(χ̄1,i)χ1,i(−D−1)χ1,i(∆/p
αi
i ) .(2-9)

It follows from this that

l∏
i=1

(
1

(p
νi+αi
i )1/2

χ̄1,i

( l∏
j=1

p
αj+νj
j /p

αi+νi
i

))
F
p
αi+νi
i ,χ̄1,i

(Q(n))

=
l∏
i=1

1

p
νi
i

W(χ̄1,i )χ1,i(−D−1)χ̄1,i

(∏l
j=1p

νj
j

p
νi
i

)
χ1,i

(
∆∏l

j=1p
αj
j

)(
D

p
αi+νi
i

)
.

(2-10)

SinceW(χ̄1) = ∏l
i=1W(χ̄1,i )χ̄1,i(N1/p

νi
i ), (2-10) is equal to




1

N1
W(χ̄1)χ1(−D−1)χ1(∆/ã1)

(
D

N1

)(
D

ã1

)
if ã1|∆ ,

0 otherwise .
(2-11)
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Assume thati � l + 1 andpi � D. Then we have

1

p
αi
i

∑
d |pαii

(
D

d

)
(p
αi
i /d)

1/2χ̄1,i(d)χ̄1,i(p
αi
i /d)Fpαii /d,χ̄1

(Q(n))

= χ̄1(p
αi
i )

p
αi
i

(
D

p
αi
i

) αi∑
l=0

(
D

pli

)
(pli )

1/2Fpli
(Q(n)) .

(2-12)

By virtue of [6, pp. 259–264], (2-12) is equal to

χ̄1(p

αi
i )

(
D

p
αi
i

)
if p

αi
i |∆ ,

0 otherwise .
(2-13)

Wheni � l + 1, pi |D andpi is odd, we may verify that

1

p
αi
i

∑
d |pαii

(
D

d

)
(p
αi
i /d)

1/2χ̄1(d)Fpαii /d,χ̄1
(Q(n))

=



χ̄1(p

αi
i )

(
p∗
i

∆/p
αi
i

)(
D/p∗

i

p
αi
i

)
if p

αi
i |∆,pi |D andpi is odd ,

0 otherwise ,

(2-14)

wherep∗
i is the symbol given in [6, pp. 262–264]. Applying the above argument due to [6,

pp. 259–264], we may find that

CD,m(N1a, h, χ1) =
(
ε

−1

)1/2

N−1
1 W(χ̄1)χ1(−D−1)

(
D

N1

)(2-15)

× χ1(∆/4a)




∏
pν‖4a

(
D/p∗

pν

)(
p∗

(h2 − |D|m)/pν
)

if h2 ≡ |D|m (mod 4a) ,

0 otherwise ,

wherep is a prime andα‖β meansα, β ∈ Z, α|β and(α, β/α) = 1.We put

G̃(χ̄1,D) = W(χ̄1)χ1(−D−1)

(
D

N1

)
.

By virtue of (2-15), we may confirm that(
ε

−1

)1/2

G̃(χ̄1,D)N
−1
1 SN1a,D,ε(−1)km,χ1

(|D|m,n)

=
∑
d |(a,n)

(
D

d

)
(N1a/d)

1/2χ̄1(d)HN1a/d(m, n
2|D|/d2, χ1)

(2-16)

for every positive integera. By (2-16), we may derive the following proposition.
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PROPOSITION 2.1. Let m,n be positive integers and D a positive integer such that
D ≡ 0,1 (mod 4), (N,D) = 1 and ε(−1)kD > 0. Then

(
ε

−1

)1/2

G̃(χ̄1,D)N
−1
1

∑
t |N2,t |n

µ(t)

(
D

t

)
χ̄1(t)SN1(N2/t)a,D,ε(−1)km,χ1

(
|D|m, n

t

)

=
∑

l|(a,n),(l,N2)=1

(
D

l

)
(Na/l)1/2χ̄1(l)HNa/l(m, n

2|D|/l2, χ1)

=
∑
l|(a,n)

(
D

l

)
(Na/l)1/2χ̄(l)HNa/l(m, n

2|D|/l2, χ) .

