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On the Fourier extension of

non-periodic functions

Daan Huybrechs∗†

Abstract

We obtain exponentially accurate Fourier series for non-periodic func-
tions on the interval [−1, 1] by extending these functions to periodic func-
tions on a larger domain. The series may be evaluated, but not con-
structed, by means of the FFT. A complete convergence theory is given
based on orthogonal polynomials that resemble Chebyshev polynomials of
the first and second kinds. We analyze a previously proposed numerical
method, which is unstable in theory but stable in practice. We propose a
new numerical method that is stable both in theory and in practice.

1 Introduction

Computing a Fourier series by means of the FFT is the method of choice for
approximating smooth and periodic functions. The method is stable and well
understood and it yields spectral convergence. The picture changes completely
when the function involved is either not smooth or not periodic, due to the
presence of the well known Gibbs phenomenon. Equivalent symptoms are the
lack of pointwise convergence, the slow decay of the Fourier coefficients and
spurious oscillations near the points of disconinuity or near the boundaries. Due
to the importance of Fourier series and the FFT, many ways have been devised
to circumvent or to ameliorate the Gibbs phenomenon. We briefly recall three
popular possibilities. A first approach is to filter out the oscillations (see, e.g.,
[22] and references therein). A second approach is to introduce a periodizing
transformation and to compute the Fourier series of the resulting function. A
popular choice of transformation leads to Chebyshev polynomials, which will be
briefly recalled later in this paper. A third approach is to reconstruct a non-
periodic function from its truncated Fourier series by re-expanding that series
into a basis of Gegenbauer polynomials [12]. Though the Fourier series itself is
an inaccurate approximation, spectral accuracy can be achieved in the recovery.

All these approaches are successful and well understood. The topic of this
paper is an intriguing alternative approach that has also proved to be successful,
but which has not yet received as much attention in literature.

Consider a function f ∈ L2
[−1,1] that is not necessarily smooth or periodic.

In this paper we will focus mostly on the lack of periodicity of f , assuming
sufficient smoothness except where noted otherwise. The canonical example is

∗Department of Computer Science, Katholieke Universiteit Leuven, Belgium
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(a) Fourier series of f
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(b) A smooth and periodic extension of f

Figure 1: Illustration of the Fourier series of f(x) = x on [−1, 1] with 10 terms
(left panel) and a smooth extension of f with period 4 rather than period 2
(right panel).

f(x) = x. A simple idea to obtain a spectrally accurate Fourier series is to
extend the function f to a function g that is periodic on a larger interval, say
[−T, T ] with T > 1. If a suitable smooth and periodic function g exists then
the Fourier series of g converges pointwise to the values of g on [−T, T ]. This
implies by construction that the Fourier series also converges pointwise to the
values of f on the interval [−1, 1]. The resulting approximation to f has the
interesting property that it is a classical Fourier series: we may use the FFT to
evaluate it. Figure 1 illustrates the Gibbs phenomenon for f(x) = x on [−1, 1]
and a smooth extension of f(x) with period 4 rather than 2.

Note the important distinction between a smooth extension of f , such as
the periodic function g we are looking for, and the analytic continuation of f in
the sense of complex analysis. The latter is unique, if it exists, and has many
interesting properties, but it is in general not periodic on a larger domain and
therefore not of immediate interest to us. This means that, even for analytic
f , the function g is in general only infinitely differentiable and not analytic.
This has implications for the possible convergence rate of the Fourier series of
g. The Fourier series of an infinitely differentiable periodic function with n
terms converges superalgebraically, i.e., faster than any inverse power of n. The
Fourier series of an analytic and periodic function on the other hand converges
exponentially, i.e., O(e−cn) with c > 0. One would therefore reasonably expect
only superalgebraic convergence in our setting.

The question of the existence of a suitable function g is quickly settled.
Whitney showed that a continuous function on a bounded domain A ⊂ R

d can
be extended to a function that is analytic on R

d \ A [26]. This problem was
thereafter called Whitney’s extension problem. Hestenes gave a constructive
method to extend differentiable functions [13]. Recently, Fefferman proved in
great generality the existence of extensions that can be bounded in terms of f
in suitable norms [9]. This is an important issue for numerical stability – loosely
speaking, we wish to avoid cases where g is ‘large’ compared to f – to which
we will return in greater detail later on. Many constructive extension methods
have been devised since the Hestenes extension. Any smooth extension of f can
lead to a smooth and periodic extension using cut-off functions [3, 4]. This leads
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directly to rapidly converging Fourier series. However, this approach does not
lead to optimal results and we will not further pursue the explicit construction
of a smooth extension of f in this manner.

A simple and useful criterion to find a suitable function g was explored by
Boyd in [3] and by Bruno, Hana and Pohlman in [5]. These authors proposed
to solve the following optimization problem.1

Problem 1.1. For T > 1, let Gn be the space of 2T -periodic functions of the
form

g ∈ Gn : g(x) =
a0

2
+

n
∑

k=1

ak cos
π

T
kx + bk sin

π

T
kx. (1)

The Fourier extension of f to the interval [−T, T ] is the solution to the opti-
mization problem

gn := arg min
g∈Gn

‖f − g‖L2[−1,1]. (2)

The function gn is found as the closest fit to f on [−1, 1] in a least squares
sense. The authors mentioned above observed experimentally that the solution
to this problem converges rapidly to f pointwise in [−1, 1], including in the
endpoints. However, they also observed that the Fourier coefficients ak and bk of
gn may become very large, resulting in possible loss of precision in computations.
Though the numerical algorithms involved are simple and the results obtained
in these references are very encouraging, the apparent unboundedness of the
Fourier coefficients of gn appears to be problematic.

In this paper, we analyze Problem 1.1 and two numerical methods for solving
it. We restrict ourselves to the case T = 2, which appears to be the most
promising case. In this setting we prove existence and uniqueness of the solution.
Moreover, we characterize the solution constructively in terms of two families of
orthogonal polynomials that are related to Chebyshev polynomials of the first
and second kinds. We prove that the solution converges to f at a rate that is
bounded independently of f in most cases but that is exponential rather than
superalgebraic.

These results contradict our earlier intuition, concerning the convergence
rate of our Fourier series. How can the Fourier series gn converge exponentially
if g is not analytic? The answer to this apparent paradox is the observation that
the functions gn do not converge to a fixed function g. In fact, we will see that
the functions gn are unbounded for increasing n outside the interval [−1, 1].

Unfortunately, this unbounded growth of gn is problematic for practical use,
since it gives rise to large Fourier coefficients. It is not numerically stable to
represent the exact solution in the form (1). We explore two ways to remedy
this: by representing the exact solution in a different form and by representing
an approximate solution in the form (1).

The exact solution to Problem 1.1 can be computed in a stable manner
in a basis that is related to orthogonal polynomials through a Chebyshev-like
transformation. In a typical Chebyshev approximation, one approximates f(x)
in a basis of Chebyshev polynomials, which is equivalent to approximating the

1The problem is called Fourier continuation by Bruno, Hana and Pohlman in [5] and Fourier
extension of the third kind by Boyd in [3]. Fourier extension of the first kind is a problem
where f is known explicitly outside the interval [−1, 1]. Fourier extension of the second kind
is a problem where f is also known outside [−1, 1], but it has singularities there.
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transformed function f(cos θ) by its Fourier series. Here, the situation is re-
versed. We approximate f by a Fourier series, and show that this is equivalent
to approximating a transformed function in a basis of polynomials. This means
that in our setting the Fourier series converges to f itself, not to some transfor-
mation of f . This has advantages in resolving oscillations when approximating
oscillatory functions: the oscillations are not warped by a transformation.

