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1. Introduction

Let G be a connected semisimple Lie group with finite center and K a maximal
compact subgroup of G. Let G=KAN be a fixed Iwasawa decomposition and
M the centralizer of A in K. In a series of his papers Harish-Chandra introduced
the Schwartz space €(G), in analogy to the space & (R"), of rapidly decreasing
functions on the real euclidean space R*([10]), and also as one of the family of
the whole spaces ¥7(G). It is a problem to know whether one can carry out
a Fourier analysis of the member of #?(G) and know the image of ¥?(G) by the
Fourier transform, when possible.

After Harish-Chandra, Eguchi-Okamoto [3] introduced the Schwartz space
%(G/K) on the symmetric space G/K, which is a subspace of the space %(G),
and characterized the image of it by the Fourier transform. In this paper we
consider the Fourier transform of the subspaces €7(G/K) (0<p<2; #%(G/K)
=%(G/K)) consisting of functions in #?(G) which are invariant under right K
action.

Let 0<p<2. Then the space ¥”(G/K) is contained in #(G/K) and so, for
any fe €”(G/K) its Fourier transform f is defined. For a general element f
€ ¥(G/K), f is a C* function on a* x K/M with a growth condition and a property
of symmetry; but if f is an element of ¥?(G/K), f extends analytically to the in-
terior of a tubular domain with respect to the first component. We denote the
tubular domain by FP. The main theorem of this paper is that the space Z(F?
x K/M) consisting of these functions which have holomorphic extension to
Int FP and such symmetry and growth, is the just image of the Fourier transform
of €?(G/K) in real rank one case.

A brief sketch of the proof of surjectivity is as follows: Let K° be the set
of the equivalence classes of unitary representations of K which are class 1 with
respect to M. Let ¢ be a function in Z(F? x K/M) and f be the Fourier inverse
image of ¢. Applying the theorem for the Fourier transform of smooth functions
on K/M (Sugiura [11]), we obtain a family of functions @%( e K°) with values
in endomorphisms of the representation space of . Then ¢? has a growth with
respect to 6. From this and the fact that f is the sum of trace of inverse image
f? of ¢¢, it follows that fe ¥7(G/K). In order to show that f? satisfies the
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growth condition, we employ the usual manner which Helgason uses in his papers
[9(c), (d)]. For this we need Harish-Chandra’s theorem for the asymptotic
expansion of Eisenstein integrals ([7(d)], also [14, Chap. IV]), some results
about C functions in [9(d)] and an estimate for the coefficients I, of expansion
of Eisenstein integrals by Hashizume [8]. This results in shifting the integral on
a* towards the boundary of the tubic domain. This method is similar to the proof
of the theorem for I'(G) by Helgason [9(c)].

The spaces I?(G), consisting of all functions in ¥?(G/K) which are also
invariant under left K-action, were studied by Ehrenpreis-Mautner [4] in the
case G=SL(2, R), by Helgason [9(c)] for the case when G is either complex
or of real rank one and p=1. Trombi [12] and Trombi and Varadarajan [13]
determined the image of I?(G) for O< p<2, the former for the case of real rank
one and the latter for general case respectively. Moreover, in the case p=2,
Harish-Chandra [7(a)] characterized the spherical Fourier transform of I(G).
Arthur [1(a)] and Eguchi [2(a)] obtain the corresponding results for %(G),
the former when G is of real rank one and the latter when G has only one conjugate
class of Cartan subgroups. Recently Arthur [1(b)] proved the theorem for the
general case and Eguchi [2(b)] characterized the image of Fourier transform of
% (E,), the Schwartz space on the vector bundle on G/K which is associated to
a unitary representation 7 of K on a finite dimensional vector space.

The first author is indebted to S. Helgason for his advice and stimulating
conversations. Also he would like to record his gratitude to the authorities of
the Institute for Advanced Study at Princeton, New Jersey for their hospitality
during 1974-1976.

2. Notation and Preliminaries

As usual let Z, R, C denote the ring of integers, the field of real numbers
and the field of complex numbers respectively; Z* denotes the set of non-negative
integers. If Tis a topological space and S a subset of T, Int S and CI(S) denote
the interior of S and the closure of S in T, respectively. For a vector space V
over R, V,_ denotes the complexification of V.