(2-17)

We assume thatk � 2 andD is a fundamental discriminant satisfyingε(−1)kD > 0 and
(D,N) = 1. Define a functionΩk,N(z, τ ;D,χ) onH × H by

Ωk,N(z, τ ;D,χ) = iNc
−1
k,D

∞∑
m=1,ε(−1)km≡0,1(4)

mk−1/2

×
( ∑
t |N2

µ(t)

(
D

t

)
χ̄1(t)t

k−1fk,N2
1 ,N2/t

(tz;D, ε(−1)km, χ1)

)
e[mτ ]

(2-18)

for everyz andτ ∈ H, where

ck,D = (−1)[k/2]|D|−k+1/2π

(
2k − 2

k − 1

)
2−3k+2 .

Then we may deduce the following theorem.

THEOREM 2.2 (A basic identity). Suppose that k � 2. Then

Ωk,N(z, τ ;D,χ) = C

∞∑
n=1

nk−1
( ∑
d |n

(
D

d

)
(n/d)kχ̄(d)Pk,N,n2|D|/d2,χ (τ )

)
e[nz](2-19)

with

C = iNc
−1
k,D

3(−1)[k/2](2π)k

(k − 1)!
(
D

N1

)
χ1(−D)W(χ1)ε

1/2N−k
1 .

PROOF 1. By Propositions 1.1 and 1.2, comparing the Fourier coefficients of right and
left hand sides ate[mτ ], e[nz], we need to verify that
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iNc
−1
k,Dm

k−1/2
∑
t |N2

µ(t)

(
D

t

)
χ̄1(t)t

k−1
[
δ(

√
m/|D|)2s(ε, k)(N1|D|)−k

× (−1)k+[(k+1)/2](2π)k|D|1/2(k − 1)!−1
(
D

N1

)
χ1(|D|)χ̄1

(
n

t

√|D|/m
)
W(χ1)

×
(

D

(n/t)
√|D|/m

)(
n

t

√|D|/m
)k−1

δ

(
n

t

√|D|/m
)

+ 2(−1)k2k
√

2πkπ(Nk+1/2
1

√
N2/t(|D|m)k/2−1/4(k − 1)!)−1

×
∞∑
a′=1

SN1(N2/t)a
′,D,ε(−1)km,χ1

(
|D|m, n

t

)√
a′−1

(n/t)k−1/2Jk−1/2

(
πn

√|D|m
Na′

)]

= 2

3
Cnk−1

∑
d |n

(
D

d

)
(n/d)kχ̄(d)

(
δn2|D|/d2,m + (−1)[(k+1)/2]√2π

(
md2

n2|D|
)k/2−1/4

×
∞∑
c=1

HNc

(
m,
n2|D|
d2

, χ

)
Jk−1/2

(
π

Nc

√
mn2|D|
d2

))
,

(2-20)

where

δ(x) =
{

1 if x ∈ Z ,

0 otherwise ,
and s(ε, k) =

{
1 if ε = 1 ,

ε1/2(−1)k otherwise .

By virtue of Proposition 2.1, the equalities (2-20) coincides with

C′ ∑
t |N2,t |n

µ(t)

[(
D

n
√|D|/m

)
χ̄1(n

√|D|/m)δ
(
n

t

√|D|/m
)
δ(

√
m/|D|)

+ (−1)[(k+1)/2]m−1/4
√

2πn1/2
√
N

−1
(
D

N1

)
χ̄1(|D|)W(χ̄1)εs(ε, k)

−1N−1
1

× |D|1/4
∞∑
a=1

χ̄1(t)

(
D

t

)
S(N/t)a,D,ε(−1)km,χ1

(
|D|m, n

t

)
1√
a
Jk−1/2

(
πn

√|D|m
Na

)]