The second remedy is computing an approximate solution to Problem 1.1
in the form (1). Numerical least squares methods were previously used for this
problem in [3, 5] and are surprisingly effective. We show that a simple numeri-
cal method for solving Problem 1.1 with T = 2 actually yields bounded Fourier
coefficients. In fact, the l2-norm of the coefficients converges to the optimal
value 1√

2
‖f‖L2

[−1,1]
. This is, of course, not the exact solution anymore. Yet, the

computed solution, a classical finite Fourier series, is a highly accurate approx-
imation to f on the interval [−1, 1]. Though Problem 1.1 is ill-conditioned, we
arrive in this paper at the surprising conclusion that numerical error stabilizes
the computations without sacrificing accuracy. The advantage of this approach,
compared to computing the exact solution, is that the form (1) is maintained
and, therefore, that FFT may be used to evaluate the approximation.

In any case, exact or approximate solution, the behavior of the functions gn

outside [−1, 1] does not appear to be of practical use unless n is small. The
exact solution is unbounded outside [−1, 1], the numerical solution is typically
wildly oscillatory. Alternative optimization criteria can be devised that enforce
smoothness of gn or, equivalently, decay rates of its Fourier coefficients. It
appears that only algebraic convergence rates can be achieved in this setting.
We do not pursue this option further in this paper.

The structure of the paper is as follows. In §2 we briefly recall Chebyshev
polynomials and the concept of frames in approximation theory. We analyze
Problem 1.1 in §3. We find the exact solution and derive some of its properties.
We analyze numerical least squares methods for Problem 1.1 in §4. Finally, we
describe a stable numerical method to compute the exact solution in §5. We
end with some concluding remarks in §6.

2 Preliminaries

We briefly recall some properties of Chebyshev polynomials and the concept of
frames in approximation theory.

2.1 Chebyshev polynomials

Chebyshev polynomials Tk(y) of the first kind are classical polynomials. They
are orthogonal with respect to the weight function 1√

1−y2
on the interval [−1, 1],

and normalized such that Tk(1) = 1. They arise as solutions to the Chebyshev
differential equation. Alternatively, they are completely characterized by the
following property:

cos kθ = Tk(cos θ), k ∈ N, (3)

which expresses the fact that cos kθ is a polynomial in cos θ.
Chebyshev polynomials Uk(x) are orthogonal with respect to the weight

function
√

1 − y2 on the interval [−1, 1], and normalized such that Uk(1) = k+1.
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The counterpart of (3) is the property

sin(k + 1)θ

sin θ
= Uk(cos θ), k ∈ N, (4)

which expresses the fact that sin(k + 1)θ is also a polynomial in cos θ, up to a
factor sin θ.

Chebyshev polynomials of the first kind are ideally suited to study polyno-
mial approximations. For an in-depth discussion, we refer the reader to [23] and
references therein, in particular [20]. In the following, we borrow the notation
and results of [23].

The expansion of a function f ∈ L2
[−1,1] in Chebyshev polynomials of the

first kind can be written as

fn(y) =

an
∑

k=0

′akTk(y),

(with ′ indicating that the first term of the sum should be halved) where

ak =
2

π

∫ 1

−1

f(y)Tk(y)
1

√

1 − y2
dy.

Several bounds are given in [23] for the approximation error ET
n = ‖f − fn‖.

We focus on the case where f is analytic.

Theorem 2.1. [23, Th 4.3] If f is analytic with |f(z)| ≤ M in the region
bounded by the ellipse with foci ±1 and major and minor semiaxis lengths sum-
ming to ρ > 1, then for each n ≥ 0,

ET
n ≤ 2M

(ρ − 1)ρn
. (5)

The same bound holds pointwise in [−1, 1] (see [2]). This error differs from
the error of the best polynomial approximation to f in the infinity norm ‖ · ‖∞
only by a logarithmic factor [23].

2.2 Bases and frames

Let {en} be an orthonormal basis of a separable Hilbert space H with inner
product < ·, · >. Then Parseval’s identity holds:

∀f ∈ H : ‖f‖2 =

∞
∑

k=0

| < f, ek > |2. (6)

A frame for H is a set {un} such that

∀f ∈ H : A‖f‖2 ≤
∞
∑

k=0

| < f, uk > |2 ≤ B‖f‖2 (7)

The constants 0 < A ≤ B < ∞ are called the frame bounds. A frame is called
tight if A = B. Frames generalize bases, since condition (7) is considerably
weaker than (6). A frame may therefore not be a basis, though frames are
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always complete. For example, the functions un may be linearly dependent.
In general, there may be infinitely many ways to represent f ∈ H as a linear
combination of uk.

One representation of f has additional interesting properties. To any frame
{uk} corresponds a dual frame {u∗

k}, with frame bounds 1/B and 1/A, such
that the series

L∗f :=

∞
∑

k=0

< f, u∗
k > uk (8)

converges to f (in the norm of H). This representation is optimal in the sense
that the coefficients minimize the energy among all coefficient sequences {ak}
such that f =

∑

k akuk, i.e.,

∞
∑

k=0

| < f, u∗
k > |2 ≤

∞
∑

k=0

|ak|2, (9)

with equality if and only if ak =< f, u∗
k >.

For a tight frame, the dual frame is proportional to the frame itself: u∗
k =

1
Auk. It follows in this case from the frame property (7) with A = B that

∞
∑

k=0

| < f, u∗
k > |2 =

1

A2

∞
∑

k=0

| < f, uk > |2 =
‖f‖2

A
. (10)

If all elements of a tight frame are normalized, then A can be interpreted as a
measure of the redundancy in the frame.

Frames were originally studied in the context of non-harmonic Fourier se-
ries [8], which resembles the setting of this paper. They were picked up and
studied intensively later in the field of wavelets. For a discussion with proofs of
the properties above, we refer the reader to [6].

3 Analysis of the least squares problem

3.1 The function space Gn

The Fourier extension problem was already formulated in the introduction in
Problem 1.1. We are looking for a Fourier series gn on [−T, T ] of the form (1),
but with the intention of performing all computations in the interval [−1, 1].
Let us start by examining the set of Fourier functions ei π

T
x in L2

[−1,1]. We alter
the constant function in this set in order to state the following result.

Lemma 3.1. For T > 1, the set

Φ := { 1√
2
} ∪ {ei π

T
kx}k∈Z\0 (11)

is a tight frame for L2
[−1,1] with frame bound T .

Proof. For any function f ∈ L2
[−1,1], we should show that

∑

k∈Z
a2

k = T‖f‖2,
where

ak =

∫ 1

−1

f(x)ei π
T

kx dx = T

∫ 1
T

− 1
T

f(Tx)eikx dx, k ∈ Z \ 0,

6



and

a0 =

∫ 1

−1

f(x)
1√
2

dx = T

∫ 1
T

− 1
T

f(Tx)
1√
2

dx.

Define the function h(x) = Tf(Tx) for x ∈ [− 1
T , 1

T ] and h(x) = 0 otherwise.
We find that

ak =

∫ 1
T

− 1
T

h(x)eikx dx =

∫ 1

−1

h(x)eikx dx, k ∈ Z \ 0,

and

a0 =

∫ 1

−1

h(x)
1√
2

dx.

It follows by Parseval’s identity that ‖h‖2 =
∑

k a2
k. We also find that

‖h‖2 =

∫ 1

−1

h(x)2 dx =

∫ 1
T

− 1
T

T 2f(Tx)2 dx = T

∫ 1

−1

f(x)2 dx = T‖f‖2,

from which the result follows.

The lemma shows that the set of Fourier functions on [−T, T ], restricted to
the interval [−1, 1], is redundant. We can expect severe conditioning problems
when performing computations with this frame, such as interpolation, since
some functions in the set may be (close to) linearly dependent.

The case T = 2 leads to more structure and also to more insight. For future
use, we define two sets Cn and Sn by

Cn := { 1√
2
} ∪ {cos k

π

T
x}n

k=1 and Sn := {sin k
π

T
x}n

k=1. (12)

Note that Cn consists of even functions and Sn consists of odd functions. The
function space Gn is the span of

Dn := Cn ∪ Sn. (13)

We already established that D∞ is a tight frame with frame bound 2. But the
functions in this set have additional interesting properties.