Let G be a connected semisimple Lie group with finite center, g its Lie algebra
and < , > the Killing form of g.. Let 6 be a Cartan involution of g and g
=f+p the corresponding Cartan decomposition. Let K be the analytic sub-
group with Lie algebra f. Let acp be a maximal abelian subspace, a* its dual
and F=a*. For a root . of (g, a) let m, be the multiplicity of 4. If A4, ueF
let H, e a, be determined by A(H)=<H,;, H> (Hea) and put <, u>=<H,,
H,>. If Aea* and Xep, put |i=<4, A>1/2, |X|=<X, X>!/2 Fix a
Weyl chamber a* ca and let a* denote its preimage in A* under the mapA—H .
Let X* denote the set of positive roots and put p=(1/2)Y ,cz+m,o and n=
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Y aex+8q Where g, is the root space for aeX*. By the usual manner we get
an Iwasawa decomposition G=KAN; g=f+a+n. Let A*=expat. Then
G=KCI(A*)K. Any geG can be written g=uw(g)exp H(g)n(g)=k, ak,, where
k(g)e K, n(g)e N, H(g)ea, ac A* are unique. Put loga=H(a)(ac ). Let
M (resp. M’) denote the centralizer (resp. normalizer) of 4 in K, W=M'/M the
Weyl group, which acts as a group of linear transformations on a and F. Let
w denote the order of Wand put I=dima.

The Killing form induces euclidean measures on 4 and a*; multiplying these
by the factor (2m)~(1/2)! we obtain invariant measures da and di on A and
a* respectively, such that for each fe &(A), the following equalities

@.1) 15 = S/(a)exphmaoga)}da (Aea®),

(2.2) fla) = S S*(Dexp{il(loga)}di (aeA),
hold without any multiplicative constants, where i denotes a square root of —1.
We normalize the Haar measures dk and dm on the compact groups K and M
respectively so that the total measures are one respectively. The Haar measures
of the nilpotent groups N and N=0(N) are normalized so that

8(dn) = dn, Sﬁ exp { = 2p(H(i)}dii = 1.

The Haar measure dx on G can be normalized so that

dx = exp {2p(loga)} dkdadn (x = kan) and dx = A(a)dk,dadk, (x = k,ak,),
where the function 4 on A% is defined by A(a)=c[],.x+ (sinha(loga))™« for a
suitable constant ¢. Let ¢, (A€ F) be the elementary spherical functions ([7(a)])
and put E=¢,. For x=kexpX (keK, Xep) put o(x)=|X|(xeG). Then
o is a spherical function on G. It is known that there exist positive numbers c,
d and e such that

(2.3) E(a) £ cexp{—p(loga)}(1 +o(a))? (aeAt),
(2.4) SGE(X)Z(] +a(x)-¢ < .

(See [7(c), p. 16, 17]).

For any element v of the symmetric algebra S(a,) over a, let d(v) denote the
corresponding differential operator on a, then S(a,) (resp. S(F)) can be regarded
as the algebra of all differential operators with constant coefficients on a (resp. F).

Let T be a maximal torus of K and t be the corresponding Lie subalgebra of
I. If u is a pure imaginary valued linear function on t we can select a unique
element h, et such that u(H)= —i<h,, H> for all Het. Let I' be the set of
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all Het with expH=1. Let I" be the set of all Het suh that <H, X> e€2nZ
for all X eI, then I is the dual lattice of I'. Let D be the subset of all uerl
such that <p, o;> <0 (1£ig]!), where a,..., a; are the set of all simple roots
with respect to a lexicographic order in the set of nonzero roots of (f, t). Then
there is a bijective map u—a(u) from D onto K, the set of all unitary equivalence
classes of irreducible representations of K. We put

lo] = —<p, pu>.