= C′
( ∑
t |N2,t |n

µ(t)δ

(
n

t

√|D|/m
)(

D

n
√|D|/m

)
χ̄1(n

√|D|/m)δ(√m/|D|)

+ (−1)[(k+1)/2]m−1/4
√

2π |D|1/4n1/2
∞∑
a=1

∑
d |(a,n)

(
D

d

)
d−1/2χ̄(d)

×HNa/d

(
m,
n2|D|
d2 , χ1

)
Jk−1/2

(
πn

√|D|m
Na

))

(2-21)
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= 2

3
Cnk−1

√
m/|D|k

[∑
d | n

(
D

d

)
(n/d)kχ̄(d)

(√|D|/mkδn2|D|/d2,m + (−1)[(k+1)/2]

× π
√

2

(
md2

n2|D|
)k/2−1/4√|D|/mk

∞∑
c=1

HNc

(
m,
n2|D|
d2

, χ

)
Jk−1/2

(
πn

Ncd

√
m|D|

))]

= 2

3
Cnk−1

√
m/|D|k

[(
D

n
√|D|/m

)
χ̄(n

√|D|/m)δ(n√|D|/m)+m−1/4(−1)[(k+1)/2]

× π
√

2n1/2|D|1/4
∞∑
a=1

∑
d |(n,a)

(
D

d

)
d−1/2χ̄(d)HNa/d

(
m,
n2|D|
d2

, χ

)

× Jk−1/2

(
πn

√
m|D|
Na

)]
with

C′ = 2iNc
−1
k,Dm

k−1/2N−k
1 |D|−k+1/2(2π)k

×
(
D

N1

)
(−1)k+[(k+1)/2]χ1(|D|)W(χ1)s(ε, k)

1

(k − 1)! (n
√|D|/m)k−1 .

We can check that∑
t |(N2,n)

µ(t)δ

(
n

t

√|D|/m
)
δ(

√
m/|D|)

(
D

n
√|D|/m

)
χ̄1(n

√|D|/m)

=
∑

t |(N2,n)

µ(t)δ

(
n

tf

)
δ(

√
m/|D|)

(
D

n/f

)
χ̄1(n/f )

= δ(
√
m/|D|)

(
D

n/f

)
χ̄1(n/f )

∑
t |(N2,n/f )

µ(t)

=
(
D

n/f

)
χ̄1(n/f )

{
1 if (N2, n/f ) = 1 ,

0 otherwise ,

(2-22)

with f = √
m/|D|. Observe thatC′ = (2/3)Cnk−1√m/|D|k. This completes the proof.

3. Shimura-Shintani correspondence and kernel functions. This section is devoted
to establishing Shimura correspondencesΨ from Sk+1/2(N, χ) to S2k(N, χ

2) using kernel
functions, and to detemining explicit Fourier coefficients ofΨ (f ) in terms of those off
for everyf belonging to Kohnen’s spaceSk+1/2(N, χ). Let N be an odd integer andχ a
Dirichlet character. Assume thatD is a fundamental discriminant such thatε(−1)kD > 0 and
(N,D) = 1. Define

ΨN,χ,D(f )(z) =
∞∑
n=1

( ∑
d |n

(
D

d

)
χ(d)dk−1a(n2|D|/d2)

)
e[nz](3-1)
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for everyf (τ) = ∑
ε(−1)kn≡0,1(4) a(n)e[nτ ] ∈ Sk+1/2(N, χ). Then it is verified that

ΨN,χ,D(f )(z) = (G′(χ1,D))
−1〈f,Ωk,N (−z̄, ∗;D,χ)〉(3-2)

with G′(χ1,D) =
(
D
N1

)
χ1(−D)W(χ1)ε

1/2N−k
1 . By Theorem 2.2 and (1-3), we obtain that

〈f,Ωk,N (−z̄, ∗;D,χ)〉

= C̄

∞∑
n=1

nk−1
( ∑
d |n

(
D

d

)
χ(d)(n/d)k〈f, Pk,N,n2|D|/d2,χ 〉

)
e[−nz̄]