Lemma 3.2. For T = 2, the set D∞ consists of all eigenfunctions of the Lapla-
cian on [−1, 1] subject to either homogeneous Dirichlet or Neumann boundary
conditions.

Proof. Distinguishing between even and odd values of the index k for T = 2
in (12) shows that the set D∞ can be split into the sets

LN := { 1√
2
} ∪ {cos πkx}∞k=1 ∪ {sin π(k +

1

2
)x}∞k=0,

and

LD := {cos π(k +
1

2
)x}∞k=0 ∪ {sin πkx}∞k=1.

The former set consists of all eigenfunctions of the Laplacian on [−1, 1] subject
to homogeneous Neumann boundary conditions, the latter of all eigenfunctions
of the Laplacian subject to homogeneous Dirichlet boundary conditions [16].

7



Both sets LN and LD are orthonormal bases for L2
[−1,1]. From this obser-

vation it also follows that D∞ is a tight frame with frame bound A = 2. The
approximation of functions in the basis LN of eigenfunctions obeying Neumann
boundary conditions was the subject of a systematic study in [16], with gener-
alization to higher order differential operators in [17], generalization to higher
dimensions in [18] and techniques for convergence acceleration in [14].2 The link
with eigenfunctions of the Laplacian is very fruitful and, in the remainder of
this paper, we therefore restrict ourselves to the case T = 2.

The subject of finding representations in overcomplete sets has seen a lot
of activity in recent years. The concatenation of two orthonormal bases was
studied in Matching Pursuit and is relevant as well in compressed sensing (see [7]
and references therein). However, in that setting, it is desirable to have two bases
that are as different, or as little coherent, as possible. In our setting however,
both orthonormal bases are highly similar, which leads to very different analysis.

3.2 An orthonormal basis on [−1, 1]

We found that D∞ is not a basis for L2
[−1,1] but a tight frame, which has redun-

dancy. However, for any finite n, the set Dn is a basis for a finite dimensional
subspace of L2

[−1,1], i.e., all functions in the set are linearly independent. It

makes perfect sense, therefore, to look for an orthonormal basis on [−1, 1]. The
orthogonalization problem naturally divides into two problems, since the even
functions in Cn and the odd functions in Sn are automatically orthogonal to
each other on the symmetric interval [−1, 1].

3.2.1 Even functions

We consider the even functions first. Denote by

Cn := spanCn

the (n + 1)-dimensional space spanned by the cosine functions. We start with
the basic, but crucial observation that, since cos kx = Tk(cos x) is a polynomial
in cos x of degree k, it is also true that

cos k
π

2
x = Tk(cos

π

2
x) (14)

is a polynomial in cos π
2 x of degree k. This means that the orthogonalization

can be expressed in terms of orthogonal polynomials.

Theorem 3.3. Let Th
k (y) be the unique normalized sequence of orthogonal poly-

nomials satisfying

4

π

∫ 1

0

Th
k (y)yl 1

√

1 − y2
dy = δk−l, l = 0, . . . , k − 1. (15)

Then the set {Th
k (cos π

2 x)}n
k=0 is an orthonormal basis for Cn on [−1, 1].

2We like to remark here that the current paper grew out of the idea of combining these
two orthonormal bases, based on experience with the properties of expansions in LN and LD

separately. We will not expand on that point of view in this paper, but present our results in
the context of Fourier extensions.
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Proof. Consider a function g ∈ Cn. Since g is necessarily even, we can restrict
ourselves to the interval [0, 1]. The transformation y = cos π

2 x maps the interval
[0, 1] to itself and is invertible with x = 2

π cos−1 y. It follows from the Chebyshev
polynomial property (14) that g( 2

π cos−1 y) is a polynomial in y on [0, 1], which
we denote by Pg(y).

Conversely, from (14) it also follows that each polynomial p(y) of degree less
than or equal to n corresponds to a function p(cos π

2 x) ∈ Cn, because the set of
Chebyshev polynomials of the first kind up to degree n is a basis for the space
of all polynomials up to degree n.

We enforce orthogonality of g to the function g̃ ∈ Cn−1. This means that

∫ 1

−1

g(x)g̃(x) dx = 2

∫ 1

0

g(x)g̃(x) dx

= 2

∫ 0

1

g

(

2

π
cos−1 y

)

g̃

(

2

π
cos−1 y

) −2

π

1
√

1 − y2
dy

=
4

π

∫ 1

0

Pg(y)Pg̃(y)
1

√

1 − y2
dy

= 0.

If g(x) = Th
n (cos π

2 x), then Pg(y) = Th
n (y) and g(x) is orthogonal to all func-

tions in Cn−1. The normalization implicit in (15) corresponds exactly to the
normalization of Th

k (cos π
2 x) in L2

[−1,1]. This proves the result.

Note that the polynomials Th
n (x) have the same weight function as Cheby-

shev polynomials of the first kind, but they are orthogonal on the interval [0, 1]
rather than [−1, 1]. For this reason, we refer to these polynomials as half-range
Chebyshev polynomials of the first kind. The orthogonal polynomials are guar-
anteed to exist, because the weight function is positive and integrable [10].

3.2.2 Odd functions

Next, we consider the odd part of Gn and we denote by

Sn := spanSn

the n-dimensional space spanned by the sine functions. The counterpart of (14)
is the observation that

sin(k + 1)
π

2
x = Uk(cos

π

2
x) sin

π

2
x. (16)

We have the following theorem.

Theorem 3.4. Let Uh
k (y) be the sequence of orthogonal polynomials satisfying

4

π

∫ 1

0

Uh
k (y)yl

√

1 − y2 dy = δk−l, l = 0, . . . , k − 1. (17)

Then the set {Th
k (cos π

2 x) sin π
2 x}n−1

k=0 is an orthonormal basis for Sn on [−1, 1].
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Proof. Consider a function g ∈ Sn. Since g is odd, the function g(x)/ sin π
2 x is

well-defined on [−1, 1] and it is even. We again restrict ourselves to the interval
[0, 1] and perform the substitution y = cos π

2 x. It follows from the Chebyshev
polynomial property (16) that

g( 2
π cos−1 y)

sin π
2

2
π cos−1 y

=
g( 2

π cos−1 y)
√

1 − y2
(18)

is a polynomial in y on [0, 1], which we denote by Qg(y).
Conversely, from (16) it also follows that each polynomial q(y) of degree

less than n corresponds to a function q(cos π
2 x) sin π

2 x ∈ Sn, because the set of
Chebyshev polynomials of the second kind up to degree n − 1 is a basis for the
space of all polynomials up to degree n − 1.

We enforce orthogonality of g to the function g̃ ∈ Sn−1. This means that

∫ 1

−1

g(x)g̃(x) dx = 2

∫ 1

0

g(x)g̃(x) dx

= 2

∫ 0

1

g
(

2
π cos−1 y

)

√

1 − y2

g̃
(

2
π cos−1 y

)

√

1 − y2
(1 − y2)

−2

π

1
√

1 − y2
dy

=
4

π

∫ 1

0

Qg(y)Qg̃(y)
√

1 − y2 dy

= 0.

If g(x) = Uh
n−1(cos π

2 x) sin π
2 x, then Qg(y) = Uh

n−1(y) and g(x) is orthogonal to
all functions in Sn−1. The normalization implicit in (17) corresponds exactly to
the normalization of Uh

k (cos π
2 x) sin π

2 x in L2
[−1,1]. This proves the result.

Similar to the case of even functions, the orthogonal polynomials Uh
n (y) have

the same weight function as the Chebyshev polynomials of the second kind, but
they are defined on half the range. We denote them by half-range Chebyshev
polynomials of the second kind.

3.2.3 Properties of the orthogonal polynomials

Fig. 2 shows the first few half-range Chebyshev polynomials of the first and of
the second kind. They are not classical polynomials. The polynomials of the
first kind, shown in the left panel of Fig. 2, are almost equi-oscillatory except
near the origin. This is reminiscent of classical Chebyshev polynomials of the
first kind. Their value at y = 1 converges rapidly to 2−1/4 ≈ 0.84 . . ., but they
are unbounded at y = 0. The half-range Chebyshev polynomials of the second
kind are unbounded in both endpoints.