3. The Fourier transform of ¢” (G/K)

Let O<p<2 and let ¥7(G/K) denote the set of C* functions f on G which
satisfy the following conditions: (i) f(xk)=f(x) for any xe G and ke K; (i)
Forany reZ*and g,9'€®

(3.1 .g.0(f) = sup|f(g: x: gNEX)2P(1+0(x)) < co.
The seminorms tf ... convert ¥°(G/K) into a Fréchet space. By definition of

#?(G/K) and the property of the spherical function Z, it is clear that
2(G/K) = ¥°(G/K) = #4(G/K) = ¥(G/K)

if 0<p=q=<2, where 2(G/K) denotes the space of all C* functions on G with
compact support which are invariant under the right K-action. 2(G/K) is dense
in €P(G/K); this is obtained by a similar proof to the one for the case p=2
(cf. [7(c), §13]). Moreover, since the function = satisfies

SGE("V“ +o(x)"dx <

for a number r=0, we see easily that ¥7(G/K)< L?(G/K).

For each p let F? be the set of all linear functionals A on a, such that |[Im sA(H)|
<ep(H) for any H € a* and se W, where e=2/p—1 and Im denotes the imaginary
part. For any continuous function ¢ on IntF? x K/M we define a function ¢
on Int FP x G by

(3.2) B0 x) = Sk(p(l: K(xk)M) exp {(iA— p) (H(xk))} dk.

Now let Z(F? x K/M) denote the space consisting of all C® functions ¢
on a*x K/M which satisfy the following conditions: (i) For fixed ke K the
function A—@(4: kM) extends to Int F? as a holomorphic function; (i) @(sd: x)
=@(L: x)forany AeIntF?, se Wand xe G; (iii)) For any g, re Z* and u € S(F)
(3.3) wrnu(®@) = sup [o(d; d(u): kM; wp|(1+]4))2 < oo,

IntFPXK/M
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where w, denotes the Casimir operator for K. The seminorms (§ ., , convert
ZP(F x K/M) into a Fréchet space.
For any function f in €?(G/K) its Fourier transform is defined by

3.4) f(h: kM) = (F (A kM) = S f(kan)exp {(—il+p)(loga)}dadn.
AN
By formula (2.3) it is easy to check that the above expression is equal to

Scf(x) exp {(i2— p) (H(x~'K))dx.

THEOREM 3.1. The Fourier transform & is a continuous mapping of
%P(G/K) into Z(FPx K/M). In the special case, when the real rank of G
equals one, F is a linear topological isomorphism of €7(G/K) onto ZP(FPx K|
M).

In order to prove this theorem we need some lemmas.

4. The proof of injectivity
Lemma 4.1. Let fe C°(G/K). For each AecIntFP and ke K the integral

.1 F(: kM) = SAN f(kan)exp {(— i1+ p)(loga)}dadn

is uniformly convergent for AeIntF?, and for any fixed ke K the function
A= f(A: kM) is holomorphic on Int FP,

Proof. Let a,,..., o, be all simple restricted roots and e,,..., & be the ele-

ments in F such that <a, &;>=90;;. Then {¢;};<;<; is a basis for F. We

introduce a global coordinate on F by A=2X,<;<,4;6;, Then we have for any
j@=jsh

“.2) f(kan) 57— exp {(~i%+p) (log a)}

< |f(kan)||e;(log @) | exp {(n+p)(log a)},
where A=E+in (€, nea*). Since we can find a constant ¢=1 such that
4.3) 1+0(a) < ¢(1+c(an)) (aeA,neN)
(see [7(c), p- 106]), we have

“4.4) le;(loga)l = cle;|(1+ a(an)) (acA, neN).
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Let d be the constant in (2.3). Then from (2.4) we can choose >0 such that
4.5) [ 200201+ atpzroes1-arix < oo,
Since fe ¥7(G/K), for this r we can choose a constant ¢>0 such that
|f(kan)| £ e(1+o(an))>/P)="E(an)?/?
for all ke K, ae A and ne N. Therefore, the expression (4.2) is bounded by

c(1+o(an))2/P*1=rE(an)?/P exp {(n+ p) (log @)},

where ¢ is a positive constant. If this expression is integrable on AN, then

(4.6) SAN(I +o(an))2/mr1r8an)?/Pexp {(n + p) (log a)}dadn
= SG(l +0(x)) 2P+ E(x)2 /P exp {(n— p) (H(x))}dx