= C̄

∞∑
n=1

nk−1
( ∑
d |n

(
D

d

)
χ(d)(n/d)ki−1

4N
�(k − 1/2)

(4πn2|D|/d2)k−1/2
a(n2|D|/d2)

)
e[nz]

= G′(χ1,D)

∞∑
n=1

( ∑
d |n

(
D

d

)
χ(d)dk−1a(n2|D|/d2)

)
e[nz] .

(3-3)

By (1-10) and [6, Proposition 1], we may confirm thatΩk,N(−z̄, τ ;D,χ) belongs to
S2k(N, χ

2) if k � 2. We deduce the following theorem.

THEOREM 3.1. Suppose that k � 2. Then

ΨN,χ,D(f )(z) =
∞∑
n=1

( ∑
d |n

(
D

d

)
χ(d)dk−1a(n2|D|/d2)

)
e[nz](3-4)

belongs to S2k(N, χ
2) for every f (τ) = ∑

ε(−1)kn≡0,1(4) a(n)e[nτ ] ∈ Sk+1/2(N, χ),

and the mapping ΨN,χ,D : Sk+1/2(N, χ) → S2k(N, χ
2) has the kernel function

G′(χ1,D)
−1Ωk,N(−z̄, ∗;D,χ). Moreover, the diagram of mappings

Sk+1/2(N, χ)
ΨN,χ,D−−−−→ S2k(N, χ

2)

Tk+1/2,N,χ (p
2) (resp. U(q2))

� �T2k,N,χ2 (p) (resp. T2k,N,χ2 (q))

Sk+1/2(N, χ) −−−−→
ΨN,χ,D

S2k(N, χ
2)

(3-5)

is commutative for every prime p, q (p � N, q|N).
PROOF 2. By virtue of Theorem 2.2, we obtain the equality (3-4). The relation (3-5) is

an immediate consequence of a computation of Fourier coefficients. We omit the details.

We call the mappingΨN,χ,D theDth Shimura correspondence fromSk+1/2(N, χ) to
S2k(N, χ

2).We denote byΨ ∗
N,χ,D the adjoint mapping ofΨN,χ,D, i.e.,

〈f,Ψ ∗
N,χ,D(F )〉 = 〈ΨN,χ,D(f ), F 〉(3-6)
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for every f (τ) ∈ Sk+1/2(N, χ) andF(z) ∈ S2k(N, χ
2). It follows from this that

Ψ ∗
N,χ,D(F )(τ )

= (iNG
′(χ1,D))

−1
∫
�0(N)\�

F(z)Ωk,N(−z̄, τ ;D,χ)y2k dxdy

y2

= (iNG
′(χ1,D))

−1iNc
−1
k,D

∑
ε(−1)km≡0,1(4)

mk−1/2
∑
t |N2

µ(t)

(
D

t

)
χ̄1(t)t

k−1

×
( ∫

�0(N)\�
F(z)fk,N2

1 ,N2/t
(−t z̄;D, ε(−1)km, χ1)y

2k−2dxdy

)
e[mτ ] ,

(3-7)

wherez = x + iy ∈ H. In particular, ifF is a new form ofS2k(N, χ
2), then

Ψ ∗
N,χ,D(F )(τ ) = c−1

k,DG
′(χ1,D)

−1
∑

ε(−1)km≡0,1(4)

mk−1/2

×
( ∫

�0(N)\�
F(z)fk,N2

1 ,N2
(−z̄;D, ε(−1)km, χ1)y

2k−2dxdy

)
e[mτ ] .