The growth of the polynomials in [−1, 1] follows from classical results in the
theory of orthogonal polynomials. We have the following results.

Theorem 3.5. The half-range Chebyshev polynomials of the first and second
kinds satisfy

Th
k (0) ∼

√
k, Th

k (1) ∼ 1, Uh
k (0) ∼

√
k, Uh

k (1) ∼ k,

for k → ∞.

10



Figure 2: Plots of the half-range Chebyshev polynomials of the first kind (left
panel) and of the second kind (right panel).

This follows from the work of Bernstein [1], who studied polynomials or-
thonormal on [−1, 1] with respect to a weight function of the form w(x) =
w0(x)(1 − x)α(1 + x)β .

3.3 The exact solution

With an orthonormal basis of our search space in hand, the exact solution to
Problem 1.1 readily follows from the orthogonal projection. This shows existence
and uniqueness of the solution for any given f ∈ L2

[−1,1].

Theorem 3.6. For a given f ∈ L2
[−1,1], the solution to Problem 1.1 is

gn(x) =

n
∑

k=0

akTh
k (cos

π

2
x) +

n−1
∑

k=0

bkUh
k (cos

π

2
x) sin

π

2
x (19)

where

ak =

∫ 1

−1

f(x)Th
k (cos

π

2
x) dx (20)

and

bk =

∫ 1

−1

f(x)Uh
k (cos

π

2
x) sin

π

2
xdx. (21)

Proof. The result is the orthogonal projection onto the orthonormal bases that
were found in Theorem 3.3 and Theorem 3.4.

The coefficients can also be found from polynomial expansions after the
transformation y = cos π

2 x, which leads to more standard expressions, but one
has to distinguish between the even and the odd parts of f .

Corollary 3.7. For a given f ∈ L2
[−1,1], denote by fe and fo its even and odd

parts,

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x) − f(−x)

2
. (22)

11



The solution to Problem 1.1 is given by (19) with

ak =
4

π

∫ 1

0

fe

(

2

π
cos−1 y

)

Th
k (y)

1
√

1 − y2
dy (23)

and

bk =
4

π

∫ 1

0

fo

(

2

π
cos−1 y

)

Uh
k (y) dy. (24)

Proof. Write f(x) = fe(x) + fo(x) in the expressions for ak and bk in Theo-
rem 3.6. The odd part of f is irrelevant for ak, since Th

k (cos π
2 x) is even. Like-

wise, the even part of f is irrelevant for bk. The result follows immediately from
the substitution y = cos π

2 x. (Note, in the case of bk, that the Jacobian of the
transformation partially cancels with the additional sine function in (21).)

Let us for convenience define the functions

f1(y) := fe

(

2

π
cos−1 y

)

= fe(x), (25)

and

f2(y) :=
fo

(

2
π cos−1 y

)

√

1 − y2
=

fo(x)

sin π
2 x

, (26)

where x = 2
π cos−1 y. Corollary 3.7 informs us that the exact solution to the

Fourier extension problem is found from the least squares polynomial approx-
imations of the functions f1(y) and f2(y) with respect to the weight functions
4
π

1√
1−y2

and 4
π

√

1 − y2 on the interval [0, 1].

3.4 Convergence

The explicit expressions for the exact solution of Problem 1.1 in terms of orthog-
onal polynomials enables using standard theory in polynomial approximation to
derive the convergence rate of the approximation. We will focus in this paper
only on the case of analytic f .

3.4.1 Preparatory lemmas

First, we examine the convergence of polynomial least squares approximations
on the interval [0, 1]. Let pn(y) be a sequence of polynomials, orthonormal
with respect to the positive and integrable weight function w(y) on [0, 1]. The
weighted least squares polynomial approximation to a function h is given by

hn(y) =
n

∑

k=0

cnpn(y)

with

cn =

∫ 1

0

f(y)pn(y)w(y) dy.

The convergence rate of this approximation is similar to that in Theorem 2.1.
In the following lemma, we denote by L2

[0,1],w the weighted L2-space with norm

‖f‖L2
[0,1],w

=

√

∫ 1

0

f(x)2w(x) dx.

12



Lemma 3.8. Let h be analytic with |h(z)| ≤ M in the region bounded by the
ellipse with foci 0 and 1 and major and minor semiaxis lengths summing to ρ/2.
If ρ > 1, then

‖h − hn‖L2
[0,1],w

∼ ρ−n, n → ∞. (27)

Proof. The substitution u = 2z− 1 maps an ellipse with foci 0 and 1 and major
and minor semiaxis lengths summing to ρ/2 to an ellipse with foci ±1 and major
and minor semiaxis lengths summing to ρ. Hence, if ρ > 1, then from the theory
of Chebyshev expansions in §2.1 a polynomial q of degree n exists such that

h(z) − q(z) ∼ ρ−n, z ∈ [0, 1].

Since hn is the weighted least squares approximation to h, we have

∫ 1

0

(h(z) − hn(z))2w(z) dz ≤
∫ 1

0

(h(z) − q(z))2w(z) dz

≤ ‖h − q‖∞‖w‖1.

Since w is positive and integrable, this proves the result.

We will also make use of the following result later on.

Lemma 3.9. Let f be even and analytic. Then f is periodic on [−T, T ] if and
only if f is even with respect to T .

Proof. Assume first that f is even and 2T -periodic. Then we have

f(T − a) = f(−T + a) = f(T + a),

so f is even around T . Next, if f is even around 0 and T , then we have

f(a) = f(T − (T − a)) = f(T + (T − a)) = f(2T − a) = f(a − 2T ),

so f is 2T -periodic.

The proof of the following lemma is analogous and is omitted.

Lemma 3.10. Let f be odd and analytic. Then f is periodic on [−T, T ] if and
only if f is odd with respect to T .

3.4.2 Convergence

In order to understand the convergence rate of the solution to Problem 1.1 for
analytic f , we should know the domain of analyticity of the functions f1(y) and
f2(y). It turns out that the substitution x = 2

π cos−1 y introduces singularities
in the complex plane such that, even when f is entire, the convergence rate of
the Fourier extension problem is bounded in most cases.

Definition 3.11. The Fourier extension constant is

E = 3 + 2
√

2.

13
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Figure 3: The domains of analyticity for f̃(y) (left panel) for R = 1/2, 1, 3/2
and the corresponding domains of analyticity D(R) for f(x) (right panel).

Lemma 3.12. Let f(x) be even and analytic in a neighbourhood of [−1, 1] and
define

f̃(y) = f

(

2

π
cos−1 y

)

.

If f̃(y) is analytic in the region bounded by an ellipse with foci 0 and 1 and
major and minor semiaxis lengths summing to ρ/2, then

ρ ≤ E, (28)

unless f is analytic and periodic on [−2, 2].

Proof. The major semiaxis length a, minor semiaxis length b and distance 2c
between the two foci of an ellipse are related by a2 − b2 = c2. For an ellipse
with foci 0 and 1, this means a2 − b2 = 1/4.

The function cos−1 y has square root type singularities at y1 = 1 and y2 =
−1. However, since 2

π cos−1 y1 = 0 and since f is assumed to be even, the

singularity squares away and f̃ is analytic at y = 1.
A possible singularity remains at y2. Assume sufficient analyticity of f , in

order to get an upper bound for ρ. If f̃ is also analytic at y2, then f is necessarily
even around 2

π cos−1 y2 = 2. Since f is then even around 0 and 2, it follows
from Lemma 3.9 that f is periodic on [−2, 2].

Otherwise, in the general case where f is not periodic on [−2, 2], the major
semiaxis length of an ellipse with foci 0 and 1 bounding the region of analyticity
of f̃ is limited to a = 3

2 , i.e., to the distance between the center of the ellipse at
y = 1/2 and the nearest singularity at y = −1. The sum of major and minor
semiaxis lengths is a +

√

a2 − 1/4 = ρ/2, which for a = 3/2 leads to the bound
for ρ.