= Sm(l +a(a))2n*1=r5(a)2/p exp {(n— p) (H(ak)} A(a)dadk.
Since it is known that
[ cxp tr—p @Mk < 095 95(0) (@ e a)
([12, p. 282]), from (2.3) it follows that (4.6) is bounded by
@.7) | 2@2(1+o(@)94(a)exp {(n—ep) (log @)} da,

where ¢ is a positive constant and g=r+d—1-2(1+d)p. 1If LelInt F?, |sp(H))
<ep(H) (Hea™, se W). So the above expression is bounded by

cg 2(a)2(1 + o(a))~*A(a) da = cS E(x)2(1 + o(x))-9dx.
At G
This proves that (4.6) is absolutely convergent. Hence the integral
S f(kan)—53—exp {(~iA+ p)(loga)}dadn
AN i

converges uniformly for AelIntF?. More generally, iterating the above dis-
cussion we see that for each polynomial P in [/ variables the integral

SANf(kan)P<a—§l—, ‘a%) exp {(—ii+ p)(loga)}dadn
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converges uniformly for A€ Int FP. Therefore formula (4.1) can be differentiated
under the integral. So, the function A—f(A: kM) is holomorphic on Int F? for
any fixed ke K. This completes the proof of the lemma.

LemMMA 4.2, For any p,reZ* and ueS(F) we can select qeZ™, finite
elements gq, g1,-.., gs € ® and a positive number ¢ such that

sup | f(A; a(u): kM wp)I(1+]A])

Int FPXKIM

< 021§i§ssi%|f(goé x5 gl E(x)"2P(L +a(x))%.

Proor. Let {H;} <;<, be an orthonormal basis of a and consider an ele-
ment of U (the subalgebra of & generated by 1 and a,) defined by

h= -3 <j</H3+2H,.
Put
Yu(a) =exp{(—ii+p)(loga)} (aed).

Then, by simple calculation we have

Yala; h) = (142 +1p1*) (a) .
Let ne Z* and ue S(F). Then we see that

@4.8) (217 +1p1?us(R)e|  f(kam)exp {(~ i+ p)(og)}dadn

= [ f@k: kan)P () (a; h)dadn,

where P, is a polynomial which is determined by u;
Pfa) = Yo<rgadi+osip=ri,i 84 (—iloga)...e(—iloga) (ae A),

0 \it i
ui= TogrsaZivsimivi g ) (50 )

here a,.; are constants. We put f(k:a: n)=f(kan) (keK,ae A, neN).
IfHea,

SANf(k; wi: a: n)PaW,(a; Hydadn
=SANf(a);; k:a; —H: n)PfaW,(a)dadn

+S f(wh: kan)P(a; — H)W (a)dadn.
AN
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Since for a good function ¢ on AN
quS(na)dn = exp {2p(log a)}SNqB(an)dn (ae A),
the first term is equal to
[ f(@t: kamP @ (a)dadn—2p(~ )| f(@i: kam)P.(@)s(@)dadn.

Iterating the above discussion, we can choose finite elements go=w}, g4,..., g;
e®, by,..., bye A and c,,..., ¢;€ R so that formula (4.8) equals

(49 Tuzsscs] J@oi kans g)Pa; b,)exp (= id-+p)(loga))dadn.

Now for each j (1 £j<r) we can choose d;=0 and s; € Z* such that
|[Pfa; bj)| £ d(1+{logal) = d 14 0(a))* {ae ).

The absolute value of the integral in (4.9) is bounded by

cd;-sup (| f(go: x; g IE)72/P(1+a(x))s+1}

. SANE(an)Z/P(l +a(an))~texp {(n+p) (loga)}dadn,

here we use the relation (4.3). By the same discussion as in the proof of Lemma
4.1, for a sufficiently large t>0 the last integral is finite if A € Int F?. This proves
our lemma.

LEMMA 4.3. Let fe ¥°(G/K). Then f satisfies the following functional
equation with respect to the Weyl group W,

Na=D;  GelntFr, sew).