(3-8)

ForD′ ∈ Z, put

LN2
1 ,t,D

(D′) =
{
Q =

(
a b/2
b/2 c

) ∣∣∣∣ a, b, c ∈ Z, N2
1 t|a, b2 − 4ac = N2

1DD
′
}
.(3-9)

For t ′ ∈ Z (> 0) andQ ∈ LN2
1 ,t,D

(D′), put Q ◦
(
t ′ 0
0 1

)
=

t(t ′ 0
0 1

)
Q

(
t ′ 0
0 1

)
. The

mappingQ → Q ◦
(
t ′ 0
0 1

)
gives a bijection ofLN2

1 ,t,D
(D′) ontoLN2

1 ,t t
′2,D(D

′t ′2). Since

ωD

(
Q ◦

(
t ′ 0
0 1

))
=

(
D

t ′2
)
ωD(Q), we obtain

fk,N2
1 ,N2/t

(
tz;D, ε(−1)km, χ1

) = fk,N2
1 ,tN2

(
z;D, ε(−1)kmt2, χ1

)
(3-10)

for t (t|N2). Hence we have

Ψ ∗
N,χ,D(F )(τ ) = iNc

−1
k,DG

′(χ1,D)
−1

∑
ε(−1)km≡0,1(4)

mk−1/2

×
∑
t |N2

µ(t)

(
D

t

)
χ̄1(t)t

k−1〈F(z), fk,N2
1 ,tN2

(−z;D, ε(−1)kmt2, χ̄1)〉e[mτ ] .
(3-11)

Note that

fk,N2
1 ,tN2

(−z;D, ε(−1)kmt2, χ̄1) = fk,N2
1 ,tN2

(z;D, ε(−1)kmt2, χ̄1) .

We now introduce an equivalence relation inLN2
1 ,N2t,D

(ε(−1)kmt2) as follows. For

Q,Q′ ∈ LN2
1 ,N2t,D

(ε(−1)kmt2),

Q ∼ Q′ if and only if Q′ = tgQg for some g ∈ �0(N) .(3-12)
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Denote by �0(N)\LN2
1 ,N2t,D

(ε(−1)kmt2) the set of all equivalence classes of

LN2
1 ,N2t,D

(ε(−1)kmt2) with respect to this equivalence relation. Then, we obtain

LN2
1 ,N2t,D

(ε(−1)kmt2)

= {tgQ̃g | g ∈ �Q̃\�0(N), Q̃ ∈ �0(N)\LN2
1 ,N2t,D

(ε(−1)kmt2)} ,(3-13)

where�Q̃ = {g ′ ∈ �0(N) | tg ′Q̃g ′ = Q̃}. ForQ =
(
a b/2
b/2 c

)
, putωD(Q) = ωD(a, b, c),

Q(z,1) = az2 + bz+ c = (z,1)Qt(z,1) andχ̄1(Q) = χ̄1(c). Then we see

ωD(
tgQg) = ωD(Q), χ̄1(Q) = χ̄1(

tgQg)χ̄1(δ)
2 ,

Q(z,1) = (Nγ z + δ)2(tgQg)(g(z),1)
(3-14)

for everyg =
( ∗ ∗
Nγ δ

)
∈ �0(N). This implies that

fk,N2
1 ,tN2

(−z;D, ε(−1)kmt2, χ̄1)

= fk,N2
1 ,tN2

(z;D, ε(−1)kmt2, χ̄1)

=
∑

Q̃∈�0(N)\LN2
1 ,N2t,D

(ε(−1)kmt2)

∑
g

χ̄1(δ)
2(γ z+ δ)−2kωD(Q̃)Q̃(g(z),1)−kχ̄1(Q̃) ,

(3-15)

where the sum
∑

g is taken over allg =
(∗ ∗
γ δ

)
∈ �Q̃\�0(N). By [6, pp. 265–266], we may

confirm

〈F, fk,N2
1 ,tN2

(−z;D, ε(−1)kmt2, χ̄1)〉

= i−1
N π

(
2k − 2

k − 1

)
2−2k+2(|D|mt2)1/2−kγk,N,χ (F ;D, ε(−1)kmt2)