The (open) domain of analyticity of f̃(y) should be an ellipse with foci 0
and 1. This domain is mapped by

x =
2

π
cos−1 y

14



to the corresponding domain of analyticity of the even function f . The form
of this domain is shown in the right panel of Figure 3. We denote the latter
by D(R), where R is the major semiaxis length of the ellipse. Note that the
intersection of D(3/2) with the real axis is the interval [−2, 2].

Theorem 3.13. If f is analytic in the domain D(R), with R > 1/2, then the
solution gn to Problem 1.1 satisfies

‖f − gn‖ ∼ ρ−n,

with
ρ = min(E, 2R +

√

4R2 − 1), (29)

unless f is analytic and periodic on [−2, 2].

Proof. First, we can invoke Lemma 3.12 for the functions fe(x) and fo(x)/ sin π
2 x,

which are both even. The function fe(x) is analytic in D(R) by construction.
The function fo(x)/ sin π

2 x may have poles at x = ±2n for n ∈ N0. If fo(x)
is periodic on [−2, 2], then it follows from Lemma 3.10 that it vanishes at all
possible poles, so fo(x)/ sin π

2 x is analytic in D(r). Otherwise, if fo(x) is not
periodic, fo(x)/ sin π

2 x is analytic only in

D := D(R) ∩ D(3/2).

Next, recall the definitions (25) and (26) of f1 and f2. Denote by pn(y)
the polynomial least squares approximation of degree n of f1(y) with respect
to the weight function 4

π
1√

1−y2
, and by qn(y) the polynomial least squares

approximation of degree n − 1 of f2(y) with respect to the weight function
4
π

√

1 − y2. Note that, since odd and even functions are orthogonal on [−1, 1],
we have

‖f − gn‖2 = ‖fe − pn(cos
π

2
·)‖2 + ‖fo − qn(cos

π

2
·) sin(

π

2
·)‖2. (30)

Define ρ as in (29). From Theorem 2.1, we find that

4

π

∫ 1

0

(f1(y) − pn(y))2
1

√

1 − y2
(y) dy ∼ ρ−2n,

and
4

π

∫ 1

0

(f2(y) − qn(y))2
√

1 − y2(y) dy ∼ ρ−2(n−1) ∼ ρ−2n.

Finally, we note that the two integrals in the expressions above correspond
exactly to the two norms in the right hand side of (30) by letting y = cos π

2 x.
This proves the result.

Corollary 3.14. Under the conditions of Theorem 3.13, the coefficients ak and
bk of gn in the form of (19) satisfy ak, bk ∼ ρ−n.

Figure 4 shows the size of the ak and bk coefficients of gn in the form (19)
for two functions f . The first function (left panel) is entire but not periodic.
The convergence rate is E−n, as predicted by the theory. The second function
(right panel) is entire and periodic. The convergence rate for this example is

15



0 5 10 15 20 25
10

−20

10
−15

10
−10

10
−5

10
0

10
5
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Figure 4: Logarithmic plots of the ak coefficients (+) and bk coefficients (o) of
gn in the form (19). Also shown is the curve E−n (striped line).

faster than exponential. The computations were performed in Matlab in double
precision using the algorithm outlined in §5.

We conclude in this section that the convergence rate is truly exponential of
the form e−cn, though the exponent is limited in most cases to log E ≈ 1.76. It
is not surprising that functions periodic on [−2, 2] are an exception to this rule.
Indeed, such functions have rapidly converging classical Fourier series on [−2, 2]
which, depending on nearby singularities in the complex plane, may converge
faster. Note however that gn(x) does not necessarily coincide with the classical
Fourier series of f on [−2, 2], truncated after 2n + 1 terms.

3.5 The Fourier extension on [−2, 2]

In this section, we analyze the behavior of the Fourier extension of f outside
the interval [−1, 1]. To that end, we have to examine the rate of growth of the
orthogonal polynomials in [−1, 1].

Theorem 3.15. The polynomials Th
k (y) satisfy

(

‖Th
k ‖L∞

[−1,1]

)−1

= o(ρ−k), ∀0 < ρ < E. (31)

Proof. Assume an even function f that is analytic in D(3/2) but with a singu-
larity at x = 2, i.e., f is not analytic in D(3/2). This implies by Corollary 3.14
that ak ∼ E−k (note that bk = 0 for an even function).

Now assume that the maximum of the polynomials Th
k on the interval [−1, 1]

grows only as fast as ρk with ρ < E. Then the series (19) converges exponentially
for x ∈ [−2, 2], since the terms

akTh
k (cos

π

2
x) ∼ (E − ρ)−k

decay exponentially fast. This means that gn converges to a fixed function g
with an exponentially decaying Fourier series. The exponential decay implies
that g is analytic on [−2, 2] [21]. But gn converges to f on [−1, 1] which is not
analytic on [−2, 2]. We arrive at a contradiction, so the polynomials must grow
faster than ρk.
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(b) |x − gn(x)|

Figure 6: Illustration of the Fourier extension gn(x) of f(x) = x for n =
5, 10, 15, 20. Slow growth outside [−1, 1] is seen in the left panel. The right
panel shows that the approximation is very accurate on [−1, 1] including in the
endpoints.

Theorem 3.15 says that the polynomials grow faster than ρk for any ρ < E.
A similar statement can be made regarding the polynomials Uh

k (y). The result
of this theorem is not entirely sharp however. Numerical experiments indicate
that

‖Th
k ‖L∞

[−1,1]
∼ Ek, k → ∞.

Since the polynomials grow monotonically outside the interval [0, 1], they attain
their maximum on [−1, 1] in the left endpoint y = −1. Figure 5 illustrates that

the ratios
T h

k (−1)
Ek and

Uh
k (−1)
Ek indeed quickly converge to a limit.

This growth of the polynomials compensates the rapid decay of the expansion
coefficients ak and bk, such that gn may actually diverge outside [−1, 1]. We
illustrate this for the function f(x) = x in Figure 6. The Fourier extension
grows slowly outside the interval [−1, 1]. The approximation on [−1, 1] is very
accurate however, up to and including in the endpoints.

The growth outside [−1, 1] is more pronounced for the function f(x) =
1/(1 + 2x2), which has two poles ± i√

2
near the real axis. This is shown in

Figure 7. Note that the approximation remains very accurate on [−1, 1], roughly
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Figure 7: Same as Figure 6 but for the function f(x) = 1
1+2x2 . The growth of

the Fourier extension outside [−1, 1] is more pronounced in this example, but
the approximation remains very accurate on [−1, 1].

achieving machine precision.

4 Numerical least squares methods

There are many approximate representations of f in the space Gn. In this
section, we describe the mechanism that makes well designed numerical methods
favour accurate representations with small Fourier coefficients over the exact
solution to Problem 1.1 that yields large Fourier coefficients.

4.1 Projection methods and collocation methods

For simplicity of notation in this section, we will focus on solving Problem 1.1
in the function space G2n rather than the space Gn.

A straightforward translation of Problem 1.1 into a linear algebra problem
is the following. Given a basis {φj}4n+1

j=1 of G2n, the solution to Problem 1.1 is

gn(x) =

4n+1
∑

j=1

xjφj(x),

where the coefficients xj are found by solving the linear system of equations

Ax = B. (32)

The entries of the matrix A ∈ R
(4n+1)×(4n+1) are given by

Ai,j =< φj , φi >, (33)

and the elements of B ∈ R
4n+1 are

Bi =< f, φi > .

Note that by < ·, · > we mean the inner product on L2
[−1,1]. In exact arithmetic,

this projection method produces the exact solution to Problem 1.1, regardless
of the basis used.
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Alternatively, one may use a collocation approach. For a set {yj}M
j=1 of

collocation points, with yj ∈ [−1, 1] and M ≥ 4n + 1, solve the linear system of
equations

Ãx = B̃, (34)

where Ãij = φj(yi) and B̃i = f(yi).
These methods were used in [3, 5] to solve the Fourier extension problem

numerically. Note that
A ≈ c(M)ÃT Ã, (35)

i.e., the linear system Ax = B approximates the normal equations of the least
squares problem (34), up to a constant c(M) that depends on M . For M
equidistant points on [−1, 1], one can verify that c(M) = 2

M−1 .3 Expression (35)
implies that

κ(A) ≈ κ(Ã)2.