ProoF. By definition of the Fourier transform &% and the dual Radon
transform V we have

(56 = { J: ek exp iA—p) (Hxk)}dk
= {_J@exp (2 p) (Hlg~ x(xk)+ H(xk)}dgak.
Since H(g~'xk)=H(g~!k(xk))+ H(xk), the last integral equals

[ J@exp{(i1—p) (HG skNdgdk = Fx ,(x),



On the Fourier Transform of Rapidly Decreasing Functions of L? Type 151

where ¢, is the elementary spherical function and x denotes the convolution.
So @,=¢,; implies that (f); =(f);; (AeIntF?, se W). This proves our lemma.

Since ¥°(G/K) < L?(G/K), now Plancherel’s theorem ([9(c), p. 15]), Lemmas
4.1, 4.2 and 4.3 complete the proof of the injectivity and the continuity of the
Fourier transform &% : ¥°(G/K)— Z(F? x K/M).

5. The proof of surjectivity

In this section we assume the real rank of G to be one.
Let y € Z(F? x K/M). Then its Fourier inversion is given by

(5.1) 1) = o7t JG: Dl 2dA

where ¢ is Harish-Chandra’s c-function. (See [3] and [9(c)]). In order to
prove that fe #P(G/K), we use a theorem of Fourier analysis on the compact
group K.

Let K denote the set of equivalence classes of irreducible unitary represen-
tations of K of class 1 with respect to M. Let & be such a representation of K
and ¥; be the representation space of dimension d(§). For Fe C®(G/K) we put

(5.2) Fo(x) = d(&)gKF(kx)é(k‘l)dk.

Then F? is a C* function on G with values in Hom (¥, V), the space of endomor-
phism of Vj;, and satisfies

(5.3) F(kx) = 0(k)F3(x).
For 6 € K° we derive from (5.1)

54 £ =t ([ exp =G24+ ) (H SR WAD)2d2,

where
(5.5) Yi(d: kM) = d(&)gKW(l: k kM)O(kTYdk, = d(kWo(A: eM),

Yo(A) = Y°(A: eM).

From the theorem of the Fourier transform of smooth functions on the
compact group K ([11]) it follows that for each r, se Z* and u € S(F)

(5.6) L Sup  WR(4; QDI +I81 (L +1A < oo,

where ||A]| denotes the Hilbert-Schmidt norm of the endomorphism 4. We
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also denote the trace of 4 by Tr A.

LeMMA 5.1, Let {{’}scg0 be a family of C* functions y° from a*x K/M
to Hom (V;, V;) which satisfy the following conditions: (i) For each ke K
the function A—Y°(L: kM) extends to a holomorphic function on IntF?; (i)
W, =) for any AelntF? and se W; (iil) For eachr, se Z* and u € S(F),
Wé satisfies the relation (5.6); (iv) ¥2(A: kM)=056(k)y?(): eM). Then the
functions Fé(x) (6 € K°) from G/K to Hom(V;, V;) defined by

Fo(x) = cu‘lg W) (2: le(D)|~2d2
are infinitely differentiable and satisfy that for each q, reZ* and g, g'€ ®
(5.7) sup |Tr Fé(g: x; g)IE(x)"2/P(1 +a(x))4(1 +15|)" < co.
G xKO0

We shall prove the lemma in following sections. Now we assume this
lemma. By the lemma it is clear that the sum

Zoexo Trf%(g: x5 9"
is absolutely convergent for each ge ®. So we have
(5.8) J9:x:9") = Zsere Trf?(g: x5 9
Take a sufficiently large r€ Z* so that
Lsero(1+[0D)7"

is convergent. Then for each ge Z* and g, g’ € ®, we have obviously
supf(g: x; gIE)2/7(L +0(x))" < co.

This shows that fe ¥P(G/K). As is well-known, since a continuous and bijec-
tive mapping from a Fréchet space onto a Fréche space is a topological isomor-
phism, we obtain Theorem 3.1.

It is left only to prove Lemma 5.1.

6. Harish-Chandra’s C function and an estimate for I',

Let 6=(04, 0,) be a double unitary representation on a finite dimensional
Hilbert space V, o, and ¢, acting on the left and right respectively. Let Ae F
and consider the function

o0 = { oLk exp (12— p) (H(xk)}dk
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(xe G, ve V), then the function ¢ is a g-spherical function. Let
VM = [ve Ve (m = va,(m) for all me M}.