(3-16)

with

γk,N,χ (F ;D, ε(−1)kmt2) =
∑

Q̃∈�0(N)\LN2
1 ,N2t,D

(ε(−1)kmt2)

ω(Q̃)χ1(Q̃)

∫
c
Q̃

F (z)dQ̃,kz ,

wherecQ̃ anddQ̃,kz is the symbol given in [6, p. 240]. Consequently, we obtain the following
theorem.

THEOREM 3.2. Let k be a positive integer such that k � 2. Then

Ψ ∗
N,χ,D(F )(τ ) = c−1

k,DG
′(χ1,D)

−1π

(
2k − 2

k − 1

)
2−2k+2|D|1/2−k

×
∑

ε(−1)km≡0,1(4)

∑
t |N2

µ(t)

(
D

t

)
χ1(t)t

−kγk,N,χ (F ;D, ε(−1)kmt2)e[mτ ] .
(3-17)
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In particular, if F is a new form of S2k(N, χ
2), then

Ψ ∗
N,χ,D(F )(τ ) = c−1

k,DG
′(χ1,D)

−1
(

2k − 2

k − 1

)
2−2k+2π |D|1/2−k

×
∑

ε(−1)km≡0,1(4)

γk,N,χ (F ;D, ε(−1)km)e[mτ ] .(3-18)

Cycle integrals of this type were first investigated by Shintani [18].

4. Fourier coefficients of modularforms of half integral weight. This section is
devoted to deriving a relation between Fourier coefficients of modular forms of half integral
weight belonging to Kohnen’s spaces and the critical values of zeta functions of modular
forms. We first deduce the following

THEOREM 4.1. Let m,n be positive integers such that ε(−1)km, ε(−1)kn ≡ 0,1
(mod 4), ε(−1)kn is a fundamental discriminant and (n,N) = 1. Suppose that f (τ) =∑
ε(−1)kn≡0,1(4) a(n)e[nτ ] ∈ Sk+1/2(N, χ) satisfies

Tk+1/2,N,χ (p
2)(f ) = λ(p)f , U(q2)f = λ(q)f(4-1)

for every prime p and q (p � N, q|N) and ΨN,χ,D(f ) is a new form in S2k(N, χ
2). Let

F(z) = ∑∞
n=1 a

′(n)e[nz] be the primitive form associated with ΨN,χ,D(f ). Moreover, sup-
pose that f satisfies the following condition:

If f ′ ∈ Sk+1/2(N, χ) satisfies Tk+1/2,N,χ (p
2)(f ′) = λ(p)f ′ for every

prime p (p � N), then there is a constant c′ ∈ C such thatf ′ = c′f .
(4-2)

Then we have

a(m)a(n)〈f, f 〉−1 = ˜̃cγk,N,χ (F ; ε(−1)kn, ε(−1)km)〈F,F 〉−1 .(4-3)

with

˜̃c = c−1
k,DG

′(χ1,D)
−1π

(
2k − 2

k − 1

)
2−2k+2|D|1/2−k .

PROOF 3. By Theorem 3.1, we have

T2k,N,χ2(p)ΨN,χ,D(f ) = λ(p)ΨN,χ,D(f ) for every primep (p � N) .(4-4)

SinceΨN,χ,D(f ) is a new form, there is a constantc′′ ∈ C such that

ΨN,χ,D(f ) = c′′F .(4-5)

PutD = ε(−1)kn. Then, comparing Fourier coefficients of right and left hand sides ate[z],
we have

a(|D|) = c′′ .(4-6)