One may in general expect better numerical results from the collocation ap-
proach [19].

4.2 Block structure and other properties of A

We examine the structure and properties of the matrix A. We start with the
following observation.

Lemma 4.1. The matrix A is symmetric and positive definite.

Proof. It follows from the theory in §3 that D2n is a basis for G2n on [−1, 1].
Since A consists of all inner products of the basis functions, it is symmetric and
positive definite.

The choice T = 2 leads to a matrix A with a simple structure. Recall from
Lemma 3.2 that in this case the set D2n, which spans G2n, consists of Laplace
eigenfunctions subject to Neumann or Dirichlet boundary conditions. We have

D2n = LN ∪ LD,

where (note that we redefine LN and LD here to be finite sets)

LN := {φN
j }2n+1

j=1 = { 1√
2
} ∪ {cos πkx}n

k=1 ∪ {sin π(k +
1

2
)x}n−1

k=0 , (36)

and

LD := {φD
j }2n

j=1 = {cos π(k +
1

2
)x}n−1

k=0 ∪ {sin πkx}n
k=1. (37)

With that order of the basis functions, the matrix A has the following block
structure:

A =

[

I2n+1 C
CT I2n

]

, (38)

where Im ∈ R
m×m is the identity matrix. The matrix C ∈ R

(2n+1)×2n is a
coupling matrix given by

Ci,j =< φD
j , φN

i > .

It turns out that all eigenvalues and eigenvectors of A are easily determined.

3This follows from the observation that each element of ÃT Ã is a low order composite
quadrature approximation to the integrals of the form (33) with step size h = 2/(M − 1).
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Figure 8: The distribution of the singular values of C for n = 10 (left panel)
and the condition number of A versus E4n (right panel).

Theorem 4.2. Let C = UΣV T be the singular value decomposition of C. For
each singular value σk, with left and right singular vectors uk and vk, we have

A

[

uk

vk

]

= (1 + σk)

[

uk

vk

]

,

and

A

[

uk

−vk

]

= (1 − σk)

[

uk

−vk

]

.

We also have

A

[

u2n+1

0

]

=

[

u2n+1

0

]

.

Proof. Consider the first eigenvalue (1 + σk). Since Cvk = σkuk and CT uk =
σkvk, we have

A

[

uk

vk

]

=

[

uk + Cvk

CT uk + vk

]

= (1 + σk)

[

uk

vk

]

.

The case of the eigenvalue (1− σk) is analogous. Together, they account for 4n
of the 4n + 1 eigenvalues of A.

Since C is not square, there are 2n + 1 left singular vectors uk but only 2n
right singular vectors vk. Because u2n+1 lies in the null space of CT , we have
CT u2n+1 = 0 and the same reasoning as above yields the last eigenvalue 1 with
the given corresponding eigenvector.

Corollary 4.3. 0 ≤ σk < 1.

Proof. Singular values are positive by construction. Since A is positive definite,
all its eigenvalues are positive. This means that 1 − σk > 0 or σk < 1.

Corollary 4.4. 0 < λk < 2.

The eigenvalues of A are bounded by 0 and 2. Numerical experiments indi-
cate that the eigenvalues rapidly accumulate near 0 and 2. Figure 8 illustrates
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the accumulation of the 2n singular values σk near 1 for n = 10. The eigenvalues
of A are similarly distributed near 0 and 2. This means that ‖A‖ is bounded,
but ‖A−1‖ is not. Numerical experiments suggest that

κ(A) ∼ E4n, n → ∞.

The condition number of A reaches 1e15 for n = 5. This corresponds to a matrix
of size 4n + 1 = 21 by 21.

Remark 4.5. Let us briefly comment on the meaning of the eigenvectors

[

uk

vk

]

.

The fact that σk ≈ 1 means that the spaces LN := spanLN and LD := spanLD

are, in a sense, similar. We have
∑

k ukφN
k ≈ ∑

k vkφD
k . Any function giv-

ing rise to the right hand side vector B =

[

uk

vk

]

projects similarly onto the

spaces LN and LD. The eigenvalue 1 + σk is bounded away from zero and the
corresponding solution to Ax = B is therefore well behaved. In contrast, any

function that leads to B =

[

uk

−vk

]

projects differently onto these spaces – the

projections are nearly equal but opposite in sign. The corresponding solution
vector x is large, because the eigenvalue 1 − σk is small. This case is increas-
ingly unlikely, since the projections of a function onto LN and onto LD both
converge to the function itself. It may happen however if n is not large enough.
We will illustrate further on the observation that accurate representations of f
with small Fourier coefficients can only be found provided n is sufficiently large.

4.3 Stability

Assume we are given a bounded function f ∈ L2
[−1,1]. Since our basis is the

truncated concatenation of two orthonormal bases for L2
[−1,1], we find based on

Parseval’s identity that

‖B‖2 ≤ ‖f‖2 + ‖f‖2 = 2‖f‖2.

Bounded f gives rise to a bounded right hand side of (32). Ideally, we would
like to obtain estimates

c1‖f‖ ≤ ‖x‖ ≤ c2‖f‖.
However, such estimates obviously cannot hold with bounded constants, because
the inverse of A is unbounded. Based on Theorem 4.2 however, we can formulate
a result that comes close.

Theorem 4.6. If B ∈ span

{[

uk

vk

]}

, then

1

2
‖B‖ ≤ ‖x‖ ≤ ‖B‖.

Proof. The right hand side of Ax = B lies in the space spanned by eigenvectors
of A with eigenvalues 1 ≤ λk = 1 + σk < 2.

This result is encouraging, yet not very informative, since the singular vectors
of C are unknown and the condition on B seems to be rather restrictive.
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The lower bound however has a precise meaning. Note that this lower bound
actually holds for all B, since all eigenvalues are bounded by 2. Because ‖B‖ →√

2‖f‖, the bound converges to

1√
2
‖f‖ ≤ ‖x‖. (39)

This inequality corresponds exactly to inequality (8) in the theory of frames.
Recall that this inequality expresses the fact that the energy of the coefficients
of a representation of f in a frame {φj} is minimized by taking inner products
with the dual frame {φ∗

j}. Thus, the lower bound (39) is achieved if

xj =< f, φ∗
j >=

1

2
< f, φj >, (40)

since for a tight frame the dual frame satisfies φ∗
j = 1

Aφj . (Note that the bound
is reached in principle only when n = ∞.) The corresponding representation of
f is optimal in the sense of minimizing the energy of the coefficients, but it is
not optimal in the sense of minimizing the norm ‖f − ·‖. In fact, the series

g∗ :=

∞
∑

j=1

1

2
< f, φj > φj (41)

converges rather slowly and exhibits the Gibbs phenomenon.4

4.4 An underdetermined system of equations

There are infinitely many representations of f in the frame D∞. Therefore, if
n is sufficiently large, there are many approximate representations of f in D2n.
Two of these have received our special attention: one is the exact solution to
Problem 1.1, another one is the dual frame representation (41). The former
converges rapidly to f but leads to unbounded Fourier coefficients. The latter
converges slowly to f but leads to bounded Fourier coefficients. One may expect
a numerical method to yield a representation in between these two extremes.
There is a well understood mechanism that makes certain numerical methods
favour the latter.

We proceed formally. For an in-depth discussion of numerical methods for
least squares problems, we refer the reader to [19]. Assume a numerical method
that approximately solves an ill-conditioned system of equations by discarding
small eigenvalues. Then system (32) can be formally replaced by

Amx = B, (42)

where Am is a rank-m approximation to A, with m < 4n + 1. Assuming that
B lies in the range of Am, the linear system of equations (42) is now under-
determined. There are many vectors x that satisfy (42). However, exactly one
solution x∗ of an underdetermined system minimizes ‖x‖ among all possible
solutions [19].