Harish-Chandra gives the following series expansion.
Let ay,..., o; be the simple restricted roots, L the set of integral linear com-
binations nyo, +---+n; (n;€ Z%) and L'= L~ {0}.

LeEMMA 6.1. There exist certain meromorphic functions C,(se W) on
F and rational functions I'y(neL) on F all with values in Hom(VM, VM)
such that for ac A*, ve VM
exp {pllog )} o.((ak)oa, (k=) exp {(i2—p) (H(@k)ldk = F e &s2: a)C, (A,
K
where

(12 a) = exp {iMloga)} X o, I (A exp {—pu(loga)}.

Here i varies in a certain open dense subset *F' of F, the functions I', are given
by certain explicit recursion formulas, depending on ¢ (see [14, Chap. 1X]).

Just for the case o, =1identity representation we shall need this theorem and
an estimate of I',, which Hashizume [8] obtained by a generalization of Gangolli’s
method [5]. Let

R ={leF|ImieCl(a})}.

If peL, p=73;<cimoy (m;20), then the number m(u)=73,<;<m; is called
the level of u.

LemwmA 6.2 ([81). We can choose positive numbers a, b such that

1T = a(l+m(p)®)
for all AeR.

Recall the universal enveloping algebra G of g,. Let 1 be the canonical
symmetrization from the symmetric algebra S(g.) ober g, onto 5. Let q be the
orthogonal complement of (the Lie subalgebra corresponding to M) in f. Put
MS(g)=2. Let A, K be the subalgebras of & generated by | and a, 1 and
f, respectively. For a 2™, let us write

f#(@) = (expaloga)=1)~!  (aed),

where A’ denotes the set of all ae A such that a(loga)s#0 for all e Z*. Let
F, denote the algebra generated over € by ff (e¢eZ*). Then for any ge®
there exist finite sets {f;}<Fq, {q,}=Q, {h}<=W and {d,}cKRULi=Z]) such
that
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D= Yf(a)qs 'hd; (acd).

(See [7(a)], also [14, Chap. IX].) We use this fact in the following section.

7. The proof of the lemma

In this section we assume the real rank of G to be one. Let {{/°};.z0 be a
family of C* functions ¥° from F” x K/M to End(V;, V;) which satisfy the con-
ditions (i), (ii), (iii) and (iv) in Lemma 5.1, that is; (i) For each e K° and
ke K the function A-»y?(4: kM) extends to a holomorphic function in Int F?;
(i) (Y9, =W?; for any AeIntF? and se W, (iii) For each r,seZ* and
u e S(F)

sup [P0 A)(L+ 18D+ A1) < <o

1

{iv) Yo(A: kM) =0(kn3(A: eM).
For simplicity we write y?(1)=y?(L: eM). Put

@0 ¢ = o (] wo ceek)exp (12 - p) (HOKDIAK ) eI,
which is equal to the expression (5.4) and
w7t (§ Sxk) exp (2~ p) (G AK Y (DI d.
Using Harish-Chandra’s asymptotic expansion theorem for the Eisenstein integral
{ d0cCok exp 1(i2— p) (HCkD}
we have for x=k,ak, (k(, ke K, ac A")
@’(kyak;) = @k a)
= o™ exp {—p(loga)} 5(k1)ga*t/f“(/l)2sew exp {is(log a)}
" et (sA) exp { — u(log a)} C(A)|e(D]~2dA.
Transforming A as —s~!1, we see that the last expression equals
w~texp {—p(log a)}(k,) Zsewsq* exp { —iX(log )}p*(—s~'2)

* Zped (= A exp {—pu(log )} C(— s~ Dlc(A)|72d4,

here we use the relation |c(4)]?2=c(sA)c(—sA), (Aea*, seW). By means of
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the relation ([9(d), p. 465])
Yo =571 = (D)1 CL—s" DY (= 1),

we obtain that the last expression equals

(12) ot exp{—pllog@)}d(k) Teew] exp{itlloga)

-3 yer €xp { — p(log @)}, (— De(A)™! {
Yo(—A)dA.

cs(—s-l,l)cs(—s—lz)*}
c(—A)c(d)

We know then that the braces are equal to one ([9(d), p. 465]). By Cauchy’s
theorem to shift the integration from a* to a*—igp, we claim that the last ex-
pression equals

exp {—(e+1)p(log a)}5(k1)ga*em {—iloga)} X e, exp { — u(log a);

- T (iep— Nc(A—iep)~"o(— A+iep)dA.