Observe thatT ∗
k+1/2,N,χ (p

2) = χ̄(p2)Tk+1/2,N,χ (p
2) (p � N) and T ∗

2k,N,χ2(p) =
χ̄(p2)T2k,N,χ2(p) (p � N) andΨ ∗

N,χ,D is the adjoint mapping ofΨN,χ,D with respect to
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the Petersson inner products. By Theorem 3.1,ΨN,χ,D is commutative with the action of
Hecke operators. This implies that

Tk+1/2,N,χ (p
2)Ψ ∗

N,χ,D(F ) = λ(p)Ψ ∗
N,χ,D(F ) for every primep (p � N) .(4-7)

By the assumption, we obtain

Ψ ∗
N,χ,D(F ) = c′f for some c′ ∈ C .(4-8)

Comparing Fourier coefficients of the both sides ate[mτ ], we find that

c′a(m) = c−1
k,DG

′(χ1,D)
−1π

(
2k − 2

k − 1

)
2−2k+2|D|1/2−kγk,N,χ (F ;D, ε(−1)km) .(4-9)

On the other hand the valuec′ is determined as follows.

c′a(m)〈f, f 〉 = a(m)〈c′f, f 〉 = a(m)〈Ψ ∗
N,χ,D(F ), f 〉

= a(m)〈ΨN,χ,D(f ), F 〉 = a(m)a(|D|)〈F,F 〉 .(4-10)

Hence we deduce that

a(m)a(|D|)〈f, f 〉−1 = ˜̃cγk,N,χ (F ;D, ε(−1)km)〈F,F 〉−1 .(4-11)

SinceD = ε(−1)kn, we see that|D| = |n| = n. This completes our proof.

LetD be a fundamental discriminant such thatε(−1)kD > 0. Under the same assump-
tion of Theorem 4.1, we have

|a(|D|)|2〈f, f 〉−1 = ˜̃cγk,N,χ (F ;D,D)〈F,F 〉−1(4-12)

with

γk,N,χ (F ;D,D) =
∑

Q̃∈�0(N)\LN2
1 ,N2,D

(D)

ωD(Q̃)χ1(Q̃)

∫
c
Q̃

F (z)dQ̃,kz .

In the remainder of this section, we assume that

(D,N) = 1 and (N1, N2) = 1 .(4-13)

For l (l‖N2), we put

Wl =
(
αl β

γN δl

)
with α, β, γ, δ ∈ Z and αδl2 − βγN = l ,

wherel‖N2 meansl|N2 and(l, N2/l) = 1. We determineQ|Wl = (1/l)tWlQWl for every
Q ∈ LN2

1 ,N2,D
(D). SinceW−1

l gWl ∈ �0(N) for everyg ∈ �0(N), we have the bijection of
�0(N)\LN2

1 ,N2,D
(D) onto�0(N)\LN2

1 ,N2,D
(D). By [3, Section 1], we can take as a complete

set of representatives for�0(N)\LN2
1 ,N2,D

(D) the following set:{(
0 DN1/2

DN1/2 µ

)
|Wl

∣∣∣∣µ ∈ Z/DN1Z andl‖N2

}
.(4-14)
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For Q̃ =
(
a b/2
b/2 c

)
∈ �0(N)\LN2

1 ,N2,D
(D),Wl =

(
αl β

γN δl

)
(δ = δl), we obtain

χ1(Q̃|Wl) = χ1(c)χ1(δ
2l) = χ1(Q̃)χ1(δ

2l), ωD(Q̃|Wl) = ωD(Q̃)

(
D

l

)
.(4-15)

We note that ifll′‖N2, (l, l
′) = 1 andpα‖N2, then

δll′ ≡ δlδl′ (modN) , δpα ≡ 1 (mod (N/pα)2) ,

F (z)dQ |Wl,kz = F |2kW−1
l (z′)dQ,kz′ ,

(4-16)

wherez′ = Wl(z), F |2kW−1
l (z′) = (detW−1

l )k(cz+d)−2k F (W−1
l (z′))withW−1

l =
(∗ ∗
c d

)
.