4The part corresponding to the Laplace-Neumann eigenfunctions converges pointwise in
[−1, 1], the Laplace-Dirichlet eigenfunctions are responsible for the Gibbs phenomenon [16].

22



For example, assume that A = V ΛV T is the eigenvalue decomposition of
the symmetric and positive definite matrix A. Denote by Λ̃ ∈ R

m×m a trun-
cation of Λ that discards small eigenvalues, and let Ṽ ∈ R

4n+1×m denote the
corresponding eigenvectors. Then the underdetermined system of equations is

Ṽ Λ̃Ṽ T x = B.

It is a property of the Fourier extension problem that B lies approximately in
the range of the low rank matrix, at least for sufficiently large n, as we will
illustrate further below. The solution minimizing ‖x‖ is found by solving the
diagonal system

Λ̃y = Ṽ T B,

and letting
x∗ = Ṽ T y. (43)

Note that the eigenvalue decomposition of A can be computed efficiently from
the singular value decomposition of C.

In the case of the collocation method, the approach is similar but based on
a truncated singular value decomposition of Ã. Alternatively, results are shown
further on by simply using the backslash operator in Matlab, x = Ã \ B̃. We
only analyzed the eigenvalues of A. However, due to the property (35), the
eigenvalues of A are directly related to the singular values of Ã. This means
that we may expect a similar energy-minimizing property of the solution as
in the projection method. Results may even be better, because κ(A) ∼ E4n

whereas κ(Ã) ∼ E2n.
We conclude that the degrees of freedom that result from discarding small

eigenvalues of A or small singular values of Ã can be used to minimize the
norm of the solution. Hence, since the vector x represents Fourier coefficients,
unbounded Fourier coefficients can be avoided in practice. This is essentially
due to numerical error: for large n it is not feasible numerically to recover the
exact solution of Problem 1.1.

4.5 Numerical results

We illustrate the statements made in this section with the example functions

f1(x) = x

and
f2(x) = esin(5.4πx−2.7π)−cos(2πx). (44)

The latter function was chosen in [5] as an example that leads to large Fourier
coefficients for moderate n.

We use two numerical methods: the projection method, which corresponds
to solving system (32), and the collocation method, which corresponds to solving
system (34). In the former case, we compute the singular value decomposition of
C, which yields the eigenvalue decomposition of A, and we compute the solution
by (43). In the latter case, we compute the singular value decomposition of Ã.
We chose M = 1000 equidistant collocation points in [−1, 1]. We used the
threshold 1e − 12 for the eigenvalues of A and for the singular values of Ã. For
both methods, we also compared results with the backslash-operator in Matlab.
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Figure 9: Convergence plot of four numerical methods: truncated eigenvalue
decomposition of A (⋄), truncated singular value decomposition of Ã (�), Mat-
lab solution A \ B (+) and Matlab solution Ã \ B̃ (×). The left panels show
the approximation error ‖f − gn‖, the right panels show the norm ‖x‖ of the
solution vector.

The results are shown in Figure 9. The projection method initially con-
verges rapidly, but levels off when an approximation error of order 1e − 8 is
reached. The collocation method, somewhat surprisingly, actually reaches ma-
chine precision for both example functions. The Matlab computed solution
has an accuracy comparable to that of the explicit truncation approach for the
collocation method, but it is somewhat less accurate for the projection method.

The norms of the solution vectors are shown in the right panels of Figure 9.
We observe that the solution vectors may be very large, especially for the second
function f2. Yet, for increasing n, their norms start converging for three out of
four methods. The Matlab computed solution A \ B for the projection method
does not yield small Fourier coefficients. The convergence of the norms for
the other three methods is shown in more detail in Figure 10. Both explicit
truncation methods yield a solution vector with a norm that approaches the
optimal value 1/

√
2‖f‖ when n increases. The Matlab computed solution Ã\ B̃

yields a solution vector with a norm that approaches ‖f‖. We note that in this
case, by default, Matlab attempts to produce the sparsest solution to Ãx = B̃,
rather than the solution with minimal norm.
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Figure 10: The panels (b) and (d) of Figure 9 are shown in a different scale.
Also shown is the norm ‖f‖ (dashed line) and the value 1/

√
2‖f‖ (solid line).

5 Computing the exact solution

It is numerically unstable to represent the exact solution gn to Problem 1.1 in
the basis Dn. However, the representation in terms of orthogonal polynomials
is stable. There is a general algorithm to compute polynomial expansions in a
stable manner, based on the associated Gaussian quadrature. In this section we
describe its application to the Fourier extension problem.

5.1 Gaussian quadrature

Both families of orthogonal polynomials Th
m and Uh

m have associated families of
Gaussian quadrature. Denote by {yFK

j }m
j=1 the roots of the half-range Cheby-

shev polynomials of the first kind Th
m(y). Note that all roots lie in the interval

[0, 1] and that the associated weights are positive [10]. The weights satisfy

m
∑

j=1

wFK
j (yFK

j )j =
4

π

∫ 1

0

yjTh
j (y)

1
√

1 − y2
dy, k = 0, . . . , 2m − 1,

i.e., the quadrature rule is exact for polynomials up to degree 2m − 1. The
weights can be computed efficiently in a numerically stable manner based on
the recurrence coefficients of the orthogonal polynomials [11].

Similarly, denote by {ySK
j }m

j=1 the roots of the half-range Chebyshev poly-

nomials of the second kind Uh
m(y). The associated weights satisfy

m
∑

j=1

wSK
j (ySK

j )j =
4

π

∫ 1

0

yjUh
j (y)

√

1 − y2 dy, k = 0, . . . , 2m − 1.

It is interesting to point out that the first kind of quadrature rule also leads
to a quadrature rule on [−1, 1] that is exact for all trigonometric functions in
G2m−1. Define 2m quadrature points and weights as follows,















xTR
j = 2

π cos−1 yFK
j

xTR
j+m = − 2

π cos−1 yFK
j

wTR
j = 1

2wFK
j

wTR
j+m = 1

2wFK
j

, j = 1, . . . ,m. (45)
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The transformation x = 2
π cos−1 y is applied to the points yFK

j . This transfor-
mation maps the interval [0, 1] to itself. However, the resulting rule may only
be applied to even functions. The quadrature points are therefore mirrorred to
[−1, 0], with halved weights, to select the even part of any given function f .
As a result, the rule is exact for all odd functions on [−1, 1]. The quadrature
approximation is 0 whenever f(x) = −f(−x).

5.2 Computing the coefficients

The coefficients ak and bk of the exact solution (19) may be computed based on
expressions (23) and (24). We have

ak ≈ QFK
k [f ] =

m
∑

j=1

wFK
j fe

(

2

π
cos−1 yFK

j

)

Th
k (yFK

j ), (46)

bk ≈ QSK
k [f ] =

m
∑

j=1

wSK
j

fo

(

2
π cos−1 ySK

j

)

√

1 − (ySK
j )2

Uh
k (ySK

j ). (47)

Equivalent expressions are

QFK
k [f ] =

m
∑

j=1

1

2
wFK

j

[

f

(

2

π
cos−1 yFK

j

)

+ f

(

− 2

π
cos−1 yFK

j

)]

Th
k (yFK

j ),

(48)

QSK
k [f ] =

m
∑

j=1

1

2
wSK

j





f
(

2
π cos−1 ySK

j

)

√

1 − (ySK
j )2

−
f

(

− 2
π cos−1 yFK

j

)

√

1 − (ySK
j )2



 Uh
k (ySK

j ). (49)

5.3 Convergence

Let us determine the number of quadrature points necessary to compute the
coefficients ak and bk, such that the computed solution converges at the same
rate as the exact solution. To that end, write the function f as

f(x) = gn(x) + R(x), (50)

where gn(x) is the exact solution to Problem 1.1 and R(x) is a remainder term.
Recall that gn(x) has the form (19).