This shift is permissible because if 0 <¢’ <g, the integral is a holomorphic function
of A on the closed strip bounded by a* and a* —i¢’p and the integral behaves suita-
bly at co because of the rapid decrease of ¥? and the mentioned estimates in the
previous section for C-function and I',. Let &' —¢, the claimed relation follows.

By the results of the previous section, there exist positive numbers ¢, d such
that for ye L and —1eR

(7.3) IC A=Al = e(L+m(p)?).

In particular, this inequality remains valid for A=¢—in (£, nea*) in a strip
around the line n=gp. So we can use Cauchy’s formula to estimate the derivatives
of the function A-I",(—4) for points on the line; for each neZ* there exists
a number c, such that

(7.4) |55 Tutien =8| < eut+m(u9

The functions ¢(A)~! and ¢(1—iep)~! are products of Gamma factors I'(a+il)/
I'(b+il) where a, b>0([7(a)] or [6]), so by [9(b), p. 574] c(A)~* and c(A—igp)~!
have each derivative bounded by a polynomial in |A]. Hence, for each peL
the function

Yo(=Ae(A)~H(—id)exp {—ii(loga)}

is integrable and since
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2 e €xp { = p(H)}(1+ m(p)?) < oo,

the interchange of summation and integration in formula (7.2) is legitimate. We
have

1.5) exp {(s-+ Dp(log )}y *(k,a)
= 8(k) Zpepexp {~ ulloga)}| exp {—ii(loga))

T (iep— Dye(A—iepy~ Wro(isp — A)dA.

For any positive integer ¢ we can choose a differential operator e S(F) and a
polynomial P,, depending on u, such that

u,(exp { —il(loga)}) = P(loga)exp {—iil(loga)}
and
sup (1 + |logaj)4/|P,(loga)| < co.
acA+
Since the last integral is the euclidean Fourier transform, by means of integration
by parts and (2.3) and the estimates which we state above, we know that for

any g, re Z* and H e 9 there exist a positive constant ¢ and »’ € Z™* and a finite
number of differential operators u,,..., u, in S(F) such that

(7.6) [Tr @°(kya; H)E(x)72/P(1+ 6(a))*(1+61)"|
<3, gigallO(k DI+ 10D 1y 29 °(iep ~ DL +1AD™

for k,e K, ae A*. Since d(k,) is a unitary matrix of order d(5) the Hilbert-
Schmidt norm of é(k,) is equal to d(d)!/2. From Weyl’s dimension formula it
follows that we can choose '€ Z* and a positive constant ¢’, independent of
d, such that

6kl = ¢'(L+16D)",  (k,€K).
Therefore the expression {7.6) is bounded by

CC’ZlgigalmSFUPI?(KUIW‘S(}L; u)lI(L+ (oL +(AD)",

where s and n are sufficiently large positive integers. Now any ge ® can be
written in the form

g=2X;f(a)Q% H; (mod Gf) (ac 4'),

where f;€ Fo, Q;€Q, H; e and the sum is finite, so we have
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@°(kia; g) = 8(k) 2 ;f(a)6(Q)p%(a; H)).

Since we are in the real rank one case and F, is generated by the function H
—(exp {20(H)} £1)7!, each f; is bounded except near the origin. From (7.6),
the fact that 1=Z(a)exp{p(loga)} ([7(c), p-17]) and [7(c), Lemma 17] it
follows that for any g, reZ™ and g, g’ € ®, we can choose teZ™* and a finite
number of elements u4,..., u; of S(F) such that the inequality (5.7) holds. This
completes the proof of the Lemma 5.1.
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