SinceF(z) is a primitive form, there are a constantc(l) and a primitive formFl in S2k(N, χ
2)

such that

F |2kW−1
l = c(l)Fl .(4-17)

The constantc(l) has the following property:

If ll′‖N2 and (l, l′) = 1 , then c(ll′) = c(l)c(l′) .(4-18)

PutFl(z) = ∑∞
n=1 a

′
l (n)e[nz]. By (4-12) and (4-14), we find that

γk,N,χ (F ;D,D) = i(iDN1)
k−1

∑
l‖N2

(
D

l

)
χ1(δ

2
l l)c(l)

×
∞∑
n=1

a′
l(n)

∑
µ∈Z/N1DZ

(
D

µ

)
χ1(µ)eDN1(−nµ)

�(k)

(2πn)k
.

(4-19)

We can easily check that

∑
µ∈Z/N1DZ

(
D

µ

)
χ1(µ)eDN1(−nµ)

=
(
D

N1

)
χ1(D)

(
D

−1

)3/2

|D|1/2
(
D

n

)
χ̄1(n)εW(χ1)

(4-20)

and

L

(
s, Fl,

(
D

∗
)
χ̄1

)
=

∞∑
n=1

(
D

n

)
χ̄1(n)a

′
l (n)n

−s

=
∏
p|l

(
1 −

(
D
p

)
χ̄1(p)a

′(p)p−s

1 −
(
D
p

)
χ̄1(p)a

′
l (p)p

−s

)
L

(
s, F,

(
D

∗
)
χ̄1

)
.



144 H. KOJIMA AND Y. TOKUNO

By [2, Th. 4.6.16], we see thata′
l (p) = χ2(p)a′(p). Therefore we may deduce that

γk,N,χ (F ;D,D)

= i(iDN1)
k−1(k − 1)!
(2π)k

(
D

N1

)
χ1(D)W(χ1)

(
D

−1

)3/2

|D|1/2ε
∑
l‖N2

(
D

l

)
χ1(δ

2
l l)c(l)

×
∏
p|l

(
1 −

(
D
p

)
χ̄1(p)a

′(p)p−k

1 −
(
D
p

)
χ̄1(p)a′(p)p−k

)
L

(
k, F,

(
D

∗
)
χ̄1

)
.

(4-21)

PutN1 = ∏l
i=1p

νi
i , N2 = ∏s

i=l+1p
νi
i . Then, by (4-16), (4-18) and (4-20), the summation

taken over alll in (4-21) is equal to

s∏
i=l+1

(
1 +

(
D

p
νi
i

)
χ1(p

νi
i )c(p

νi
i )

(
1 −

(
D
pi

)
χ̄1(pi)a

′(pi)p−k
i

1 −
(
D
pi

)
χ̄1(pi)a′(pi)p−k

i

))
.(4-22)

Consequently, we conclude the following theorem.

THEOREM 4.2. Under the same assumption as that of Theorem 4.1, suppose thatD is
a fundamental discriminant such that ε(−1)kD > 0, (N,D) = 1 and (N1, N2) = 1. Then

|a(|D|)|2〈F,F 〉 = R|D|k−1/2N2k−1
1 (k − 1)!π−k〈f, f 〉L

(
k, F,

(
D

∗
)
χ̄1

)
(4-23)

with

R =
s∏

i=l+1

(
1 +

(
D

p
νi
i

)
χ1(p

νi
i )c(p

νi
i )

(
1 −

(
D
pi

)
χ̄1(pi)a

′(pi)p−k
i

1 −
(
D
pi

)
χ̄1(pi)a′(pi)p−k

i

))
.

It should be remarked that there are non-trivial examples satisfying the condition (4-2).
By [11, Theorem 2.1], we may check that dimS5/2(7, χ) = dimS4(7, χ2) = 1. Hence, we
see that a non-zero formf in S5/2(7, χ) provides such an example withχ2 = 1.
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