Theorem 5.1. Let ak be approximated by QFK
k [f ] with m = n + 1 and let bk

be approximated by QSK
k [f ] with m = n. If f(x) can be written as (50), with

R(x) continuously differentiable, then there exist constants c1, c2 > 0 such that

|QFK
k [f ] − ak| ≤ c1 n

√
k ‖R‖∞,

|QSK
k [f ] − bk| ≤ c2 nk ‖R′‖∞.

Proof. The even part of f can be written as

fe(x) =

n
∑

i=0

aiT
h
i (cos

π

2
x) + Re(x)
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where Re(x) = 1
2 (R(x) + R(−x)) is the even part of R. We have

QFK
k [f ] = QFK

k [fe] =

n
∑

i=0

aiQ
FK
k [Th

i (cos
π

2
·)] + QFK

k [Re].

Consider first the sum in this expression. We have

QFK
k [Th

i (cos
π

2
·)] =

m
∑

j=1

wFK
j Th

k (yFK
j )Th

i (yFK
j ).

The quadrature rule is applied to a polynomial of degree k + i. Since k ≤ n and
i ≤ n, the maximal degree is 2n. Hence, letting m = n + 1, the quadrature rule
is exact for these polynomials. We find that QFK

k [Th
i (cos π

2 ·)] = δk−i and

QFK
k [f ] = ak + QFK

k [Re].

Next, consider the remainder term

QFK
k [Re] =

m
∑

j=1

wFK
j Re

(

2

π
cos−1 yFK

j

)

Th
k (yFK

j )

≤ ‖Re‖∞
m

∑

j=1

wFK
j |Th

k (yFK
j )|.

It follows from Theorem 3.5 that the polynomials grow at most like
√

k. Since
‖Re‖∞ ≤ ‖R‖∞, the first result follows.

The reasoning for the odd part of f is analogous, except for the remainder
term. We have

QSK
k [Ro] =

m
∑

j=1

wSK
j

Ro

(

2
π cos−1 ySK

j

)

√

1 − (ySK
j )2

Uh
k (ySK

j ).

The denominator is unbounded if ySK
j approaches 1. However, since Ro(x) is

odd, we may write Ro(x) = xh(x). The function

2
π cos−1 y
√

1 − y2
h

(

2

π
cos−1 y

)

is bounded on [0, 1]. Note that h(0) = R′
o(0) = R′(0) and, since Ro(0) = 0,

we may bound h(x) by ‖R′(x)‖∞. From Theorem 3.5, the polynomials grow at
most like k. The second result follows.

Theorem 5.1 states that one should choose n + 1 quadrature points for the
computation of ak, k = 0, . . . , n, and n quadrature points for the computation
of bk, k = 0, . . . , n − 1. If explicit expressions for fe and fo are available, then
one requires 2n + 1 function evaluations to compute these 2n + 1 coefficients,
using expressions (46)-(47). Note that evaluations of fe and fo may be reused
for varying k. If such expressions are not available, then one requires 4n + 2
evaluations of f using expressions (48)-(49). The total computational complex-
ity in both cases scales as O(n2). There is unfortunately no simple connection
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to the FFT for constructing the expansion in O(n log n) computations as in the
case of Chebyshev expansions [24].

The convergence rate of the quadrature scheme is dictated by the results
of §3 on the possible decay rate of the remainder term R for increasing n.
Compared to these results, the loss by a factor of n3/2 or n2 is observed, which
is due to the growth of the orthogonal polynomials in [−1, 1]. These bounds are
rather pessimistic, since the polynomials are, in fact, bounded in the interior of
[0, 1]. Yet, they already show that an exponential rate of convergence can be
maintained up to algebraic factors.

5.4 Numerical results

All quadrature rules were computed numerically as follows. The three term
recurrence coefficients of the two families of orthogonal polynomials were com-
puted to high precision in Maple. The corresponding Gaussian quadrature rules
were then computed based on the algorithm in [11], which efficiently computes
the eigenvalues of a tridiagonal matrix. The latter computation was performed
in double precision in Matlab.

Several computational results were already shown earlier in this paper. The
exact solution for the functions f(x) = 2x2 + 3x + 1 and f(x) = cos cos π

2 x +
sin sin π

2 x was shown in Figure 4. Note that the quadrature approximation
agrees with the theoretical convergence rate E−n for the former function, and
that the quadrature approximation converges faster than exponential for the
latter. Accuracy close to machine precision was shown for f(x) = x in Figure 6
and for f(x) = 1

1+2x2 in Figure 7.
We supplement these examples with a small comparison of several quadra-

ture rules. In particular, we compare classical Gaussian quadrature, Clenshaw-
Curtis quadrature and the newly constructed Fourier extension quadrature. For
the latter, we use the quadrature formula given by (45).

Gaussian quadrature and Clenshaw-Curtis quadrature were compared ex-
tensively in [23]. We added Fourier extension quadrature to six examples given
in that paper. The results are shown in Figure 11. The first four examples are
analytic functions, the fifth is C∞ and the final one is C2. One observes in panel
(a) that Fourier extension quadrature is not exact for polynomials. Panel (b)
shows slightly slower convergence of Fourier extension quadrature for an entire
function, because its convergence rate is bounded. Fourier extension apparently
outperforms the other methods for example (d) with nearby poles. Still, the
differences are small and all results are quite comparable.

Results are quite different however when integrating oscillatory functions.
Figure 12 shows the quadrature approximation for cos(40x), the Bessel function
of the first kind J0(30x) and the function cos(25x2). In the first two cases,
Fourier extension quadrature converges faster than Gaussian quadrature and
much faster than Clenshaw-Curtis quadrature. Note however that the function
J0(30x) has harmonic oscillations like a cosine. The function cos 25x2 has oscil-
lations that are less harmonic. In that case, Fourier extension quadrature and
Gaussian quadrature perform very similarly, but Clenshaw-Curtis is still signif-
icantly less accurate. For completeness, we like to point out that significantly
more efficient methods exist to evaluate oscillatory integrals (see, e.g., [15]).

Interestingly, the convergence plots of Clenshaw-Curtis quadrature in Fig-
ure 12 exhibit a kink for each of the three examples. This phenomenon was

28



described and analyzed in [25] for functions with a singularity in the complex
plane. It was concluded that Clenshaw-Curtis quadrature converges at the same
rate as Gaussian quadrature up to a certain n, depending on the location of the
nearest singularity. However, the three examples given here are entire functions.

6 Concluding remarks

It is perhaps not surprising that non-periodic functions can be represented as
a trigonometric series by altering the periodicity. It is surprising however, at
least in our opinion, that such series can be exponentially accurate. We focused
in this paper on a constructive convergence theory for such series, which led to
Chebyshev-like orthogonal polynomials.

Two associated numerical methods were studied. A numerical least squares
method leads to hideously ill-conditioned matrices and produces a solution that
does not resemble the exact least squares solution to Problem 1.1. Yet, it
approximates f to machine precision on the interval [−1, 1]. The true solution
can also be computed by exploiting the link with orthogonal polynomials and
the associated Gaussian quadrature.

It appears that the results in this paper can be generalized to several bounded
domains in higher dimensions. Preliminary results suggest that exponentially
accurate Fourier series can be constructed for functions defined on triangles,
tetrahedra and even higher-dimensional simplices. The path towards general-
ization lies in the connection to eigenfunctions of the Laplacian and in the use
of symmetries of these domains. This is an active topic of further research.
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Figure 11: Comparison of Gaussian quadrature (+), Clenshaw-Curtis quadra-
ture (⋄) and Fourier extension quadrature (×) on [−1, 1].
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(a) f(x) = cos 40x
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(b) f(x) = J0(30x)
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(c) f(x) = cos 25x2

Figure 12: Comparison of Gaussian quadrature (+), Clenshaw-Curtis quadra-
ture (⋄) and Fourier extension quadrature (×) on [−1, 1].
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